
Toward Lifelong Object Segmentation from Change Detection

in Dense RGB-D Maps

Ross Finman1, Thomas Whelan2, Michael Kaess1, and John J. Leonard1

Abstract—In this paper, we present a system for automatically
learning segmentations of objects given changes in dense RGB-D
maps over the lifetime of a robot. Using recent advances in RGB-
D mapping to construct multiple dense maps, we detect changes
between mapped regions from multiple traverses by performing
a 3-D difference of the scenes. Our method takes advantage of
the free space seen in each map to account for variability in
how the maps were created. The resulting changes from the 3-
D difference are our discovered objects, which are then used
to train multiple segmentation algorithms in the original map.
The final objects can then be matched in other maps given their
corresponding features and learned segmentation method. If the
same object is discovered multiple times in different contexts,
the features and segmentation method are refined, incorporating
all instances to better learn objects over time. We verify our
approach with multiple objects in numerous and varying maps.

I. INTRODUCTION

Many of the environments that robots explore have a variety

of different objects that are of interest to either the robot itself

or to a user. As such, the ability to learn and recognize objects

in their current setting is an important task for robotics. Our

goal is to have robots continually go through an environment

and learn about objects automatically given no prior informa-

tion about the world. This is called object discovery. In order

to discover objects, we use the assumption that movement is

inherent to objects, as discussed in Gibson [1], so changes in

maps between successive traverses can suggest new objects.

For example, as a robot explores and maps its world, it should

be able to detect that a book or cup moved and learn how to

find those objects in the future. As the robot sees more changes

over its lifetime, it should be able to automatically build up

and refine representations of objects as they move in the

world. These models can then be used for higher-level object

reasoning, autonomous surveillance, robotic manipulation, or

object querying.

With advances in RGB-D sensors such as the Microsoft

Kinect, it is now possible to cheaply and easily acquire

RGB and depth images. Coupled with algorithmic advances

in temporally scalable and dense mapping [2]–[4], it is now

1 R. Finman, M. Kaess, and J. J. Leonard are with the Computer Science
and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of
Technology (MIT), Cambridge, MA 02139, USA. rfinman, kaess,
jleonard at csail.mit.edu

2T. Whelan is with the Department of Computer Science, National Univer-
sity of Ireland Maynooth, Co. Kildare, Ireland. thomas.j.whelan at
nuim.ie

This work was partially supported by ONR grants N00014-10-1-0936,
N00014-11-1-0688, and N00014-12-10020 and by a Strategic Research Clus-
ter grant (07/SRC/I1168) by Science Foundation Ireland under the Irish
National Development Plan, the Embark Initiative of the Irish Research
Council.

Fig. 1. On right: a discovered object (a trash bin) from two separate, partially
overlapping maps (not shown) where one map had the object, while the other
did not. The object was used to automatically tune a segmentation algorithm
to segment other instances of the object in a new, unseen map (on left). The
discovered objects are highlighted in red to show detections.

possible to acquire dense maps in real time. In this work, we

build upon the Kintinuous mapping system by Whelan [4].

Given two Kintinuous maps, we first discover object from

noticing changes in two maps. Then, using the object(s) as

ground truth, we learn a segmentation method to represent

the object(s) by sampling and scoring multiple segmentation

methods with varying parameters. As objects are continually

discovered over time, multiple instances of the same object

are combined and the features and segmentation method are

refined with the new information. The end result over the

lifetime of the robot is a set of discovered and refined objects

paired with respective segmentation methods.

The key contributions of this work are threefold; first, a

system that finds the object differences between two arbitrarily

sized overlapping maps with varying camera trajectories and

noise; second, a object segmentation learning framework that

is independent of any single segmentation method; lastly, a

method for refining segmentations when objects are reobserved

in different contexts. We evaluate our system on multiple

indoor datasets of varying size and complexity, with both

single and multiple object instances.

II. RELATED WORK

There has been extensive previous work on object discovery

in computer vision. A common approach is to find similar

regions of images by comparing either image features or

segmentations [5]–[11]. These regions of similarity are then

grouped into object classes as newly discovered objects. Tuyte-

laars [12] provides a thorough overview of unsupervised object

discovery for 2-D images. Such computer vision approaches

often have previous image specific information and many

are mined from online image databases, thereby indirectly

adding human knowledge of what is relevant for humans.

Additionally, this work is only making use of 2-D information;

our work differs in that it uses richer 3-D information obtained

from long videos of RGB-D frames.

Previous work has also looked at discovering differences in

maps. Biswas [13] and Anguelov [14] both recovered changes

in maps through the process of scene differencing (taking

multiple static maps and performing a symmetric difference

over the common regions to find the changes). Both Biswas

and Anguelov use 2-D occupancy grids to find 2-D objects and

object class templates. Our work is different from these meth-

ods in that we look at 3-D data to discover dense 3-D models

of objects that a robot could recognize or manipulate. In 3-

D, Herbst [15] uses a probabilistic sensor model to robustly

find differences between two static 3-D maps to discover 3-

D models of objects. While solving a similar problem to our

3-D differencing system described in Section III, their work

cannot be quantitatively compared to ours since neither their

implementation nor data are publicly available. From their

results, our system runs two orders of magnitude faster while

processing larger point clouds. Building on their work in [15],

Herbst [16] cluster discovered objects together using spectral

clustering. This is a different, but complementary problem to

ours, and is a suggested addition to this work. Herbst [17]

further advance their work by segmenting objects that have

moved between frames. This work is limited to individual

RGB-D frames and, as such, can only partially model and

segment objects. Mason [18] looks at object disappearance for

object discovery using a sparse visual feature representation

on RGB-D images. Using visual features limits their method

to only handling textured objects, while our method replies

only on the objects having volume. In contrast to our work,

these methods do not extend their systems to learn and refine

object models over the lifetime of the robot.

Recent work by Karpathy [19] uses similar dense 3-D data

for object discovery, focusing on the problem of discovering

objects without any motion priors. While their work shows

impressive results, they use heuristic measures to evaluate the

objectness of a segment while our method avoids such assump-

tions by using changes in the scene to suggest objects. Our

work also differs in that it refines each object’s segmentation

method as new instances of the same object are discovered.

III. 3-D OBJECT DISCOVERY

The input to our 3-D object discovery method is two RGB-

D maps that have some region of overlap where the map may

have changed.

A. RGB-D SLAM

This work is built on the Kintinuous mapping system

developed by Whelan [4], [20] to generate dense 3-D re-

constructions from RGB-D video. Kintinuous is an extension

of the KinectFusion system developed by Newcombe [3].

At their root, Kintinuous and KinectFusion use a volumetric

representation of a scene that can efficiently integrate all

depth measurements on a GPU to achieve real-time dense map

generation. At a high level, KinectFusion maps an area within

a predefined static volumetric cube, and Kintinuous extends

this by moving the cube as the camera moves through the

world. This gives us, in real time, the dense maps needed to

identify objects.

B. Map Alignment

Given two Kintinuous maps (represented as colored point

clouds) we seek to find the changes that occur, and then seg-

ment those changes as objects. We propose using differencing,

which requires us to align the maps well enough to distinguish

the desired objects in the symmetric difference of the two

point cloud maps. Before any changes can be identified by our

system, the first step is to find a rigid transformation between

the two point clouds’ coordinates. To find the transformation,

regions of overlap (RoO) between the two maps are found and

the transformation computed from the RoOs. Automatically

finding the RoO in both maps is outside the scope of this work,

so a bounding cube is manually set. The overlapping region

may be all or part of either map. The suggested overlap is not

exact enough to perform the differencing operation alone, so

the rigid transformation is further refined using the Iterative

Closest Point (ICP) algorithm [21] on the RoO. The error is set

as the Euclidean squared error, and the worst 20% of points

are ignored. This work assumes that any change in the two

maps is a small part of each of RoO so that ICP converges

on the correct rigid transformation. The top images in Fig. 2

show an example of two separate aligned maps. We use the

rigid transformation to align both point cloud maps (not just

the RoO) in the same coordinate frame.

C. Differencing

With the two maps aligned, we now wish to find the changes

between them. With maps A and B in the same coordinate

frame, we do a symmetric difference, or diff, of the two maps.

A diff, Dab, is done by taking the relative complement of A

with respect to B. Dab is a subset of map A such that the

following constraint holds for a constant r value:

Dab = {pi ∈ A | ‖ pj − pi ‖ > r ∀pj ∈ B}. (1)

Intuitively, this is all points in A that are not within a radius r

of any points in B. Dab is for taking of a diff of A with respect

to B, but being that there is no ordering of the maps given,

an object may have been in A or B depending on whether

an object disappeared or appeared in the second map. One

map will have the observed parts of the objects and the other

will have the region occluded by the object. Ergo, to ensure

that the object model is in our diff, we store the symmetric

difference of A and B. For our experiments, we set r to 2 cm

– approximately twice the volumetric resolution of the map.

Fig. 2. On top: two separate 3-D dense, cluttered, maps aligned using ICP from Section III-B. Bottom left: raw output of the 3-D diff from Section III-C.
Bottom center: filtered diff using a volumetric noise filter - note the artifacts both inside and especially outside the main difference area. Bottom right: final
object (a wire spool) extracted from the freespace filter.

D. Filtering

The raw diff of two maps, as seen in Fig. 2 (showing only

Dab) has two primary issues. First, there are small scattered

points that, due to imperfect alignment and sensor noise, were

not subtracted in the diff. We begin to solve this problem by

clustering the points in the raw diff by assuming an object

is smooth (meaning the object has no surface discontinuities

larger that r), and, using the volumetric resolution of the

points from Kintinuous, estimate the cluster’s volume. Then

we remove all clusters below a volume threshold vt, where vt
is set to 27 cm3 (a 3 cm cube).

Second, there are large regions of the scene that, while

within the roughly defined RoO, are different due to how the

camera trajectory moved when building the map (See bottom

center of Fig. 2). For example, when mapping a scene the first

time, the camera sees behind a box, but the second time, the

camera does not. This would, correctly, be labeled as different

between the two maps, but is not the result of an object

appearing or disappearing; what is desired is the differences

that appear in the parts of the map A that were known to be

unoccupied in map B. We call this concept free-space filtering.

The free-space filtering function takes as input the set of

camera poses, the set of cube poses from Kintinuous, the dense

point cloud map, and the volumetric resolution of the map.

First, a voxel grid of the map is created, with the dimensions

being the maximum and minimum (x, y, z) values of the cube

poses, plus the corresponding cube dimensions. For example,

a static 5 m cube would have a pose of (0, 0, 0) and the voxel

dimensions would be from (-2.5, -2.5, -2.5) to (2.5, 2.5, 2.5).

The voxel discretization is set to 5% larger than the volumetric

resolution of the map to account for incorrect indexing edge

cases that result if the voxel and map resolutions were the

same. The voxels take on three values, unseen, occupied, and

free-space, and, as such, can be stored efficiently with two bits.

The map is loaded into the voxel grid where each point in the

map is labeled as occupied and all other points are labeled as

unseen. The algorithm raycasts each pixel from every camera

pose and labels the voxel grid as free-space until either the

voxels are occupied, or the edge of the cube at that camera

pose is detected. An example of the labeling algorithm can be

seen in Fig. 3.

With all the voxels labeled, the diff can be filtered by

looking at what differences in, say, map A, protrude into the

freespace of the aligned map B. Intuitively, this is what objects

are in an area of the map that was otherwise known to be free-

space. If a majority of the points of a cluster within the diff

are in the free-space, then the cluster of points is labeled as an

object. All other clusters are removed, as can be seen in Fig. 2.

The map which the object is in, which can be determined by

whether Dab or Dba has the object in it, is also recorded for

future training.

IV. SEGMENTATION LEARNING

In the previous section, we described a method for discov-

ering objects from changes between maps. Here we detail how

to take those discovered objects and learn to correctly segment

those objects in the scene. The traditional unsupervised seg-

Fig. 3. Example voxel labeling of the freespace raycasting algorithm from
one of many camera poses. The map surface is highlighted in red. The
occupied voxels are colored grey, while the green voxels are labeled as
freespace since there is an unobstructed line from the camera (not shown
to the bottom right) as highlighted with the blue raycast lines. Note: Since
we are raycasting from a camera pose to the fully reconstructed map, there
may be occlusions from the viewing angle that are filled in from a later camera
pose.

mentation problem is an ill-posed problem since there can be

multiple correct segmentations of the same object depending

upon the use cases. Here we look at the problem of how to

segment the recently discovered object. From before, we have

map A and B, and say, from our free-space filter, we detect

A has an object that is not in map B. We use the object point

cloud to train multiple segmentation methods with varying

parameters to segment the known object.

A. Segmentation Methods

The goal of our segmentation method is to be able to

segment the already discovered objects from current and

future maps. While our system runs independently from any

particular segmentation algorithm, for proof of concept, we

used the graph-based segmentation algorithm proposed by

Felzenszwalb and Huttenlocher [22] due to its computational

efficiency. To create the graph, we treat every point in map

A as a node and look at its neighboring nodes (defined by a

radius r′, set to twice the volumetric resolution of the map)

and create undirected edges between the node points pi and pj
(so if there is an edge eij there is no eji). The weight assigned

to each edge is discussed below. The algorithm compares edge

weights to the node thresholds and joins the two nodes of the

edge if the edge weight is below a dynamic threshold. This

threshold for every node is initially set to a global value T ,

and each threshold grows larger after each joining of nodes

based on a scale parameter k. Specifics of the algorithm and

parameters can be read in the referenced work, but intuitively,

T is roughly set to ensure nodes are initially joined, and k is

positively correlated with the resulting segment size.

Having the graph structure allows the segmentation al-

gorithm to generalize to many different situations. This is

particularly useful since different objects may require different

segmentation methods. A yellow object on a grey table may

be best segmented with color, while a grey object on a grey

table may be best distinguished via surface normals. As such,

we choose to have multiple edge weighting methods. To

demonstrate the concept, we build graphs with both surface

normals and color edge weights independently, though other

edge weights or even segmentation methods may be used.

1) Color edge weights: For color, we use a simple Eu-

clidean distance in RGB space. We choose this over HSV

or HSL because the results varied little in practice and RGB

distance has been used effectively in prior work [22]. The

color weighting value is given below for nodes pi and pj :

wrgb(pi, pj) =
√

(pir − pjr)
2 + (pig − pjg)

2 + (pib − pjb)
2

(2)

2) Normal edge weights: For surface normals, an obvious

solution is to take the dot product of the two normal vec-

tors; however, as demonstrated in Moosmann [23], a positive

convexity bias can provide improved results. Inspired by

Karpathy [19], we say two points, pi and pj are convex if

(pj −pi) ·nj > 0 for the respective normals ni and nj . Below

is the weight equation we use for surface normals.

wn(ni, nj) =

{

(1− ni · nj)
2, if (pj − pi) · nj > 0

(1− ni · nj), otherwise.
(3)

The above equation biases the weights of convex parts of the

map to be lower, and thus, more easily joined into a segment,

than the concave regions. Intuitively, this is saying that the

convex parts of a map more likely correspond to objects, while

the concave parts correspond to object boundaries. This takes

advantage of the convex tendencies of many objects.

B. Segmentation Fitting

Given the segmentation method described above, the edge

weighting schemes, and a discovered object, we can now

segment the map containing the object. We treat the discov-

ered object as a training point, and automatically refine our

segmentation parameters to find that object in the map.

1) Scoring: In order to train our segmentation method

correctly, we need a segmentation scoring function to optimize

over. The desired characteristics of the function are that it

gives a higher score for segmentations S that have a segment

Si that overlap with and only contain the object O. Below is

the scoring function used to evaluate the segmentations:

score(S,O) = maxSi
(

1

|O| · |Si|

|S|
∑

i=0

∑

p∈Si

I(p,O)) (4)

Where Si is a segment within a segmentation S and I(Sij , O)
being an indicator function that returns 1 if the point p within

segment Si is also a point in O. The sum is the number of

overlapping points in the maximally overlapping segment of

the object. This is weighted by the size of the object as well

as the size of the segment. If the object size is much larger

than the segment overlap, then the score will be lower. If the

segment size is much larger than the object overlap, then the

score will also be lower. This gives a desirable score that has

a maximum value only when a segment fully contains the

object and only the object. This function depends only on the

segmentation output and is independent of the segmentation

method.

Fig. 4. Top: the map used to train segmentation. An object, a recycle bin on
the left side of the each map, was moved between this map, and another (not
shown). Center: the best segmentation using the color segmentation method.
Bottom: the best segmentation using the convexity surface normal segmenta-
tion method. The bottom segmentation is the best fitting segmentation method
overall, and thus the one stored with the object.

2) Optimization: We use the above score from Equation (4)

in our segmentation refining algorithm. For every object Ol in

a map M , we segment M using parameter values for T and

k uniformly sampled over the parameter space defined by the

edge weights detailed above. This is done for all segmentation

methods Sm. Sampling 100 (T , k) pairs was sufficient for our

experiments. All segment scores of an individual object are

stored in a matrix Score with each 2-D matrix being the scores

from each sampled T and k value for a particular S ∈ Sm. Of

these values, the max is chosen to be the associated parameters

that segment the object. Formally, this can be written as:

Param = argmax
T,k,Sm

score(Sm(T, k,M), Ol). (5)

Example segmentation outputs can be seen in Fig. 4. It is

of note that we limit the segmentation parameter range for T

and k to be [0.001, 0.01] and [0, 0.005] respectively since

values outside that range either create single world segments,

or single point segments on our datasets. We sample 5 values

of T across 20 values of k.

3) Object Representation: The object is stored for matching

against based on the corresponding segment’s 3-D geometric

features and segmentation method with corresponding de-

tection parameters. The geometric features of the segment

are based on Principle Component Analysis (PCA) on the

segmented point cloud. The distance along the principle axes

is stored, as well as the standard deviation of the segmented

points along the three axes. The relative curvature between the

three axes is recorded, along with the volume of the points and

the average color. Lastly, we store the number of times this

object has been discovered (initialized to 1) and the Score

matrix.

For every geometric feature, we use each as a distribution

over the range of possible values to probabilistically find

objects in maps. We naively model each feature with a normal

distribution N(µ, σ) for simplicity with µ being the measured

value. Since there is only one data point, we apply a prior

to the variance. Experimentally, a variance σ2 of (0.1 ∗ µ)2

worked well. In Section IV-D, we detail how the influence of

this prior decreases as more objects are discovered.

C. Object Matching

Using the learned object features, we want to be able to

find all instances of the object in future maps without having

to rediscover the object through changes. The robot loads

the object’s learned segmentation method and parameters to

segment a map. The resulting segments need to be compared to

the learned object. We use the individual feature distributions

Ojf of a learned object Oj to compare against the different

feature values Sif of a segment Si in a map. We compute the

probability that a segment Si is the object Oj by taking the

product of the probabilities of the individual features, treating

each feature as being independent.

P (Si = Oj) =
∏

f (1− P (Sif 6= Ojf))

P (Sif 6= Ojf) =
∫ µjf

+δi,j,f

µjf
−δi,j,f

1

σjf

√
2π

e

(x−µjf
)2

2σ2
jf dx

(6)

Where δi,j,f = |µjf −Sif | is the difference of the mean value

for feature f in object Oj and the measured value of the

segment feature Sif . The values µjf and σjf are the respective

mean and standard deviation of the distribution over the feature

f for object Oj . Intuitively, Equation (6) is the probability

that the observed segment is the learned object. By assuming

independence of the features, we calculate this probability

by taking the product of the probabilities of each individual

feature. We take the complementary probability that a segment

feature is at least the value that was measured and is the object.

Lastly, if P (Si = Oj) > τ for a static threshold τ , we label

the segment as that particular object. In our experiments, we

used a τ of 0.5.

D. Towards Lifelong Learning

As the robot discovers more objects, it is likely to rediscover

the same object. This means that an object was found in

potentially two different contexts, thus providing more infor-

mation on how to segment the object and avoiding the over

fitting problem from just using a single discovered object. Now

we need to match recently discovered objects through data

association. We manually group discovered objects together

to guarantee the correct convergence for the variance of the

TABLE I
DISCOVERY RATES.

Step % correct

Differencing 33%
Volumetric Filtering 57%
Freespace Filtering 97%

features, though Herbst [16] shows a segmentation clustering

algorithm for automatically grouping discovered objects.

Suppose object Oi is recognized to be the same as object

Oj . We first take the matrices Scorei and Scorej and then

find the new parameters by using Equation 5 with the weighted

average of the two matrices (weighted by the number of times

each object was observed, ni and nj). This is possible since

we uniformly sample the parameter space so the segmentation

parameters are identical for each value in the score matrices.

Then, for each feature distribution, we update the µ and σ2

values in Equation 7.

µnew =
µj ∗ nj + µi ∗ ni

nj + ni

σ2
new =

σ2
j ∗ nj + (µnew − µi)

2 ∗ ni

nj + ni

nnew = nj + ni

(7)

As the number of observations increases, the effect of the

initial prior on the variance, diminishes and the value σ2

will converge on the true variance of the specific feature.

We only combine segmentation parameters this way and not

segmentation methods. If a discovered object is segmented

best with a color segmentation method one time, and a surface

normal method the next, we do not combine the two methods

together. Instead, we take the max score of the two, and use the

corresponding segmentation method and parameters without

combining.

It is important to note that, for computational reasons, we

are not re-segmenting the scene since our current segmentation

method guarantees monotonically increasing segment sizes

with increasing values of the T an k parameters. This means

our scoring function will not have multiple peaks. Other

segmentation methods may require storing the 3-D maps and

recomputing the segment features.

V. RESULTS

We test our algorithm on two datasets. The first dataset, A,

contains 37 maps recorded by a handheld camera containing

five base maps and five maps with one or more objects moved

from the base map. The remaining maps are ones with and

without the moved objects in them. The second dataset, B,

contains 30 maps with objects moved from 3-6 times. The size

of the maps in both datasets range from 200,000 to 2,700,000

points from a combined 32 minutes of camera data. In our

datasets, there are multiple similar objects such as trash bins

and recycle bins, or cups and jars in both simple tabletop and

naturally cluttered environments.

Fig. 5. Top & center: First two maps for alignment. Note the overlapping
regions within the red circles. Bottom: Both aligned maps drawn together
with the filtered difference, a suitcase, highlight in red.

A. Differencing

We evaluate our system by first quantifying the initial object

discovery stage. We do this by comparing the number of

points in the correct, hand labeled difference against the total

number of points in the entire diff at each particular stage. The

results in Table I, showing that 97% of all changed points

in our datasets are correctly labeled as discovered objects.

Qualitatively, this can also be seen in Fig. 2, and a fully aligned

example can be seen in Fig. 5.

B. Segmentation

We evaluate the quality of the segmentation optimization

and object representation in Fig. 6, which are for a trash

bin and stuffed bunny. The precision and recall values were

calculated by varying τ from Section IV-C. These examples

highlight the differences in performance between a relatively

simple box shaped object and more complex shaped bunny.

The blue lines in each graph correspond to precision and recall

of a single segmentation optimized using only one discovered

object. We go further and show how our system adapts over

time with the green lines in the graphs that are the result

of combining the segmentations of five discovered objects

using the method described in Section IV-D. Interestingly,

Fig. 6. Precision Recall curves for two objects, where the blue curve results
from using a single object and green from using five instances of the object
to refine its representation. (Left) Trash bin: As can be seen, the results are
very similar, which suggests that the prior given to the feature representations
closely matches the true prior, as well as objects being that shape and color
are relatively unique and easily represented. (Right) Stuffed bunny: As can be
seen, the results improve as the object is seen multiple times. When compared
to the left graph there is a larger improvement across multiple runs. This is
potentially due to the complex geometry and color of the object that is not
captured from a single view.

TABLE II
TIMING OF SYSTEM COMPONENTS.

Step Time (s)

Freespace Voxel Labeling 3.45
Alignment 0.80

Differencing 0.18
Filtering 0.18

Segment Optimization 27.85

Total 32.46

the results do not improve any, if at all, from having a

single or five discovered objects for the trash bin. We believe

this is due primarily because of the simple shape, relative

uniqueness, and open surroundings of the trash bins. The prior

assigned to the trash bin was close enough to the true variance

that further examples barely changed the distributions over

features. Looking at Fig. 6. the results greatly improve given

more discovered instances of the bunny. Since the bunny is

not symmetric along an axis and is oddly shaped, our method

benefits from the additional data and positively incorporates

the new measurements for improved matching.

More qualitative results can been seen in Fig. 7. The images

show the wide range of environments our method works in.

From large trash bins in relatively open areas, to smaller jars

in a table top, to a complex stuffed animal in dense clutter.

Also, note the trash bin image in the figure and the identically

shaped recycle bin next to it. Our method is able to distinguish

between the two based on the color difference.

C. Computational Performance

Here we analyze the computation time of our method. Due

to the wide range of map sizes we have in our work, we give

the timing analysis of a typical RGB-D video in our dataset.

Taking two RGB-D videos that have some intersection, one

65 seconds, the other 28 seconds, we process the maps in real

time with Kintinuous at a resolution of 0.78 centimeters. Next,

taking the 1.1 million and 0.21 million vertex point clouds, we

run our system. The timing is shown in Table II.

The object matching method, run on a separate point cloud

of 1.3 million points, runs in 7.63 s. The test platform used

was a standard desktop PC running single-threaded on Ubuntu

12.04 with an Intel Core i7-3960X CPU at 3.30GHz, 16GB

of RAM.

VI. CONCLUSION

We have introduced an object segmentation system that au-

tomatically learns segmentations of objects that have changed

in dense RGB-D maps. We showed how such segmentations

can be improved over the lifetime of a robot as it re-discovers

the same object multiple times. Our method builds on recent

real-time dense RGB-D mapping methods, and runs in real-

time. By looking at the changes in the world from doing a

3-D diff, our system is able to refine and segment previously

discovered objects. By not making prior assumptions about

the world, a robot can learn from its environment as the

environment changes. This functionality can be used in a broad

array of applications such as higher-level object reasoning,

autonomous surveillance, robotic manipulation, and object

querying.

A. Limitations

The system presented can reliably discover changed ob-

jects and segment them in future maps. However, there are

some limitations to our approach. Our method depends on

there being a volumetric difference between two maps, and

aligning them with ICP. If the differences are smaller than the

volumetric resolution of the map (e.g., a paper on a table), or

are within the map resolution defined threshold of the relative

complement, the differences may be indistinguishable between

the two maps. With increased map resolution, smaller objects

would be more easily detected. For large changed objects that

make up enough of the RoO to warp the alignment (e.g., a

sofa, or desk), ICP would not align, and thus, the differencing

would return incorrect objects. Additionally, we assume moved

objects do not overlap with themselves or any other changes;

otherwise our differencing method would incorrectly remove

any overlapping points.

B. Future Work

Future work includes looking at object hierarchies. Say a

tea set is discovered, and separately, a teacup from the set

is moved. The current system would discover those as two

separate objects and not make the connection that the teacup

is a sub-object of the tea set. This could be incorporated with

the metadata framework presented in Collet [24] that encodes

object and domain knowledge. Further work also includes how

to represent discovered objects to optimize for uniqueness in

the context of multiple scenes.

REFERENCES

[1] J. Gibson, The ecological approach to visual perception. Resources
for ecological psychology, Lawrence Erlbaum Associates, Incorporated,
1986.

[2] H. Johannsson, M. Kaess, M. Fallon, and J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in Robotics and

Automation (ICRA), 2011 IEEE International Conference on, (Karlsruhe,
Germany), May 2013. To appear.

[3] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in Mixed

and Augmented Reality (ISMAR), 2011 10th IEEE International Sympo-

sium on, pp. 127–136, IEEE, 2011.

Fig. 7. Left column: Objects discovered from changes in previous maps (not shown). Center left column: New maps with the discovered objects in them.
Center right column: Random colored segmented versions of the map using the optimized segmentation method and parameters for each specific object.
Right column: Original map with object segment detected and highlighted in red. From top to bottom, the objects are a jar, a trash bin, and a stuffed bunny
respectively. The detections were automatically trained using from one, two, and four objects for the jar, trash bin, and bunny respectively. Note the trash bin
in the second row map is detected, and not the similarly proportioned by different colored recycle bin next to it.

[4] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and
J. Leonard, “Kintinuous: Spatially extended KinectFusion,” in 3rd RSS

Workshop on RGB-D: Advanced Reasoning with Depth Cameras, (Syd-
ney, Australia), July 2012.

[5] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman,
“Discovering objects and their location in images,” in Computer Vision,

2005. ICCV 2005. Tenth IEEE International Conference on, vol. 1,
pp. 370–377, IEEE, 2005.

[6] J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman, and A. A. Efros,
“Unsupervised discovery of visual object class hierarchies,” in Computer

Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pp. 1–8, IEEE, 2008.

[7] H. Arora, N. Loeff, D. A. Forsyth, and N. Ahuja, “Unsupervised
segmentation of objects using efficient learning,” in Computer Vision

and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pp. 1–
7, IEEE, 2007.

[8] M. Brown and D. G. Lowe, “Unsupervised 3D object recognition
and reconstruction in unordered datasets,” in 3-D Digital Imaging and

Modeling, 2005. 3DIM 2005. Fifth International Conference on, pp. 56–
63, IEEE, 2005.

[9] G. Kim, C. Faloutsos, and M. Hebert, “Unsupervised modeling of object
categories using link analysis techniques,” in Computer Vision and

Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1–
8, IEEE, 2008.

[10] N. Payet and S. Todorovic, “From a set of shapes to object discovery,”
in Computer Vision–ECCV 2010, pp. 57–70, Springer, 2010.

[11] S. Vicente, C. Rother, and V. Kolmogorov, “Object cosegmentation,”
in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pp. 2217–2224, IEEE, 2011.
[12] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Buntine, “Un-

supervised object discovery: A comparison,” International Journal of

Computer Vision, vol. 88, no. 2, pp. 284–302, 2010.
[13] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun, “Towards object

mapping in non-stationary environments with mobile robots,” in Intelli-

gent Robots and Systems, 2002. IEEE/RSJ International Conference on,
vol. 1, pp. 1014–1019, IEEE, 2002.

[14] D. Anguelov, R. Biswas, D. Koller, B. Limketkai, and S. Thrun, “Learn-

ing hierarchical object maps of non-stationary environments with mobile

robots,” in Proceedings of the Eighteenth conference on Uncertainty

in artificial intelligence, pp. 10–17, Morgan Kaufmann Publishers Inc.,
2002.

[15] E. Herbst, P. Henry, X. Ren, and D. Fox, “Toward object discovery
and modeling via 3-D scene comparison,” in Robotics and Automation

(ICRA), 2011 IEEE International Conference on, pp. 2623–2629, IEEE,
2011.

[16] E. Herbst, X. Ren, and D. Fox, “RGB-D object discovery via multi-scene
analysis,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ

International Conference on, pp. 4850–4856, IEEE, 2011.

[17] E. Herbst, X. Ren, and D. Fox, “Object segmentation from motion with
dense feature matching,” in ICRA Workshop on Semantic Perception,

Mapping and Exploration, 2012.

[18] J. Mason, B. Marthi, and R. Parr, “Object disappearance for object
discovery,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on, pp. 2836–2843, IEEE, 2012.

[19] A. Karpathy, S. Miller, and L. Fei-Fei, “Object discovery in 3D
scenes via shape analysis,” in International Conference on Robotics and

Automation (ICRA), 2013.

[20] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. McDonald,
“Robust real-time visual odometry for dense RGB-D mapping,” in IEEE

Intl. Conf. on Robotics and Automation, ICRA, (Karlsruhe, Germany),
May 2013. To appear.

[21] P. J. Besl and N. D. McKay, “Method for registration of 3-D shapes,”
in Robotics-DL tentative, pp. 586–606, International Society for Optics
and Photonics, 1992.

[22] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, Sept.
2004.

[23] F. Moosmann, O. Pink, and C. Stiller, “Segmentation of 3D lidar data
in non-flat urban environments using a local convexity criterion,” in
Intelligent Vehicles Symposium, 2009 IEEE, pp. 215–220, IEEE, 2009.

[24] A. Collet, B. Xiong, C. Gurau, M. Hebert, and S. Srinivasa, “Exploiting
domain knowledge for object discovery,” in IEEE International Confer-

ence on Robotics and Automation (ICRA), May 2013.

