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Abstract.   Soil organic carbon (SOC) is the largest terrestrial carbon (C) sink on Earth; this 
pool plays a critical role in ecosystem processes and climate change. Given the cost and time 
required to measure SOC, and particularly changes in SOC, many signatory nations to the 
United Nations Framework Convention on Climate Change report estimates of SOC stocks 
and stock changes using default values from the Intergovernmental Panel on Climate Change 
or country- specific models. In the United States, SOC in forests is monitored by the national 
forest inventory (NFI) conducted by the Forest Inventory and Analysis (FIA) program within 
the U.S. Department of Agriculture, Forest Service. The FIA program has been consistently 
measuring soil attributes as part of the NFI since 2001 and has amassed an extensive inventory 
of SOC in forest land in the conterminous United States and southeast and southcentral coast-
al Alaska. That said, the FIA program has been using country- specific predictions of SOC 
based, in part, upon a model using SOC estimates from the State Soil Geographic (STATSGO) 
database compiled by the Natural Resources Conservation Service. Estimates obtained from 
the STATSGO database are averages over large map units and are not expected to provide 
accurate estimates for specific locations, e.g., NFI plots. To improve the accuracy of SOC esti-
mates in U.S. forests, NFI SOC observations were used for the first time to predict SOC density 
to a depth of 100 cm for all forested NFI plots. Incorporating soil- forming factors along with 
observations of SOC into a new estimation framework resulted in a 75% (48 ± 0.78 Mg/ha) 
increase in SOC densities nationally. This substantially increases the contribution of the SOC 
pool, from approximately 44% (17 Pg) of the total forest ecosystem C stocks to 56% (28 Pg), in 
the forest C budget of the United States.

Key words:   climate; Forest Inventory and Analysis; greenhouse gas inventory; International Soil Carbon 
Network; modeling; national forest  inventory.

INTRODUCTION

Soil organic carbon (SOC) is the largest terrestrial 

carbon (C) sink, and management of this pool is a critical 

component of efforts to mitigate atmospheric C concen-

trations (Post et al. 1982, Jobbágy and Jackson 2000, Lal 

2004, 2005, Tian et al. 2015). SOC also affects essential 

biological, chemical, and physical soil functions such as 

nutrient cycling, water retention, and soil structure (Lal 

2001, Jandl 2014). Globally, SOC stock estimates range 

from 425 to 2111 Pg in the first 100 cm (Tian  2015). Much 

of this SOC is found in forest ecosystems (Lal 2005) and 

is thought to be relatively stable. However, there is 

growing evidence that SOC is sensitive to global change 

effects, particularly land use histories, resource man-

agement, and climate (Jobbágy and Jackson 2000, Guo 

and Gifford 2002, Davidson and Janssens 2006, Heimann 

and Reichstein 2008, Nave et al. 2010, Nave et al. 2013, 

Tian et al. 2015).

Inventories of SOC are necessary for soil quality 

assessments (Sikora and Stott 1996) and to predict 

C cycling (Ellert et al. 2002). But given the cost and time 

required to measure SOC, many signatory nations to the 

United Nations Framework Convention on Climate 

Change report estimates of SOC stocks and stock changes 

using default values from the Intergovernmental Panel 

on Climate Change (IPCC 2006) or country- specific 

models (Kurz and Apps 2006, Keith et al. 2009). Country- 

specific models may be developed using estimates from 

landscape models (Thompson and Kolka 2005), digital 

terrain models (Zushi 2006), or from data obtained 

directly from soil inventories. Oftentimes, soil inventories 

are not representative of all land uses and vegetation 

types, resulting in unquantified uncertainties in country- 

specific models (Amichev and Galbraith 2004). In the 

United States, SOC in forests is monitored by the national 

forest inventory (NFI) conducted by the Forest Inventory 

and Analysis (FIA) program within the U.S. Department 

of Agriculture, Forest Service (O’Neill et al. 2005). The 

FIA program currently uses SOC predictions based, in 

part, upon a model using SOC estimates from the State 

Soil Geographic (STATSGO) database compiled by the 
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Natural Resources Conservation Service (NRCS; 

Schwarz and Alexander 1995, Amichev and Galbraith 

2004), hereafter referred to as the country- specific model. 

The STATSGO estimates of SOC are averages over large 

map units and are not expected to provide accurate esti-

mates of SOC for specific locations (Homann et al. 1998). 

Furthermore, some STATSGO estimates are based upon 

expert judgment and/or lack systematic field observa-

tions (Amichev and Galbraith 2004), but the country- 

specific model predictions based on these estimates have 

been used in past United Nations Framework Convention 

on Climate Change reporting (EPA 2015).

The FIA program has been consistently measuring soil 

attributes as part of the NFI since 2001 and has amassed 

an extensive inventory of SOC observations in forest land 

in the conterminous United States and southeast and 

southcentral coastal Alaska (O’Neill et al. 2005). Soil 

samples are collected on a subset of NFI plots, and soil 

cores are taken to a depth of 20.32 cm on each of these 

plots. In an effort to improve the accuracy and precision 

of SOC estimates in forest land in the United States, a 

modeling framework developed to predict litter carbon 

stocks (Domke et al. 2016) was expanded to predict SOC 

using observations from the NFI and the International 

Soil Carbon Network (ISCN, http://iscn.fluxdata.org/

data/access-data/) database, along with auxiliary climate, 

soil, and topographic variables for United Nations 

Framework Convention on Climate Change reporting. 

Specifically, we (1) evaluate the NFI observations of SOC 

in the United States, (2) develop SOC density profiles to 

depths of 30 and 100 cm for forest land using in situ 

observations from the NFI and ISCN, (3) compare the 

country- specific model predictions to the NFI observa-

tions and new model predictions, and (4) expand the SOC 

density predictions from the subset of NFI plots to all 

forested plots for use in United Nations Framework 

Convention on Climate Change reporting.

METHODS

We first examined country- specific predictions of SOC 

density using estimates in the NFI. We then evaluated 

approaches to replace the SOC model predictions in 

United Nations Framework Convention on Climate 

Change reporting with a model developed from the most 

recent annual NFI data and observations from the ISCN. 

This work was restricted to the annual inventory where 

SOC attributes were measured (2001–2012); the annual 

inventory includes a nationally consistent sampling 

frame and plot design so the methodologies established 

for replacing the country- specific model predictions of 

SOC could be applied nationally to enable stock- 

difference C accounting.

The country- specific SOC density predictions were 

compiled by spatially relating SOC estimates from 

STATSGO map units to FIA forest type groups and area 

expansion factors on each plot using the following model 

(Amichev and Galbraith 2004): 

where CS was the county- specific SOC density by forest 

type group (Mg/ha), SOCSTATSGO was the mass SOC from 

the STATSGO map unit (Mg/ha), E was the expansion 

factor to relate the area represented by each FIA plot, and 

F was the number of FIA plot records with the same forest 

type group (F=1,2,3,… ,j). Forest type group is a broad 

aggregation of forest types that best describe the predom-

inant tree species (or group of tree species) on each con-

dition (i.e., domains mapped on each plot using land use, 

forest type, stand size, ownership, tree density, stand origin, 

and/or disturbance history; there may be multiple condi-

tions on a single inventory plot) that are not overtopped on 

each FIA plot (USDA Forest Service 2015). For a complete 

list of forest type groups, see USDA Forest Service (2015).

Plot design and sampling

The FIA program employs a multi- phase inventory, 

with each phase contributing to the subsequent phase. 

First, current aerial photography (e.g., National 

Agriculture Imagery Program, USDA Farm Services 

Agency [2011]) is used in a prefield process to determine 

the land use (e.g., forest or cropland) at all sampling 

points (i.e., plot locations). Next, each sample point is 

assigned to a stratum using imagery or thematic products 

(e.g., National Land Cover Database; Homer et al. 2012) 

obtained from satellites. A stratum is a defined geographic 

area (e.g., state or estimation unit) that includes plots with 

similar attributes; in many regions, strata are defined by 

predicted percent canopy cover. National base sample 

intensity permanent ground plots are distributed approx-

imately every 2428 ha across the 48 conterminous states 

of the United States in four geographic regions (Fig. 1). 

Each permanent ground plot comprises a series of smaller 

fixed- radius (7.32 m) plots (i.e., subplots) spaced 36.6 m 

apart in a triangular arrangement with one subplot in the 

center. Tree-  and site- level attributes, such as diameter at 

breast height (dbh) and tree height, are measured at 

regular temporal intervals on plots that have at least one 

forested condition defined in the prefield process (USDA 

Forest Service 2016). Soil samples are collected along with 

other non- standing tree ecosystem attributes (e.g., litter; 

Domke et al. 2016) on every 16th base intensity plot, 

where at least one forested condition exists, distributed 

approximately every 38 848 ha (USDA Forest Service 

2011). Soil samples are collected to a depth of 20.32 cm 

along a soil sampling transect adjacent to subplot 2. First, 

litter material (i.e., litter [Oi], fulvic [Oe], and humic layers 

[Oa]) including woody fragments with large- end diam-

eters of up to 7.5 cm (Domke et al. 2016) is removed along 

the soil sampling transect. Note that litter material is esti-

mated separately and was not included in this analysis 

(Domke et al. 2016). Second, soil cores are taken at the 

soil sampling transect location using a soil core sampler 
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and slide hammer. Third, the soil is removed from the soil 

coring head and sliced with a knife at the intersection of 

the two soil core liners, each 10.16 cm long. Fourth, the 

soil in each soil liner is removed and bagged. Finally, the 

texture of each soil layer is estimated in the field, and 

physical and chemical properties are determined in 

regional laboratories (USDA Forest Service 2011).

Data

Soil samples are analyzed for bulk density, water content, 

total C, and total nitrogen (N) (Amacher et al. 2003, O’Neill 

et al. 2005) and the laboratory results are managed as part 

of the Soils Lab Table (SOILS_LAB) in the publicly 

available FIA database (data available online).6 Bulk 

density was calculated as the total oven- dried mass of all 

soil materials within a fixed volume (i.e., 5 cm diameter soil 

core; Amacher et al. 2003). There are estimates of coarse 

fragment content in the NFI database but this variable is 

quantified as mass. Absent estimates of the volume of 

coarse fragments it is not possible to adjust estimates of 

bulk density in our calculations. Total, organic, and 

6 http://apps.fs.fed.us/fiadb-downloads/datamart.html

FIG. 1. Distributions of National Forest Inventory (NFI) plots by region in the conterminous United States that have at least 
one forested condition and include measurements of soil attributes (n = 3636). Note that plot locations are approximate. SOC, soil 
organic carbon; PNW, Pacific Northwest. [Colour figure can be viewed at wileyonlinelibrary.com]

http://apps.fs.fed.us/fiadb-downloads/datamart.html
http://wileyonlinelibrary.com
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inorganic C and total nitrogen were determined through 

combustion methods on the fine earth fraction (soil mate-

rials passing a 2 mm sieve; Amacher et al. 2003). For this 

analysis, estimates of SOC from the FIA program were 

calculated following O’Neill et al. (2005) 

where SOCFIAwas the total mass (Mg/ha) of the mineral 

and organic soil C at the ith layer, CPi was the mass 

percent organic C in the fine earth fraction of the ith 

layer, BDi was the bulk density calculated as the mass of 

all soil materials per unit volume of the sample (g/cm3) at 

the ith soil layer, ti was the thickness (cm) of the ith soil 

layer, either 0–10.16 cm or 10.16–20.32 cm, and ucf was 

the unit conversion factor (100).

In the present study, there were 3636 profiles with 7038 

SOC layer observations in the NFI data set; in some 

cases, only a single layer was available for a profile. Since 

the United States has historically reported SOC estimates 

to a depth of 100 cm (U.S. Environmental Protection 

Agency [US EPA] 2015), ISCN data from forest land in 

the United States were combined with the NFI soil layer 

observations to develop models of SOC by soil order to a 

depth of 100 cm. Soil order for each NFI plot was 

obtained by intersecting exact NFI plot coordinates with 

STATSGO map units and assigning the most frequently 

occurring soil order to that map unit and the NFI plot 

that intersected that map unit. A small number of NFI 

plots intersected map units that were all water, ice, or 

other non- soil. For those plots, the nearest map unit that 

had a dominant soil order was assigned. While the ISCN 

database houses data from a variety of agency and aca-

demic sources, all observations used from the ISCN in 

this analysis were contributed by the NRCS, which 

assigns soil taxonomic classifications for most pedons in 

its characterization database. A total of 16 504 soil layers 

from 2037 profiles were used from ISCN land uses defined 

as deciduous, evergreen, or mixed forest. The ISCN 

database computes the SOC stocks of individual soil 

layers from the C concentration, bulk density, and layer 

thickness data provided by contributors, and also assigns 

land cover classes (Multi- Resolution Land Characteristics 

Consortium 2011) for the locations of the profiles/layers. 

The data we accessed via ISCN were from the 2012 

database version (ISCN 2012a, b). The FIA- ISCN har-

monized data set used for model development and pre-

diction included a total of 5673 profiles with 22 342 layer 

observations at depths ranging from 0 to 1148 cm.

Model development

The modeling framework developed to predict SOC in 

this study was built around strategic- level forest and soil 

inventory information and auxiliary variables available 

for all NFI plots in the United States. The first phase of the 

framework involved fitting linear and non- linear models 

using the mid- point of each soil layer from the harmonized 

data set and SOC observations at those mid- points to 

predict SOC to a depth of 30 and 100 cm. Ten linear and 

non- linear models were evaluated, and a log–log model 

provided the best fit to the harmonized data 

where log10 SOC was the observed SOC density (Mg 

C·ha−1·cm−1) at the midpoint depth, I was the intercept, 

and log10 Depth was the profile mid- point depth (cm). 

The model was validated by partitioning the complete 

harmonized data set 10 times into training (70%) and 

testing groups (30%) and then repeating this step for each 

soil order to evaluate model performance by USDA soil 

taxonomic order (Soil Survey Staff 1999). Extra sum of 

squares F tests (Draper and Smith 1981) were used to 

evaluate whether there were statistically significant dif-

ferences between the model coefficients from the model 

fit to the complete harmonized data set and models fit to 

subsets of the data by soil order. Model coefficients for 

each soil order were used to predict SOC for the layer 

20.32–30 cm and 20.32–100 cm for all NFI plots with soil 

profile observations. Since logarithmic transformations 

are known to introduce a systematic bias into predictions 

(Sprugel 1983), correction factors calculated from the 

standard error of the estimate in the regressions were 

multiplied by the predictions to remove the bias for each 

soil type. Next, we summed the SOC layer observations 

from the NFI and the corrected predictions over 30 and 

100 cm profiles for each NFI plot 

and 

where SOC30 and SOC100 were the total estimated SOC 

density from 0–30 and 0–100 cm, respectively for each forest 

condition with a soil sample in the NFI, SOCFIA\ TOTAL was 

the total observed SOC from 0 to 20.32 cm on NFI plots as 

estimated from model [2], and SOC20–30 and SOC20–100 were 

the predicted SOC from 20.32–30 cm and 20.32–100 cm 

from model [3]. While information on depth to restrictive 

layer was available for some FIA plots with soil samples, 

this was determined to not be a reliable variable and, since 

it was only available on plots with soil measurements, it was 

not used in this analysis. However, in the ISCN database, 

82% of forest soil profiles utilized in our analysis are ≥1 m 

deep, suggesting that while our approach may overestimate 

soil depth and SOC density in some cases, the overall 

influence of this overestimation on overall and soil- order- 

specific SOC estimates is likely modest.

In the second phase of the modeling framework, SOC30 

and SOC100 estimates for the NFI plots were used to 

predict SOC for core plots lacking SOC estimates using 

random forests (RF) for regression, a machine learning 

tool that uses bootstrap aggregating (i.e., bagging) to 

develop models to improve prediction (Breiman 2001). 

Random forests also relies on random variable selection to 

develop a forest of uncorrelated regression trees. These 

(2)SOCFIA =CP
i
⋅BD

i
⋅ t

i
⋅ucf

(3)log10SOC= I+ log10Depth

(4)SOC30 =SOCFIA_TOTAL+SOC20−30

(5)SOC100 =SOCFIA_TOTAL+SOC20−100
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trees uncover the relationship between a dependent var-

iable, in this case SOC30 and SOC100, and a set of predictor 

variables. The RF analysis included publicly available, 

relevant predictor variables, those that may influence the 

formation, accumulation, and loss of SOC, from annual 

inventories collected on all core plots and auxiliary climate, 

soil, and topographic variables obtained from the PRISM 

Climate Group (data available online),7 NRCS (Schwarz 

and Alexander 1995), and U.S. Geological Survey 

(Danielson and Gesch 2011), respectively. To avoid 

problems with data limitations, variable pruning was used 

to reduce the RF models to the minimum number of rel-

evant predictors without substantial loss in explanatory 

power or increase in root mean squared error (RMSE). 

The general form of the full RF models were 

where lat is latitude, lon is longitude, elev is elevation, 

fortypgrp is forest type group, ppt is mean annual precip-

itation, tmax is average maximum temperature, climate 

moisture index (cmi) is the ratio of precipitation to pot-

ential evapotranspiration, order is soil order, and surfgeo 

is surficial geological description.

The NFI data set used to develop the full RF model was 

partitioned 10 times into training (70%) and testing (30%) 

groups and the results were evaluated graphically and with 

a variety of statistical metrics including Spearman’s rank 

correlation, equivalence tests (Wellek 2003), as well as 

RMSE. All analyses were conducted using R statistical 

software, version 2.15.2 (R Development Core Team 2014).

RaCA comparisons

As a final step, RF model predictions of SOC were com-

pared to the NRCS Rapid Assessment of U.S. Soil Carbon 

(Soil Survey Staff 2013) estimates of SOC at 30 and 100 cm 

by NRCS Land Resource Regions (LRRs). First, RaCA 

estimates of SOC were joined to RaCA plot locations 

(n = 6215); note that some RaCA plots had no location 

information and/or estimates of SOC. Next, the RaCA 

data were sorted to isolate SOC predictions that were iden-

tified as occurring on forest land (n = 1713) based on the 

RaCA “land use/land cover” attribute assigned to each 

plot. The RaCA locations and RF model predictions were 

then assigned to LRRs in the 2006 MLRA Geographic 

Database, version 4.2 (USDA NRCS 2006) using ArcMap 

10.3.1 (Environmental Systems Research Institute 2016, 

ArcGIS Desktop: Release 10.3.1., Redlands, CA, USA). 

Finally, the RaCA and RF model predictions of SOC were 

exported for comparison.

RESULTS

NFI observations

Alfisols were the most common (n = 894) soil order 

sampled in the NFI, followed by Ultisols (n = 680), 

Inceptisols (n = 588), and Mollisols (n = 586). Estimates of 

SOC density obtained from measurements in the NFI 

(0–20.32 cm) ranged from <1–524 Mg/ha, with an esti-

mated mean of 54 ± 0.61 Mg/ha (mean ± SE). Spodosols 

had the highest SOC density at 72 ± 2.40 Mg/ha, while 

Aridisols had the lowest SOC density at 28 ± 1.81 Mg/ha 

(Table 1). Gelisols and Oxisols were not sampled in the 

NFI. In all soil orders represented in the NFI, the top layer 

(0–10.16 cm) estimates of SOC were larger than the second 

layer (10.16–20.32 cm) (Table 1). Ultisols and Vertisols 

had among the lowest total SOC and had the largest 

decreases (27%, 12 and 10 Mg/ha, respectively) between 

layers 1 and 2. Histosols had the smallest decrease (5%, 

3 Mg/ha) between layers 1 and 2, followed by Andisols and 

Aridisols (13%, 7.73 and 3.75 Mg/ha, respectively).

Regionally, the Northern United States had the most 

NFI observations (n = 1381) of SOC and the widest range 7http://prism.oregonstate.edu

(6)
P(SOC)=f(lat, lon, elev, fortypgrp, ppt,

tmax, cmi, order, surfgeo)

TABLE 1. Summary statistics (mean and standard deviation [SD]) for soil organic carbon (SOC) density observations and forest site 
attributes by soil order from all National Forest Inventory (NFI) plots with soil samples in the United States.

Soil order n
AGLTC 
(Mg/ha)

Basal 
area (m2)

SOC (Mg/ha)

1 2 Total SD CS SD CS

All 3,636 45.53 21.75 33.10 22.94 54.01 37.05 62.87 40.06
Alfisols 894 45.87 21.31 31.06 20.24 49.51 28.47 59.14 36.37
Andisols 133 81.25 30.24 34.83 27.10 60.24 41.25 69.39 26.53
Aridisols 112 8.38 13.10 16.81 13.05 28.66 19.19 28.63 16.18
Entisols 209 25.48 19.51 23.41 16.34 38.62 29.25 51.23 45.15
Histosols 30 37.87 21.59 35.71 32.42 61.20 51.94 144.05 34.32
Inceptisols 588 53.04 23.68 38.65 28.47 63.97 45.23 66.20 45.95
Mollisols 586 28.51 18.77 34.14 24.83 56.46 32.49 47.16 28.45
Spodosols 395 55.49 25.30 42.79 31.92 72.06 47.62 107.03 42.32
Ultisols 680 53.48 21.78 29.97 17.53 46.31 30.94 57.37 22.07
Vertisols 9 17.35 10.28 23.60 13.91 35.96 10.80 47.35 13.82

Notes: AGLTC, aboveground live tree carbon stocks; SOC1, soil organic carbon in the top layer (0–10.16 cm); SOC 2, soil organic 
carbon in the second layer (10.16–20.32 cm); total SOC, mean SOC from layers 1 and 2; SD SOC, standard deviation of the mean 
(total SOC); CS SOC, country- specific soil organic carbon predictions (0–100 cm); SD CS SOC, standard deviation of the mean CS 
predictions.

http://prism.oregonstate.edu
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of SOC density observed (1–524 Mg/ha), followed by the 

West (n = 992) with a range of <1–320 Mg/ha, the Pacific 

Northwest (n = 430) with 8–299 Mg/ha, and the South 

(n = 833) with a range of 3–267 Mg/ha (Fig. 1).

Characterizing the vertical distribution of  

soil organic carbon

Many linear and non- linear regression models were 

evaluated using the ISCN- NFI harmonized data to char-

acterize the vertical distribution of SOC to a depth of 

100 cm. These 10 models were evaluated (1) globally, (2) 

combining all orders, and (3) by soil order. A log- log 

model [3] provided the best fit to the harmonized data 

and extra sum of squares F tests (Draper and Smith 

1981) confirmed that soil order- specific models were 

superior to a global model across all orders (Table 2). 

With the exception of Vertisols and Aridisols, model [3] 

explained much of the variation in the data with r2 

ranging from 0.39 (P < 0.001) for Entisols to 0.68 

(P < 0.001) for Ultisols. The slopes of model [3] are 

notable, as they characterize the relative rate of decrease 

in SOC with depth while the intercept characterizes the 

SOC content (Fig. 2).

Harmonized estimates of soil organic carbon

The SOC30 estimates, which combined observations 

from the NFI (0–20.32 cm) and predictions from the har-

monized data set (20.32–30 cm), ranged from 11 to 

541 Mg/ha, with a mean of 67 ± 0.63 Mg/ha (Table 3). 

The SOC100 estimates ranged from 40 to 595 Mg/ha, with 

a mean of 110 ± 0.69 Mg/ha (Table 3).

Model evaluation and comparisons

Country- specific predictions.—Country- specific model 

predictions of SOC ranged from 20 to 262 Mg/ha, with 

a mean of 63 ± 0.66 Mg/ha (Table 1). Histosols had the 

highest predicted SOC at 144 ± 6.26 Mg/ha while Arid-

isols had the lowest predicted SOC at 29 ± 1.52 Mg/ha. 

Regionally, the Northern US had the widest range of 

SOC predictions (35–262 Mg/ha), followed by the South 

with a range of 32–173 Mg/ha, the Pacific Northwest 

with a range of 26–149 Mg/ha, and the West with a range 

of 20–59 Mg/ha.

Country- specific predictions vs. NFI estimates.—The 

country- specific model predictions were statistically sig-

nificantly smaller than SOC100 estimates across all soil 

orders (Table 4), with a mean of the difference between 

estimates being −47 ± 0.89 Mg/ha.

Regionally, the largest differences between the country- 

specific model predictions and NFI estimates were in the 

Western United States (−83 ± 1.14 Mg/ha), followed by the 

TABLE 2. Linear regression results of SOC stocks by soil order using the harmonized NFI- ISCN data.

Soil order Intercept Slope r2 F df P 

All 1.1795 −0.8228 0.56 29 646.79 1, 23537 <0.001
Alfisols 1.1122 −0.8330 0.64 10 657.50 1, 5893 <0.001
Andisols 1.3837 −0.8425 0.49 1185.78 1, 1254 <0.001
Aridisols 0.2065 −0.1300 0.02 6.55 1, 279 0.011
Entisols 0.9300 −0.7207 0.39 752.34 1, 1188 <0.001
Histosols 1.6227 −1.0109 0.59 1724.22 1, 1201 <0.001
Inceptisols 1.1631 −0.7331 0.52 2833.00 1, 2612 <0.001
Mollisols 1.0163 −0.6214 0.51 2569.03 1, 2449 <0.001
Spodosols 1.4262 −0.9801 0.61 4097.61 1, 2581 <0.001
Ultisols 1.1576 −0.8867 0.68 7450.16 1, 3551 <0.001
Vertisols 0.5145 −0.2427 0.08 9.58 1, 112 0.002

FIG. 2. Characterizations of the model [3] predictions of 
SOC (Mg/ha) for all soil orders and associated 95 prediction 
intervals (a) and individual soil orders (b) from 20.32 to 100 cm. 
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Pacific Northwest (−62 ± 0.78 Mg/ha), North 

(−28 ± 1.64 Mg/ha), and South (−27 ± 1.23 Mg/ha) (Fig. 3a).

RF model predictions and NFI estimates.—The RF mod-

el [6] explained 38.33% of the variation in the SOC100 

estimates with an RMSE = 4.14 Mg/ha. Relationships 

between the dependent variable, SOC, and continuous 

predictor variables identified by RF variable impor-

tance (Fig. 4) were also evaluated using Spearman’s 

rank correlation. Latitude was positively correlated with 

SOC stocks (0.44, P < 0.001), as were elevation (0.27, 

P < 0.001) and the ratio of precipitation to potential 

evapotranspiration (0.22, P < 0.001). Mean maximum 

temperature was negatively correlated with SOC (−0.46, 

P < 0.001), as were longitude (−0.12, P < 0.001) and 

mean annual precipitation (−0.09, P < 0.001).

Equivalence tests for the mean of the difference between 

RF model [6] predictions and SOC100 estimates were con-

ducted for all soil orders and individual orders to further 

evaluate RF model performance. The mean of the differ-

ences between RF model predictions and SOC100 estimates 

across all orders was −0.15 ± 0.26 Mg/ha and these esti-

mates were statistically equivalent (Table 4). With the 

exception of the Vertisols, Histosols, and Aridisols, which 

all had relatively small sample sizes (n = 9, 30, and 112, 

respectively), all other RF model predictions and NFI esti-

mates were statistically equivalent, with the smallest differ-

ences in the Ultisols (−0.25 ± 0.45 Mg/ha), Inceptisols 

(−0.33 ± 0.90 Mg/ha), and Spodosols (−0.50 ± 1.02 Mg/

ha). Regionally, the mean of the differences between RF 

model predictions and SOC100 estimates of C density were 

relatively small, with the largest differences in the Pacific 

Northwest (0.63 ± 0.78 Mg/ha) followed by the South 

(0.60 ± 0.33 Mg/ha), West (−0.36 ± 0.48 Mg/ha), and 

North (−0.26 ± 0.49 Mg/ha; Fig. 3b). The RF model pre-

dictions were then applied to all NFI plots in the conter-

minous United States with at least one forested condition 

(Figs. 5, 6).

RaCA and RF model comparisons.—RF model predic-

tions at 30 and 100 cm were substantially smaller than 

RaCA (Soil Survey Staff 2013) estimates in most LRRs 

in the United States (Table 5). The largest differences were 

in the Florida Subtropical Fruit, Truck Crop, and Range 

Region at both 30 and 100 cm (−239% and −412%, respec-

tively), followed by the Northern Lake States Forest and 

Forage Region (−224% and −327%, respectively), and the 

Atlantic and Gulf Coast Lowland Forest and Crop Re-

gion (−212% and −317%, respectively). There was gener-

ally better agreement between mean SOC density (Mg/ha) 

TABLE 3. Summary statistics (mean, minimum [min], and maximum [max]) for SOC30 and SOC100 (Mg/ha) obtained from the 
harmonized ISCN- NFI data.

Soil order

SOC30 SOC100

Mean Min Max Mean Min Max

All 67.11 11.35 541.00 109.66 40.58 594.74
Alfisols 59.84 13.09 285.89 91.41 44.66 317.46
Andisols 80.57 32.26 285.43 142.32 94.01 347.18
Aridisols 40.15 15.75 102.57 98.30 73.90 160.72
Entisols 49.17 14.93 214.75 84.89 50.65 250.47
Histosols 81.38 37.41 287.54 134.36 90.38 340.51
Inceptisols 80.14 16.43 541.00 133.88 70.17 594.74
Mollisols 72.96 21.80 283.39 133.81 82.65 344.24
Spodosols 85.94 16.01 434.34 123.25 53.33 471.66
Ultisols 56.31 11.35 243.16 85.54 40.58 272.39
Vertisols 53.49 38.95 73.66 143.91 129.37 164.07

TABLE 4. Equivalence test results of SOC density (Mg/ha) by soil order.

Soil order

Country- specific, NFI Random forests, NFI

Mean SE TOST Mean SE TOST

All orders −46.96 0.89 NE −0.15 0.26 E
Alfisols −32.27 1.44 NE −0.68 0.42 E
Andisols −72.93 3.66 NE 1.39 1.40 E
Aridisols −69.67 2.23 NE 0.73 0.74 NE
Entisols −33.99 3.00 NE −0.77 0.79 E
Histosols −22.68 9.48 NE 1.89 4.10 NE
Inceptisols −67.69 2.63 NE −0.33 0.90 E
Mollisols −86.65 1.60 NE 0.70 0.57 E
Spodosols −17.17 3.19 NE −0.50 1.02 E
Ultisols −28.17 1.36 NE −0.25 0.45 E
Vertisols −96.56 5.64 NE 6.75 2.26 NE

Note: Mean, mean difference; SE, standard error of the mean difference; and TOST, two- one- sided test results where NE is not 
equivalent and E is equivalent and the absolute value of the mean of the differences is ±25% of the standard deviation.
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estimates from RaCA and RF at 100 cm than at 30 cm 

across the LRRs. Estimates were most similar at 30 and 

100 cm in the Central Feed Grains and Livestock Region 

(7% and −1%, respectively), the Northern Great Plains 

Spring Wheat Region (−14%), and the Western Range 

and Irrigated Region (−17% and 13%, respectively).

DISCUSSION

Estimates of SOC concentration are typically quite 

variable over space and time (Homann et al. 2001, Ellert 

et al. 2002), with potentially large differences in devel-

opment between forest types on the same soils 

(Ladegaard- Pedersen et al. 2005) and depths at short 

distances (Smit 1999). Compounding the very real vari-

ability that exists in SOC is the difficulty of obtaining 

representative measurements of bulk density, which are 

required to compute SOC stocks (Lee et al. 2009), as well 

as accurate representation of soil depth and coarse 

fragment content. This variability complicates not only 

the inventories of soil attributes but also the prediction 

of SOC stocks in inventories lacking soil measurements, 

especially when large observational data sets, developed 

over institutional timeframes, are used for predictive 

purposes not anticipated during their original design. 

For example, in computing SOC stocks from NRCS and 

other contributor data, the ISCN database utilizes any 

available bulk density and coarse fragment data, deter-

mined by a range of different methods, in order to max-

imize the availability of SOC stock estimates. Utilizing a 

range of different scaling metrics introduces unquan-

tified uncertainty into the resulting SOC stock estimates; 

however, the new estimation and reporting framework 

described here provides a basis for future sensitivity 

analyses and iterative improvements to the process. At 

the scale of this analysis, it is likely that other sources of 

variation, including those identified through RF mod-

eling, are more important drivers of variation in SOC 

content than are variable methods used in soil bulk 

density or coarse fragment determination. Indeed, com-

paring SOC estimates from NFI measurements and 

ISCN data for Spodosols and Alfisols to 10 and 20 cm 

depths show only 5–15% differences, despite differences 

in the bulk density methods used for NFI and ISCN 

(NRCS) data. Ultimately, by replacing the country- 

specific model with real physical observations, our 

approach represents improvement in national estimation 

FIG. 3. Differences between (a) country- specific model 
predictions and NFI- ISCN harmonized estimates of SOC 
stocks and (b) random forests model predictions and NFI- 
ISCN harmonized estimates of SOC stocks. Note that 
differences are in Mg/ha. [Colour figure can be viewed at 
wileyonlinelibrary.com]

FIG. 4. Relationships between the dependent variable, SOC, 
and continuous predictor variables identified by random forests 
variable importance: a) is latitude (degrees), b) is elevation (m), c) 
is mean annual precipitation (mm), d) is average maximum 
temperature (degrees C), and e) is climate moisture index expressed 
as the ratio of precipitation to potential evapotranspiration. 
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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of historical SOC stocks per C baseline reporting require-

ments (e.g., the year 1990 baseline in United Nations 

Framework Convention of Climate Change reporting). 

In general, the IPCC guidelines for National Greenhouse 

Gas Inventories suggest that countries use estimation 

methods consistent with their resources and, when 

properly implemented, they should provide unbiased 

estimates of emissions and sinks (IPCC 2006).

In the United States, the country- specific model may be 

defined as a Tier 2 estimation method since it relies on 

activity data specific to the United States by major forest 

type and includes other important country- specific vari-

ables that may influence soil forming factors but does not 

directly rely on soil attributes measured in an inventory 

system (IPCC 2006). When the country- specific model 

was developed, soil attributes were only beginning to be 

measured in the NFI and these data were not sufficient to 

evaluate the accuracy and precision of the country- specific 

model predictions, but, since it relied on information from 

the STATSGO database, the model predictions were 

assumed to be accurate. In fact, country- specific model 

predictions (to a depth of 100 cm) are well below default 

SOC stocks for temperate ecosystems specified in the 

IPCC Good Practice Guidelines to a depth of 30 cm. The 

IPCC (2006) defaults range from 19 Mg/ha in sandy soils 

at warm, dry locations to 130 Mg/ha in volcanic soils (i.e., 

Andisols) at cold and moist locations (IPCC 2006).

With an extensive sample of SOC densities across a 

national plot network on forest land in the US (USDA 

Forest Service 2017), it is now possible to evaluate the 

country- specific predictions. It is not surprising that the 

country- specific model predictions did not fit the NFI 

data well, given the high variability observed in SOC stock 

estimates in this study and the literature (Webster and 

Oliver 1990, Smit 1999, Yanai et al. 2000, Böttcher and 

Springob 2001, Schulp et al. 2008) and the fact the 

country- specific model was developed while SOC sam-

pling in the NFI was in its infancy. In general, the country- 

specific model produced predictions with a substantial 

downward bias, resulting in statistically significant differ-

ences between NFI estimates and the country- specific 

model across all soil orders. The large differences between 

NFI estimates and the country- specific model can be 

attributed to several factors. First, the country- specific 

model was developed using STATSGO data, which has a 

wide distribution but much of the data is from non- forest 

land and estimates of SOC are averages over large map 

units intended for broad planning and management uses 

covering state, regional, and multi- state areas and are not 

expected to provide accurate estimates of SOC for specific 

locations (Homann et al. 2005). Second, SOC estimates 

were used by broad forest type in the country- specific 

model whereas  plot- specific C content and bulk density 

measurements were used to obtain estimates of SOC from 

the NFI. Finally, given the high variability observed in 

SOC estimates, it is likely that the country- specific model 

did not include important interactions between the vari-

ables included in the RF model as well as other variables 

FIG. 5. Random forests model predictions of SOC stocks (0–100 cm) for all NFI plots with at least one forest land condition in 
the conterminous United States. [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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(e.g., temperature, precipitation) that directly and indi-

rectly influence SOC dynamics (Jobbágy and Jackson 

2000, Parton et al. 2007). Models of SOC that are sensitive 

to climate variables, physiographic factors, and 

vegetation type are consistent with our understanding of 

soil  formation (Jenny 1941, McBratney et al. 2003, 

Thompson and Kolka 2005, Mishra et al. 2010, 

Woldeselassie et al. 2012, Tian et al. 2015).

FIG. 6. Relative uncertainty (the ratio between the 95% confidence interval and the mean of the regression trees from the 
random forest) of the random forest predictions of SOC stocks (0–100 cm) for all NFI plots with at least one forest land condition 
in the conterminous United States. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5. Comparison of RF model predictions and NRCS Rapid Assessment of U.S. Soil Carbon (RaCA) estimates of SOC at 30 
and 100 cm by NRCS Land Resource Regions (LRRs).

Land resource region

30 cm

Difference  
(%)

100 cm

Difference  
(%)RaCA RF RaCA RF

Northwestern Forest, Forage, and Specialty Crop 188.58 80.43 −134 269.76 132.01 −104
Northwestern Wheat and Range 64.33 79.84 19 85.73 138.39 38
California Subtropical Fruit, Truck, and Specialty 

Crop
87.45 57.88 −51 122.92 106.27 −16

Western Range and Irrigated 63.88 54.77 −17 89.78 103.21 13
Rocky Mountain Range and Forest 90.63 72.21 −26 129.37 125.34 −3
Northern Great Plains Spring Wheat 122.93 107.38 −14 188.11 164.57 −14
Western Great Plains Range and Irrigated 70.41 56.77 −24 114.70 100.90 −14
Central Great Plains Winter Wheat and Range 79.90 51.00 −57 130.29 98.65 −32
Southwest Plateaus and Plains Range and Cotton 67.55 122.37
Southwestern Prairies Cotton and Forage 65.21 51.75 −26 93.01 96.46 4
Northern Lake States Forest and Forage 233.15 72.01 −224 478.95 112.17 −327
Lake State Fruit, Truck Crop, and Dairy 135.05 78.70 −72 324.08 116.59 −178
Central Feed Grains and Livestock 65.20 70.35 7 110.99 110.12 −1
East and Central Farming and Forest 93.26 62.44 −49 126.31 95.11 −33
Mississippi Delta Cotton and Feed Grains 61.65 34.61 −78 93.06 73.37 −27
South Atlantic and Gulf Slope Cash Crops, Forest, 

and Livestock
78.23 40.93 −91 113.31 71.28 −59

Northeastern Forage and Forest 256.65 100.02 −157 438.06 142.43 −208
Northern Atlantic Slope Diversified Farming 165.24 81.62 −102 200.67 119.65 −68
Atlantic and Gulf Coast Lowland Forest and Crop 213.32 68.31 −212 415.40 99.63 −317
Florida Subtropical Fruit, Truck Crop, and Range 185.78 54.74 −239 475.53 92.84 −412

http://wileyonlinelibrary.com
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Given the large investment in sampling SOC attributes, 

it is now possible to transition from the biased Tier 2 esti-

mates of SOC density to a Tier 3 approach, which links 

availability of SOC observations in the NFI to the geo-

physical and climate relationships identified in SOC studies 

(Jobbágy and Jackson 2000, Wardle et al. 2004, Parton 

et al. 2007, Thompson and Kolka 2005, Tian et al. 2015) 

and available as ancillary data. The modeling framework 

using RF allowed us to select from a large suite of biotic 

and abiotic variables with potentially complex interactions 

and develop a model that fit the NFI data reasonably well, 

particularly when compared to the country- specific model. 

The RF estimates of SOC to a depth of 100 cm were well 

within the range of SOC estimates found in other studies 

in temperate forest ecosystems (Mattson and Swank 1989, 

Harding and Jokela 1994, Jobbágy and Jackson 2000, 

Thompson and Kolka 2005, Woldeselassie et al. 2012, 

Tian et al. 2015, De Vos et al. 2015).

There are several advances and advantages to this 

modeling framework over the country- specific model. 

First and foremost, it was fit using observations of SOC 

stocks obtained directly from samples in the NFI. This 

improved both the accuracy and precision of the model 

predictions used to compile estimates. Second, the RF 

modeling framework included region-  to site- level vari-

ables that are congruent with known, broad- scale drivers 

of SOC storage, and enhance the predictive capacity of 

the model at a scale (plot) more compatible with spatially 

explicit NFI and ISCN data. For example, empirical rela-

tionships between SOC, temperature, and precipitation 

reflect global to regional patterns in SOC stocks as a 

function of climate (Post et al. 1982, Jobbágy and Jackson 

2000). Inclusion of these climate variables as continuous 

predictors in the model allows for better spatially explicit 

prediction, and, ultimately, aggregation of SOC esti-

mates over larger scales for C reporting. As another 

example, consider model results showing different 

amounts and vertical distribution of SOC for soils of dif-

ferent taxonomic order. This reflects the variability in 

pedogenesis across distinct soils, which may be located in 

close association of one another. For instance, model 

predictions for Alfisols and Mollisols, which occur as 

associations in areas of interspersed grassland–woodland 

ecosystems, show very similar surface SOC stocks but 

markedly different depth distributions (Masiello et al. 

2004, Abella et al. 2013). Spodosols and Entisols likewise 

co- occur, especially in young, glaciated, northern land-

scapes (Hunckler and Schaetzl 1997, Schaetzl 2002). 

Model results identified Spodosols as having among the 

highest surface SOC stocks, Entisols among the lowest, 

and the two differing widely in their SOC depth distribu-

tions. Last, Andisols and Aridisols co- occur in volcanic, 

mountainous regions with steep climatic gradients 

(McAuliffe 1994, Biedenbender et al. 2004); the deep, 

reactive Andisols were second only to Histosols (organic 

soils) in SOC stocks at the surface, but show a more even 

distribution of C with depth, while the Aridisols showed 

the lowest and least depth- dependent SOC stocks of all 

orders. Ultimately, the ability of the model to duplicate 

real differences in the depth distribution of SOC across 

soil orders is not only interesting from a pedogenetic per-

spective, but useful in terms of forecasting SOC change 

and vulnerability for future efforts. For example, 

mechanical disturbance or erosion influence the depth 

distribution of SOC, with consequences not only for the 

total amount of SOC stored but also its turnover time 

(Franzluebbers 2002, Rosenbloom et al. 2006). Third, the 

modeling framework is easily adapted to accommodate 

data limitations over the United Nations Framework 

Convention of Climate Change reporting period and 

updated as new information becomes available. This is 

particularly important as remeasurements of SOC 

attributes at existing NFI plots become available.

While the modeling framework described in this study 

represents an improvement toward estimating SOC 

stocks and stock changes from forest land in National 

Greenhouse Gas Inventories of the United States, the 

SOC pool is highly variable, both vertically and horizon-

tally, and much uncertainty remains. The strategic appli-

cation of the new modeling framework required data 

sources that were available across the entire conter-

minous United States. With that limitation, the RF 

model explained 38% of the variation in the SOC obser-

vations; some variables and interactions are not being 

captured in the new framework. Standardizing SOC sam-

pling procedures so that measurements could be used 

across studies and compared between studies would be 

useful to identify just how much variation can be 

explained in modeling exercises and at what spatial reso-

lution. Finally, the lack of remeasurements in the NFI 

limit the evaluation of stock change estimates at this time. 

As remeasurements become available, the existing 

methods for SOC prediction can be evaluated and new 

change variables can be identified that may improve pre-

dictions and the sensitivity of models to characterize SOC 

stocks and stock changes.

CONCLUSIONS

Four conclusions were drawn from this study. First, 

the country- specific model used to predict SOC stocks 

and stock changes in forests of the United States grossly 

underestimated the contribution of this pool in recent 

U.S. submissions to the United Nations Framework 

Convention on Climate Change. Second, log–log models 

fit by soil order adequately characterized SOC observa-

tions across depth from the harmonized NFI and ISCN 

data. Third, RF for regression and variable selection is an 

effective and computationally efficient approach for pre-

dicting SOC stocks for NFI plots lacking soil observa-

tions. Fourth, the new modeling framework for SOC 

estimation produced statistically equivalent predictions 

of SOC for NFI plots with soil measurements for all but 

three soil orders, which were not well represented in the 

sample. The modeling framework described in this study 

represents in an improvement toward the estimation of 
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SOC stocks in forests of the United States. That said, the 

SOC pool in forests of the United States is highly variable 

and much uncertainty remains.
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