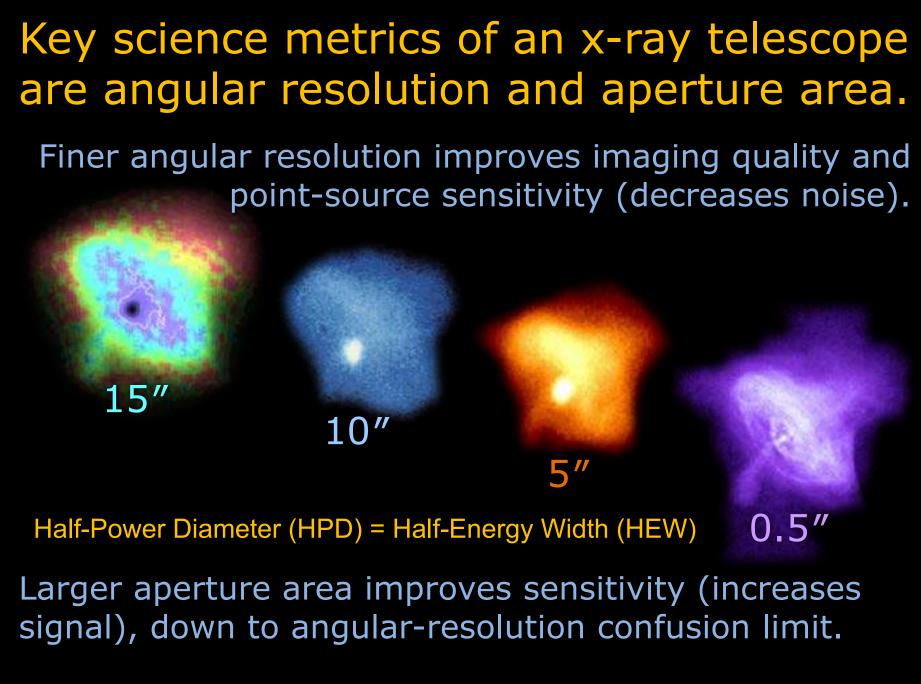

Adaptive X-ray Optics IV (SPIE 9965) 2016 August 28; San Diego, CA (USA)

Toward large-area sub-arcsecond x-ray telescopes II

Chandra X-ray Observatory (1999-?)

X-Ray Surveyor concept (~2035?)

Steve O'Dell NASA Marshall Space Flight Center and co-authors


2016.08.28

SPIE 9965-6: Toward large-area sub-arcsecond x-ray telescopes II

Authors represent most of the US effort toward sub-arcsecond x-ray telescopes.

Steve O'Dell^a, Ryan Allured^b, Andrew Ames^b, Michael Biskach^c, David Broadway^a, Ricardo Bruni^b, Dave Burrows^d, Jian Cao^e, Brandon Chalifoux^f, Kai-Wing Chan^g, Yip-Wah Chung^e, Vincenzo Cotroneo^b, Ron Elsner^a, Jessica Gaskin^a, Mikhail Gubarev^a, Ralf Heilmann^f, Ed Hertz^b, Tom Jackson^d, Kiran Kilaru^h, Jeff Kolodziejczak^a, Ryan McClelland^c, Brian Ramsey^a, Paul Reid^b, Raul Riveros^g, Jackie Roche^a, Suzanne Romaine^b, Timo Sahaⁱ, Mark Schattenburg^f,
Eric Schwartz^b, Dan Schwartz^b, Peter Solly^c, Susan Trolier-McKinstry^d, Mel Ulmer^e, Alexey Vikhlinin^b, Margeaux Wallace^d, Xiaoli Wang^e, David Windt^j, Youwei Yao^{e^f}, Shi Ye^e, Will Zhangⁱ, & Heng Zuo^f

^a NASA Marshall Space Flight Center (USA)
 ^b Harvard–Smithsonian Center for Astrophysics (USA)
 ^c Stinger Ghaffarian Technologies, Inc., Goddard Space Flight Center (USA)
 ^d Pennsylvania State University (USA)
 ^e Northwestern University (USA)
 ^f Massachusetts Institute of Technology (USA)
 ^g University of Maryland Baltimore County, Goddard Space Flight Center (USA)
 ^h Universities Space Research Association, Marshall Space Flight Center (USA)
 ⁱ NASA Goddard Space Flight Center (USA)
 ^j Reflective X-ray Optics LLC (USA)

2016.08.28

SPIE 9965-6: Toward large-area sub-arcsecond x-ray telescopes II

Outline

- Motivation and issues
- Categories of potential solutions
- Post-fabrication corrections

Outline

Motivation and issues

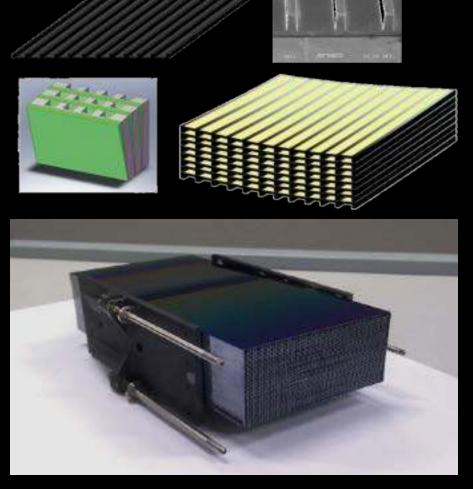
- □ Seek *Chandra* resolution with 30 × *Chandra* area.
- Must resolve both technologic and programmatic challenges.
 - Achieve aperture area and imaging performance within constraints of mass, envelope, cost, and schedule.
- Categories of potential solutions
- Post-fabrication corrections

2020 Decadal Survey in Astronomy and Astrophysics sets priorities for decade.

- National Research Council (NRC) conducts Survey for relevant Government agencies (NASA & NSF).
 - □ Addresses space-based and ground-based astronomy.
 - □ NASA typically adopts Decadal Survey's priorities.
 - □ NASA will suggest space-based astronomy missions.
 - Four Science and Technology Definition Teams (STDT) are developing facility-class mission concepts for NASA.
 - X-Ray Surveyor
 - Far-IR Surveyor
 - LUVOIR Surveyor
 - Habitable Exoplanet Imaging (HabEx)
 - Only one of these is likely to start in the 2020s.
 - Expected launch date would be mid-to-late 2030s.

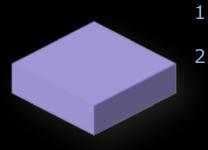
STDT is defining science-driven requirements for X-Ray Surveyor.

- Anticipate scientific need for an x-ray telescope with Chandra's 0.5" resolution and 30 × its area.
- There is general agreement on the top-level technologic and programmatic challenges.
 - □ Preserve *Chandra's* angular resolution \approx 0.5" HPD.
 - □ Reduce mirror areal mass to *Chandra*/30 \approx 1.5 kg/m².
 - □ Reduce mirror areal cost to *Chandra*/30 \approx 1 M\$/m².
- There is not general agreement on how to solve these challenges.
 - □ Stiff optics (rigidly supported over-constrained mirrors)
 - □ Static optics (fixed, moderately constrained mirrors)
 - □ Active optics (adjustable alignment | figure correction)


Outline

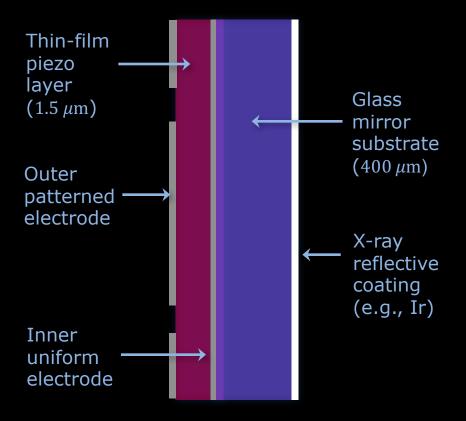
- Motivation and issues
- Categories of potential solutions
 - □ Stiff optics
 - □ Static optics
 - □ Active optics
- Post-fabrication corrections

ESA selected ATHENA as its 2nd largeclass (L2) mission, for launch in 2028.


- > X-ray mission is in study Phase A, working toward adoption around 2020.
 □ Require HEW ≈ 5".
- > ATHENA will use stiff, silicon-pore optics (SPO).
 - Cosine Measurement
 Systems [NL] leads SPO
 technology development.
 - Processing and stacking of silicon wafers are highly automated.
 - Resulting rigid x-ray optics units are to be co-aligned.

ESA/ Marcos Bavdaz

GSFC uses a novel process for light x-ray mirrors of monocrystalline silicon.


- 1. Procure single crystalline silicon.
- 2. Heat and chemically etch to remove all surface/subsurface damage.
- 1. Wire-EDM machine conical shape.
- 2. Heat and chemically etch to remove damage.
- 3. Polish to achieve excellent figure and micro-roughness.
- 1. Use Wire-EDM to slice off the thin mirror segment.
- Heat and chemically etch to remove all damage from back and edges.

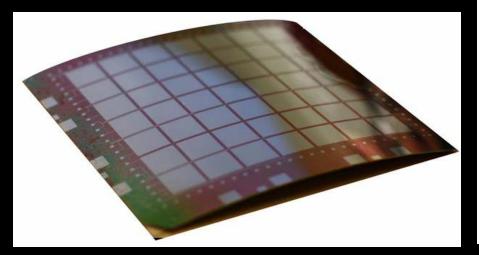
- > Advantages over glass
 - No internal stress
 - Distortion-free material removal after etching
 - □ Ideal material properties
 - High thermal conductivity
 - $_{\odot}$ Low thermal expansion
 - $_{\odot}$ High elastic modulus
 - □ Better performance
 - $_{\odot}$ Made mirrors < 3" HEW₂
 - Aim to build ~ 1" mirror stack by end 2017
 - o Aim to build ~ ≥.;1" metashell by end 2019.

GSFC/ Will Zhang

SAO is developing lightweight active x-ray optics with thin-film piezo arrays.

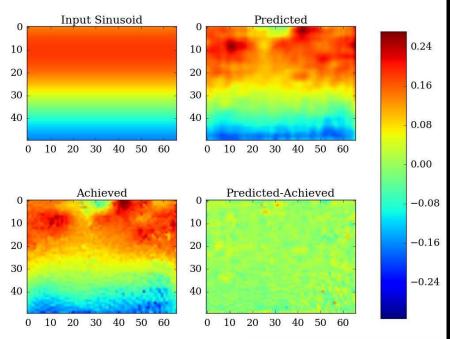
 Piezoelectric array corrects figure through surface-parallel actuation

- PSU is fabricating thinfilm piezoelectric arrays.
 - Slumped-glass mirrors from SAO (OAB)
 - Piezoelectric (PZT) on conductive film, high-T crystallized and annealed
 - Patterned electrode array with ZnO TFTs
 - \circ Row-column addressing
 - Anisotropic Conductive Film (ACF) connections
 - Integral T-compensated strain gauges


SAO/ Paul Reid

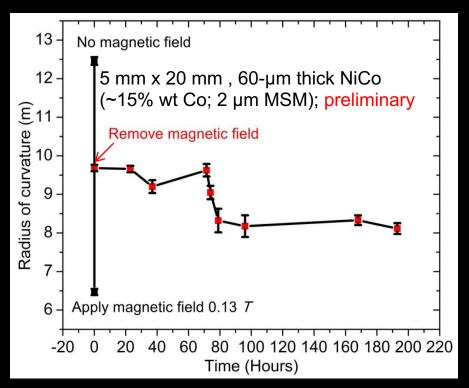
Correction uses calibrated influence functions to determine array voltages.

 Adjustment methodology
 Shack-Hartman wavefront sensor metrology


 Calibrate influence function
 Measure mirror figure

 Calculate and apply voltages for correction

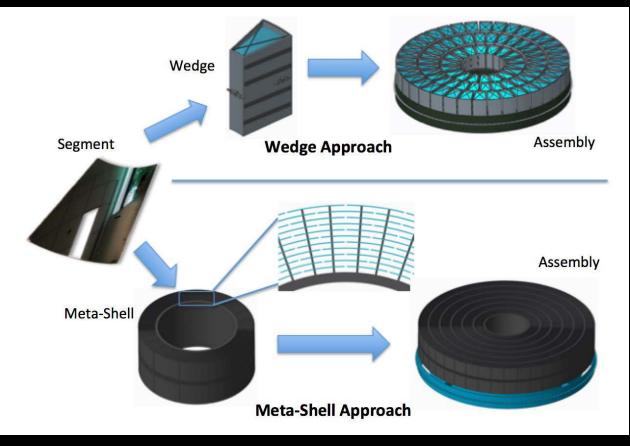
Correction matrix


$$\begin{pmatrix} IF_{11} & \dots & IF_{1n} \\ \vdots & \ddots & \vdots \\ IF_{n1} & \cdots & IF_{nn} \end{pmatrix} \begin{pmatrix} V_1 \\ \vdots \\ V_n \end{pmatrix} = \begin{pmatrix} D_1 \\ \vdots \\ D_n \end{pmatrix}.$$

SAO/ Ryan Allured

A magnetic smart material MSM provides writable surface-parallel actuation.

- Use a magnetically hard substrate or coated layer.
- Deposit magnetostrictive (MSM) thin film on back.



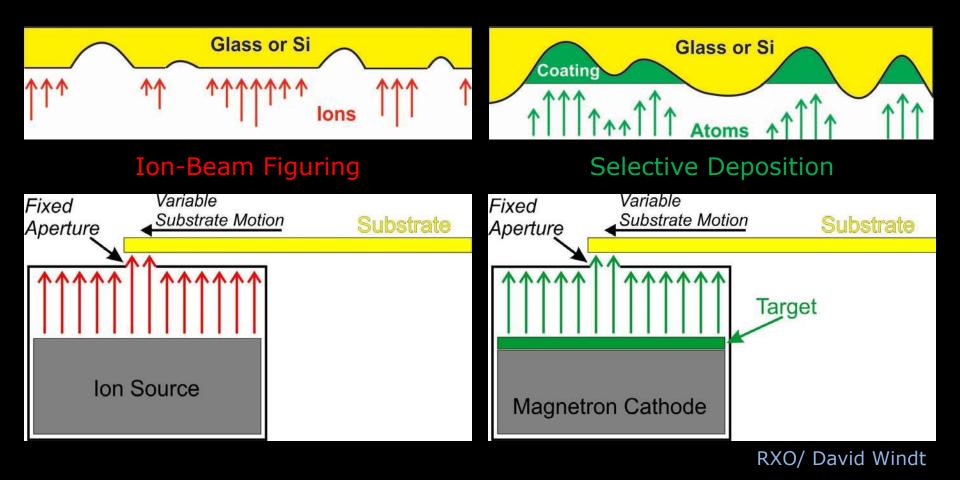
- Northwestern Univ. is developing MSM actuators for x-ray optics.
 - Demonstrated that concept may work.
 - Must speed up relaxation and stabilization.
 - Are building models to compare to experiments.
- Can also control coating stress to provide some static figure correction.

NWU/ Mel Ulmer NWU/ Xiaoli Wang

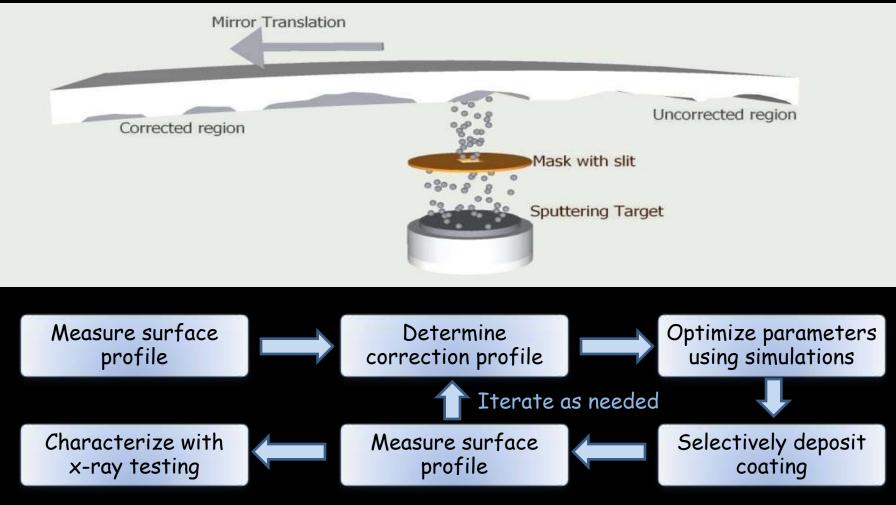
Synthesize large-area nested Wolter-1like telescope with aligned segments.

> Few-100-m² surface area in several 1000 segments

GSFC/ Will Zhang

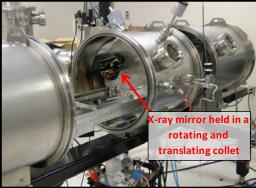

Outline

- Motivation and issues
- Categories of potential solutions
- Post-fabrication corrections
 Differential erosion or deposition
 Coating stress manipulation
 Ion implantation


Low-pressure subtractive or additive machining corrects residual figure errors.

Differential Erosion

Differential Deposition



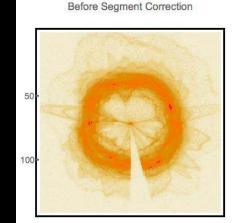
Differential deposition allows correction of mid-frequency figure errors.

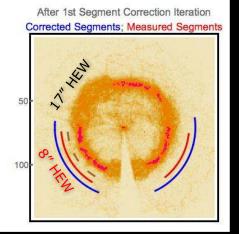
MSFC/USRA/ Kiran Kilaru

MSFC is applying differential deposition to correct thin-walled x-ray mirrors.

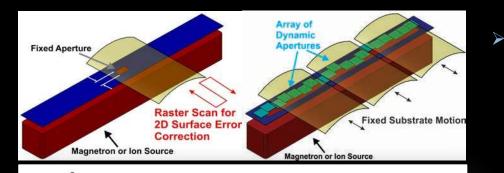
Sputtering head with copper mask positioned inside shell

Horizontal differential-deposition chamber



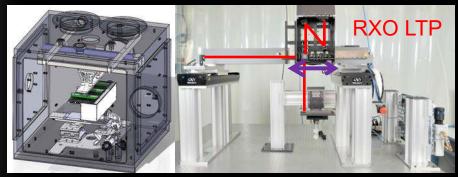

- 2-pass correction of HEW by factor of 3 (metrology)
- 1-pass correction of HEW by factor of 2 (x-ray test)
 - 3 corrected azimuthal sections in intrafocal image

Metrology of shell with MSFC VLTP and circularity test stand


for x-ray testing at MSFC 100-m beam

MSFC/USRA/ Kiran Kilaru

RXO is developing dynamic apertures for 2D differential erosion or deposition.



Prototype 5-finger dynamic-aperture module is being developed with Argonne (ANL).

25 mm

Dynamic aperture array

- Simultaneously corrects multiple azimuths
 - Constant axial speed
 - \circ Modulated aperture widths
- Applications
 - Differential erosion
 - Differential deposition
 - Laterally graded multilayer

RXO/ David Windt

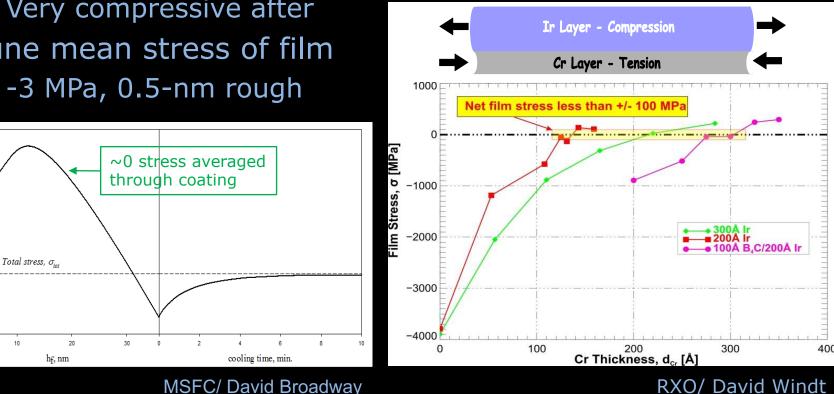
Multiple modules are tiled side-by-side to span length of the magnetron cathode.

Coating stress is an issue for subarcsecond imaging with thin mirrors.

- Astronomical x-ray mirrors use thin-film coatings.
 High-density coating or multilayers for x-ray reflectivity
 For active optics, piezoelectric array
- > Distortion depends upon film stress σ_f and thickness h_f and upon substrate thickness h_s .
 - \Box E.g., Stoney formula: $\kappa = 6(1 \nu_s)\sigma_f h_f / (E_s h_s^2)$
 - \circ Dependence upon substrate thickness h_s is quadratic.
 - \circ Key coating parameter is the integrated stress $\sigma_f h_f$.
 - Both intrinsic coating stress and temperaturedependent strain (CTE differences) cause distortion.
 Separating these two effects can be challenging.
 - $_{\odot}$ Annealing or other relaxation may play a role.

Several groups are investigating various methods for controlling coating stress.

- Monitor integrated stress in situ during sputtering, to take advantage of dynamics of thin-film growth.
 MSFC/ David Broadway
- Deposit bilayer to tune the net integrated stress of compressive and tensile thin films.
 RXO/ David Windt; SAO/ Suzanne Romaine
- Deposit coating on front and on back to balance integrated stress.


□ GSFC/ Kai-Wing Chan

- > Anneal coating at elevated temperature to relieve stress.
 - □ GSFC/ Kai-Wing Chan

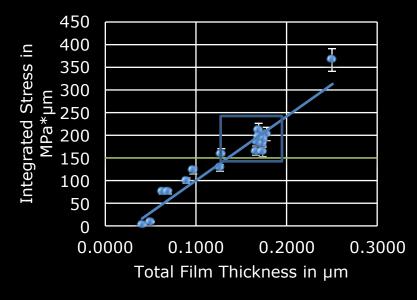
Methods for controlling deposition stress of thin films (continued)

- Iridium film growth
 - Tensile through coalescence stage
 - Very compressive after
- Tune mean stress of film □ -3 MPa, 0.5-nm rough

- **Bilayer** cancelation
 - Ir compressive stress
 - Cr tensile stress

MSFC/ David Broadway

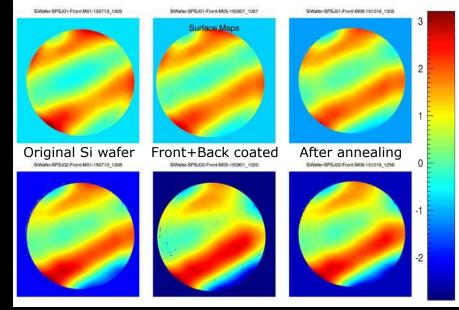
2016.08.28


ahf, N/m

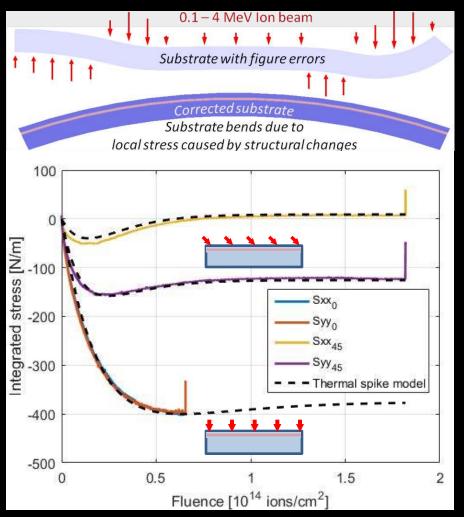
-30

SPIE 9965-6: Toward large-area sub-arcsecond x-ray telescopes II

Methods for controlling deposition stress of thin films (continued)


- PZT compensation
 PZT tensile stress on back
 Ir/Cr bilayer on front
- Tune net integrated stress
 10-nm Ir + 160 nm Cr

SAO/ Suzanne Romaine


- Multiple approaches
 - □ Front and back coating
 - Sputtering
 - Atomic Layer Deposition

□ Annealing at 320°C

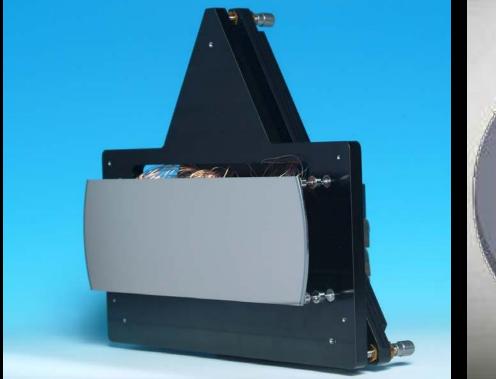
GSFC/ Kai-Wing Chan

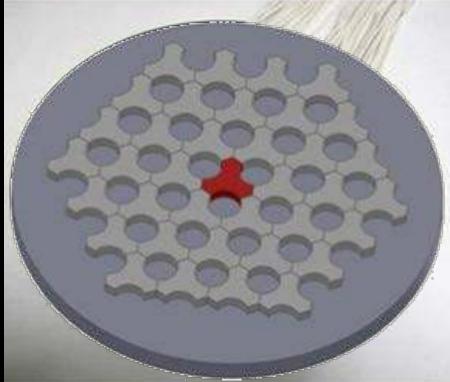
Differential stress from ion implantation allows static correction of figure errors.

MIT is using its ion beam to develop this approach.

□ Operates at 1-6 MeV.

- $_{\odot}$ Implant depth $1-4\,\mu m$
- □ Low surface degradation
- Integrated stress measure
 - Thermal spike model
 - \circ Anisotropic (|| vs \perp) stress
 - Dose-dependent relaxation


MIT/ Brandon Chalifoux


Outline

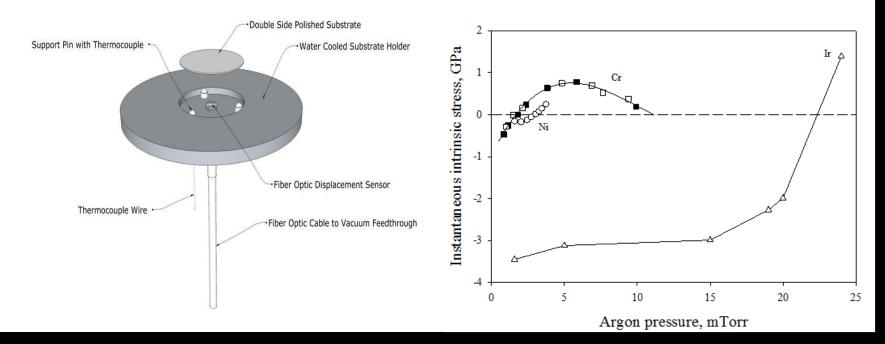
- Motivation and issues
- Categories of potential solutions
- Post-fabrication corrections

Back-up slides

An array of electroactive pads provides surface-tangential actuation (STA).

Xinetics deformable mirror (DM) uses 4×27 array of electrostrictive (PMN) pads bonded to mirror. Xinetics and ANL characterized DM.

Xinetics prototype uses PMN array bonded to a silicon mirror. Each node is addressable for STA.


NGC/ AOA Xinetics

2016.08.28

SPIE 9965-6: Toward large-area sub-arcsecond x-ray telescopes II

MSFC has developed thin-film-stress monitor for in situ measurements.

In-situ measurement helped identify a mechanism for reducing the stress in sputtered iridium by 3 orders of magnitude

MSFC/ David Broadway

2016.08.28

SPIE 9965-6: Toward large-area sub-arcsecond x-ray telescopes II