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Information derived from functional magnetic resonance imaging (fMRI) during wakeful

rest has been introduced as a candidate diagnostic biomarker in unipolar major depressive

disorder (MDD). Multiple reports of resting state fMRI in MDD describe group effects.

Such prior knowledge can be adopted to pre-select potentially discriminating features

for diagnostic classification models with the aim to improve diagnostic accuracy.

Purpose of this analysis was to consolidate spatial information about alterations of

spontaneous brain activity in MDD, primarily to serve as feature selection for multivariate

pattern analysis techniques (MVPA). Thirty two studies were included in final analyses.

Coordinates extracted from the original reports were assigned to two categories based on

directionality of findings. Meta-analyses were calculated using the non-additive activation

likelihood estimation approach with coordinates organized by subject group to account

for non-independent samples. Converging evidence revealed a distributed pattern of

brain regions with increased or decreased spontaneous activity in MDD. The most

distinct finding was hyperactivity/hyperconnectivity presumably reflecting the interaction

of cortical midline structures (posterior default mode network components including the

precuneus and neighboring posterior cingulate cortices associated with self-referential

processing and the subgenual anterior cingulate and neighboring medial frontal cortices)

with lateral prefrontal areas related to externally-directed cognition. Other areas of

hyperactivity/hyperconnectivity include the left lateral parietal cortex, right hippocampus

and right cerebellum whereas hypoactivity/hypoconnectivity was observed mainly in the

left temporal cortex, the insula, precuneus, superior frontal gyrus, lentiform nucleus and

thalamus. Results are made available in two different data formats to be used as spatial

hypotheses in future studies, particularly for diagnostic classification by MVPA.

Keywords: depression, depressive disorder, functional neuroimaging, magnetic resonance imaging, meta-analysis,

feature selection

INTRODUCTION

Mental disorders featuring depression as a predominant symp-

tom and more specifically major depressive disorder (MDD) are

important worldwide public health concerns. In recent years sig-

nificant progress has been achieved regarding the identification of

biological correlates and potential neural mechanisms involved

in the pathogenesis of MDD. These scientific efforts comprise

studies of genetic foundations, molecular mechanisms including

neurotransmitter systems and structural as well as functional neu-

roimaging (Kupfer et al., 2012). Thereby candidate neural systems

have been identified that support emotion processing, reward

seeking, regulate emotion and are therefore presumed to play

an important role in MDD. These networks include subcortical

as well as cortical (particularly prefrontal and cingulate) brain

regions modulated by serotonin and dopamine neurotransmis-

sion (Kupfer et al., 2012).

A majority of reported functional magnetic resonance imaging

(fMRI) studies in MDD has applied stimulus-based acquisition

protocols. Participants were confronted with predefined stimuli

in the scanner, e.g., pictures of emotional faces. Brain activity in

response to these stimuli was analyzed (Fitzgerald et al., 2008;

Stuhrmann et al., 2011; Delvecchio et al., 2012; Diener et al.,

2012; Groenewold et al., 2013). Stimulus-based fMRI requires

rather complex experimental setups. In contrast, fMRI at rest, so-

called resting-state fMRI (rs-fMRI), facilitates the examination

of spontaneous neural activity in networks that highly resem-

ble those observed in task-based fMRI (Smith et al., 2009). It

necessitates simpler, but nonetheless highly standardized data

acquisition procedures (Van Dijk et al., 2010) and has therefore

attracted attention by researchers interested in clinical applica-

tions of fMRI (Zhang and Raichle, 2010; Lee et al., 2012; Barkhof

et al., 2014; Sundermann et al., 2014a).

A broad methodological spectrum for analyses of rs-fMRI data

has been developed and there is no standard analysis strategy

for group comparisons either. This heterogeneity is reflected in

rs-fMRI studies in MDD as well. However, most analyses are

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 692 | 1

HUMAN NEUROSCIENCE

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/journal/10.3389/fnhum.2014.00692/abstract
http://community.frontiersin.org/people/u/163365
http://community.frontiersin.org/people/u/180988
mailto:benedikt.sundermann@ukmuenster.de
mailto:benedikt.sundermann@ukmuenster.de
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Sundermann et al. Resting-state fMRI in depression

either based on regional features or on connectivity of distant

brain regions. Typical regional measures include regional homo-

geneity (ReHo) or the (fractional) amplitude of characteristic

low-frequency fluctuations (ALFF or fALFF). Functional connec-

tivity (FC) can be operationalized as the temporal correlation

of signal fluctuations in remote brain areas. Conventional FC-

analyses are seed-based but FC-analyses in a wider sense include

independent component analyses or complex graph theoretical

network measures. A minority of studies has applied analyses of

effective connectivity (such as Granger causality taking tempo-

ral dependencies into account) (Margulies et al., 2010; van den

Heuvel and Hulshoff Pol, 2010). Rs-fMRI is increasingly adopted

scientifically in subjects with MDD (Wang et al., 2012b; Kühn

and Gallinat, 2013). Despite the qualitative similarity of networks

observed during task-fMRI and rs-fMRI it has not been firmly

established which features of stimulus-related neural correlates of

MDD can be sufficiently captured by rs-fMRI. The exact relation

of rs-fMRI and other neuroimaging methods at rest including

positron emission tomography (PET) is still subject to ongoing

research as well (Chetelat et al., 2013; Riedl et al., 2014).

Whereas most neuroimaging studies in MDD focus on dis-

ease mechanisms at the group level, there is substantial interest

in identifying biomarkers that are clinically applicable as diag-

nostic tools in single subjects (Mossner et al., 2007; Atluri et al.,

2013; Schneider and Prvulovic, 2013). Particularly, important

recent approaches for diagnostic classification in various mental

disorders are based on the combination of rs-fMRI with multi-

variate pattern analysis techniques (MVPA) (Klöppel et al., 2011;

Orru et al., 2012; Zarogianni et al., 2013; Haller et al., 2014;

Sundermann et al., 2014a). MVPA subserves the automated gen-

eration of decision rules based on previous experience, labeled

training data in this particular case. MVPA approaches integrate

information from multiple brain regions with the aim to increase

diagnostic power compared to conventional univariate analysis

schemes that are used in many fMRI studies (Pereira et al., 2009;

Sundermann et al., 2014a). Seminal work in the field of exploring

the clinical applicability of rs-fMRI in combination with MVPA

has been done in subjects with MDD (Craddock et al., 2009).

Functional neuroimaging data are typically rather noisy and

high-dimensional. Therefore, different feature selection (FS)

methods have been proposed to identify a subset of most infor-

mative features to be used with the aim to increase classification

accuracy (Pereira et al., 2009). There is a fundamental distinc-

tion between FS approaches using prior knowledge (Chu et al.,

2012) and data-driven methods, particularly filters or wrappers,

that use the training dataset itself for FS (Pereira et al., 2009;

Mwangi et al., 2013). Recent evidence from structural neuroimag-

ing in dementia indicates that FS based on prior knowledge

may be advantageous. In that report support vector machines

(SVM) were used for classification (Chu et al., 2012). Such ker-

nel methods like SVM are especially popular in recent attempts

to classify fMRI datasets (Orru et al., 2012; Sundermann et al.,

2014a).

There seems to be a substantive body of scientific studies

on rs-fMRI in MDD now. However, methods of data anal-

ysis and results are very heterogeneous. Previous efforts to

specifically summarize these rs-fMRI findings have focused

on specificity and interpretability regarding disease mecha-

nisms and therefore conducted rather exclusive study selec-

tion (only five rs-fMRI studies finally included) and pooled

studies with SPECT and PET data (Kühn and Gallinat,

2013) or adopted qualitative methods of data synthesis (Wang

et al., 2012b). Consequently, they are not optimally suited to

select brain areas that contain particularly important infor-

mation for FS used later to enable clinical differentiation in

MDD by MVPA.

Purpose of this meta-analysis is to consolidate spatial informa-

tion about alterations of spontaneous brain activity in patients

with unipolar depression compared to healthy controls. This

investigation is specifically intended to generate and make avail-

able “prior knowledge” that can be readily used as spatial

hypotheses in rs-fMRI studies in MDD, particularly studies apply-

ing machine-learning methods for diagnostic classification. This

includes but is not limited to pre-selection of features for diag-

nostic MVPA approaches. For this reason spatial precision and

sensitivity are priorized over functional interpretability regarding

exact disease mechanisms.

MATERIALS AND METHODS

IDENTIFICATION AND SELECTION OF RELEVANT STUDIES

We conducted a PubMed (http://www.ncbi.nlm.nih.gov/

pubmed/) search using the following query on August 20, 2013:

(“depression” OR “depressive”) AND (“fMRI” OR “functional

MRI” OR “functional magnetic”) AND (“functional connectivity”

OR “resting state” OR “resting-state”).

Initially, 183 results were identified. In addition, we also

screened a recent review for further papers (Wang et al., 2012b)

and a prior rather exclusive meta-analysis (Kühn and Gallinat,

2013) comprising rs-fMRI alterations in depression. Thereby six

additional articles were identified. Titles and abstracts were man-

ually screened twice (by two individuals) for studies (in English

language) reporting results on rs-fMRI in adult patients with

typical subtypes of unipolar depression (not adolescent, post-

partum and late-life depression as well as studies that aimed at

investigating a specific comorbidity) compared to healthy con-

trols. Of these 51 studies identified, whole text versions were

screened for studies fulfilling these criteria as well as includ-

ing at least 10 subjects per group and reporting resulting

coordinates of group comparisons (depression vs. healthy con-

trols) in either MNI/ICBM (Mazziotta et al., 2001) or Talairach

(1988) space. Thirty Two studies fulfilled these criteria and were

therefore included in the final analyses. Studies by the same

authors were screened for highly similar demographical char-

acterization of samples and were otherwise considered inde-

pendent in further analyses based on consensus of all three

authors.

COORDINATE-BASED META-ANALYSIS

Reported maxima coordinates were extracted and, if reported

in Talairach space, converted to MNI space using tal2icbm

(Lancaster et al., 2007; Laird et al., 2010). As an exception, coor-

dinates from one study (Lui et al., 2011) were transformed using

tal2mni (Brett et al., 2001) as final coordinates in that study had

initially been transformed using this method. Coordinates were
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assigned to two categories based on directionality of findings in

order to avoid that clearly opposed findings in the original studies

enhance each other in the ALE-analysis: group A comprises find-

ings of decreased long distance or local connectivity (including

lower correlation coefficients or lower regional homogeneity) or

lower power of typical low frequency fluctuations representing

spontaneous neural activity in depression compared to healthy

controls and findings without clearly interpretable directional-

ity information (Greicius et al., 2007; Bluhm et al., 2009; Yao

et al., 2009; Liu et al., 2010, 2013a,b; Veer et al., 2010; Zhou

et al., 2010; Furman et al., 2011; Guo et al., 2011a,b, 2012a,b,

2013a,b,c; Hamilton et al., 2011; Lui et al., 2011; Peng et al., 2011,

2012; Wu et al., 2011; Ma et al., 2012, 2013; Wang et al., 2012a,

2013a,b; Ye et al., 2012; Zhu et al., 2012; Tang et al., 2013; Zeng

et al., 2013). Details of these studies are presented in Table 1.

Group B represents increased connectivity or low frequency fluc-

tuations in depression compared to controls (Table 2) (Liu et al.,

2010, 2013a,b; Sheline et al., 2010; Veer et al., 2010; Zhou et al.,

2010; Furman et al., 2011; Guo et al., 2011a,b, 2012b, 2013a,b;

Hamilton et al., 2011; Wu et al., 2011; Cao et al., 2012; Ma

Table 1 | Studies in group A (representing mainly decreased connectivity/function in depression and ambiguous directionality).

Sample number Author and year Samle size and depression

subtype

Medication Primary analysis method

1 Wang et al., 2013a 14 (MDD, first episode), 14 (HC) Partially ReHo

Wang et al., 2013b 17 (MDD, first episode), 17 (HC) No VMHC

Wang et al., 2012a 18 (MDD, first episode), 18 (HC) No (f)ALFF

2 Guo et al., 2013c 22 (MDD, treatment resistant), 23

(MDD, treatment sensitive), 19 (HC)

Yes VMHC

Guo et al., 2012a 22 (MDD, treatment resistant), 23

(MDD, treatment sensitive), 19 (HC)

Yes ReHo-based

Liu et al., 2013b 22 (MDD, first episode), 19 (HC) No fALFF

3 Guo et al., 2013b 24 (MDD, first episode), 24 (HC) No fALFF, Seed-FC (Cerebellum)

Guo et al., 2013a 24 (MDD; first episode), 24 (HC) No VMHC

4 Zeng et al., 2013 24 (MDD), 29 (HC) No Seed-FC (anterior cingulate)

Ma et al., 2013 24 (MDD), 29 (HC) No Seed-FC (cerebellum)

5 Liu et al., 2013a 22 (MDD), 26 (HC) Yes fALFF

6 Tang et al., 2013 28 (MDD), 30 (HC) No Seed-FC (amygdala)

7 Peng et al., 2012 16 (MDD), 16 (HC) No Seed-FC (anterior cingulate)

Peng et al., 2011 16 (MDD), 16 (HC) No ReHo

8 Ma et al., 2012 18 (MDD, treatment resistant), 17

(MDD, treatment sensitive) 17 (HC)

Yes Seed-FC (based on gray matter abnormalities)

Guo et al., 2012b 18 (MDD, treatment resistant), 17

(MDD, treatment sensitive) 17 (HC)

Yes ALFF

9 Ye et al., 2012 22 (MDD, first episode), 30 (HC) No Seed-FC (right DLPFC)

10 Zhu et al., 2012 35 (MDD, first episode), 35 (HC) No ICA

11 Guo et al., 2011a 17 (MDD), 17 (HC) Yes ReHo

Guo et al., 2011b 24 (MDD, treatment resistant) 19

(MDD, treatment resistant)

Yes ReHo

12 Furman et al., 2011 21 (MDD, women only), 19 (HC,

women only)

Yes Seed-FC (striatum)

13 Veer et al., 2010 19 (MDD), 19 (HC) No ICA

14 Wu et al., 2011 22 (MDD, treatment resistant),

26 (HC)

Yes ReHo

15 Liu et al., 2010 14 (MDD), 15 (HC) No ReHo

16 Hamilton et al., 2011 16 (MDD), 14 (HC) No Granger causality

17 Bluhm et al., 2009 14 (MDD), 15 (HC) No Seed-FC (precuneus/posterior cingulate cortex)

18 Yao et al., 2009 22 (MDD), 22 (HC) Partially ReHo

19 Greicius et al., 2007 28 (MDD), 20 (HC) Yes ICA

20 Lui et al., 2011 32 (MDD, treatment sensitive), 28

(MDD, treatment resistant), 48 (HC)

Yes Seed-FC (multiple)

21 Zhou et al., 2010 18 (MDD), 20 (HC) No Seed-FC (multiple)

Individual reports are grouped by samples according to potential overlap.

HC, healthy controls; MDD, major depressive disorder; FC, functional connectivity; ReHo, regional homogeneity; (f)ALFF, (fractional) amplitude of low frequency

fluctuations; VMHC, voxel-mirrored homotopic connectivity; ICA, independent component analysis; DLPFC, dorsolateral prefrontal cortex.
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Table 2 | Studies in group B (representing mainly increased connectivity/function in depression).

Sample number Author and year Sample size and depression subtype Medication Primary analysis method

1 Wang et al., 2013a 14 (MDD, first episode), 14 (HC) Partially ReHo

Wang et al., 2012a 18 (MDD, first episode), 18 (HC) No (f)ALFF

2 Guo et al., 2013b 24 (MDD, first episode), 24 (HC) No fALFF, Seed-FC (Cerebellum)

Guo et al., 2013a 24 (MDD, first episode), 24 (HC) No VMHC

3 Liu et al., 2013a 22 (MDD), 26 (HC) Yes fALFF

4 Liu et al., 2013b 22 (MDD, first episode), 19 (HC) No fALFF

5 Peng et al., 2012 16 (MDD), 16 (HC) No Seed-FC (anterior cingulate)

6 Ma et al., 2012 18 (MDD, treatment resistant), 17

(MDD, treatment sensitive) 17 (HC)

Yes Seed-FC (based on gray matter abnormalities)

Guo et al., 2012b 18 (MDD, treatment resistant), 17

(MDD, treatment sensitive) 17 (HC)

Yes ALFF

7 Ye et al., 2012 22 (MDD, first episode), 30 (HC) No Seed-FC (right DLPFC)

8 Cao et al., 2012 42 (MDD), 32 (HC) No Seed-FC (hippocampus)

9 Zhu et al., 2012 35 (MDD, first episode), 35 (HC) No ICA

10 Guo et al., 2011a 17 (MDD), 17 (HC) Yes ReHo

Guo et al., 2011b 24 (MDD, treatment resistant) 19

(MDD, treatment resistant)

Yes ReHo

11 Furman et al., 2011 21 (MDD, women only), 19 (HC,

women only)

Yes Seed-FC (striatum)

12 Veer et al., 2010 19 (MDD), 19 (HC) No ICA

13 Wu et al., 2011 22 (MDD, treatment resistant), 26 (HC) Yes ReHo

14 Sheline et al., 2010 18 (MDD), 17 (HC) No Seed-FC (multiple)

15 Liu et al., 2010 14 (MDD), 15 (HC) No ReHo

16 Hamilton et al., 2011 16 (MDD), 14 (HC) No Granger causality

17 Zhou et al., 2010 18 (MDD), 20 (HC) No Seed-FC (multiple)

Individual reports are grouped by samples according to potential overlap.

HC, healthy controls; MDD, major depressive disorder; FC, functional connectivity; ReHo, regional homogeneity; (f)ALFF, (fractional) amplitude of low frequency

fluctuations; VMHC, voxel-mirrored homotopic connectivity; ICA, independent component analysis; DLPFC, dorsolateral prefrontal cortex.

et al., 2012; Wang et al., 2012a, 2013a; Ye et al., 2012; Zhu et al.,

2012).

Coordinate-based meta-analyses were calculated with

GingerALE (Research Imaging Institute, University of Texas

Health Science Center, San Antonio, TX, USA, version 2.3.1,

http://www.brainmap.org/ale/) using the non-additive activa-

tion likelihood estimation (ALE) approach with coordinates

organized by subject group (ALE-S method) to account for

non-independent samples (Turkeltaub et al., 2012). ALE-S is

an extension of the random effects ALE approach (Eickhoff

et al., 2009) that prevents multiple experiments performed by

one subject group from cumulatively influencing ALE values.

Therefore, a modeled activation map is generated for each

subject group independently based on published coordinates in

a first step. These maps are then combined in a second step to

calculate final ALE values (Turkeltaub et al., 2012). Coordinates

in group A were assigned to 21, in group B to 17 presum-

ably independent subjects groups as indicated in Tables 1, 2.

Coordinates were masked using the conservative standard mask

in Ginger ALE. 11 locations in group A and 7 locations in group

B were located outside the mask while 305 (group A) and 132

(group B) foci remained inside. Study specific smoothing using

a Gaussian kernel (group A: FWHM median = 9.17 mm, range

8.88–9.57 mm, group B: FWHM median = 9.28 mm, range

8.87–9.50 mm) was applied based on the mean sample size per

subject group to take different sample sizes into account. Results

were thresholded at p < 0.05 corrected for multiple comparisons

using cluster-based correction with a cluster-forming threshold

of p < 0.01 (uncorrected) and 1000 permutations (Eickhoff et al.,

2012) resulting in a minimum cluster size of 528 mm3 in group

A and 544 mm3 in group B. All analyses were calculated in MNI

space.

Anatomical labels were automatically assigned in GingerALE.

Visualizations were created using Mango (Research Imaging

Institute, University of Texas Health Science Center, San Antonio,

TX, USA, version 3.0.4, http://ric.uthscsa.edu/mango/) and a

high resolution anatomical template with isotropic voxels in MNI

space as distributed with GingerALE.

RESULTS

DECREASED OR AMBIGUOUSLY ALTERED SPONTANEOUS

FUNCTIONAL CONNECTIVITY/ACTIVITY IN MDD

Results of group A spatially converged mainly in the left supe-

rior/middle temporal gyrus and bilaterally in the insula, pre-

cuneus, superior frontal gyrus, lentiform nucleus and thalamus.

For detailed results see Figures 1A,C and Table 3. Complete

thresholded ALE-maps are made available in NIfTI-1 data format

as Supplementary Material.
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FIGURE 1 | Areas of altered functional connectivity/activity in

depression compared to controls. (A) Red to yellow: significant

meta-analytic results (p < 0.05) in group A (representing mainly

decreased connectivity / function in depression), blue to green:

unthresholded ALE values, (B) equivalent representation of group

B (increased connectivity/function in depression), (C) qualitative

display of significant results, red: group A, green: group B,

yellow: overlap.

INCREASED SPONTANEOUS FUNCTIONAL CONNECTIVITY/ACTIVITY IN

MDD

Findings in group B mainly comprised the pre-/subgenual ante-

rior cingulate cortex and neighboring medial frontal cortex,

the precuneus and neighboring posterior cingulate cortex, lat-

eral prefrontal cortex bilaterally with a left predominance, left

lateral parietal cortex as well as the right hippocampus and

right cerebellum. Detailed results are presented in Figures 1B,C

and Table 4. For thresholded ALE-maps see the Supplementary

Material.

DISCUSSION

The main purpose of this meta-analysis was to provide spa-

tially precise information about locations of altered FC or local

brain activity in patients with MDD compared to healthy con-

trols. We will therefore first discuss how the resulting data can be

used in subsequent studies including applications with diagnos-

tic intention. This particularly refers to FS for diagnostic MVPA

approaches.

Additionally, subordinate aspects related to the results will

be discussed: this study is not primarily designed to elucidate
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Table 3 | Brain areas (cluster-information and peak voxels) with

significant convergence across studies in Group A (mainly decreased

connectivity/activity in depression).

Anatomical label BA (Sub-)Maxima ALE

coordinates

x y z

Cluster 1 (4 contributing subject groups, volume: 1048 mm3,

weighted center: x = −59, y = −9, z = 2)

Left superior temporal gyrus 22 −60 −10 2 0.017

Cluster 2 (4 contributing subject groups, volume: 960 mm3,

weighted center: x = −36, y = 7, z = −14)

Left superior temporal gyrus 38 −36 2 −18 0.016

Left insula 13 −36 12 −10 0.014

Cluster 3 (3 contributing subject groups, volume: 960 mm3,

weighted center: x = 42, y = −1, z = 2)

Right claustrum 40 −2 2 0.019

Right insula 13 48 4 2 0.010

Cluster 4 (3 contributing subject groups, volume: 952 mm3,

weighted center: x = −56, y = −32, z = −13)

Left middle temporal gyrus 21 −58 −30 −16 0.015

Left middel temporal gyrus 20 −54 −36 −10 0.013

Cluster 5 (3 contributing subject groups, volume: 856 mm3,

weighted center: x = 15, y = −66, z = 26)

Right precuneus 31 16 −66 26 0.016

Cluster 6 (3 contributing subject groups, volume: 840 mm3,

weighted center: x = 9, y = −51, z = 46)

Right precuneus 7 8 −52 46 0.016

Cluster 7 (3 contributing subject groups, volume: 656 mm3,

weighted center: x = 27, y = 6, z = −3)

Right putamen 30 4 0 0.013

Right putamen 24 6 −6 0.011

Cluster 8 (2 contributing subject groups, volume: 616 mm3,

weighted center: x = 15, y = −25, z = −2)

Right thalamus 14 −26 −2 0.016

Cluster 9 (3 contributing subject groups, volume: 608 mm3,

weighted center: x = −53, y = −24, z = 7)

Left superior temporal gyrus 41 −54 −24 6 0.015

Cluster 10 (4 contributing subject groups, volume: 584 mm3,

weighted center: x = −4, y = −18, z = 4)

Left thalamus (medial dorsal

nucleus)

−4 −16 6 0.012

Left thalamus −6 −22 −2 0.010

Right thalamus 4 −20 6 0.009

Cluster 11 (2 contributing subject groups, volume: 528 mm3,

weighted center: x = 22, y = 62, z = 12)

Right superior frontal gyrus 10 22 62 10 0.012

Right superior frontal gyrus 10 22 62 8 0.011

Right superior frontal gyrus 10 30 60 6 0.009

p < 0.05 with cluster-based thresholding to correct for multiple comparisons,

coordinates reported in MNI space, anatomical labels representing nearest gray

matter locations, contributing subjects groups only denotes groups with original

foci located within the resulting cluster.

Table 4 | Brain areas (cluster-information and peak voxels) with

significant convergence across studies in Group B (increased

connectivity/activity in depression).

Anatomical label BA (Sub-)Maxima ALE

coordinates

x y z

Cluster 1 (3 contributing subject groups, volume: 1792 mm3,

weighted center: x = 1, y = −63, z = 41)

Left precuneus 7 2 −56 44 0.015

Left cuneus 7 −2 −70 38 0.014

Cluster 2 (4 contributing subject groups, volume: 1704 mm3,

weighted center: x = −43, y = 25, z = 24)

Left middle frontal gyrus 46 −48 26 18 0.012

Left middle frontal gyrus 9 −38 24 28 0.011

Left middle frontal gyrus 9 −40 26 22 0.010

Cluster 3 (3 contributing subject groups, volume: 928 mm3,

weighted center: x = −42, y = −39, z = 52)

Left inferior parietal lobule 40 −42 −40 52 0.013

Cluster 4 (2 contributing subject groups, volume: 896 mm3,

weighted center: x = −3, y = 56, z = −18)

Left medial frontal gyrus 10 −6 56 −16 0.012

Left medial frontal gyrus 10 0 60 −20 0.009

Right medial frontal gyrus 10 2 56 −18 0.008

Cluster 5 (2 contributing subject groups, volume: 736 mm3,

weighted center: x = 6, y = 33, z = −10)

Right anterior cingulate cortex 24 6 34 −10 0.015

Cluster 6 (2 contributing subject groups, volume: 688 mm3,

weighted center: x = −44, y = −42, z = −36)

Left cerebellum (Anterior Lobe,

Culmen)

−44 −42 −36 0.015

Cluster 7 (2 contributing subject groups, volume: 680 mm3,

weighted center: x = 33, y = −34, z = −4)

Right hippocampus 32 −34 −4 0.015

Cluster 8 (2 contributing subject groups, volume: 680 mm3,

weighted center: x = 15, y = −58, z = 23)

Right posterior cingulate cortex 31 16 −56 24 0.011

Right precuneus 31 14 −66 22 0.008

Cluster 9 (2 contributing subject groups, volume: 664 mm3,

weighted center: x = −43, y = 39, z = 8)

Left middle frontal gyrus 46 −44 38 8 0.011

Cluster 10 (2 contributing subject groups, volume: 648 mm3,

weighted center: x = 57, y = 22, z = 17)

Right inferior frontal gyrus 9 56 22 18 0.015

Cluster 11 (2 contributing subject groups, volume: 624 mm3,

weighted center: x = 43, y = −45, z = −42)

Right cerebellum (Tonsil) 44 −44 −42 0.012

Cluster 12 (2 contributing subject groups, volume: 624 mm3,

weighted center: x = −5, y = 34, z = 12)

Left anterior cingulate cortex 24 −6 34 12 0.013

(Continued)
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Table 4 | Continued

Anatomical label BA (Sub-)Maxima ALE

coordinates

x y z

Cluster 13 (2 contributing subject groups, volume: 592 mm3,

weighted center: x = 34, y = 31, z = 28)

Right middle frontal gyrus 9 34 30 28 0.013

p < 0.05 with cluster-based thresholding to correct for multiple comparisons,

coordinates reported in MNI space, anatomical labels representing nearest gray

matter locations, contributing subjects groups only denotes groups with original

foci located within the resulting cluster.

the exact functional nature of alterations of spontaneous brain

activity. However, in order to estimate what aspects of the dis-

ease mechanisms may be captured based on our results, it is

important to understand how they relate to other neurobiological

and particularly neuroimaging findings. Therefore, results will be

compared with other functional imaging approaches and with

findings from structural neuroimaging.

POTENTIAL APPLICATIONS

Results presented here can be treated as accessible prior knowl-

edge about spatial locations of altered spontaneous brain activity

in MDD. In particular this includes definition of regions of

interest (ROIs) for hypothesis-driven group comparisons and

particularly for FS (Pereira et al., 2009; Chu et al., 2012; Mwangi

et al., 2013) in diagnostic classification efforts based on rs-fMRI

data. For approaches using correlation based on seeds or pairs

of regions of interest (Margulies et al., 2010), coordinates from

Tables 3, 4 can be used directly. In addition, most software tools

for voxel-based classification facilitate masking for FS (Schrouff

et al., 2013). Therefore, NIfTI-files of thresholded ALE-maps in

MNI space are provided (Supplementary Material).

In terms of classical RSNs several clusters of altered FC in

MDD observed here correspond either to well-known midline

structures as DMN subregions (Fox et al., 2005; Smith et al.,

2009) or lateral frontal areas within a fronto-parietal network

(Smith et al., 2009) associated with cognitive control (Niendam

et al., 2012). It is therefore conceivable to use representations of

established functional networks in the brain instead of the orig-

inal results with the intention to enhance biological plausibility

of analyses. Classical resting state networks (RSNs) cannot be

quantitatively related to results of this meta-analysis with suf-

ficient validity. Neither one of these single networks seems to

comprehend “all” major meta-analytical findings nor do these

point toward all major subregions of these networks in a qualita-

tive comparison (see Supplementary Material for further details)

despite the good correspondence of several single regions. Results

may thus rather represent interactions between classical RSNs.

An exploratory qualitative comparison with spatial repre-

sentations of recently introduced temporally independent func-

tional modes (TFMs) of spontaneous brain activtiy (Smith et al.,

2012) indicates a potentially better correspondence with meta-

analytical results (Supplementary Material). However, we do

not recommend selecting features for diagnostic classification in

MDD based on single RSNs or TFMs at this point because there is

only limited evidence for this available so far. This issue warrants

further research.

To summarize, this analyses provides results intended to

improve conceivable diagnostic classification approaches. But one

should keep in mind that it cannot be concluded from the results

that rs-fMRI will be clinically applicable in MDD.

COMPARISON OF RESULTS WITH ADDITIONAL NEUROBIOLOGICAL

FINDINGS IN MDD

Functional neuroimaging and functional implications

Several studies of rs-fMRI in MDD did not fulfill the inclusion

criteria, mostly because of missing coordinate data, but relate

to the main meta-analytic findings. Outstanding examples of

these studies are discussed here: in a study using independent

component analyses (ICA) (Li et al., 2013) a distinction of the

DMN into an anterior and a posterior component was addressed.

Both showed increased FC before treatment. Differences in the

posterior DMN were normalized after antidepressant treatment,

while abnormal FC persisted within the anterior DMN (Li et al.,

2013). This distinction potentially relates to the fact that only

one of these components was significantly identified across stud-

ies. Zhang et al. adopted graph theoretical measures to study the

topological organization on networks in MDD. Patients exhib-

ited increased nodal centralities, predominately in the caudate

nucleus and DMN as well as reduced nodal centralities in occip-

ital, orbitofrontal and temporal regions (Zhang et al., 2011). In

another recent rs-fMRI study, published after the date of study

identification for this analysis, Sambataro et al. also highlight a

differential involvement of DMN subsystems in MDD: patients

exhibited increased connectivity of ventral, posterior and core

DMN components. The interplay from the anterior to the ven-

tral DMN subsystems was reduced (Sambataro et al., 2013). These

findings are in line with meta-analytically observed increases in

spontaneous activity in some but not all DMN subregions.

Brain activity at rest has also been studied using positron

emission tomography (PET) or single-photon emission com-

puted tomography (SPECT) (Fitzgerald et al., 2008; Hamilton

et al., 2012; Sacher et al., 2012). In contrast to rs-fMRI analyses

these studies rarely adopt FC measures. In an ALE meta-analysis

Fitzgerald et al. report a complex pattern of predominantly frontal

alterations of brain activity featuring medial frontal hypoactiv-

ity, heterogenous findings regarding directionality of alterations

in lateral frontal areas in both cerebral hemispheres and hyper-

activity in the thalami (Fitzgerald et al., 2008). There is a fair

spatial overlap with rs-fMRI findings but the directionality of

alterations is not directly comparable. However, in an exclusive

analysis of only four studies using 18F-Fluorodeoxyglucose-PET,

regionally increased glucose metabolism was observed near the

subgenual ACC (Sacher et al., 2012), an area of increased activ-

ity/connectivity observed by rs-fMRI. As a notable aspect, early

results of single PET studies of increased brain activity in MDD

in the subgenual ACC, orbitofrontal cortex, ventrolateral pre-

frontal cortex, thalamus as well as the amygdala and less-markedly

even medial parietal areas who have substantially informed cur-

rent integrated neurocircuitry models of mood disorders (Price
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and Drevets, 2010) exhibit a better correspondence with rs-

fMRI results than the meta-analytic reports of PET-studies in

MDD. Thus, it seems desirable to investigate in further studies

if features selected by rs-fMRT itself are better suited than PET-

derived features that have been used in previous MVPA studies in

MDD, for example (Craddock et al., 2009). However, this issue

cannot be finally resolved at the moment as there is no con-

sensus regarding optimal classification algorithms for diagnostic

purposes (Sundermann et al., 2014a).

Generally the functional organization of the brain at rest

highly resembles networks involved in responding to specific tasks

(Smith et al., 2009). Despite a host of task-based fMRI studies

in MDD so far, results cannot be summarized in one coherent

model. Meta-analyses and systematic reviews on altered emo-

tion and cognition in MDD by task-based neuroimaging exhibit

moderate (Fitzgerald et al., 2008; Stuhrmann et al., 2011) or

poor (Delvecchio et al., 2012) spatial overlap with findings in

rs-fMRI reported here and no consistent alterations of activ-

ity in posterior DMN components or the subgenual ACC were

reported. Thus, rs-fMRI seems to be better suited to depict these

systems presumably involved in MDD pathophysiology. On the

other hand, alterations of amygdala activity were not consis-

tently observed in rs-fMRI. It has been highlighted, that even

the directionality of amygdala activity is highly dependent on the

emotional valence of stimuli (Groenewold et al., 2013). Therefore,

this dynamical aspect of potential disease mechanisms in MDD

may not be sufficiently captured by potential diagnostic classifica-

tion efforts based on spontaneous activity only. Thus, relying on

amygdala activity diagnostically may complicate the differentia-

tion of patients with anxious comorbidity, which is an important

symptom in a subset of patients with MDD (Kupfer et al., 2012).

Based on functional imaging results the involvement of the

brain areas mainly altered during wakeful rest in MDD pathogen-

esis has been discussed as follows: the abnormal interplay of corti-

cal midline structures associated with self-referential processing,

emotion-related brain areas and lateral cortical areas related to

higher cognitive processing has been functionally interpreted as

a correlate of pathologically increased ruminative brooding in

MDD. In particular, a reduced top-down inhibition of cortical

midline and limbic regions has been discussed (Marchetti et al.,

2012; Nejad et al., 2013).

Further lines of function-related research in MDD focus on

genetic and metabolic alterations including neurotransmitters

and therapeutic interventions (Kupfer et al., 2012). Findings of

this meta-analysis can however not be directly related to these

efforts because of the heterogeneity of samples and methods

in the original studies. Still, knowledge of general relationships

between rs-fMRI and neurotransmitter-systems may help fur-

ther elucidate pathogenetic mechanisms in MDD in the future

(Barkhof et al., 2014).

Structural neuroimaging

There are repeated reports about specific regional volume reduc-

tions in MDD affecting the basal ganglia, hippocampus, frontal

lobe (including the orbitofrontal cortex) and less consistently the

cingulate cortex and thalamus (Koolschijn et al., 2009; Lorenzetti

et al., 2009; Kempton et al., 2011; Arnone et al., 2012; Sacher et al.,

2012). These reported locations, based on anatomical descriptors,

resemble a subset of findings in rs-fMRI, a strict formal com-

parison is not feasible as results were mostly not reported in a

common coordinate space. Posterior midline structures, central

locations of aberrant spontaneous brain activity in MDD, do not

seem to be significantly affected by these volume reductions.

White matter microstructure as an important aspect of

suspected network pathology in affective disorders has been

studied using diffusion tensor imaging (DTI) and derivative tech-

niques: reduced anisotropy measures, a potential marker of fiber

integrity, were observed in parts of the superior frontal white

matter presumed to connect the dorsolateral prefrontal cortex

and anterior cingulate cortex with subcortical nuclei (Sexton

et al., 2009), the superior longitudinal fasciculus and increased

anisotropy in the fronto-occipital fasciculus in MDD (Murphy

and Frodl, 2011). The subgenual ACC associated with increased

spontaneous activity/connectivity in this meta-analysis was iden-

tified as a potential site for therapeutic deep brain stimulation in

MDD (Mayberg et al., 2005; Johansen-Berg et al., 2008; Lozano

et al., 2008; Coenen et al., 2011). The structural connectivity of

this area has been investigated using diffusion imaging as well,

demonstrating widely distributed connectivity with frontal, lim-

bic and visceromotor brain regions. An associated connectivity-

based parcellation of the perigenual ACC revealed two distinct

subdivisions, the pre- and the subgenual ACC (Johansen-Berg

et al., 2008). The subgenual ACC observed in this meta-analysis

of rs-fMRI data corresponds well with the latter location defined

by distinct structural connectivity features (orbitofrontal cortex,

medial temporal lobe and through the fornix) (Johansen-Berg

et al., 2008).

Results of functional and structural imaging in MDD seem

somewhat contradictory: some areas with increased spontaneous

activity/functional connectivity seem to exhibit volume reduction

or are served by white matter tracts with decreased anisotropy.

Though functional and structural connectivity metrics show

mostly concordant variations (Damoiseaux and Greicius, 2009;

Honey et al., 2010), there are other examples of a similar paradox,

e.g., in multiple sclerosis (Hawellek et al., 2011).

LIMITATIONS OF THE CURRENT ANALYSIS

The analysis predominantly provides information about spatial

congruency of resting-state fMRI findings in depression. It does,

however, not allow estimation of effect sizes. Information about

the directionality or further details of mechanisms of supposed

alterations of functional connectivity is limited. This is partic-

ularly caused by the significant heterogeneity of different post-

processing methodologies used in the studies reviewed. While

interpretation of directionality in most of these methods is well-

established for the so-called default mode network (Van Dijk

et al., 2010) this does not necessarily generalize to other networks.

The number of studies with highly analogous methods was not

sufficiently high to facilitate method-specific meta-analyses with

adequate statistical power.

The ALE-approach adopted here relies on sufficiently reli-

able studies reporting results in terms of whole brain coordi-

nates. Thus, not every study reporting relevant group compar-

ison results based on rs-fMRI data in MDD could be included
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for this methodological reason. In seed- or ROI-based analyses

(Margulies et al., 2010) the original seed coordinates less strictly

reflect the spatial location of potentially associated alterations

and could therefore not be included in this coordinate-based

analysis. This may limit the sensitivity for alterations in such

regions that have been regarded of special importance by the

authors of the original studies. The generalizability of results to

other samples is also limited by the heterogeneity of samples in

the studies included as these range from first-episode medica-

tion naïve subjects to treatment resistant patients after multiple

depressive episodes. However, the literature currently available

does not seem to facilitate a more specific meta-analysis regard-

ing these features yet. As stated above this meta-analysis primarily

pursued a methodological goal and therefore emphasized spatial

specificity.

All aforementioned aspects potentially reduce the overall sta-

tistical power of this meta-analysis. The number of so-called

“contributing” subject groups—actually the number of subjects

groups with coordinates within a resulting cluster is however not a

straightforward marker of statistical power in this setting as there

is a complex relationship with cluster size. Figures 1A,B jointly

depict statistically significant results and the distributions of raw

ALE values in both groups. This gives an impression of the hetero-

geneity of the original results in both groups. This heterogeneity

implies that alterations of FC or spontaneous brain activity are

not a highly robust finding across different samples and method-

ological choices. This has to be taken into account when trying

to make conclusions about actual disease mechanisms based on

these results. In contrast to an earlier meta-analysis of rs-fMRI

in MDD (Kühn and Gallinat, 2013), the main purpose of this

study was feature selection for conceivable diagnostic classifica-

tion by MVPA. To briefly reiterate, this means to identify a set of

brain areas that contain potentially discriminative information to

differentiate MDD patients from controls. Such feature selection

is intended to reduce data dimensionality and discard irrelevant

information in order to improve the diagnostic accuracy of clas-

sification approaches (Pereira et al., 2009; Mwangi et al., 2013;

Sundermann et al., 2014a). Aggregating prior knowledge from

the literature is a commonly applied feature selection step (Chu

et al., 2012; Schrouff et al., 2013). Type II errors in such a prepara-

tory meta-analysis can be much more problematic than limited

type I errors. Missing important brain areas discriminating sub-

jects with MDD from controls might reduce diagnostic accuracy.

Owing to the (however not unlimited) ability of classification

algorithms to identify and highlight most discriminative informa-

tion (Pereira et al., 2009), a limited amount of false positive results

in the definition of regions of interest or masks could potentially

be better compensated for. There is no established standard for

setting multiple comparison correction thresholds in ALE analy-

ses yet as it is highly dependent on the number of studies and data

distribution (Eickhoff et al., 2012). This issue is however much

more problematic in meta-analyses that are primarily intended to

elucidate disease mechanisms.

Multiple reports based on the same or similar data and over-

lapping samples are a generic problem in meta-analyses (Littell

et al., 2008). In this work a recent modification of the ALE

method (Turkeltaub et al., 2012) was adopted to minimize

within-group effects of potentially overlapping samples with-

out sacrificing valuable information. Despite that, it cannot be

fully excluded that there is residual overlap of samples in studies

considered independent here. However, we adopted a consensus

based approach involving three reviewers to reduce this potential

bias.

Even despite this issue the recent literature on rs-fMRI in MDD

displays a noticeable tendency toward particular Asian as well

as North American or European populations. As prevalence and

clinical symptomatology differ significantly between cultural con-

texts (Kirmayer, 2001; Halbreich et al., 2007; Juhasz et al., 2012;

Yeung and Chang, 2014) results reported in this meta-analysis

may not necessarily be applicable to other populations.

Due to the different informational content a quantitative com-

parison with RSNs and TFMs, such as a formal conjunction

analysis, was not feasible.

This meta-analysis focused on comparisons of depressive sub-

jects and healthy controls. However, it seems to be even more

desirable to identify differential neuroimaging biomarkers that

provide information about individual prognosis or guide thera-

peutic decisions (Mossner et al., 2007; Sundermann et al., 2014a).

Feature (pre-)selection for such efforts may be optimized specif-

ically in the future as soon as further rs-fMRI research in these

situations becomes available.

CONCLUSION

This meta-analysis of resting-state fMRI studies in depression has

identified a distributed pattern of brain regions with increased

or decreased spontaneous activity compared to healthy controls.

The most distinct finding is hyperactivity or hyperconnectiv-

ity presumably reflecting the interaction of midline structures

(particulary posterior DMN components associated with self-

referential processing and the subgenual ACC) with lateral frontal

areas related to externally-directed cognition. Alterations that

can be captured by rs-fMRI seem to differ from those identifi-

able with other neuroimaging modalities but show considerable

overlap. Results of this meta-analysis are provided as coordi-

nates and detailed maps in MNI space to be readily appli-

cable for ROI selection in further rs-fMRI studies in MDD

including feature selection for classification approaches with

diagnostic intention. By emphasizing spatial precision and sensi-

tivity this approach only provides limited information about the

exact functional meaning of altered spontaneous brain activity

in MDD.
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