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Abstract

An analog of fractional vector calculus for physical lattice models is sug-

gested. We use an approach based on the models of three-dimensional lattices

with long-range inter-particle interactions. The lattice analogs of fractional

partial derivatives are represented by kernels of lattice long-range interactions,

where the Fourier series transformations of these kernels have a power-law

form with respect to wave vector components. In the continuum limit, these

lattice partial derivatives give derivatives of non-integer order with respect to

coordinates. In the three-dimensional description of the non-local continuum,

the fractional differential operators have the form of fractional partial deri-

vatives of the Riesz type. As examples of the applications of the suggested

lattice fractional vector calculus, we give lattice models with long-range

interactions for the fractional Maxwell equations of non-local continuous

media and for the fractional generalization of the Mindlin and Aifantis con-

tinuum models of gradient elasticity.

Keywords: fractional calculus, long-range interactions, vector calculus, lattice

model, Maxwell equations, gradient elasticity
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1. Introduction

The most widely used approaches to describe materials are a microscopic approach based on

lattice mechanics [1–4], and a macroscopic approach based on continuum mechanics [5–7].

Continuum mechanics can be considered as a phenomenological description representing the

continuous limit of lattice dynamics, where the length-scales of an continuum element are

much larger than the distances between the lattice particles.

Fractional calculus [8–13] as a theory of the derivatives and integrals of non-integer order

goes back to Leibniz, Liouville, Riemann, Grünwald, Letnikov and Riesz. Fractional calculus

has a long history from 1695, when the derivative of order α = 0.5 was described by Leibniz
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[14–17]. The differentiations and integration of fractional orders have wide applications in

mechanics and physics [18–29]. The history of fractional vector calculus is not as long; it is

less than 20 years old (see [30] and references therein). Fractional vector calculus is very

important to describe processes in complex media, non-local material and distributed systems

in three-dimensional space. Therefore fractional vector differential operators can be used for

non-local continua and distributed systems with long-range power-law interactions [27].

Synchronization of non-linear dynamical systems with long-range interactions is discussed in

[31]. Non-equilibrium phase transitions in the thermodynamic limit for long-range systems

are described in [32]. Stationary states for fractional dynamical systems with long-range

interactions are considered in [33, 34]. Statistical mechanics and solvable models with long-

range interactions are discussed in [35] and in the review [36]. Discrete systems and a lattice

with long-range interactions and its continuum limit are considered in [27]. As was shown in

[37, 38] (see also [27, 39, 40]), equations with fractional derivatives can be directly connected

to lattice models with long-range interactions. A connection between the dynamics of a lattice

system of particles with long-range interactions and the fractional continuum equations can be

proved using the transform operation [37, 38]. One-dimensional lattice models for fractional

non-local elasticity and the correspondent continuum equations were suggested in [46–50].

These models describe one-dimensional lattices only. In this paper, we suggest a three-

dimensional lattice approach to describe the fractional non-local continuum in three-dimen-

sional space. A general form of the lattice model with long-range interaction which gives a

continuum equation with derivatives of fractional orders in the continuum limit is suggested.

It should be note that a vector calculus for physical lattice models has been considered in

[41–44]. In the papers [41–44], the suggested vector difference calculus is developed for

models defined on a general triangulating graph using discrete field quantities and differential

operators roughly analogous to differential forms and exterior differential calculus. Note that

a fractional generalization of exterior differential calculus of differential forms is suggested in

[27, 30, 45], where non-locality is described by the Caputo fractional derivatives. In this

paper, we use a different approach based on lattice models with long-range inter-particle

interactions and continuum limits that are suggested in [37–40] for a one-dimensional case.

We propose a three-dimensional generalization of the models considered in [37, 38] to

formulate a lattice analog of fractional vector calculus. The continuum limits of the suggested

lattice fractional vector differential operators are described by fractional derivatives of the

Riesz type. As examples of the applications of lattice fractional vector calculus, we consider

lattice models with long-range interactions for the fractional Maxwell equations of non-local

continuous media and for the fractional generalization of the Mindlin and Aifantis continuum

models of gradient elasticity.

2. The model of a physical lattice with long-range interaction

The lattice is characterized by space periodicity. In an unbounded lattice we can define three

non-coplanar vectors a1, a2, a2, such that displacement of the lattice by the length of any of

these vectors brings it back to itself. The vectors ai, =i 1, 2, 3, are the shortest vectors by

which a lattice can be displaced and be brought back into itself. As a result, all spatial lattice

points (sites) can be defined by the vector = n n nn ( , , )1 2 3 , where ni are integer numbers. If

we choose the coordinate origin at one of the sites, then the position vector of an arbitrary

lattice site with = n n nn ( , , )1 2 3 is written in the form
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∑=
=

nr n a( ) . (1)
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In a lattice the sites are numbered in the same way as the particles, so that the vector n is at the

same time the ‘number vector’ of a corresponding particle.

For simplification, we consider a lattice with mutually perpendicular vectors a1, a2, a2.

We choose directions of the axes of the Cartesian coordinate system that coincide with the

vector ai. Then we have = aa ei i i, where >a 0i and =e a a| |i i i are the vectors of the basis

of the Cartesian coordinate system.

We assume that equilibrium positions of the particles coincide with the lattice sites r n( ).

A lattice site coordinate r n( ) differs from the coordinate of the corresponding particle when

the particle is displaced relative to the equilibrium position. To define the coordinates of a

particle in this case, it is necessary to indicate its displacement with respect to its equilibrium

positions. We denote the displacement from its equilibrium position for a particle with vector

n by the vector field

∑=
=

t u tu n n e( , ) ( , ) . (2)
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k k

1

3

Let us consider the equations of motion for a lattice n-particle with the vector n in the

form
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+ =
α
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whereM is the mass of the particle. For simplicity, we assume that all lattice particles have the

mass M. The italic ∈i k, {1, 2, 3} are the coordinate indices. In (3), we mean the summation

over repeated index k. The functions u tn( , )i are components of the displacement vector for

the particle. The coefficients αK n m( , )ik describe an interaction of the n-particle with the

m-particles in the lattice. We can consider αK n m( , )ik as a two-order elastic stiffness tensor

kernel that characterizes the non-locality of long-range interactions of α-type [27]. The

interaction kernel αK n m( , )ik can be interpreted as the effective stiffness coefficients for a

virtual discrete mass–spring system that corresponds to the suggested lattice model. The

interaction of lattice particles is described by αK n m( , )ik with ≠n m, i.e. when there is at least

one nj, ( =j 1, 2, 3), of the components of the vector n which is different from mj. The terms

with αK (0)ik can be interpreted as a measure of the self-interaction of the lattice particles. The

sum ∑m means the summations from −∞ to +∞ over n1, n2 and n3. The sum ∑α means a

sum over the different values of α. The parameter α in the kernel is a positive real number that

characterizes a decreased rate of the long-range interaction in space. This parameter can also

be considered as a degree of the power law of the lattice spatial dispersion [46, 48] which is

described by the non-integer power of the wave vector components.

Let us note some important properties of the kernels αK n m( , )ik . The internal states of the

unbounded lattices must not be changed if the lattice is displaced as a whole

( = =u t un( , ) constk k ) when there are no external forces ( =F tn( , ) 0i ). As a result,

equations (3) give

∑ ∑= =α αK Kn m m n( , ) ( , ) 0. (4)ik ik

m m
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These conditions should be satisfied for any particle in the lattice, i.e. for any vector n.

Equations (4) follow from the conservation of total momentum in the lattice.

For an unbounded homogeneous lattice, due to its homogeneity the interaction kernels

αK n m( , )ik have the form

= −α αK Kn m n m( , ) ( ),ik ik

and −αK n m( )ik satisfy the conditions

∑ ∑ ∑− = − = =α α αK K Kn m n m n( ) ( ) ( ) 0. (5)ik ik ik

m n n

Using (5), we can represent (3) in the form

∑∑ ∑= − − −

+ =
α

α

= =−∞

+∞

( )M
u t

t
K u t u t

F t i

n
n m m n

n

d ( , )

d
( ) ( , ) ( , )

( , ), ( 1, 2, 3). (6)

i

k m

ik
k k

i

2

2
1

3

q

These equations of motion have invariance with respect to their displacement of the lattice as

a whole in the case of the absence of external forces even if the conditions (5) are not

satisfied.

The equation for the lattice n-particle (6) allows us to consider a wider class of long-

range interactions and correspondent interaction kernels that do not satisfy the conditions (5).

Moreover, the form of the sum in (6) allows us to avoid divergences and non-physical

infinities in the continuum limit [27].

In general, the kernels −αK n m( )ik of long-range particle interactions have the form

− = − − −α α α αK C K n m K n m K n mn m( ) ( ) ( ) ( ), (7)ik
qpl
ik

1 1 2 2 3 3q p l

where Cik
qpl are the coupling constants, = n n nn ( , , )1 2 3 , = m m mm ( , , )1 2 3 . In this equation,

αq, αp, αl, are positive real parameters for the directions defined by the lattice vectors a1, a2
and a3, respectively.

We will consider the kernels −αK n m( )j j , =j 1, 2, 3, with different α as even (+) and

odd (−) functions α
±K n( )j such that

± = ±α α
± ±( )K n K n( ) (8)j j

which have different power-law asymptotic behaviors of the Fourier series transformations

∑= =α α

±

=−∞

+∞
− ±( )K k K n jˆ e ( ), ( 1, 2, 3). (9)j

n

k n
j

i

j

j j

We will assume that that α

−
K kˆ ( )j for odd function α

+K n( )j is asymptotically equivalent to
αk ki sgn ( )| |j j at →k| | 0j We also assume that −α α

+ +
K k Kˆ ( ) ˆ (0)j for even function α

+K n( )j is

asymptotically equivalent to αk| |j at →k| | 0j , where

∑=α α

+

=−∞

+∞
+K K nˆ (0) ( ). (10)

n

j

j

In general, we have ≠α

+
K̂ (0) 0, since the conditions (5) do not hold. Note that the expression

−α α

+ +
K k Kˆ ( ) ˆ (0)j is a result of the Fourier series transformation of the sum of equation (6),

where α

+
K̂ (0) appears as a result of the transformation of the second part of the sum in (6)

with the field u tn( , )k . This will be shown in the proof of proposition 1 of this paper.
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The condition =α

+
K̂ (0) 0 strongly restricts the class of possible long-range interactions

for lattice models. For example, the most frequently used kernel of long-range interaction

∼α
α+ +K n n( ) 1 | | 1 has a non-zero value α

+
K̂ (0) which is expressed in terms of the Riemann

zeta-function ζ α +( 1) (for details see section 8.12 in [27]). Therefore we will consider the

general case with ≠α

+
K̂ (0) 0.

We will use lattice operators for the lattice analog of the scalar functions

= = − = −U U u t u t u m m m t u n n n tm n m n( , ) ( , ) ( , ) ( , , , ) ( , , , ), (11)1 2 3 1 2 3

and the vector functions

= = − = −U U u t u t u m m m t u n n n tm n m n( , ) ( , ) ( , ) ( , , , ) ( , , , ), (12)i i i i i i1 2 3 1 2 3

where u tn( , )i are components of the displacement vector for a lattice particle that is defined

by the vector = n n nn ( , , )1 2 3 . We also assume that the fields u tn( , )i belong to the Hilbert

space l2 of square-summable sequences, where

∑ < ∞
=−∞

+∞

u tn( , ) (13)

n

i
2

i

for all ⩾t 0. We use this Hilbert space to apply the Fourier series transformations.

3. Lattice analogs of vector differential operators

3.1. Lattice analogs of fractional derivatives

Let us define a lattice analog of a partial derivative of non-integer order α with respect to ni in

the direction =e a a| |i i i .

Definition 1. The lattice fractional partial derivatives are the operator 
α± [ ]
i

such that

 ∑α
= − − =

α α
±

=−∞

+∞
±⎡

⎣⎢
⎤
⎦⎥i
U

a
K n m u t u t im n m n( , )

1
( ) ( ( , ) ( , )) ( 1, 2, 3), (14)

i m

i i

i

where the interaction kernels −α
±K n m( ) satisfy the following conditions.

(1) The kernels α
±K n( ) are real-valued functions of the integer variable ∈n . The kernel

α
+K n( ) is an even (or symmetric with respect to zero) function and α

−K n( ) is an odd (or

antisymmetric with respect to zero) function such that

− =+ − = −α α α α
+ + − −K n K n K n K n( ) ( ), ( ) ( ) (15)

hold for all ∈n .

(2) The kernels α
±K n( ) belong to the Hilbert space l2 of square-summable sequences, where

∑ < ∞α

=

∞
±K n( ) . (16)

n 1

2

(3) The Fourier series transforms of the kernels α
+K n( ) in the form

∑ ∑= = +α α α α

+

=−∞

+∞
− +

=

∞
+ +K k K n K n kn Kˆ ( ) e ( ) 2 ( ) cos ( ) (0), (17)

n

kn

n

i

1

satisfy the condition
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− = + →α α
α α+ + ( )K k K k o k kˆ ( ) ˆ (0) , ( 0). (18)

The Fourier series transforms of the kernels α
−K n( ) in the form

∑ ∑= = −α α α

−

=−∞

+∞
− −

=

∞
−K k K n K n knˆ ( ) e ( ) 2 i ( ) sin ( ), (19)

n

kn

n

i

1

satisfy the condition

= + →α
α α−

( )K k k k o k kˆ ( ) i sgn ( ) , ( 0). (20)

The real number α > 0 will be called the order of the operator (14).

Note that we use the minus sign in the exponents of (17) and (19) instead of plus in order

to have the plus sign for plane waves and for the Fourier series.

Using that the kernel α
−K n( ) is odd with respect to n, we get =α

−K (0) 0 and =α

−
K̂ (0) 0.

As a result, we can always write

 
α α

=− −⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥i

U
i

u tm n m( , ) ( , ). (21)

If the kernel α
+K n( ) satisfies the conditions (5) in the form

∑ =α

=−∞

+∞
+K n( ) 0, (22)

n

i

i

i.e. =α

+
K̂ (0) 0, then we can also use

 
α α

=+ +⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥i

U
i

u tm n m( , ) ( , ). (23)

In general, condition (22) does not hold, and we cannot use the simplification (23).

In the conditions (18) and (20) the notation lower-case o αo k(| | ) means the terms that

include higher powers of k| | than αk| | . The conditions (18) and (20) also mean that we can

consider arbitrary functions −α
±K n m( ) for which −α α

+ +
K k Kˆ ( ) ˆ (0) is asymptotically

equivalent to αk| | , and α

−
K kˆ ( ) is asymptotically equivalent to αk ki sgn ( )| | as →k| | 0

respectively.

In equation (14), the values =i 1, 2, 3 specify the variables ni of the lattice that is similar

to the variable xi of the continuum in the space3. The operators
α± ⎡

⎣
⎤
⎦L i
are lattice analogous

to the partial derivatives of order α with respect to coordinates xi for the continuum model.

In the following sections we give explicit forms of the interaction kernels used in the

definition (14) of the lattice fractional derivatives.

3.2. Exact expressions for the kernels of the lattice fractional derivatives

In this section, we give exact expressions for the interaction kernels α
±K n( ) that satisfy the

conditions

= = →α
α

α
α+ −

K k k K k k k kˆ ( ) , ˆ ( ) i sgn ( ) , ( 0) (24)

instead of the asymptotic conditions (18) and (20).
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As an example of the interaction kernel α
+K n( ), we consider the function

α

α α
α=

+
+ +

− >α

α
+

⎛

⎝
⎜

⎞

⎠
⎟K n

π
F

π n
( )

1

1

2
;
1

2
,

3

2
;

4
, ( 0), (25)1 2

2 2

where F a b c x( ; , ; )1 2 is the Gauss hypergeometric function (see chapter 2 in [52], or section

1.6 in [9]),

∑ Γ Γ Γ

Γ Γ Γ
=

+
+ +

=

∞

F a b c x
a m b c

a b m c m

x

m
( ; , ; )

( ) ( ) ( )

( ) ( ) ( ) !
. (26)

m

m

1 2

0

Figure 1. The plot of the function +f x y( , ) (29) for the range ∈x [0, 5]
and α= ∈y [0, 8].

Figure 2. The plot of the function −f x y( , ) (30) for the range ∈x [0, 5]
and α= ∈y [0, 8].
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We use an inverse relation for (17) with =α
α+

K k kˆ ( ) | | in the form

∫ α α= ∈ >α
α+K n

π
k n k k( )

1
cos ( ) d , ( , 0)

π

0

to obtain the expression (25) for the interaction kernel α
+K n( ).

As an example of the interaction kernel α
−K n( ), we consider the function

α

α α
α= −

+
+ +

− >α

α
−

+ ⎛

⎝
⎜

⎞

⎠
⎟K n

π n
F

π n
( )

2

2

2
;
3

2
,

4

2
;

4
, ( 0). (27)

1

1 2

2 2

Figure 3. The plot of the function +f x y( , ) (29) for the range ∈x [2, 6]
and α= ∈y [0, 2].

Figure 4. The plot of the function −f x y( , ) (30) for the range ∈x [2, 6]
and α= ∈y [0, 2].
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Here we use an inverse relation for (19) with =α
α−

K k k kˆ ( ) i sgn ( ) | | in the form

∫ α α= − ∈ >α
α−K n

π
k n k k( )

1
sin ( ) d , ( , 0) (28)

π

0

to obtain the expression (27) for the interaction kernel α
−K n( ). Note that

α
=

+
=α

α

α
+ −K

π
K(0)

1
, (0) 0

for all α ∈ .

Note that the interaction kernels (25) and (27) for the integer and non-integer orders α

describe the long-range interactions of the n-particle with all other particles ( ∈m ).

Figure 5. The plot of the function +f x y( , ) (29) for the range ∈x [0, 5]
and α= ∈y [0, 0.3].

Figure 6. The plot of the function −f x y( , ) (30) for the range ∈x [0, 5]
and α= ∈y [0, 0.3].
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The exact expressions of the interaction kernels α
±K n( ) for integer values of α are

suggested in the appendix.

To demonstrate the properties of (25) and (27), we can visualize the functions

=
+

+ +
−+

⎛

⎝
⎜

⎞

⎠
⎟f x y

π

y
F

y y π x
( , )

1

1

2
;
1

2
,

3

2
;

4
, (29)

y

1 2

2 2

= −
+

+ +
−−

+ ⎛

⎝
⎜

⎞

⎠
⎟f x y

π x

y
F

y y π x
( , )

2

2

2
;
3

2
,

4

2
;

4
(30)

y 1

1 2

2 2

Figure 7. The plot of the function +f x y( , ) (29) for the range ∈x [10, 14]
and α= ∈y [4, 8].

Figure 8. The plot of the function −f x y( , ) (30) for the range ∈x [10, 14]
and α= ∈y [4, 8].
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of two continuous variables x and >y 0. The plots of the function (29) are presented in

figures 1, 3, 5 and 7 for different ranges of x and y. The plots of the function (30) are given in

figures 2, 4, 6 and 8.

Let us note that the kernel α
+K n( ) can be defined by (25) for α ∈ −( 1, 0), and α

−K n( ) can

be defined by (27) with α ∈ −( 2, 0). This allows us to define the lattice fractional integrations

by the same equations as the lattice fractional derivatives, but with negative α.

3.3. Asymptotic expressions for the kernels of the lattice fractional derivatives

Let us give examples of interaction kernels that satisfy the asymptotic conditions (18) and

(20) of the form

− = + = + →α α
α α

α
α α+ + −( ) ( )K k K k o k K k k k o k kˆ ( ) ˆ (0) , ˆ ( ) i sgn ( ) , ( 0). (31)

To derive an asymptotic relation for the interactions kernels, we can use the equations

5.4.8.12 and 5.4.8.13 in [51].

Let us derive an example of the interaction kernel α
+K n( ) by using the series with the

number 5.4.8.12 of [51]. Equation (5.4.8.12) from [51] has the form

∑
Γ ν Γ ν Γ ν Γ ν

−
+ + + −

=
+

−
+

ν
ν

=

∞ −
⎜ ⎟
⎛

⎝

⎞

⎠n n
n k

k( 1)

( 1 ) ( 1 )
cos ( )

2

(2 1)
sin

2

1

2 ( 1)
, (32)

n

n

1

2 1
2

2

where ν > − 1 2 and < <k π0 2 . Using that = +k k o ksin ( 2) 2 ( ), and α ν= 2 ,

equation (32) can be represented in the form

∑ Γ α

Γ α Γ α

Γ α

Γ α

− +
+ + + −

= −
+

+
+ +

→

α α

=

∞

( )
n n

n k k o k

k

2
( 1) ( 1)

( 2 1 ) ( 2 1 )
cos ( )

( 1)

( 2 1)
,

( 0), (33)
n

n

1
2

where α > − 1. Comparing this equation with equations (17) and (18), we get

Γ α

Γ α Γ α
=

− +
+ + + −α

+K n
n n

( )
( 1) ( 1)

( 2 1 ) ( 2 1 )
, (34)

n

and

Γ α

Γ α
= −

+

+
α
+K (0)

( 1)

( 2 1)
. (35)

2

We can see that α
+K (0) is not equal to zero for the interaction kernel (34). It can be directly

verified that the kernel (34) is the even function, − =α α
+ +K n K n( ) ( ).

As a result, we have an example of the interaction kernel α
+K n( ) in the form

Γ α

Γ α Γ α
=

− +
+ + + −α

+K n
n n

( )
( 1) ( 1)

( 2 1 ) ( 2 1 )
. (36)

n

This kernel has been suggested in [37, 38] to describe long-range interactions of the lattice

particles for non-integer values of α. The term α
+K (0) characterizes a self-interaction of the

lattice particles. The interaction of different particles is described by −α
+K n m( ) with ≠n m,

i.e. − ≠n m| | 0. For integer values of α ∈ , the kernel − =α
+K n m( ) 0 for

α− ⩾ +n m| | 2 1. For α = j2 , we have − =α
+K n m( ) 0 for all − ⩾ +n m j| | 1. The

function −α
+K n m( ) with an even value of α = j2 describes an interaction of the n-particle

with j2 particles with numbers ±n 1 . . . ±n j. To demonstrate the properties of (36), we can

visualize the function
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Γ

Γ Γ
= =

− +

+ + + −+
+⎡⎣ ⎤⎦

[ ]
g x y K x

y

y x y x
( , ) Re ( )

Re ( 1) ( 1)

( 2 1 ) ( 2 1 )
(37)y

x

of two continuous variables x and >y 0. Note that − = −Re [( 1) ] ( 1)x x for integer

= −x n m. The plots of the function (37) are shown in figures 9, 11, 13 and 15 for different

ranges of x and y. This function decays rapidly with growth of x and y. The function (37)

defines the interaction terms −α
+K n m( ) by the equation α− = −α

+
+K n m g n m( ) ( , ). The

interaction kernels (25) and (36) can be used for integer and non-integer values of α. It is easy

to see that expression (25) is more complicated than (36).

Figure 9. The plot of the function +g x y( , ) (37) for the range ∈x [0, 5]
and α= ∈y [0, 8].

Figure 10. The plot of the function −g x y( , ) (45) for the range ∈x [0, 5]
and α= ∈y [0, 8].
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Let us derive an example of the interaction kernel α
−K n( ) using the series with the

number 5.4.8.13 from [51]. Equation (5.4.8.13) of [51] has the form

∑
Γ ν Γ ν Γ ν

−
+ + + −

+ = =
+

ν
ν

=

∞ −

m m
m k k

( 1)

( 3 2 ) ( 1 2 )
sin ((2 1) )

2

(2 1)
sin ( ), (38)

m

m

0

2 1
2

where ν > −1 2 and < <k π0 . Shifting the variable m by unity, and using α ν= 2 and

= +k k o ksin ( 2) 2 ( ), equation (38) gives

Figure 11. The plot of the function +g x y( , ) (37) for the range ∈x [2, 7]
and α= ∈y [0, 3].

Figure 12. The plot of the function −g x y( , ) (45) for the range ∈x [2, 7]
and α= ∈y [0, 3].
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∑
Γ ν Γ ν Γ α

−
+ + + −

− =
+

α
α

=

∞ + −

m m
m k k

( 1)

( 1 2 ) ( 3 2 )
sin ((2 1) )

2

( 1)
sin ( ). (39)

m

m

1

1 1

Adding a zero term of the form m k0 · sin (2 ), equation (39) can be represented as

∑ Γ α

Γ α Γ α

− +

+ + + −
−

+ = + →

α

α α

=

∞ +

−

⎛

⎝
⎜

( )

m m
m k

m k k o k k

( 1) ( 1)

2 ( 2 1 2 ) ( 2 3 2 )
sin ((2 1) )

0 · sin (2 )) , ( 0), (40)

m

m

1

1

1

Figure 13. The plot of the function +g x y( , ) (37) for the range ∈x [0, 5]
and α= ∈y [0, 0.3].

Figure 14. The plot of the function −g x y( , ) (45) for the range ∈x [0, 5]
and α= ∈y [0, 0.3].
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Figure 15. The plot of the function +g x y( , ) (37) for the range ∈x [10, 14]
and α= ∈y [6, 8].

Figure 16. The plot of the function −g x y( , ) (45) for the range ∈x [10, 14]
and α= ∈y [6, 8].

Figure 17. Diagrams of sets of operations for fields.
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where α > −1, and < <k π0 . Equation (40) can be rewritten in the form

∑− − − +

= + →

α α

α α

=

∞
− −

( )

( )K m m k K m m k

k o k k

2 i (2 1) sin ((2 1) ) (2 ) sin (2 )

i , ( 0), (41)

m 1

where >k 0, and





Γ α

Γ α Γ α=
− +

+ + + −
= − ∈

= ∈
α

α−

+⎧

⎨
⎪

⎩
⎪

K n m m
n m m

n m m

( )

( 1) ( 1)

2 ( 2 1 2 ) ( 2 3 2 )
, 2 1, ,

0, 2 , .

(42)

m 1

Then using equations (19) and (20), we derive the kernel α
−K n( ) for ∈n and α > −1. As a

result, we have the kernels in the form of the function (42) which can be represented by

Γ α

Γ α Γ α
=

− + − +
+ + − +α α

−
+ ( [( )/ ]

K n
n n

n n
( )

( 1) 2 1 2 ) ( 1)

2 (( ) 2 1) (( ) 2 1)
, (43)

n(( 1) 2

where the brackets [ ] mean the integral part, i.e. the floor function that maps a real number to

the largest previous integer number. The expression + −n n(2[( 1) 2] ) is equal to zero for

even =n m2 , and it is equal to one for odd = −n m2 1. This allows us to combine two cases

of (42) for even and odd values of ∈n into the single equation (43). Note that the kernel

(43) is a real-valued function since we have zero when the expression − +( 1) n(( 1) 2 becomes a

complex number. It is easy to see that we can use equation (43) for all integer values ∈n .

The kernel α
−K n( ) is the odd function such that

− = − =α α α
− − −K n K n K( ) ( ), (0) 0. (44)

As a result, we have the interaction kernel α
−K n( ) which satisfies the asymptotic con-

dition (20). For non-integer values of α, this kernel describes a long-range interaction of the

lattice particles. To demonstrate the properties of (43), we can visualize the function

Γ

Γ Γ
= =

− +

+ + − +−
−

+

⎡⎣ ⎤⎦

⎡
⎣

⎤
⎦

(( )/ ) (( )/ )
g x y K x

y

y x y x
( , ) Re ( )

Re ( 1) ( 1)

2 1 2 1
(45)y

x( 1) 2

Figure 18. Diagrams of sets of operations for differential operators.
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of two continuous variables x and >y 0. The plots of the function (37) are shown in

figures 10, 12, 14 and 16 for different ranges of x and y. This function decays rapidly with

growth of x and y. The function (37) defines the interaction terms −α
−K n m( ) by the equation

α− = − − + − −α
−

−K n m g n m n m n m( ) ( , ) (2[( 1) 2] ( )). The interaction kernels (25)

and (43) can be used for integer and non-integer values of α. It is easy to see that expression

(25) is also more complicated than (43).

Some other examples of the interaction kernels with the property (31) are given in section

8 of the book [27]. For example, the most frequently used kernel of the long-range interaction

α
=α α

+
+

K n
A

n
( )

( )
, (46)

1

where we use the multiplier

α
Γ α α

=
−

A
π

( )
1

2 ( ) cos ( 2)
, (47)

has the asymptotic behavior

= + + →α α
α α+ + ( )K k K k o k kˆ ( ) ˆ (0) , ( 0), (48)

for the cases α< <0 2 and α ≠ 1, with the non-zero term

ζ α

Γ α α
=

+
−α

+
K

π
ˆ (0)

( 1)

( ) cos ( 2)
, (49)

where ζ z( ) is the Riemann zeta-function. To take into account such long-range interactions,

we use the asymptotic condition for α

+
K kˆ ( ) in the form (18) which includes α

+
K̂ (0).

We should note that the long-range interaction with the kernel (36) is similar to the

fractional central differences of type 1 suggested by Ortigueira in [55, 56]. At the same time,

the interaction with kernel (43) is not directly connected with the fractional central differences

of type 2 suggested in [55, 56] since the kernel of these central differences contains integer

values of n instead of n 2 in (43). In addition, the difference of type 2 corresponds to

interaction of the lattice particles with virtual particles with half-integer numbers which do not

exist in the physical lattices. Therefore the fractional central differences of types 1 and 2 can

be considered as the basis of a discrete analog of fractional vector calculus, which is not

associated directly with the physical lattices. A discrete fractional vector calculus based on the

fractional-order central differences suggested by Ortigueira in [55, 56] is considered in section

5.1 of this paper.

3.4. The properties of the lattice partial derivatives

The lattice fractional derivatives (14) are linear operators on the Hilbert space l2 of square-

summable sequences u n( ).

In general, the operators for the same values of the subscript i do not commute

   
α α α α

α α≠ ≠± ± ± ±⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )

i i i i
, . (50)

1 2 2 1
1 2

The operators with different subscripts i and j commute

   
α α α α

= ≠± ± ± ±⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥i j j i

i j, ( ). (51)
1 2 2 1
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The semigroup property is not satisfied

  
α α α α

α α≠
+

>± ± ±⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )

i i i
, , 0 . (52)

1 2 1 2
1 2

An action of two repeated fractional derivatives of order α1 is not equivalent to the action of a

fractional derivative of double order 2α1,

  
α α α

α≠ >± ± ±⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣⎢
⎤

⎦⎥
( )

i i i

2
, 0 . (53)

1 1 1
1

Note that these properties are similar to non-integer order derivatives [9].

It should be noted that the Leibniz rule for a lattice fractional derivative of order ≠s 1

does not satisfy

  
α α α

α≠ + > ≠± ± ±⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥i

U V V
i
U U

i
V s( ) , ( 0, 1), (54)

and this is a characteristic property of fractional differentiation. This property is similar to

fractional derivatives with respect to coordinates [54].

We assume that the lattice derivative with the value α = 0 is the unit operator

 =± ⎡

⎣⎢
⎤

⎦⎥i
U U

0
. (55)

The commutation relation (51) with α α= = 11 2 is

   = ≠± ± ± ±⎡

⎣⎢
⎤

⎦⎥
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣⎢
⎤

⎦⎥i j j i
i j

1 1 1 1
( ). (56)

The continuum analog of the commutation relation (56) has the form

∂
∂ ∂

=
∂
∂ ∂

u

x x

u

x x

r r( ) ( )
. (57)

i j j i

2 2

It is well known that the commutation relation (57) may be broken for discontinuous

functions u r( ) and if the derivatives are not continuous. We can assume that relation (56) may

be broken if we have a lattice with dislocations and disclinations. However, the exact

conditions for violation of this relationship remains an open question and we consider lattices

without dislocations and disclinations.

3.5. Lattice analogs of mixed partial derivatives

Let us define the lattice analogs of the mixed partial derivatives

  
α α α α

= ≠± ± ±
⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

i j i j
i j( ), (58)

1 2 1 2

   
α α α α α α

= ≠ ≠ ≠± ± ± ±
⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥i j k i j k

i j k i, ( ), (59)
1 2 3 1 2 3

where i, j and k take different values from {1; 2; 3} and the values of i, j, k cannot coincide.

The order of the operators (58) and (59) are equal to α α α= +1 2 and α α α α= + +1 2 3

respectively. It should be noted that the operators (58) and (59) are not operators of second

and third orders in general. If α = 21 and α = 22 , then (58) is an operator of fourth order, and

if α = 21 and α α= = 1 22 3 , then (59) is an fractional operator of third order.
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Using (14), the mixed partial lattice derivatives (58) and (59) are represented by

 ∑ ∑
α α

= − −
α α α α

±

=−∞

+∞

=−∞

+∞
± ±

⎡

⎣
⎢

⎤

⎦
⎥

i j a a
K n m K n m

1
( ) ( ), (60)

i j m m

i i j j
1 2

i j

1 2 1 2

 ∑ ∑ ∑=

− − −

α α α

α α α

α α α

±

=−∞

+∞

=−∞

+∞

=−∞

+∞

± ± ±

⎡
⎣

⎤
⎦ a a a

K n m K n m K n m

1

( ) ( ) ( ). (61)

i j k
i j k m m m

i i j j k k

i j k

1 2 3

1 2 3

1 2 3

If the parameter α = 0k , then the operator (59) is the operator of the type (58),

 
α α α α

=± ±
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

i j i j

0

0
, (62)

1 2 1 2

and similarly we have

  
α α α

= =± ± ±
⎡

⎣⎢
⎤

⎦⎥
⎡

⎣⎢
⎤

⎦⎥
⎡
⎣⎢

⎤
⎦⎥i i i

0 0

0 0

0

0
. (63)

1 1 1

Using (59) and the property (51), we can rearrange any pair of columns

  
α α α α α α α α α

= = =± ± ±
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

i j k j k i k i j
... (64)

1 2 3 2 3 1 3 1 2

We can define the mixed derivatives

  
α α α α

= ≠±∓ ± ∓
⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

i j i j
i j( ), (65)

1 2 1 2

   
α α α α α α

= ≠ ≠ ≠±±∓ ± ± ∓
⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥i j k i j k

i j k i, ( ), (66)
1 2 3 1 2 3

   
α α α α α α

= ≠ ≠ ≠±±∓ ± ∓ ∓
⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥i j k i j k

i j k i, ( ). (67)
1 2 3 1 2 3

The suggested lattice fractional partial derivatives allow us to obtain lattice analogs of the

fractional vector differential operators.

3.6. Lattice fractional vector differential operators

Let us define a lattice nabla operator for the lattice with the primitive vectors ai, =i 1, 2, 3,

by the equation

 ∑ α
=α ±

=

± ⎡
⎣⎢

⎤
⎦⎥i

a

a
. (68)L

i

i

i

,

1

3

For simplification, we consider the case = aa ei i i, where =a a| |i i and ei are the vectors of the

basis of the Cartesian coordinate system. Therefore this simplification case means that the

lattice is a primitive orthorhombic Bravais lattice with long-range interactions.

The lattice analogs of the vector differential operators can be defined by the following

equations.
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The lattice gradient for the scalar lattice field =U U m n( , ) is

∑ ∑ ∑α
= = −α

α α
±

=

±

= =−∞

+∞
±⎡

⎣⎢
⎤
⎦⎥

U
i
U

a
K n m Ue e m nGrad

1
( ) ( , ).(69)L

i

i

i i

i

m

i i
,

1

3

1

3

i

The lattice divergence for the vector lattice field = ∑ = UU e m n( , )
i i i1

3
is

∑ ∑ ∑α
= = −α

α α
±

=

±

= =−∞

+∞
±⎡

⎣⎢
⎤
⎦⎥i
U

a
K n m UU m nDiv

1
( ) ( , ). (70)L

i

i

i i m

i i i
,

1

3

1

3

i

The lattice curl operator for the vector lattice field = ∑ = UU e m n( , )
i i i1

3
is

∑ ϵ
α

=α ±

=

±
⎡

⎣
⎢

⎤

⎦
⎥
j
UU e m nCurl ( , ), (71)L

i j k

ijk i k
,

, , 1

3

where ϵijk denotes the Levi-Civita symbol.

The lattice scalar Laplacian for the scalar lattice field =U U m n( , ) can be defined by

two different equations with the repeated lattice derivative of orders α,

∑Δ
α

= =α α α α± ± ±

=

±
⎛

⎝
⎜

⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
⎟U U

i
U m nDiv Grad ( , ), (72)L L L

i

, , , ,

1

3 2

and by the derivative of the doubled order α2 ,

∑Δ
α

=α ±

=

± ⎡

⎣⎢
⎤

⎦⎥
U

i
U m n

2
( , ). (73)L

i

2 ,

1

3

The violation of the semigroup property (53) leads to the fact that operators (72) and (73) do

not coincide in general.

Relations for lattice fractional differential vector operations are the same as for the

fractional vector analysis of non-integer order with respect to the coordinates (see section 5.3

in [30]).

4. The continuum limit for lattice fractional derivatives and lattice fractional

vector differential operators

4.1. Transform of the fields on the lattice into fields on the continuum

In order to define the operation that transforms a lattice field u tn( , )i into a field u tr( , )i of the

continuum, we use the methods suggested in [37, 38]. The transformations of components of

the lattice field u tn( , )i into components of the field u tr( , )i of the continuum are as follows.

We consider u tn( , )i as Fourier series coefficients of some function u tkˆ ( , )i on

∈ −k k k[ 2, 2]j j j0 0 , then we use the continuous limit → ∞k0 to obtain u tk˜ ( , )i , and

finally we apply the inverse Fourier integral transformation to obtain u tr( , )i . Dia-

grammatically, the set of operations for transformation of the field can be represented by

figure 17.

The transformation operation that maps a lattice field into a continuum field is a sequence

of the following three operations (for details see [37, 38]).

1. The Fourier series transform → =Δ Δu t u t u tn n k: ( , ) { ( , )} ˆ ( , )i i i  which is defined

by
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∑= = Δ

=−∞

+∞
−

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

u t u t u tk n nˆ ( , ) ( , ) e ( , ) , (74)i

n n n

i i
k r n

, ,

i( , ( ))

1 2 3



∫∏= = Δ

=
−

+
− ⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

u t
k

k u t u tn k k( , )
1

d ˆ ( , ) e ˆ ( , ) , (75)i

j j k

k

j i i
k r n

1

3

0 2

2
i( , ( )) 1

j

j

0

0



where = nr n a( ) j j, and =a π k2j j0 is the inter-particle distance in the direction a j. For

simplicity we assume that all lattice particles have the same inter-particle distance aj in

the direction a j.

2. The passage to the limit →a 0j ( → ∞k j0 ) is denoted by

→ =u t u t u tk k kLim: ˆ ( , ) Lim { ˆ ( , )} ˜ ( , )i i i . The function u tk˜ ( , )i can be derived

from u tkˆ ( , )i in the limit →a 0i . Note that u tk˜ ( , )i is a Fourier integral transform of the

field u tr( , )i , and u k tˆ ( , ) is a Fourier series transform of u tn( , )i , where we use

=u t
π

k
u tn r n( , )

2
( ( ), )i

i
i

0

considering = = →n a πn kr n r( ) 2j j j j0 .

3. The inverse Fourier integral transform → =− −u t u t u tk k r: ˜ ( , ) { ˜ ( , )} ( , )i i i
1 1

  is

defined by

∫∏= =
=

−∞

+∞
−

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

u t x u t u tk r r˜ ( , ) d e ( , ) ( , ) , (76)i

j

j
k x

i j

1

3

i j j 

∫∏= =
=

−∞

+∞
−

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

u t
π

k u t u tr k k( , )
1

(2 )
d e ˜ ( , ) ˜ ( , ) . (77)i

j

j
k x

i i
3

1

3

i 1j j 

Note that equations (74) and (75) in the limit →a 0j ( → ∞k j0 ) are used to obtain the

Fourier integral transform equations (76) and (77), where the sum is changed by the integral.

Using the suggested notation we can represent these transformations by the following

diagram.

aj

ð78Þ

The combination of these three operations −1
 , Lim and Δ allows us to realize the

transformation of the field of the lattice into the field of the continuum [37, 38].

4.2. The continuum limit of the lattice partial derivatives

Let us consider a transformation of a lattice fractional derivative into the fractional derivative

with respect to coordinates by the combination of the operations ○ ○ Δ
− Limit1

  . We

performed transformations ○ ○ Δ
− Limit1

  for differential operators to map the lattice

fractional derivative into the fractional derivative for the continuum. We can represent these
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sets of transformations from lattice operators to operators for the continuum in the form of the

diagrams shown in figure 18.

The function α

±
K kˆ ( )i is the Fourier series transform Δ of the kernels of the lattice

fractional derivative
α± ⎡

⎣
⎤
⎦i . The functions α

±
K k˜ ( )i are the Fourier integral transform  of the

correspondent fractional derivative ∂ ∂α α± x| |i
, of the Riesz type.

In general, the order of the partial derivative ∂ ∂α α± x| |i
, is defined by the order of the

lattice derivative 
α± ⎡

⎣
⎤
⎦i and it can be integer and non-integer. Let us give a definition of the

fractional derivatives ∂ ∂α α± x| |i
, .

4.3. The Riesz fractional derivative

The Riesz derivative of the order α is defined [8, 9] by the equation


∫

α
Δ α

∂
∂

= > >
α

α α

+

+ ( )
u

x d m z
u z m

r
z

( ) 1

( , )

1
( ) d , ( 0), (79)

i i
i
m

i i

,

1
1

where Δ u z( )( )i
m

i is a finite difference of order m of a function u r( ) with the vector step

= ∈xz ei i i
3 for the point ∈r 3. The non-centered difference is

∑Δ = −
−

−
=

( ) ( )u
m

k m k
u kz r z( ) ( 1)

!

! ( )!
, (80)i

m
i

k

m

k
i

0

and the centered difference

∑Δ = −
−

− −
=

( ) ( )u
m

k m k
u m kz r z( ) ( 1)

!

! ( )!
( 2 ) . (81)i

m
i

k

m

k
i

0

The constant αd m( , )1 is defined by

α
α

Γ α Γ α α
=

+ +α
d m

π A

π
( , )

( )

2 (1 2) ((1 ) 2) sin ( 2)
,

m
1

3 2

where

∑α = −
−

α

=

−A
m

j m j
j( ) 2 ( 1)

!

! ( )!
m

j

m

j

0

1

in the case of the non-centered difference (80), and

∑α = −
−

− α

=

−A
m

j m j
m j( ) 2 ( 1)

!

! ( )!
( 2 )m

j

m

j

0

[ 2]

1

in the case of the centered difference (81). The constant αd m( , )1 is different from zero for all

α > 0 in the case of an even m and centered difference Δ u( )i
m (see theorem 26.1 in [8]). In the

case of a non-centered difference the constant αd m( , )1 vanishes if and only if

α = −m1, 3, 5 ,..., 2[ 2] 1. Note that the integral (79) does not depend on the choice of α>m .

Using that − = −i( ) ( 1)j j2 , the Riesz fractional derivatives for even α = j2 are

∂

∂
= −

∂

∂

+u

x

u

x

r r( )
( 1)

( )
. (82)

j

i
j

j
j

i
j

2 ,

2

2

2

For α = 2 the Riesz derivative is the Laplace operator. The fractional derivatives ∂ ∂α α+ x| |i
,

for even orders α are local operators. Note that the Riesz derivative ∂ ∂+ x| |i
1, 1 cannot be
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considered as a derivative of first order with respect to x| |i . The Riesz derivatives for odd

orders α = +j2 1 are non-local operators that cannot be considered as usual derivatives

∂ ∂+ +xj j2 1 2 1. For α = 1 it is ‘the square root of the Laplacian’.

The Fourier transform  of the Riesz fractional derivative is given by

∂
∂

=
α

α

α
+⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

u

x
k u

r
k k

( )
( ) ( )( ). (83)

i
i

,

 

Equation (83) is valid for the Lizorkin space [8] and the space ∞C ( )1 of infinitely

differentiable functions on 1 with compact support. Using (83), we have

∂
∂

=
α

α

α
+

− ( )
u

x
k u

r
k r

( )
( )( ) ( ). (84)

i
i

,
1

 

Equation (84) can be considered as a definition of the Riesz fractional derivative of order α.

4.4. The Riesz fractional integral

Riesz fractional integration is defined by

=α α− −( )u uI r k k( ) ( )( ) . (85)r
1

 

The fractional integration (85) can be realized in the form of the Riesz potential defined as the

Fourierʼs convolution of the form


∫ α= − >α

αu R uI r r z z z( ) ( ) ( )d , ( 0), (86)r
n

where the function αR r( ) is the Riesz kernel. If α > 0, the function αR r( ) is defined by

γ α α

γ α α

=
≠ +

− = +
α

α

α

− −

− −

⎧

⎨
⎪

⎩⎪
R

n k

n k
r

r

r r

( )
( ) 2 ,

( ) ln 2 ,
(87)

n
n

n
n

1

1

where ∈n , and the constant γ α( )n has the form

γ α
Γ α Γ

α
α

Γ α Γ α α

=

−
≠ +

− + − = +

α

α α− −

⎜ ⎟

⎧

⎨
⎪

⎩
⎪

⎛
⎝

⎞
⎠

π
n

n k

π n n k

( )
2 ( 2)

2
2 ,

( 1) 2 ( 2) (1 [ ] 2) 2 .

(88)n

n

n n

2

( ) 2 1 2

The Fourier transform of the Riesz fractional integration is given by

=α α−( )u fI r k k( ) ( )( ). (89)r 

Equation (89) holds for (86) if the function u r( ) belongs to Lizorkin space. The Lizorkin

space of test functions on n is a linear space of all complex-valued infinitely differentiable

functions u r( ) whose derivatives vanish at the origin

 Ψ = ∈ = ∈{ }( ) ( )u u S D ur r n( ): ( ) , (0) 0, , (90)n
r
n

where S ( )n is the Schwartz test-function space. The Lizorkin space is invariant with respect

to the Riesz fractional integration. Moreover, if u r( ) belongs to the Lizorkin space, then

=α β α β+u uI I r I r( ) ( ), (91)r r r

where α > 0 and β > 0.
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The Riesz fractional derivative yields an operator inverse to the Riesz fractional inte-

gration for a special space of functions

α
∂
∂

= >
α

α

α
+

u u
r

I r r( ) ( ), ( 0). (92)r

,

Equation (92) holds for u r( ) belonging to the Lizorkin space. Moreover, this property is also

valid for the Riesz fractional integration in the frame of Lp-spaces: ∈u Lr( ) ( )p
n for

α⩽ <p n1 (see theorem 26.3 in [8]).

4.5. Generalized conjugate Riesz derivative

We also define the new fractional derivatives ∂ ∂α α− x| |i
, by the equation

∂
∂

=
α

α

α
−

− ( )( )
u

x
k k u

r
k r

( )
i sgn ( )( ) ( ). (93)

i
i i

,
1

 

Using =α α−k k k ki | | i sgn ( ) | |i i i
1 , and the Fourier transform of the Riesz fractional

derivatives (84), the Riesz potential α−Ii
1 for ∈xi

=α α− −( )u k uI r k k( ) ( ) ( )( ), (94)i i
1 1

 

and the usual first order derivative,

∂
∂

=
⎛

⎝
⎜

⎞

⎠
⎟

u

x
k u

r
k k

( )
( ) i ( )( ). (95)

i
i 

We can define the fractional operator (93) as a combination of the operators in the form

α

α

α

∂
∂

=

∂
∂

∂

∂
>

∂
∂

=

∂
∂

< <

α

α

α

α

α

−

− +

−

−

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

x

x x

x

x
I

1

1

0 1,

(96)
i

i i

i

i
i

,

1,

1

1

where ∂ ∂xi is the usual derivative of first order with respect to coordinate xi and
α−Ii

1 is the

Riesz potential of order α−(1 ) with respect to xi,


∫ α= − + − <α

α
−

− ( )u R x z u z x zI r r e( ) ( ) ( ) d , ( 1), (97)i i i i i i i
1

1
1

where ei is the basis of the Cartesian coordinate system. For α< <0 1 the operator ∂ ∂α α− x| |i
,

is called the conjugate Riesz derivative [11]. Therefore, we call the operator ∂ ∂α α− x| |i
, for all

α > 0 the generalized conjugate Riesz derivative.

The Fourier transform  of the fractional derivative (96) is given by

∂
∂

= =
α

α

α α
−

−
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

u

x
k k u k k u

r
k k k

( )
( ) i ( )( ) i sgn ( )( ). (98)

i
i i i i

,
1

  
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Using (91), (92) and (96), it is easy to prove the equation

α
∂

∂
=

∂
∂

= >
α

α

α
−

x
u

x
u uI r I r r( ) ( ) ( ), ( 0). (99)

i
i

i
i

,
1

Using (82) and (96), we get

∂

∂
= −

∂

∂

+ −

+

+

+

u

x

u

x

r r( )
( 1)

( )
. (100)

j

i
j

j
j

i
j

2 1,

2 1

2 1

2 1

The fractional derivatives ∂ ∂α α− x| |i
, for odd orders α = +j2 1 are local operators. Note that

the generalized conjugate Riesz derivative ∂ ∂− x| |i
2, 2 cannot be considered as a local

derivative of second order with respect to x| |i . The derivatives ∂ ∂α α− x| |i
, for even orders

α = j2 are non-local operators that cannot be considered as the usual derivatives ∂ ∂xj j2 2 . For

α = 2 the generalized conjugate Riesz derivative is not the Laplacian.

Equations (82) and (100) allow us to state that the usual partial derivatives of integer

orders are obtained from fractional derivatives ∂ ∂α α± x| |i
, in the following two cases. (1). For

odd values α = + >j2 1 0 we should use ∂ ∂α α− x| |i
, only. (2). For even values α = >j2 0

we should use ∂ ∂α α+ x| |i
, only. Therefore we can formulate the following ‘fractional corre-

spondence principle’: fractional generalization of the partial differential equation gives the

correspondent differential equation with partial derivatives of integer orders if the fractional

equation contains the fractional derivatives of the type ∂ ∂α α− x| |i
, instead of the partial

derivative of odd order, and ∂ ∂α α+ x| |i
, instead of the partial derivative of even order.

4.6. The continuum limit for lattice fractional derivatives

Let us formulate and prove a proposition about the connection between the lattice frac-

tional derivative and the fractional derivatives of non-integer orders with respect to

coordinates.

Proposition 1. The lattice derivatives

 ∑α
= − −

α α
±

=−∞

+∞
±⎡

⎣⎢
⎤
⎦⎥i
U

a
K n m u um n m n( , )

1
( ) ( ( ) ( )), (101)

i m

i i

i

where −α
+K n m( ) is defined by (25) or (43), and −α

−K n m( ) is defined by (27) or (43), are

transformed by the combination ○ ○ Δ
− Lim1

  into the fractional derivatives of order α

with respect to coordinate xi in the form


α

○ ○ =
∂

∂
Δ

α

α

− ±
±⎛

⎝
⎜

⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
⎟

i x
Lim , (102)

i

1
,

 

where ∂ ∂α α+ x| |i
, is the Riesz fractional derivative of order α > 0 and ∂ ∂α α− x| |i

, is the

generalized conjugate Riesz derivative of order α > 0.

Proof. Let us multiply equation (101) by − k n aexp ( i )i i i , and summing over ni from
−∞ to +∞. Then

∑ α

=−∞

+∞
− ± ⎡

⎣⎢
⎤
⎦⎥i
U m ne ( , )

n

k n ai

i

i i i
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∑ ∑= − −α

=−∞

+∞

=−∞

+∞
− ±

a
K n m u um n

1
e ( ) ( ( ) ( )). (103)

i n m

k n a
i i

i

i i

i i i

The interaction term on the right-hand side of (103) is

∑ ∑ − −α

=−∞

+∞

=−∞

+∞
− ±K n m u um ne ( ) ( ( ) ( ))

n m

k n a
i i

i

i i

i i i

∑ ∑= −α

=−∞

+∞

=−∞

+∞
− ±K n m u me ( ) ( )

n m

k n a
i i

i

i i

i i i

∑ ∑− −α

=−∞

+∞

=−∞

+∞
− ±K n m u ne ( ) ( ). (104)

n m

k n a
i i

i

i i

The first term on the right-hand side of (104) gives

∑ ∑ −α

=−∞

+∞

=−∞

+∞
− ±K n m u me ( ) ( )

n m

k n a
i i

i

i i

i i i

∑ ∑= −α

=−∞

+∞
− ±

=−∞

+∞

K n m u me ( ) ( )

n

k n a
i i

m

i

i

i i i

i

∑ ∑= =
′

′
α α

=−∞

+∞
− ± ′

=−∞

+∞
− ±

( ) ( )K n u K k a um ke ( )e ˆ ˆ ( ), (105)

n

k n a
i

m

k m a
i i

i i

i

i i i

i

i i i

where = −′n n mi i i, and

∑= =α α Δ α

±

=−∞

+∞
− ± ±⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

( )K k a K n K nˆ e ( ) ( ) . (106)i i

n

k n a
i i

i i i i 

Using (74) and (16), the second term on the right-hand side of (104) gives

∑ ∑ −α

=−∞

+∞

=−∞

+∞
− ±K n m u ne ( ) ( )

n m

k n a
i i

i

i i

i i i

∑ ∑= =
′

α α

=−∞

+∞
−

=−∞

+∞
± ′

±
( )u K m u k t Kne ( ) ˆ ( , ) ˆ (0),

n

k n a

m

i
i

i

i i i

i

where = −′m n mi i i,

As a result, equation (103) has the form


α

= −Δ α α α
± ± ±⎛

⎝
⎜

⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
⎟ ( )( )

i
U

a
K k a K um n k( , )

1 ˆ ˆ (0) ˆ ( ), (107)
i

i i

where Δ is an operator notation for the Fourier series transform and =α

−
K̂ (0) 0.

Using that

− = +α α
α α+ + ( )( )K a k K a k o a kˆ ˆ (0) , (108)i i i i i i
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= +α
α α−

( )( ) ( )K a k k a k o a kˆ i sgn , (109)i i i i i i i

we get

− = +
α α α

α
α

α+ +( ) ( )( )
a

K k a K k
a

o a k
1 ˆ ˆ (0)

1
, (110)

i

i i i

i

i i

= +
α α

α
α

α−
( )( ) ( )

a
K k a k k

a
o a k

1 ˆ i sgn
1

. (111)
i

i i i i

i

i i

In the limit →a 0i , we have

= − =α α α α
α+

→

+ +( )( ) ( )K k
a

K k a K k˜ lim
1 ˆ ˆ (0) , (112)i

a i

i i i
0i

= =α α α
α−

→

− −( ) ( )K k
a

K k a k k˜ lim
1 ˆ i . (113)i

a i

i i i i
0

1

i

As a result, equation (107) in the limit →a 0i gives


α

○ =Δ α
± ±⎛

⎝
⎜

⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
⎟ ( )

i
U K k um n kLim ( , ) ˜ ˜( ), (114)i

where

= =α
α

α
α+ − −( ) ( )K k k K k k k˜ , ˜ i ,i i i i i

1

and =u uk k˜( ) Lim ˆ ( ). The inverse Fourier integral transform of (114) is


α

α○ ○ =
∂
∂

>Δ

α

α

− +
+⎛

⎝
⎜

⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
⎟

i
U

u

x
m n

r
Lim ( , )

( )
, ( 0), (115)

i

1
,

 


α

α○ ○ =
∂

∂
∂

∂
>Δ

α

α

− −
− +

−

⎛

⎝
⎜

⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i
U

x

u

x
m n

r
Lim ( , )

( )
, ( 1), (116)

i i

1
1,

1
 


α

α○ ○ =
∂

∂
< <Δ

α− − −⎛

⎝
⎜

⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
⎟

i
U

x
I um n rLim ( , ) ( ), (0 1), (117)
i
i

1 1
 

where the fractional derivative and fractional integral are

∂
∂

= =
α

α

α α α
+

− − −{ } { }
x

u k u I u k ur k r k( ) ˜( ) , ( ) ˜( ) . (118)
i

i i i

,
1 1

 

Here we have used the connection (83) between the Riesz derivative and integral of the order

α and their Fourier transforms.

As a result, we obtain relation (102). This ends the proof.

Using the independence of the position vectors of lattice site = nn ( , 0, 0)1 1 ,

= nn (0, , 0)2 2 , = nn (0, 0, )3 3 and the statement (102), we can prove that the continuum

limits for the lattice mixed partial derivatives (58) and (59) has the form


α α

○ ○ =
∂

∂
∂

∂
≠Δ

α

α

α

α

− ± ±
± ±⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟

i j x x
i jLim ( ), (119)

i j

1 , 1 2
, ,1

1

2

2

 

J. Phys. A: Math. Theor 47 (2014) 355204 V E Tarasov

27



○ ○ =
∂

∂
∂

∂

∂
∂

≠ ≠ ≠

Δ
α α α

α

α

α

α

α

α

− ± ± ±
± ± ±⎡

⎣
⎤
⎦( ) x x x

i j k i

Lim ,

( ), (120)

i j k
i j k

1 , ,
, , ,

1 2 3
1

1

2

2

3

3
 

and similarly for the other mixed lattice fractional derivatives. As a result, we obtain

continuum limits for the lattice fractional derivatives in the form of the Riesz fractional

derivatives with respect to coordinates.

4.7. The continuum limit for lattice vector differential operators

The continuum limit of the lattice vector differential operators gives the following differential

operators of fractional vector calculus. These operators are defined by the Riesz fractional

derivatives.

The continuum limit of the lattice gradient is

∑= ○ ○ =
∂
∂

α
Δ

α
α

α

± − ±

=

±
⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

u U
u

x
r e

r
Grad ( ) Limit Grad

( )
. (121)C L

i

i
i

, 1 ,

1

3 ,

 

The continuum limit of the lattice divergence is

∑= ○ ○ =
∂

∂
α

Δ
α

α

α

± − ±

=

±
⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

u

x
u r U

r
Div ( ) Limit Div

( )
. (122)C L

i

i

i

, 1 ,

1

3 ,

 

The continuum limit of the lattice curl operator is

∑ ϵ= ○ ○ =
∂

∂
α

Δ
α

α

α

± − ±

=

±⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

u

x
u r U e

r
Curl ( ) Limit Curl

( )
, (123)C L

i j k

ijk i
k

j

, 1 ,

, , 1

3 ,

 

where ϵijk denotes the Levi-Civita symbol.

The scalar Laplacian for the scalar field can be defined by the repeated derivative of

orders α in the form

∑Δ = =
∂

∂
∂
∂

α α α α
α

α

α

α

± ± ±

=

± ±
u u

x

u

x
r r

r
( ) Div Grad ( )

( )
, (124)C C C

i i i

, , , ,

1

3 , ,

and by the derivative of the doubled order α2 ,

∑Δ =
∂

∂
α

α

α

±

=

±
u

u

x
r

r
( )

( )
. (125)C

i i

2 ,

1

3 2 ,

2

In general, the fractional derivatives (124) and (125) do not coincide [9].

The Riesz fractional derivatives ∂ ∂α α+ x| |i
, for α = 1 are non-local operators that cannot

be considered as the usual local derivatives ∂ ∂xi, i.e. ∂ ∂ ≠ ∂ ∂+ x x| |i i
1, 1 . Therefore the

fractional differential vector operators (121–124) that correspond to the even (symmetric)

kernels with α = 1 are also non-local operators. At the same time, (121–124) for the odd

(antisymmetric) kernels with α = 1 give the well-known expressions for the vector differ-

ential operators. Note that the operator (125) for α = 1 is the usual Laplacian with a minus

sign, i.e. Δ Δ= −α +
C
2 , .

We can assume that the integral vector operations for the continuum can be defined using

the fractional analog of Greenʼs formula for a domain and the semigroup property for frac-

tional integrals and derivatives suggested by Riesz (see sections 7, 10 and 11 in [53]).
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5. Possible forms of lattice fractional calculus

In this paper we mainly pay attention to the lattice fractional vector operators that give the

fractional derivatives of the Riesz type in a continuous limit. Let us note other possible types

of lattice fractional vector calculus.

5.1. Fractional vector calculus based on the central differences of non-integer orders

The fractional-order central differences was suggested by Ortigueira in [55, 56]. In this

section we generalize these differences to consider a three-dimensional case. The central

difference Δ +
j
n, of positive even integer order n can be defined by

∑Δ
Γ

Γ Γ
=

− +
− + + +

−+

=−

+
u

n

n m n m
u mr r a( )

( 1) ( 1)

( 2 1) ( 2 1)
( ). (126)j

n

m n

n n m

j
,

2

2 2

The central difference Δ −
j
n, for positive odd integer order n is defined by

∑Δ
Γ

Γ Γ
=

− +
+ − + − + +

× − −

−

=− −

+ + +

( )

u
n

n m n m

u m

r

r a

( )
( 1) ( 1)

(( 1) 2 1) (( 1) 2 1)

( 1 2) . (127)

j
n

m n

n n m

j

,

( 1) 2

( 1) 2 ( 1) 2

These central differences allow us to define the corresponding partial derivatives defined by

Δ Δ
= =+

→

+
−

→

−

D u
u

D u
u

r
r

a
r

r

a
( ) lim

( )
, ( ) lim

( )
. (128)j

n

a

j
n

j
n

j
n

a

j
n

j
n

,

0

,

,

0

,

j j

Both derivatives (128) coincide with the usual partial derivative of even and odd integer

orders with respect to xj.

The fractional central differences of types 1 and 2 in the direction of the vector a j are

defined by the equations

∑Δ
Γ α

Γ α Γ α
=

− +
− + + +

−α +

=−∞

+∞

u
m m

u mr r a( )
( 1) ( 1)

( 2 1) ( 2 1)
( ). (129)c

j

m

m

j
,

∑Δ
Γ α

Γ α Γ α
=

− +
+ − + − + +

× − −

α −

=−∞

+∞

( )

u
m m

u m

r

r a

( )
( 1) ( 1)

(( 1) 2 1) (( 1) 2 1)

( 1 2) . (130)

c
j

m

m

j

,

The fractional central differences (129) and (130) allow us to define the corresponding

fractional central partial derivatives by the equations

Δ Δ
= =α

α

α

α

α

α

+

→

+
−

→

−

D u
u

D u
u

r
r

a
r

r

a
( ) lim

( )
, ( ) lim

( )
, (131)c

j
a

c
j

j

c
j

a

c
j

j

,

0

,

,

0

,

j j

where α > − 1. These operators are called the fractional centered derivatives in [55], and the

fractional central derivatives in [56]. In addition, the derivatives (131) are the fractional

derivatives of the Grünwald–Letnikov type [55, 56].

We propose to call the operators (131) the fractional derivatives of the Grünwald–Le-

tnikov–Ortigueira type in order to distinguish the operators (131) from the fractional deri-

vatives of the Grünwald–Letnikov–Riesz type [8], which are used in lattice models in [47].
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The properties of these fractional partial derivatives are describe in [55, 56]. Let us note

the following properties,

=α β α β+ + + +D D u D ur r( ) ( ), (132)c
j

c
j

c
j

, , ,

= −α β α β− − + +D D u D ur r( ) ( ), (133)c
j

c
j

c
j

, , ,

= −α β α β− + + −D D u D ur r( ) ( ), (134)c
j

c
j

c
j

, , ,

where α β α β+ > −, , 1 and u r( ) is a ‘sufficiently good function’. These properties allow us

to consider the fractional derivatives α ±Dc j
, as analogs of the continuum fractional derivatives

∂ ∂α α± x| |j
, of the Riesz type.

Note that the expression in the definition (14) of the lattice fractional derivative 
α± ⎡

⎣
⎤
⎦i

can be rewritten in the form

 ∑α
= − =

α α
±

=−∞

+∞
±

⎡

⎣
⎢

⎤

⎦
⎥
j

U
a

K m U m jm n n e n( , )
1

( ) ( , ), ( 1, 2, 3), (135)
j m

j j j

j

where we use the special case of the lattice vectors = n n nn ( , , )1 2 3 , = m m mm ( , , )1 2 3 in the

form

= = = je e e(1, 0, 0), (0, 1, 0), (0, 0, 1) (136)1 2 3

and the equality

∑ ∑− = −α α

=−∞

+∞
±

=−∞

+∞
± ( )K n m u t K m u m tm n e( ) ( , ) ( ) , . (137)

m

j j

m

j j j

j j

Equation (137) allows us to have an equivalent representation of the lattice fractional

derivatives (14). The form (135) of derivative (14) can be generalized to give a definition of

the lattice fractional derivatives based on the fractional central differences suggested by

Ortigueira in [55, 56].

Let us define a lattice fractional partial derivative of the central type with respect to nj in

the direction =e a a| |j j j .

Definition 2. A lattice fractional partial derivative 
α+ ⎡

⎣
⎤
⎦

c

j
of the central type 1 is the

operator

 ∑α
= − =

α α
+

=−∞

+∞
+

⎡

⎣
⎢

⎤

⎦
⎥
j

u
a

K m u m jn n e( )
1

( ) ( ) ( 1, 2, 3), (138)c

j m

c
j j j

j

where the interaction kernel α
+K m( )c

j is defined by the equation

Γ α

Γ α Γ α
=

− +

− + + +
α
+

( ) ( )
K m

m m
( )

( 1) ( 1)

2 1 2 1
. (139)c

j

m

j j

j

It is easy to see that the kernels α
+K m( )c are even functions, − =α α

+ +K m K m( ) ( )c c .

The expression (138) with (143) for the lattice fractional derivative is based on the

fractional central differences Δ α +c
j
, of type 1.

It should be noted that lattice models with long-range interaction of the form (143) and

correspondent fractional non-local continuum models were suggested in [37, 38] (see also
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[27, 50]). The motivation of this type of interaction is the power-law asymptotic behavior in

the form (18). The kernel (143) describes one of the examples of a wide class of α-inter-

actions suggested in [37, 38], where other examples of α-interactions for physical lattices

have also been proposed.

Note that the kernel α
+K m( )c defined by (143) is equal to the kernel α

+K m( ) defined by

(43) of the lattice derivative (14), i.e. we have

=α α
+ +K m K m( ) ( ). (140)c

j j

Therefore the lattice fractional derivatives 
α+ ⎡

⎣
⎤
⎦

c

j
and 

α+ ⎡
⎣

⎤
⎦j are equal to each other,

 
α α

=+ +
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

j j
. (141)c

These fractional derivatives are well defined for physical lattices.

Definition 3. A lattice fractional partial derivative 
α− ⎡

⎣
⎤
⎦

c

j
of the central type 2 is the

operator

 ∑α
= − − =

α α
−

=−∞

+∞
−

⎡

⎣
⎢

⎤

⎦
⎥ ( )( )
j

u t
a

K m u m jn n e( , )
1

( ) 1 2 ( 1, 2, 3), (142)c

j m

c
j j j

j

where the interaction kernel α
±K m( )c is defined by the equation

Γ α

Γ α Γ α
=

− +

+ − + − + +
α
−

( ) ( )
K m

m m
( )

( 1) ( 1)

( 1) 2 1 ( 1) 2 1
. (143)c

j

m

j j

j

This form of the lattice fractional derivative is based on the fractional difference Δ α −c
j
, of

type 2. Although the kernels α
+K m( )c and α

+K m( ) defined by (143) and (43) are the same, it is

easy to see that the kernels α
−K m( )c and α

−K m( ) defined by (143) and (43) are different.

Let us note some differences between 
α−[ ]c

j
and 

α−[ ]
j
. It is easy to see that the central

kernels α
−K n( )c defined by (143) cannot be considered as odd functions, since

− ≠ −α α
− −K n K n( ) ( ),c c

whereas the kernel (43) is the odd function ( − = −α α
− −K n K n( ) ( )).

In addition, the lattice derivatives (142) do not have a clear physical interpretation related

to the physical lattice since the operator 
α−[ ]c

j
describes an interaction of the lattice particles

with an empty place between the particles. The half-integer numbers − −mn e( 1 2)j j in

(142) do not correspond to any of the lattice particles. In contrast to this, the lattice fractional

derivatives (14) (or (135)) with kernel (43) describe the interaction of the lattice particle with

all the other real particles of the lattice. This allows us to have a direct physical interpretation

for lattice fractional derivatives (14) with kernels (27) and (43) as long-range interactions with

all the particles of the physical lattice.

Let us note that the fractional central differences Δ α ±c
j
, and the fractional derivatives

α ±Dc j
, of the Grünwald–Letnikov–Ortigueira type (131) can be defined for α− <1 0 [55, 56].

This allows us to define the lattice fractional integrals of central types 1 and 2 by

equations (138) and (142) with negative α ∈ −( 1, 0).

Proposition 2. The lattice fractional derivatives 
α± [ ]c

j
of central types 1 and 2 defined by

(138) and (142) are transformed by the continuous limit operation Lim into the fractional
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partial derivatives of order α with respect to coordinate xj in the form


α

= α± ±
⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟

j
u D un rLim ( ) ( ), (144)c c

j
,

where α ±Dc j
, are the fractional derivatives of the Grünwald–Letnikov–Ortigueira type (131).

This proposition is based on the definition (131) of these fractional derivatives. The proof

can be realized by analogy with the proof suggested in [47] for lattice models with Grün-

wald–Letnikov–Riesz type long-range interactions.

In proposition 2 the Fourier series transform Δ and the Fourier integral transforms −1


are not used for the transition to the continuum case. The correspondent fractional derivatives

for the continuum are derived by the operation Lim of the continuous limit only.

Note that the transformation of the lattice derivative (14) with the kernel (43) by the

combination of operations ○ ○ Δ
− Lim1

  gives the Riesz fractional derivative in the

continuum limit. This statement is based on the asymptotic property (18) of the Fourier series

transform α

+
K kˆ ( ) of the kernel α

+K n( ) in the form (17). The proof of this statement is given in

[37, 38] and [27, 50]. Therefore the fractional derivative α +Dc j
, and ∂ ∂α α± x| |j

, should be

connected for some classes of functions u r( ), since the kernels of the correspondent lattice

derivatives are equal to each other (140). In addition, Ortigueira [56] proves an equivalence of

the central fractional derivatives of type 1 and the one-dimensional Riesz potential, when α is

not an even integer.

Also proved in the paper [56] is an equivalence of the fractional derivatives α −Dc j
, of type

2 and the one-dimensional modified Riesz potential, when α is not an odd integer. This does

not mean that the derivatives (142) with (143) are equivalent to the lattice derivatives (14)

with (43), because the kernels (143) and (43) are not equivalent. Here the situation is similar

to the case with the lattice derivatives (14) with two different kernels, where the exact kernel

(27) and the asymptotic kernel (43) lead to an identical continuum fractional derivative. An

equivalence of the continuum fractional derivatives does not mean an equivalence of corre-

spondent lattice derivatives.

The derivatives (142) based on the fractional central differences of type 2 correspond to

interaction of lattice particles with virtual particles with half-integer numbers which do not

exist in the physical lattices. Therefore the suggested partial fractional central differences of

types 1 and 2 and the partial fractional derivatives (138), (142) are more correctly considered

as operators of a discrete analog of the fractional vector calculus which is not associated

directly with the physical lattices. For the formulation of physical lattice models and for

application in lattice mechanics, the lattice fractional derivatives (14) with the kernels (27),

(43) and (27), (43) are more appropriate than operators based on the central differences.

5.2. Fractional vector calculus for physical lattices with long-range interaction of the

Grünwald–Letnikov type

In this section, we consider a fractional vector calculus for models of a lattice with long-range

interaction of the Grünwald–Letnikov type.

The difference of a fractional order α > 0 and the correspondent fractional derivatives

were introduced by Grünwald in 1867 and independently by Letnikov in 1868. The definition

of the difference of non-integer orders is based on a generalization of the usual difference of

integer orders. The difference of positive real order α ∈ + is defined by the infinite series

(see section 20 in [8]) in the form
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 ∑ Γ α

Γ Γ α
=

− +
+ − +

∓α
±

=

∞

u x
n n

u x na( )
( 1) ( 1)

( 1) ( 1)
( ), (145)a

n

n

,

0

where >a 0. The difference  α
+a, is called a left-sided fractional difference, and  α

−a, is

called a right-sided fractional difference. We note that the series in (145) converges absolutely

and uniformly for every bounded function u(x) and α > 0. For the fractional difference, the

semigroup property

   α β= > >α β α β+u x u x( ) ( ), ( 0, 0) (146)a a a

is valid for any bounded function u(x) (see property 2.29 in [9]). The Fourier transform of the

fractional difference is given by

 = −α α( ){ } { } { }u x k ka u x k( ) ( ) 1 exp i ( ) ( )a 

for any function ∈u x L( ) ( )1 (see property 2.30 in [9]).

For integer values of α = ∈m the differences  α
±a, are

 ∑=
−

−
∓ ∈±

=

+( )u x
m

n m n
u x n a a( )

( 1) !

! ( )!
( ), . (147)a

m

n

m n

,

1

The left- and right-sided partial Grünwald–Letnikov derivatives of order α > 0 are

defined by


=α

α

α
±

→ +

±
D u

u

a
r

r
( ) lim

( )
. (148)GL

x
a

a

j

,
0

,

j
j

j

Substitution of (145) into (148) gives

∑ Γ α

Γ Γ α
=

− +

+ − +
∓α

α
±

→ +
=

∞

( ) ( )
( )D u

a n n
u nr r a( ) lim

1 ( 1) ( 1)

1 1
. (149)GL

x
a

j n

n

j j

j j,
0

0

j
j

j

j

Note that these Grünwald–Letnikov derivatives for integer orders α = ∈n are the usual

partial derivatives

= ±
∂

∂±D u
u

x
r

r
( ) ( 1)

( )
. (150)GL

x
n n

n

j
n,j

The fact that the differences of fractional order satisfy the semigroup property (146)

allows us to prove [58] the semi-group property for the fractional derivatives in the form

α β= > >α β α β
± ± ±

+D D D , ( 0, 0). (151)GL
x

GL
x

GL
x, , ,j j j

This property leads to the commutative and associative properties of the Grünwald–Letnikov

derivatives [58]. In addition, the Grünwald–Letnikov fractional derivatives coincide with the

Marchaud fractional derivatives for ∈u Lr( ) ( )p
3 , where ⩽ < ∞p1 (see theorem 20.4 in

[8]). The properties of the Grünwald–Letnikov fractional derivatives are described in section

20 of the book [8].

Let us define a lattice fractional partial derivative of the Grünwald–Letnikov type with

respect to ni in the direction =e a a| |i i i .

Definition 4. The lattice fractional partial derivatives 
α± ⎡

⎣
⎤
⎦

GL

j
of the Grünwald–Letnikov

type are the operators
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 ∑α
= − =

α α
±

=−∞

+∞
±

⎡

⎣
⎢

⎤

⎦
⎥
j

u
a

K n m u jm m( )
1

( ) ( ) ( 1, 2, 3), (152)GL

j m

GL
j j

j

where the interaction kernels α
±K n( )GL are defined by the equations

Γ α

Γ Γ α
α=

− + ± −
+ + −

>α
±K n

H n H n

n n
( )

( 1) (1 ) ( [ ] [ ])

2 ( 1) (1 )
, ( 0), (153)GL

n

and α is the order of these derivatives, H n[ ] is the Heaviside step function of a discrete

variable n such that =H n[ ] 1 for ⩾n 1, and =H n[ ] 0 for <n 0.

It is easy to see that the kernels α
±K n( )GL are even and odd functions,

− = ±α α
± ±K n K n( ) ( ).GL GL

The form of these lattice fractional derivatives is defined by the addition and subtraction

of the fractional differences of the Grünwald–Letnikov type  α
±a, defined by (145).

It should be noted that lattice models with long-range interaction of the form α
+K n( )GL

and correspondent fractional non-local continuum models were suggested in [47] (see

also [27]).

Proposition 3. The lattice fractional derivatives 
α± ⎡

⎣
⎤
⎦

GL

j
defined by (152) are

transformed by the continuous limit operation Lim into the fractional partial derivatives

of the Grünwald–Letnikov type of order α with respect to coordinate xj in the form


α

= α± ±
⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟

j
u um rLim ( ) ( ), (154)GL GL

j
,



where α ±DGL
j
, are the fractional derivatives of the Grünwald–Letnikov type

= ±α α α±
+ −( )D D

1

2
, (155)GL

j
GL

x
GL

x
,

, ,j j


which contain the Grünwald–Letnikov fractional derivatives α
±DGL

x ,j
defined by (149).

This proposition can be proved by analogy with the proof for a lattice model with long-

range interaction of the Grünwald–Letnikov–Riesz type suggested in [47].

Using (150), we can note that the derivatives (155) for integer orders α = ∈n have the

forms

=
∂

∂
+ −

∂
∂

+
⎛

⎝
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⎞

⎠
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x x
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n
n

j
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,


=
∂

∂
− −

∂
∂

−
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⎞

⎠
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x x

1

2
( 1) . (157)GL

j
n

n

j
n

n
n

j
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,


These equations can be rewritten as



=

= − ∈
∂

∂
= ∈

+

⎧

⎨
⎪

⎩
⎪

n m m

x
n m m

0, 2 1, ,

, 2 , ,
(158)GL

j
n n

j
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,

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



=
∂

∂
= − ∈

= ∈

−

⎧

⎨
⎪

⎩
⎪

x
n m m

n m m

, 2 1, ,

0, 2 , .

(159)GL
j
n

n

j
n,



Therefore +GL
j
n,

 is the usual derivative of integer order n for even values α only, and
−GL

j
n,

 is the derivative of integer order n for odd values α only.

We assume that the lattice fractional integral operations can be defined by using (152) for

α < 0. This possibility is based on the fact that the series (145) can be used for α < 0 (see

section 20 in [8]). Equation (149) defines the Grünwald–Letnikov fractional integral if

α< + >−u x c x μ( ) (1 ) , . (160)μ

The existence of the Grünwald–Letnikov fractional integral means that we have the

possibility of defining a lattice fractional integration.

The suggested lattice fractional vector calculus can be extended for bounded lattice

models using the Grünwald–Letnikov fractional differences on finite intervals (see section

20.4 in [8]).

Definition 5. The lattice fractional partial derivatives 
α± ⎡

⎣
⎤
⎦B

GL

j
of the Grünwald–Letnikov

type for a bounded lattice with ⩽ ⩽m m m m:j j j j
1 2are the operators
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2

where the interaction kernels α
±K n( )GL are defined by the equations (153).

The lattice fractional derivatives 
α± ⎡

⎣
⎤
⎦B

GL

j
defined by (161) are transformed by the

continuous limit operation Lim into the fractional partial derivatives of the Grünwald–Le-

tnikov type

= ±α α α±
+ −( )D D

1

2
, (162)B
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j x

GL
x x

GL
x

,
, ,

j
j

j
j1 2

which contain the Grünwald–Letnikov fractional derivatives [8, 9] defined on the finite

interval x x[ , ]j j
1 2 , where m j

1, m j
2 and m j are defined by the equations
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in the form
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Γ Γ α
=

− +

+ − +
∓α

α
±

→ +
=

±

( ) ( )
( )D u

a n n
u nr r a( ) lim

1 ( 1) ( 1)

1 1
, (163)B

GL
x

a
j n

N
n

j j

j j,
0

0

j
j

j

j
j

where

=
−

=
−

+ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

N
x x

a
N

x x

a
, . (164)j

j j

j
j

j j

j

1 2

Here the brackets [ ] mean the floor function that maps a real number to the largest

previous integer number. The suggested form of fractional vector calculus for bounded lattice

models is based on the Grünwald–Letnikov fractional differences on finite intervals (see

section 20.4 in [8]). We assume that these calculi for bounded lattices can be developed using
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the proposed lattice fractional partial derivatives of the Grünwald–Letnikov type. Consistent

formulations of the boundary conditions, extensivity and additivity for bounded lattice sys-

tems with long-range interactions and the correspondent continuum limits are open questions

at this time.

5.3. About lattice vector calculus based on O(N)-models

We assume that it is possible to formulate a lattice fractional vector calculus based on the

lattice O(N)-models with spin–spin long-range interactions. The classical O(N)-model (also

called the N-vector model) is an N-dimensional lattice model suggested by Stanley in [59].

The most famous of the O(N)-models are the Ising model for N = 1, the XY -model for N = 2

and the Heisenberg model for N = 3. Lattice models of classical spins with long-range

interactions were first suggested by Dyson in [60–62], where an infinite one-dimensional

Ising model with long-range interactions is considered. A fractional dynamical approach for

describing lattice models with long-range interaction of spin variables and the correspondent

continuum models based on equations with fractional derivatives was suggested in [33, 39].

The correspondent equations for non-local continua contain derivatives of non-integer orders.

The lattice of the O(N)-model is a set of N-dimensional vector ‘classical spins’ s n( ) of the

unit length ( ∈s n( ) N , =s n| ( ) | 1) which are placed on the n-vertex of this N-dimensional

lattice. The symbol of the orthogonal group O(N) of dimension N is used in the name of the

model. The orthogonal group O(N) is the group of distance-preserving transformations of

Euclidean space N that preserve a fixed point. An important subgroup of O(N) is the special

orthogonal group SO(N) of the orthogonal matrices of determinant 1. The group SO(N) is also

called the rotation group, because the elements are the usual rotations around a point for

dimension N = 2 and rotations around an axis for dimension N = 3.

Let us consider the classical lattice O (2)-model (also called the XY -model or the rotator

model). In this lattice model, for each lattice site n there is a two-dimensional, unit-length

vector θ θ=s n n n( ) (cos ( ), sin ( )). The classical spin configuration is an assignment of the

angle θ− < ⩽π πn( ) for each n. For translation-invariant long-range interaction described

by kernel −K n m( ), and a point dependent external field = hh n n( ) ( ( ), 0), the Hamiltonian

is defined in the form

∑ ∑= − − −
≠

H K n m s n s m h n s n( ) ( ( ) · ( )) ( ( ) · ( ))

n m n

∑ ∑θ θ θ= − − − −
≠

K hn m n m n n( ) cos ( ( ) ( )) ( ) cos ( ( )), (165)

n m n

where the sum runs over all pairs of spins n m( , ) and the point · denotes the standard

Euclidean scalar product for 2. In the Hamiltonian (165), the interaction is described by the

periodic (trigonometrical) functions.

A fractional dynamical approach for describing one-dimensional lattice models with

long-range interaction of spin variables and the correspondent fractional non-local continuum

models is suggested in section V of [39]. The continuum equations which correspond to

equations of a lattice with long-range interacting spins contain fractional derivatives of the

Riesz type.

In general, for O(N) lattice models, we should take into account the symmetries of these

lattice systems. We should have the correspondent symmetry for the fractional non-local

continuum if the continuous limit is formulated correctly. In the general case, the Riesz

fractional derivatives and integrals on a circle cannot be defined in a consistent way. It is

natural that the operations of fractional integration and differentiation are to be defined in such
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a way that they transform periodic functions into periodic ones. The Riesz fractional inte-

gration and differentiation do not have this property. Therefore a three-dimensional gen-

eralization of the approach suggested in [39] does not allows us to take into account O(N)

symmetry since this approach uses the Riesz fractional derivatives. For periodic functions,

another type of fractional integro-differentiation should be used instead of the Riesz type. We

assume that the Weyl fractional derivatives (see section 19 in [8]) or generalizations of the

Grünwald–Letnikov fractional derivatives for the periodic case (see section 20.2 in [8])

should be used to preserve O(N) symmetry in the continuum limit and to map periodic

functions into periodic.

The Weyl fractional integral of order α is defined by

∫φ Ψ φ α= − >α α± ±I x
π

z x z z( )
1

2
( ) ( ) d , ( 0) (166)W

x

π
,

0

2
,

where ∈z π(0, 2 ), ∈x 1, and the function φ x( ) is the π2 -periodic function with zero mean

value. The kernels Ψ α± z( ), of these integrals are

∑Ψ
α

=
∓α

α

±

=

∞

z
n z π

n
( ) 2

cos ( 2)
. (167)

n

,

1

The kernels can be expressed in terms of generalized Riemann zeta-functions

Ψ
ζ α

Γ α
=

− ±
< <α

α
± z

π z π
z π( )

(2 ) (1 , 2 )

( )
, (0 2 ). (168),

In the case of a positive integer α = ∈m , the kernels may be represented by

Ψ = −
±± z

π

m
B z π( )

( 2 )

!
( 2 ), (169)m

m

m
,

where Bm(z) is the mth Bernoulli polynomial. In the case of positive integer α = ∈m , the

Weyl integration correspond to the usual integration.

The Weyl fractional derivative of order α− < <n n1 can be defined by the equation

φ φ= ±α α± − ±x
x

I x( ) ( 1)
d

d
( ). (170)n

n

n
W

x
n, ,



This operator is called the Weyl–Liouville derivative [8].

For the π2 -periodic function, we have the Fourier series

∫∑φ φ φ φ∼ =
=−∞

+∞
−x

π
x x( ) e ,

1

2
e ( ) d , (171)

n

n
nx

n

π
nxi

0

2
i

the Weyl fractional integration is

∑φ
φ

∼
±

α

α

±

=−∞

+∞

I x
n

( )
( i )

e , (172)W
x

n

n nx, i

and the Weyl fractional differentiation is

∑φ φ∼ ±α α±

=−∞

+∞

D x n( ) ( i ) e , (173)W
x

n

n
nx, i

where ∈n , and

α± = ±α αn n n π( i ) exp { sgn ( ) i 2}.
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Relations (172) and (173) allow us to hold the requirement that fractional integrals and

derivatives of the π2 -periodic function are again a π2 -periodic function.

The lattice fractional vector calculus based on the classical O(N) lattice models with

spin–spin long-range interactions may be associated not only with the Weyl fractional deri-

vatives (see section 9 in [8]), but also with the Grünwald–Letnikov fractional differences for

the periodic case (see section 20.2 in [8]). Note that the existence of the Grünwald–Letnikov

derivative for the periodic case is equivalent to this function being represented by the Weyl

fractional integral (see section 20.2 in [8]) up to a constant term.

It should be noted that a fractional dynamical approach to discrete models, which

describes the long-range coupled evolution of N rotators, populating the unitary circle and

interacting via a cosine-like potential, and the correspondent continuum limit are considered

in [33].

Unfortunately, a consistent formulation of lattice fractional calculus for O(N)-models of

lattices with long-range interaction of classical spins remains an open question at this time.

We can only assume that this calculus may be associated with the Weyl fractional derivatives

(see section 9 in [8]), or the Grünwald–Letnikov fractional derivatives for the periodic case

(see section 20.2 in [8]).

6. Examples of three-dimensional lattice models

In this section, we give some examples of the application of the suggested lattice fractional

vector calculus. The three-dimensional lattice models with long-range interactions and the

correspondent fractional non-local continuum models are suggested for the fractional Max-

well equations of non-local continuous media, and for the fractional generalization of the

Mindlin and Aifantis continuum models of gradient elasticity.

6.1. A three-dimensional lattice analog of Maxwell equations

The well-known Maxwell equations for the electrodynamics of continuous media [63, 64]

have the form

ρ=t tD r rdiv ( , ) ( , ), (174)

=tB rdiv ( , ) 0, (175)

= −
∂

∂
t

t

t
E r

B r
curl ( , )

( , )
, (176)

= +
∂

∂
t t

t

t
H r j r

D r
curl ( , ) ( , )

( , )
, (177)

where E is the electric field strength, D is the electric displacement field, B is the magnetic

induction (the magnetic flux density), H is the magnetic field strength, ρ is the electric charge

density and j is the electric current density.

Let us define the electric and magnetic fields on the three-dimensional lattice by

equation (12). The electric field strength for the lattice is

∑ ∑= = −
= =

( )E t E t E tE e m n e m n( , , ) ( , ) ( , ) , (178)

i

i i

i

i i i

1

3

1

3
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where E tn( , )i can be considered as components of the electric field for a lattice site that is

defined by the spatial lattice points with the vector = n n nn ( , , )1 2 3 . The other fields D, B, H,

j and ρ for the three-dimensional lattice with long-range interaction are defined analogously.

Using the lattice operators (70) and (71), we can write the equations

ρ=α ± t tD m n m nDiv ( , , ) ( , , ), (179)L
,

=α ± tB m nDiv ( , , ) 0, (180)L
,

= −
∂

∂
α ± t

t

t
E m n

B m n
Curl ( , , )

( , , )
, (181)L

,

= +
∂

∂
α ± t t

t

t
H m n j m n

D m n
Curl ( , , ) ( , , )

( , , )
. (182)L

,

These equations can be considered as the Maxwell equations for the lattice with long-range

interaction of the α-type. Lattice equations (183)–(186) with α +DivL
, and α +CurlL

, for α = 1

give continuum equations with non-local operators of first order in the continuous limit. For

this case the correspondence principle does not hold.

It is obvious that we would like to have a fractional generalization of partial differential

equations which would enable us to obtain the original equations in the limit case when the

orderʼs generalized derivatives become equal to the initial integer values. This correspon-

dence principle and the fact that only the fractional derivatives ∂ ∂α α− x| |j
, for α = 1 are the

usual local derivatives of first order, allow us to consider equations (183)–(186) with α −DivL
,

and α −CurlL
, as basic lattice equations. In addition, we can use (21). Then these basic lattice

fractional Maxwell equations are

ρ=α − t tD m mDiv ( , ) ( , ), (183)L
,

=α − tB mDiv ( , ) 0, (184)L
,

= −
∂

∂
α − t

t

t
E m

B m
Curl ( , )

( , )
, (185)L

,

= +
∂

∂
α − t t

t

t
H m j m

D m
Curl ( , ) ( , )

( , )
. (186)L

,

For α = 1, equations (183)–(186) give equations (174)–(177) in the continuous limit.

The continuum limit of the lattice equations (183)–(186) gives the fractional Maxwell

equations for the electrodynamics of non-local continuous media

ρ=α ± t tD r rDiv ( , ) ( , ), (187)C
,

=α ± tB rDiv ( , ) 0, (188)C
,

= −
∂

∂
α ± t

t

t
E r

B r
Curl ( , )

( , )
, (189)C

,

= +
∂

∂
α ± t t

t

t
H r j r

D r
Curl ( , ) ( , )

( , )
, (190)C

,

where α ±DivC
, and α ±CurlC

, are differential vector operators of order α > 0 defined by

equations (122) and (123).
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For components the fractional Maxwell equations (187)–(190) can be represented as

∑ ρ
∂

∂
=

α

α
=

±D t

x
t

r
r

( , )
( , ), (191)

i

i

i1

3 ,

∑
∂

∂
=

α

α
=

±B t

x

r( , )
0, (192)

i

i

i1

3 ,

∑ ϵ
∂

∂
= −

∂

∂

α

α
=

±E t

x

B t

t

r r( , ) ( , )
, (193)

j k

ijk
k

j

i

, 1

3 ,

∑ ϵ
∂

∂
= +

∂

∂

α

α
=

±H t

x
j t

D t

t

r
r

r( , )
( , )

( , )
, (194)

j k

ijk
k

j
i

i

, 1

3 ,

where ∂ ∂α α± x| |i
, are the fractional derivative of order α > 0. For α = 1, equations (191)–(194)

with the derivatives ∂ ∂α α+ x| |i
, cannot be considered as the local Maxwell differential

equations (174)–(177) since the Riesz derivatives with α = 1 are non-local operators. In this

case the Maxwell differential equations (191)–(194) with α = 1 describe non-local media.

The fractional Maxwell equations (191)–(194) with the generalized conjugate Riesz

derivatives ∂ ∂α α− x| |i
, of order α = 1 are the usual Maxwell equations (174)–(177).

The fractional Maxwell equations (191)–(194) with the derivatives ∂ ∂α α− x| |i
, of non-

integer orders α > 0 can be considered as the main equations of fractional non-local elec-

trodynamics, and these equations correspond to the lattice model described by

equations (183)–(186).

Note that the fractional Maxwell equations (191)–(194) with fractional derivatives of the

Riesz type differ from the fractional Maxwell equations proposed in [27, 30], where the

fractional Caputo derivatives are used.

6.2. Three-dimensional lattice models for fractional generalization of Mindlinʼs gradient

elasticity

Mindlin [65] presented a theory of elasticity with microstructure, where different quantities

are used for the microscale and for the macroscale. In Mindlinʼs theory of elasticity [65–67],

the kinetic energy density and the deformation energy density are written in terms of quan-

tities for the microscale and the macroscale. Gradient elasticity models are simplified versions

of the elasticity theory with microstructure, in which the deformation energy density is only

represented in terms of the macroscopic displacements. These versions differ in the assumed

relation between the microscopic deformation and the macroscopic displacement. At the same

time, despite the theoretical differences between these models, the equations for displace-

ments of these models are identical [65–67].

The equations for Mindlinʼs gradient elasticity model can be obtained [65–67] using the

following expressions for the kinetic and deformation energy densities. The deformation

energy densities is

λ ε ε ε ε λ ε ε λ ε ε

λ ε ε λ ε ε λ ε ε

= + + +

+ + +

U μ
1

2
, (195)

ii jj ij ij ik i jj k kk i jj i

ik i jk j jk i jk i jk i ij k

1 , , 2 , ,

3 , , 4 , , 5 , ,

where εij is the strain, λ and μ are the usual Lame constants and the various λi ( =i 1 ,..., 5) are

five additional constitutive coefficients. We also can use a simplification of the kinetic energy
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density [65] in the form

ρ ρ= ∂ ∂ +T u u l u u
1

2

1

2
˙ ˙ , (196)t i t i i j i j1

2
, ,

where ρ is the mass density, uk is the displacement, ε = +u u(1 2)( )ij i j j i, , . Using these

expressions for the kinetic and deformation energy densities, we obtain the equations for

displacements. Mindlinʼs equations for displacements have the form

∑ ∑ ∑ρ ρ λ− ∂ = + ∂ ∂ + ∂
= = =

u l u μ u μ u¨ ¨ ( )i

j

j i

j

i j j

j

j i1
2

1

3
2

1

3

1

3
2

∑∑ ∑∑λ− + ∂ ∂ ∂ − ∂ ∂ +
= = = =

μ l u μ l u f( ) , (197)

k j

k i j j

k j

k j i i2
2

1

3

1

3
2

3
2

1

3

1

3
2 2

where fi are the components of the body force, =u u tr( , )i i are the components of the

displacement field for the continuum and

λ λ λ λ λ

λ

λ λ λ
=

+ + + +

+
=

+ +
l

μ
l

μ

4 4 3 2 3

2 ( )
,

2

2
. (198)2

2 1 2 3 4 5
3
2 3 4 5

As a result, continuum equations (197) have two Lame constants and three additional

parameters l1, l2 and l3. All additional parameters have the dimension of length and can be

linked to the underlying lattice microstructure.

In order to derive a fractional generalization of Mindlinʼs equations (197) and a corre-

spondent three-dimensional lattice model, we assume that the lattice is characterized by the

mutually perpendicular vectors = =a a a1 2 3 with equal length = = =a a a a1 2 3 . For a

primitive cubic Bravais lattice [7], we have three coupling constants and three gradient

coupling constants.

Let us consider the lattice equation in the form

 ∑ ∑α
α

α
α α

= −
=

+

≠

− −
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥M u t A

j
U t A

j i
U tn m n m n¨ ( , ) ( )

2 ¨ ( , , ) ( ) ( , , )i

j

i

j j i

i0

1

3

1

:

,

 ∑α
α

α
α

− −+

≠

+⎡

⎣⎢
⎤

⎦⎥
⎡

⎣
⎢

⎤

⎦
⎥A

i
U t A

j
U tm n m n( )

2
( , , ) ( )

2
( , , )i

j i

i2 3

 ∑α
α α α α

− +
≠

− − − −
⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟B

j i j i
U tm n( )

3 3
( , , )

j j i

j1

:

, ,

 ∑α
α α

α
α

− −
≠

+ + +
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣⎢
⎤

⎦⎥
B

j i
U t B

i
U tm n m n( )

2 2
( , , ) ( )

4
( , , )

j j i

i i2

:

,
3

 ∑ ∑α
α α α

α
α α

− −

≠ ≠ ≠

− − +

≠

+ +
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥B

j i k
U t B

j k
U tm n m n( )

2
( , , ) ( )

2 2
( , , )

k j

k j k i j i

j

k j

k j

i4

,

; ;

, ,
5

,

,

∑α
α

− +
=

+
⎡

⎣
⎢

⎤

⎦
⎥B

j
U t F tm n n( )

4
( , , ) ( , ), (199)

j

i i6

1

3
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where = −U t u t u tm n m n( , , ) ( , ) ( , )i i i , and αA ( )1 , αA ( )2 , αA ( )3 , and αB ( )1 , ..., αB ( )6 are

the corresponding coupling constants of the lattice long-range interactions. If we consider the

lattice with the interaction kernels α
+K n( ) that satisfy the conditions (22), then =α

+K (0) 0,

and we can use u tm( , ) instead of U m n( , ) in equation (199).

This three-dimensional lattice model in the continuum limit gives a fractional general-

ization of Mindlinʼs model of the first gradient elasticity, if the Lame constants λ and μ are

defined by the coupling constants

ρ

α λ

ρ
α α= = −α α ( )

μ A

M M
A A

( )
,

1
( ) ( ) . (200)

3
1 3

The three additional parameters l1, l2 and l3 of Mindlinʼs model are

α
α

α
α

α
α

α

α
= = =l
A

M
l

B

A
l

B

A
( )

( )
, ( )

( )

( )
, ( )

( )

( )
, (201)1

2 0
2
2 1

1
3
2 5

3

where the coupling constants are not independent

α α α α α α α α α= + = = = =A A A B B B B B B( ) ( ) ( ), ( ) ( ) ( ) ( ), ( ) ( ). (202)2 1 3 1 2 3 4 5 6

In the continuum limit ( →a 0), we obtain the equations for the fractional non-local

continuum model which is a generalization of Mindlinʼs first gradient elasticity. These

equations have the form

∑

∑ ∑

∑

∑

∑ ∑

ρ ρ α

λ

λ α

λ α

α

=
∂

∂

+ +
∂

∂

∂

∂
+

∂

∂
+

∂

∂
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∂

∂

∂

∂
+

∂

∂

∂

∂
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∂

∂

∂

∂

− +
∂
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∂
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∂
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∂
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∂

∂

∂
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∂

∂
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α α
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=

+
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≠ ≠ ≠
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⎜
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⎜
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u
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¨
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:
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, 2 , 2 ,
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, :
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2 ,

2

, , 4 ,

4

3
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,

2 ,

2

2 ,

2
1

3 4 ,

4

where =u u tr( , )i i are components of the displacement field for the continuum and

=f f tr( , )i i are the components of the body force.
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For α = 1, equations (203) give the differential equations of elasticity for the continuum

∑

∑ ∑

∑

∑

∑ ∑

ρ ρ

λ

λ

λ

= ∂

+ + ∂ ∂ + ∂ + ∂
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≠ ≠ ≠

≠
=
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⎞
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⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
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⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

( )

u l u

μ u u μ u

μ l u u u

μ l u u

μ l u u f

¨ ¨

( )

( )

( )

. (204)

i

j

j i

j j i

j i j i i

j

j i

j j i

j i j i j j j i i

k j

j i j k k i

k j i i i i

k l
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2
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2

2
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2 4

3
2

,
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1

3
4

In equations (204) the derivatives of the integer orders with respect to the same spatial

coordinates are clearly marked. Equations (204) can be rewritten in the form (197).

If the lattice equations (199) are written only through even lattice derivatives 
α+ ⎡

⎣
⎤
⎦j ,

then the correspondent continuum equations contain the Riesz derivatives ∂ ∂α α+ x| |j
, of orders

1 and 3 that are non-local operators. In this case, we cannot get the usual Mindlinʼs model

with derivatives of integer orders. Therefore, we suggest the equations of the lattice model

that contain two type of lattice fractional derivatives 
α± ⎡

⎣
⎤
⎦j ,

In the lattice model (199) all lattice derivatives are fractional orders. For a wide class of

non-local elastic material the fractional derivatives are important only if short- and long-range

particle interactions are present at the same time. This means that the lattice equations should

include the lattice derivatives of integer and non-integer orders. To describe these types of

material we can consider the lattice equation in the form



 





∑

∑ ∑

∑

∑

=

+ + −

+

+ +

α

α

=

+

− − +

− + −

− + −

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

M u t A u t

A u t A u t

B u t

B u t F t

n m

m m

m

m n

¨ ( , ) ¨ ( , )

( , ) ( , )

( , )

( , ) ( , ), (205)

i
L

j
j i

L

j
j i j

L

j
j i

L

j m i
j m i j

L

j m i
j m j i i

0

1

3
2

1
, 1 1

2
2

1

, ,

, , 1 1

2

, ,

, , 1 1

where the displacement for the lattice is =u t u m m m tm( , ) ( , , , )i i 1 2 3 , and AL
0, A

L
1, A

L
2, B

L
1 and

BL
2 are the coupling constants of the lattice long-range interactions. This three-dimensional

lattice model in the continuum limit gives a fractional generalization of Mindlinʼs model of

the first gradient elasticity. Using proposition 1, the operations ○ ○ Δ
− Lim1

  for lattice

equations (205) give the continuum equations of the fractional gradient elasticity in the form
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α
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x
B
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u

x
f , (206)C

j m j m

j

i

C

j m j m

i

j
i1
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3

1

3 ,

2

1

3

1

3 ,

where the constants fot continuum are defined by

ρ ρ
= = = =

α+
A

a

M
A i B

a

M
B j( 0, 1, 2), ( 1; 2). (207)i

C
i
L

j
C

j
L

2 2

Note that the definition of the lattice derivatives 
α± ⎡

⎣
⎤
⎦j includes αa1 j . This means that we

represent all real coupling constants of the lattice model in the form A ai
L 2 and α+B aj

L 2 .

Therefore, the values of a| |j do not exist in the relations (207). The Lame constants λ and μ

are defined by the lattice coupling constants using the equation

ρ
λ

ρ
= = −( )μ
M

A
M

A A, . (208)L L L
2 1 2

The three additional parameters l1, αl ( )2 and αl ( )3 of Mindlinʼs model are

α α= = =l
A

M
l

B

A
l

B

A
, ( ) , ( ) . (209)

L

L

L

L1
2 0

2
2

1

1

3
2

2

2

Note that xk, a, l1
2, αl ( )2

2 and αl ( )3
2 are dimensionless values. Equations (206) can be

considered as a generalization of the fractional Mindlinʼs equations.

For α = 2, the three-dimensional lattice equations (205) give the well-known Mindlinʼs

equation (197) for the displacement field =u u tr( , )i i of the continuum, where we take into

account ∂ ∂ = −∂ ∂+ x x| |m m
2, 2 2 2.

For α = 1, equations (206) give differential equations with a non-local operator since

these equations contain the Riesz derivatives of odd orders that are non-local operators for

odd integer α.

6.3. Three-dimensional lattice models for fractional generalization of Aifantis gradient elasticity

A simplified model of gradient elasticity has been suggested by Aifantis [68, 69], where the

length-scales of Mindlinʼs models are taken equal to each other. The gradient terms are used

to take into account so-called weak non-locality. In order to describe a weak non-locality of

power-law type, we should use terms with fractional gradients and fractional Laplace

operators [46, 48]. The one-dimensional lattice models for fractional elasticity and the cor-

respondent continuum equations were suggested in [46–48, 50]. In this section we apply the

suggested lattice vector calculus to generalize one-dimensional lattice models of fractional

elasticity for three-dimensional lattices. To generalize these models for three-dimensional

lattices, we consider for simplicity a primitive orthorhombic Bravais lattice with long-range

interactions, where = aa ei i i, and ei is the basis of the Cartesian coordinate system.

As a microstructural basis of the three-dimensional fractional gradient elasticity for the

anisotropic case, we can consider the following equations of three-dimensional lattice with

long-range interactions
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∑
∂

∂
= − −

⎡

⎣
⎢

⎤

⎦
⎥M

u t

t
A

j l
u t

n
m

( , ) 1 1
( , )

i

j l

ijkl
L

k

2

2
,

,

∑ α
+ +− + −

⎡

⎣
⎢

⎤

⎦
⎥B

j m l
u t F tm n

1 1
( , ) ( , ), (210)

j m l

ijkl
L

k i

, ,

, ,

where =u t u m m m tm( , ) ( , , , )k k 1 2 3 is the displacement for the lattice and AL
ijkl and BL

ijkl are

the lattice coupling constants. We assume that the fourth-order tensors AL
ijkl and BL

ijkl have the

same type of symmetry as the fourth-order elastic stiffness tensor Cijkl:

= = = = = =A A A A B B B B, . (211)ijkl
L

jikl
L

ijlk
L

klij
L

ijkl
L

jikl
L

ijlk
L

klij
L

For a primitive orthorhombic Bravais lattice [7], we have nine coupling constants AL
ijkl and

nine gradient coupling constants BL
ijkl.

Using the statement (102), (119) and (120), the operations ○ ○ Δ
− Lim1

  for lattice

equations (210) give the continuum equations for the fractional gradient elasticity in the form

∑ ∑ρ
∂

∂
=

∂

∂ ∂
+

∂
∂

∂

∂

∂

∂
+

α
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+u t

t
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u t

x x
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x x

u t

x
f t
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( , ) ( , ) ( , )
( , ), (212)
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j l

ijkl
C k

j l j m l

ijkl
C

j m

k

l
i

2

2
,

2

, ,

,

2

where u tr( , )i are the components of the displacement vector field for the continuum, and

AC
ijkl and BC

ijkl are the coupling constants for the non-local continuum. The coupling constants

of the continuum are defined by the lattice coupling constants AL
ijkl and BL

ijkl by the relations

ρ ρ
= =A
M

A B
M

B, . (213)ijkl
C

ijkl
L

ijkl
C

ijkl
L

Note that the definition of the lattice derivatives 
α+ ⎡

⎣
⎤
⎦j includes αa1 j . This means that we

represent all real coupling constants of the lattice model in the form A a aijkl
L

j l and
αB a a aijkl

L
j l m . Therefore, the values of a| |j do not exist in the relations (213).

In the case = = =a a a a1 2 3 , we obtain the fourth-order elastic stiffness tensor Cijkl in

the form

ρ
= =C A

M
A . (214)ijkl ijkl

C
ijkl
L

If =B g Aijkl
L

B ijkl
L , then the scale parameter αl

2 is =αl gB
2 and we have = αB l Cijkl

C
ijkl

2 . Note that

xk, ak and αl
2 are dimensionless values.

If α = 2, then equation (212) gives the well-known continuum equation of gradient

elasticity

∑ ∑ρ = ∂ ∂ ± ∂ ∂ ∂ +αu t C u t l C u t f tr r r r¨ ( , ) ( , ) ( , ) ( , ). (215)i

j k l

ijkl j l k

j k l m

ijkl j m l k i

, ,

2

, , ,

2

For isotropic materials, Cijkl are expressed in terms of the Lame constants λ and μ by

λ δ δ δ δ δ δ= + +( )C μ . (216)ijkl ij kl ik jl il jk

Let us give the stress–strain constitutive relation for fractional gradient elasticity (212).

Equation (212) can be represented in the form

∑ρ
σ

=
∂

∂
+

=

u t
x

fr¨ ( , ) , (217)i

j

ij

j
i

1

3
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where σij is the stress tensor that is connected with the strain tensor

ε =
∂

∂
+

∂

∂

⎛

⎝
⎜

⎞

⎠
⎟

u

x

u

x

1

2
(218)kl

k

l

l

k

by the constitutive relation

∑ ∑σ ε ε= +
∂

∂

α

α

+
A B

x
. (219)ij

k l

ijkl
C

kl

k l m

ijkl
C

m
kl

, , ,

,

If we use (214) and assume that

= ± αB l A , (220)ijkl
C

ijkl
C2

then relation (219) can be rewritten as

∑σ Δ ε= ± α
α +( )C l1 , (221)ij

k l

ijkl C kl

,

2 ,

where Δ α +)C
, is the lattice Laplacian defined by (125) in the form

∑Δ =
∂

∂
α

α

α

+

=

+

x
(222)C

m m

,

1

3 ,

which is the fractional Laplacian. Equation (221) gives the constitutive relation for fractional

gradient elasticity. For α = 2, relation (221) gives

∑σ Δ ε= ∓ α( )C l1 . (223)ij

k l

ijkl kl

,

2

This is the well-known stress–strain constitutive relation for gradient elasticity [68, 69]. If we

consider the case with

= = =u t u x t u t u tr r r( , ) ( , ), ( , ) ( , ) 0, (224)x y z

= = =f t f x t f t f tr r r( , ) ( , ), ( , ) ( , ) 0, (225)x y z

then we get the one-dimensional fractional elasticity models suggested in [46, 48, 50]. The

lattice models (205) and (210) are three-dimensional generalizations of the one-dimensional

lattice models proposed in [46, 48, 50]. In addition, the equation (210) of the lattice with long-

range interactions allows us to derive the stress–strain constitutive relations for fractional non-

local elasticity by using the usual law (217).

7. Conclusion

In this paper an extension of fractional vector calculus for three-dimensional unbounded

lattices with long-range interactions is suggested. The main advantage of the suggested lattice

fractional calculus is the possibility of using this calculus to formulate a lot of microstructural

models of fractional non-local continua. The lattice analogs of fractional partial derivatives

are represented by kernels of long-range interactions of lattice particles. The Fourier series

transforms of these kernels have a power-law form with respect to the components of the

wave vector. The proposed form of the long-range interactions allows us to use the lattice

equations not only for the integer but also for the fractional order of lattice partial derivatives.

The continuous limit for these lattice partial derivatives gives the fractional derivative of

Riesz type with respect to space coordinates. The advantage of the suggested types of inter-
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particle interactions (α-interactions) in the lattice is a possibility to formulate different lattice

models for a wide class of fractional non-local generalizations of local continuum models in

different areas of physics and mechanics.

Let us note some possible generalizations and extensions of the suggested lattice frac-

tional vector calculus which are partially discussed in section 5.

(a) A discrete fractional vector calculus can be developed using the central and generalized

fractional differences suggested in [55–57]. In the continuous limit these differences give

the central and generalized fractional derivatives.

(b) A lattice fractional vector calculus based on the Grünwald–Letnikov fractional

differences (see section 20 in [8]) can be developed using the lattice models with

long-range interaction of the Grünwald–Letnikov type and the Grünwald–Letnikov–-

Riesz type proposed in [47].

(c) We assume that it is possible to formulate a lattice fractional vector calculus based on the

classical O(N) lattice models (the classical Heisenberg lattice model or the XY -model)

with spin–spin long-range interactions. This calculus can be connected with the Weyl

fractional derivatives (see section 9 in [8]), or the Grünwald–Letnikov fractional

differences for the periodic case (see section 20.2 in [8]).

(d) We assume that the suggested lattice fractional vector calculus for unbounded physical

lattices can be extended for bounded lattices and the correspondent continuum models.

This extension can be developed using the Grünwald–Letnikov fractional differences on

finite intervals (see section 20.4 in [8]). A consistent description of possible boundary

conditions, the extensivity and additivity for bounded lattices with long-range

interactions and their connections with the correspondent continuum models are open

questions at this time.

(e) A vector difference calculus of integer order for physical lattice models is suggested in

[41–43]. This calculus is considered for models defined on a general triangulating

graph using discrete field quantities and differential operators analogous to differential

forms and exterior differential calculus. We assume that the approach suggested in

[41–43] can be generalized for fractional operators of non-integer orders. To this aim, it is

possible to use a fractional generalization of exterior differential calculus of differential

forms suggested in [27, 30, 45] and the fractional-order differences [8, 9].

In this paper, we give some examples of applications of the suggested lattice fractional

vector calculus. Using the lattice calculus, we propose three-dimensional lattice models with

long-range interactions for the fractional Maxwell equations of non-local continuous media

and for the fractional generalization of the Mindlin and Aifantis continuum models of three-

dimensional gradient elasticity. Lattice fractional vector calculus also allows us to consider

lattice models and the correspondent fractional generalizations of continuum equations for a

wide class of long-range interactions of particles. The suggested lattice vector calculus is

based on long-range inter-particle interactions of the power-law type. Therefore it can be used

to describe the non-local properties of materials at the microscale and nanoscale, where inter-

atomic and inter-molecular interactions are prevalent in determining the properties of these

materials.

Appendix. Interaction kernels for lattice derivatives of integer orders

The inverse relations to the definition of α

±
K kˆ ( ) by equation (17) for − =α α

α+ +
K K k kˆ (0) ˆ ( ) | |

and by equation (19) for − =α α
α− −

K K k k kˆ (0) ˆ ( ) i sgn ( ) | | has the form

J. Phys. A: Math. Theor 47 (2014) 355204 V E Tarasov

47



∫ ∫= = −α
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k n k k K n

π
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0 0

where ∈s . Using the integral (see section 2.5.3.5 in [51]) of the form
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1

where x[ ] is the integer part of the value x, we get α
±K n( ) for integer positive α = m by the

equation

∑ α
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−
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α α
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− + − −
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K n
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+
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k

n k k

k
0

[ 2] 1 2 1

2 2
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1

Here α α+ − =2[( 1) 2] 1 for odd α = m and α α+ − =2[( 1) 2] 0 for even α = m.

Direct integration (A.1) for α = 1, 2, 3, 4, or equation (A.5), gives the examples of the

kernels α
+K n( ) in the form

∫= = −
− −+K n

π
k n k k

π n
( )

1
cos ( ) d

1 ( 1)
, (A.6)

π n

1
0 2
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π
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where ∈n . Note that

=
+

∈+K
π

m
m(0)

1
, .m

m

Note that − − =(1 ( 1) ) 2n for odd n and − − =(( 1) 1) 0n for even n.
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The examples of the kernels α
−K n( ) have the form
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where ∈n . Note that =−K (0) 0m for all ∈m .

We can see that
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π
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( ), (A.14)3 2 2 1
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For α = 2, we can also use the long-range interactions in the following power-law form

ζ α
α α− =

− −
> ≠

α

+
+

K n m
n m

( )
1

( 1)
, ( 2, 3, 4, 5 ,...), (A.18)2 1

where ζ z( ) is the Riemann zeta-function. For details see section 8.11–8.12 in [27].
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