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Abstract— The ever-increasing number of resource-constrained
Machine-Type Communication (MTC) devices is leading to the
critical challenge of fulfilling diverse communication require-
ments in dynamic and ultra-dense wireless environments. Among
different application scenarios that the upcoming 5G and beyond
cellular networks are expected to support, such as enhanced Mo-
bile Broadband (eMBB), massive Machine Type Communications
(mMTC) and Ultra-Reliable and Low Latency Communications
(URLLC), the mMTC brings the unique technical challenge of
supporting a huge number of MTC devices in cellular networks,
which is the main focus of this paper. The related challenges
include Quality of Service (QoS) provisioning, handling highly
dynamic and sporadic MTC traffic, huge signalling overhead and
Radio Access Network (RAN) congestion. In this regard, this
paper aims to identify and analyze the involved technical issues,
to review recent advances, to highlight potential solutions and to
propose new research directions. First, starting with an overview
of mMTC features and QoS provisioning issues, we present
the key enablers for mMTC in cellular networks. Along with
the highlights on the inefficiency of the legacy Random Access
(RA) procedure in the mMTC scenario, we then present the key
features and channel access mechanisms in the emerging cellular
IoT standards, namely, LTE-M and Narrowband IoT (NB-IoT).
Subsequently, we present a framework for the performance
analysis of transmission scheduling with the QoS support along
with the issues involved in short data packet transmission. Next,
we provide a detailed overview of the existing and emerging
solutions towards addressing RAN congestion problem, and then
identify potential advantages, challenges and use cases for the
applications of emerging Machine Learning (ML) techniques in
ultra-dense cellular networks. Out of several ML techniques, we
focus on the application of low-complexity Q-learning approach
in the mMTC scenario along with the recent advances towards
enhancing its learning performance and convergence. Finally,
we discuss some open research challenges and promising future
research directions.

Index Terms— Cellular IoT, mMTC, 5G and beyond wireless,
RAN congestion, Machine learning, Q-learning, LTE-M, NB-IoT.

I. INTRODUCTION

The convergence of emerging wireless communication tech-

nologies, ubiquitous wireless infrastructure and vertical In-

ternet of Things (IoT) applications such as industrial au-

tomation, connected cars and smart-grid is leading to an
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integrated enabling platform for future smart and connected

societies. This platform envisions to synergistically integrate

the ever-increasing number of smart devices (forecasted by

IHS Markit to be around 125 billion by 2030), intelligent

industry processes, people and societies together to enhance

the overall quality of our daily life [1]. Towards supporting

connected IoT devices, there are several recent developments

in the area of licensed cellular technologies such as Long

Term Evolution (LTE) for Machine-Type Communications

(LTE-M) and Narrow-Band IoT (NB-IoT), and unlicensed

technologies such as WiFi, ZigBee and LoRa [2]. Out of these,

cellular technologies are considered to be promising due to

their several advantages including Quality of Service (QoS)

provisioning, wide coverage area and tight coordination, and

therefore, cellular IoT is of the main focus in this paper.

A. Recent Developments in Cellular IoT

In recent years, cellular IoT has gained significant impor-

tance from academia, industries, regulators and standardization

bodies to enable the incorporation of IoT devices in the

existing cellular infrastructures. The ITU-R has categorized

the emerging diversified telecommunication services in the

upcoming 5G and beyond cellular networks into the following

three classes [3]: (i) enhanced Mobile Broadband (eMBB),(ii)

massive Machine Type Communications (mMTC), and (iii)

Ultra-Reliable and Low Latency Communications (URLLC).

Out of the above-mentioned categories, the eMBB com-

prises of high data rate services of 5G systems while the

mMTC deals with the scalable connectivity to a massive

number of devices in the order of 106 devices per square

kilometers with diverse QoS requirements [4]. On the other

hand, URLLC aims to provide robust connectivity with very

low latency. The main challenge in the mMTC case is to

support a huge number of devices with the limited radio

resources whereas the key challenge for the URLLC scenario

is to provide extremely high reliability in the order of 99.999%
within a very short duration in the order of 1 ms [5]. Among

these usage scenarios, the mMTC has to deal with various

non-conventional challenges including QoS provisioning, Ran-

dom Access Network (RAN) congestion, highly dynamic and

sporadic traffic, and large signalling overhead. To this end,

this paper focuses on the involved issues and the potential

enablers of the mMTC scenario with a particular emphasis on

the RAN congestion problem and emerging Machine Learning

(ML)-based solutions.
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In terms of ongoing standardization efforts, the main cellular

IoT standards introduced by the 3GPP are LTE-M and NB-

IoT. Out of these, LTE-M is intended for mid-range IoT

applications which can support voice and video services, while

NB-IoT systems target to provide very large coverage and

support for ultra-low cost devices [6]. Since MTC devices

usually do not require high channel throughput, the existing

LTE-M and NB-IoT standards allocate a small bandwidth for

IoT devices, i.e., LTE-M assigns 1.4 MHz bandwidth while the

NB-IoT allocates a significantly lower bandwidth of 180 kHz

[7]. Despite these recent developments, there are still several

challenges to be addressed while supporting MTC devices in

cellular systems.

B. Challenges in Cellular IoT

Although centralized cellular systems provide several ad-

vantages in terms of providing large coverage, tight time

synchronization and handover operations for mobile users,

they are sluggish in terms of handling low-end devices and

face several challenges in supporting a large number of MTC

devices with diverse QoS requirements. While incorporating

MTC devices in the existing LTE/LTE-A based cellular sys-

tems, cellular operators have to face a lot of challenges both

at the operational and planning levels. More specifically, there

arise various issues related to the MTC device deployment,

mMTC traffic, energy efficiency of low-cost MTC devices and

the network protocol aspects such as signalling overhead [8].

Also, sensing, processing and communications tasks in IoT-

edge networks comprising of the massive number of sensor

nodes and smart devices demand for highly energy-efficient

IoT architectures and techniques [9]. Furthermore, network

congestion may occur in different segments of LTE/LTE-A

based cellular network including RAN, core network and sig-

nalling network [10]. Out of these, RAN congestion problem is

crucial in ultra-dense cellular IoT networks due to the limited

available radio resources at the access-side and the massive

number of sporadic access attempts from heterogeneous MTC

devices.

Existing contention-based protocols are effective to sup-

port the conventional Human-Type Communications (HTC),

however, their performance significantly degrades in mMTC

scenarios due to infrequent and massive number of access

requests [11]. Also, due to limited available preambles in the

existing LTE-based systems, several MTC devices may need

to select the same preambles at the same time, resulting in

a significantly high probability of collision in the access net-

work. Furthermore, the number of transmission attempts from

the massive number of heterogeneous IoT devices could be

significantly large [12], and their activation periods and frame

sizes could be very different [13]. This sporadic and dynamic

nature of mMTC access attempts and data transmissions may

result in the peak traffic in both the access and traffic channels

well beyond the capacity of the IoT access network, thus

leading to the inevitable congestion in an IoT access network

[14]. Moreover, although data packets transmitted by IoT

devices are relatively short, very high signalling overhead per

data packet becomes another critical issue [8, 15]. To this end,

it is significantly important to investigate suitable transmission

scheduling and efficient signalling reduction techniques in

ultra-dense scenarios by utilizing emerging tools such as ML.

C. Need of Machine Learning and Associated Challenges in

IoT/mMTC Networks

Optimizing the operation of cellular networks in dynamic

wireless environments has been challenging over the gen-

erations since the number of configurable parameters of a

cellular network has been rapidly increasing from one cel-

lular generation to the next one [16, 17]. The widely-used

link adaptation techniques in the existing wireless systems,

which adapt different physical layer parameters including

transmission power and modulation and coding scheme based

on the reliability/link of a communication link, may not be

efficient in ultra-dense cellular IoT networks. This adaptation

is based on the prediction of reliability of a wireless link in

the form of some metrics such as Packet Error Rate (PER)

and this prediction process becomes extremely complex due

to the increasing trend of using multiple antennas, wideband

signals and a number of advanced signal processing algorithms

[18]. Furthermore, the prediction of PER with good accuracy

becomes difficult in practice by using the conventional signal

processing tools. Moreover, due to a significantly large number

of environmental parameters such as channel state information,

signal power, noise variance, non-Gaussian noise effect and

transceiver hardware impairments, it becomes complicated to

provide the near-optimal/optimal tuning of the transmission

parameters to achieve the efficient link adaptation [19]. The

severity of this problem greatly increases in ultra-dense net-

works due to the involvement of massive number of devices

and system parameters.

Understanding the context of the surrounding wireless en-

vironment significantly facilitates in developing context-aware

adaptive communication protocols and in taking optimized

decisions. In wireless networks, context information may refer

to various aspects including battery levels of devices, user

activities, geospatial information, link quality, environmental

parameters, network states and energy consumption [20]. Nev-

ertheless, handling self-configuration, self-optimization and

self-healing operations in the ultra-dense cellular networks be-

comes challenging since the networks need to observe dynamic

environmental variations, learn uncertainties, plan response

actions and configure the associated network parameters ef-

fectively. To this end, emerging ML-assisted techniques seem

promising since they can play significant roles in learning

the system variations/parameter uncertainties, classifying the

involved cases/issues, predicting the future results/challenges

and investigating potential solutions/actions [17]. Moreover,

the conventional link adaptation techniques are more localized

to a particular network and a geographical region, and do

not usually consider their impacts on the other systems.

However, future ultra-dense cellular networks will need to

handle mutual impact among the involved entities to maximize

the overall system performance. To this end, by utilizing the

emerging collaborative edge-cloud processing platform [21],

ML-assisted solutions can enable the utilization of global
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TABLE I

CLASSIFICATION OF SURVEY/OVERVIEW WORKS IN THE AREAS OF IOT/MMTC, ML AND UDNS.

Main domain Sub-topics Survey References Overview References
Enabling technologies/protocols, challenges and applications [1, 2, 6, 12, 49] [8, 15, 47, 48, 50, 51]
Random access schemes [52] [24, 53, 54]

IoT/mMTC Traffic characterization and issues [55]
Transmission scheduling [57] [56]
IoT big data analytics [58–60] [21]
QoS provisioning [61]
Intelligence in 5G networks [22] [17]

Machine Learning (ML) Learning in IoT/sensor networks [63] [45, 62]
Reinforcement learning [64, 65]

Ultra-Dense Networks (UDNs) [68, 69] [66, 67]

network knowledge at the edge-side, and also facilitate the

coordination among different distributed systems. In this di-

rection, the application of ML techniques to address various

issues in dynamic wireless environments has recently received

an important attention [17, 22] and in the context of MTC

environments, some existing works have already studied the

applications of different ML techniques in learning various

system parameters [11, 23–26, 43].

However, the direct application of conventional ML tech-

niques to complex and dynamic wireless IoT environments is

not straight-forward due to several underlying constraints such

as low computational capability of MTC devices, distributed

nature and heterogeneous QoS requirements of IoT devices,

and the distinct features of mMTC traffic as compared to

the conventional HTC traffic [45]. Furthermore, due to the

limited computed power and low memory size of IoT devices,

implementing sophisticated learning techniques in IoT devices

becomes challenging [46]. In this regard, this paper identifies

the implementation issues of the ML techniques in ultra-dense

IoT scenarios and provides an emphasis on computationally

simpler Q-learning based solutions.

D. Review of Related Overview/Survey Articles

In this subsection, we provide a brief review of the existing

survey and overview works in the main domains related to this

paper, namely, IoT/mMTC, ML and Ultra-Dense Networks

(UDNs). Also, we present the classification of the existing

references related to these domains into different sub-topics

which are listed in Table I.

Several existing papers have provided a survey and an

overview of enabling technologies, protocols, challenges and

applications of IoT/mMTC in different contexts [1, 2, 6, 8, 12,

15, 47–50]. Authors in [1] provided a comprehensive survey of

existing IoT protocols including application protocols, service

discovery protocols, infrastructure protocols, and discussed

some enabling technologies including cloud computing, edge

computing and big data analytics for IoT systems. Further-

more, the authors in [6] presented a detailed survey of MTC

systems including its features, requirements and the required

architectural enhancements in LTE/LTE-A based networks.

In the context of short packet transmissions in mMTC/IoT

environment, the contribution in [12] provided a review of the

recent advances in information theoretic principles governing

the transmissions of short data packets and discussed the

applications of these principles to different scenarios including

a two-way channel, a downlink broadcast channel and an

uplink Random Access Channel (RACH). Another article [2]

provided a comprehensive survey of three main low power

and long range M2M solutions, namely, Low Power Wide

Area Network (LPWAN), IEEE 802.11ah-based network and

cellular M2M including LTE-M and NB-IoT. Also, the survey

article [49] provided a comprehensive tutorial on the devel-

opment of MTC design over different releases of LTE and

recent user equipments belonging to the MTC and the NB-

IoT categories, called CAT-M and CAT-N, respectively.

In addition, the article [48] presented a review on var-

ious features defined by the 3GPP to support Machine-to-

Machine (M2M) communications in LTE-based cellular sys-

tems and discussed recent advances in different layers includ-

ing the physical layer improvements under the enhanced MTC

(eMTC), and MAC and higher layer enhancements brought by

the extended Discontinuous Reception (eDRX). Furthermore,

the article [15] highlighted the requirements and design chal-

lenges for mMTC systems and discussed various physical and

Medium Access Control (MAC) layer solutions for energy-

efficient and massive access. Also, another overview paper

[47] discussed the physical limitations of MTC devices while

operating in cellular networks, and then analyzed the impact

of these device limitations on the link performance and the

link budget design. Besides, the article [8] presented the new

requirements and challenges in large-scale MTC applications,

and discussed some enabling techniques including efficient

overhead signalling protocols, data aggregation and in-device

intelligent processing. Moreover, another overview article [50]

provided a review of various features of NB-IoT introduced

in LTE Release 14 including the increased positioning ac-

curacy, multi-casting, enhanced non-anchor carrier operation

and lower device power class, and the applicability of these

features for NB-IoT systems. Additionally, the authors in [51]

provided an overview on physical layer aspects of wireless IoT

in different application scenarios, and subsequently discussed

potential physical layer enabling technologies for wireless IoT

systems.

The design of effective Random Access (RA) schemes in the

mMTC environment is an important challenge due to massive

access requests and sporadic device transmissions from a huge

number of resource-constrained MTC devices. In this regard,

Furthermore, the article [52] presented a comprehensive survey

of various RA solutions attempting to enhance the RACH

operation of LTE/LTE-A based cellular networks, and carried

out the performance evaluation of LTE RACH from the energy

efficiency perspective.

Furthermore, authors in [24] provided an overview of dif-
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ferent RA overload control mechanisms to avoid the RAN

congestion caused by the random channel access from the

MTC devices. Moreover, the authors in [53] provided a review

of emerging LPWAN technologies both in the unlicensed

band (LoRa and SIGFOX) and in the licensed band (LTE-M

and NB-IoT) while considering three common fundamental

objectives of these access mechanisms, namely, high system

capacity, wide coverage and long battery life. In addition,

the article [54] provided an overview of the existing RA

solutions towards supporting MTC devices in LTE/LTE-A

based networks and these solutions are compared in terms

of five key metrics, namely, access success rate, access delay,

QoS guarantee, energy efficiency and the impact on the HTC.

The nature of MTC traffic is significantly different from the

HTC traffic as detailed later in Section II-D, however, existing

cellular networks are mainly optimized to support the HTC

traffic. Therefore, it is important to understand and characterize

MTC traffic to facilitate the incorporation of MTC devices in

cellular networks. To this end, the authors in [55] provided

a discussion on the traffic issues of MTC and the associated

congestion problems on the access channels, traffic channels

and core network, and presented a comprehensive review of

the existing solutions towards addressing these problems along

with their advantages and disadvantages.

One of the promising solutions to handle massive access

requests in the mMTC scenarios is to employ suitable trans-

mission scheduling techniques at the distributed MTC devices.

In this context, the article [57] provided a detailed survey

on the uplink scheduling techniques for M2M devices over

LTE/LTE-A based cellular networks by considering various

aspects of M2M communications such as scalability, energy

efficiency, QoS support and multi-hop connectivity. Further-

more, the authors in [56] identified limitations for signalling

and scheduling of M2M devices over the existing LTE-based

cellular infrastructures and discussed some of the existing

proposals.

Another important aspect in ultra-dense IoT networks is

how to handle the massive amount of data generated from

the resource-constrained sensors and MTC devices. In this

regard, authors in [58, 60] discussed the connection between

IoT and big data analytics, and provided a survey on the

existing research attempts in the domain of big IoT data

analytics. Also, authors in [60] provided an overview of the

existing network methodologies suitable for real-time IoT

data analytics along with the fundamentals of real-time IoT

analytics, software platforms and use cases, and highlighted

real-time IoT analytics issues related to network scalability,

network fault tolerance, spectral efficiency and network delay.

Another article [59] presented a panoramic survey on the

big data for cyber physical systems from various perspec-

tives including data collection, storage, processing, analytics,

energy-efficiency and cybersecurity. Moreover, the article [21]

presented basic features, challenges and enablers for big

data analytics in wireless IoT networks, and discussed the

importance of collaborative cloud-edge processing for live data

analytics along with the associated challenges and potential

enablers.

Besides, providing QoS support in ultra-dense IoT networks

is challenging due to massive connectivity, heterogeneity and

the resource constraints of the MTC devices as detailed later

in Section II. While analyzing from the energy efficiency

perspective, maximizing QoS usually becomes energy costly

and higher energy efficiency can be achieved by considering

satisfactory QoS levels. Motivated by this, authors in [61]

provided a discussion on the need for QoS satisfaction and

the methods to achieve QoS satisfaction efficiently. Also, game

theory-based fully distributed algorithms were presented to en-

hance the energy efficiency of IoT systems while maintaining

a desired QoS threshold.

In the direction of incorporating intelligence in 5G and

beyond networks, there have been some recent attempts in

applying Artificial Intelligence (AI)-based techniques to ad-

dress various issues in wireless communications. The AI

techniques can provide significant benefits in achieving ef-

ficient management, organization and optimization of various

system resources in emerging ultra-dense 5G Heterogeneous

Networks (HetNets). In this regard, the article [22] discussed

the state-of-the-art AI-based techniques for intelligent Het-

Net systems by considering the objective of achieving self-

configuration, self-optimization and self-healing. Furthermore,

authors in [17] recently introduced the fundamental concepts

of AI and its relation with 5G candidate technologies. Also,

the challenges and opportunities for the application of AI in

managing network resources in intelligent 5G networks were

discussed.

In the IoT/mMTC environment, learning techniques need to

consider the unique features such as heterogeneity, resource

constraints and QoS requirements. In this direction, the recent

article [63] provided an overview of existing context-aware

computing studies along with the learning and big data related

works in the direction of intelligent IoT systems. Furthermore,

the article [45] discussed the applicability of different types

of learning techniques in the IoT scenarios by taking their

learning performance, computational complexity and required

input information into account. Furthermore, authors in [62]

discussed various aspects of deep Reinforcement Learning

(RL) and its application in building cognitive smart cities while

considering the use cases in the areas of water consumption,

energy and agriculture.

In the context of RL techniques, a comprehensive survey

of multi-agent RL is provided in [64] by considering the

aspects of stability of the learning dynamics of the agents and

adaptation to the varying behavior of other learning agents.

Also, the recent article [65] provided a brief survey of the

existing deep RL algorithms along with the highlights on

current research areas and the associated challenges.

Additionally, there exist a few survey and overview papers

in the area of UDNs [66–69]. The survey article [68] high-

lighted the key issues in incorporating M2M communications

in the emerging UDNs and also identified different ways to

support M2M communications the UDNs from the perspective

of different protocol layers including physical, MAC, network

and application. Moreover, the authors in [69] provided a

comprehensive review on the recent advances and enabling

technologies for UDNs along with a discussion on the widely-

used performance metrics and modeling techniques. Besides,
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the authors in [66] provided an overview of the operation

of UDNs in the millimeter-wave band and presented wireless

self-backhauling across multiple hops to improve the deploy-

ment flexibility. In addition, the authors in [67] presented a

potential architecture for an ultra-dense heterogeneous network

and investigated the random access problem by considering

dense deployment of MTC devices.

E. Contributions

Although several existing survey/overview articles reviewed

in Section I-D have considered different aspects of mMTC

systems, ML techniques and UDNs, a comprehensive analysis

of the research issues involved in supporting the massive

number of MTC devices in ultra-dense cellular IoT networks

and a detailed review of the recent advances including ML-

assisted solutions attempting to address these challenges are

missing in the literature. As highlighted earlier in Section I-

B, there arise several challenges while incorporating MTC

devices in the existing LTE/LTE-A based cellular systems. The

main issues include QoS provisioning to heterogeneous MTC

devices, addressing random and dynamic MTC traffic, trans-

mission scheduling with QoS support and RAN congestion.

To this end, we highlight the main contributions of this survey

paper below.

1) The major challenges faced by the existing cellular

IoT networks in supporting the massive number of

MTC devices are identified and the potential enabling

technologies are highlighted along with the key features,

traffic characterization and the application scenarios of

the mMTC.

2) The inefficiency of the legacy LTE RA procedure in

supporting MTC devices is pointed out and its adaptation

for mMTC systems is presented along with the main

features and channel access mechanisms of emerging

cellular IoT standards (LTE-M and NB-IoT).

3) A mathematical framework for the performance analysis

of transmission scheduling with the QoS support in an

mMTC system is presented, and several limitations and

the design aspects of short data packet transmission are

identified.

4) Existing solutions towards addressing the RAN conges-

tion problem in cellular IoT networks are reviewed along

with the highlights on three emerging techniques.

5) The potential benefits, challenges and promising use

case scenarios for the applications of emerging ML

techniques in ultra-dense cellular networks are identified

and the existing ML techniques are reviewed by broadly

categorizing them into supervised, unsupervised and RL

techniques.

6) A framework for the application of low-complexity Q-

learning in addressing the RACH congestion problem

is presented along with different exploration strategies,

and some performance enhancement techniques are sug-

gested in multi-agent and dynamic wireless environ-

ments.

7) Various research issues are identified and some interest-

ing future directions are presented to stimulate future

research activities in the related domains.

F. Paper Organization

The remainder of this paper is organized as follows: Section

II identifies the main features, application areas and the

potential enablers for mMTC in cellular networks along with

a discussion on various issues associated with QoS provi-

sioning in ultra-dense IoT networks. Section III highlights

the inefficiency of the conventional LTE RA procedure in

mMTC systems along with the basics of RA procedure in

legacy LTE systems, and then present key features and channel

access mechanisms in two emerging cellular IoT standards,

namely, LTE-M and NB-IoT. Also, the characterization of

MTC traffic is presented along with the 3GPP-based MTC

traffic models and related works. Subsequently, Section IV

provides a mathematical framework for the performance anal-

ysis of transmission scheduling with QoS support in the

mMTC systems, and also present various design aspects and

limitations of short data packet transmission in the mMTC

environment. Section V presents a review of the existing so-

lutions for RAN congestion problem in cellular IoT networks

along with some emerging solutions while Section VI presents

the advantages and challenges of ML techniques in wireless

IoT systems and also provides an overview of the existing

ML techniques. Also, it provides a detailed explanation on

the Q-learning mechanism from the perspective of addressing

RAN congestion minimization along with some Q-learning

performance enhancement techniques. Finally, Section VII

provides some research challenges and future directions, and

Section VIII concludes this paper. To improve the flow of this

paper, we provide the structure of the paper in Fig. 1 and the

definitions of acronyms in Table II.

II. QOS PROVISIONING IN ULTRA-DENSE IOT NETWORKS

In this section, we first discuss various aspects related to

QoS provisioning in ultra-dense IoT networks in the general

context, and then provide specific details related to cellular IoT

scenarios. The International Mobile Telecommunication (IMT)

vision for 2020 and beyond envisions to provide the connec-

tion density target of about 106 devices per square kilometers

[3]. However, the available radio resources and communication

infrastructures are limited and there is a significant amount

of cost involved while acquiring new radio resources such as

spectrum and building new infrastructures. Because of this

issue, existing communication networks need to be made as

efficient as possible to support the massive number of devices,

thus leading to the concept of ultra-dense IoT networks. Due

to diverse types of emerging IoT services and heterogeneous

capabilities of MTC devices, QoS provisioning in ultra-dense

IoT networks is a crucial challenge.

The overall network performance and QoS of emerging

Internet protocol-based networks significantly depend on the

effective management of instantaneous traffic flowing in the

network. In wireless IoT networks, the instantaneous aggre-

gated traffic at the IoT gateway can be bursty and may greatly

exceed the average aggregated traffic since it aggregates pe-

riodic transmissions from a large number of sensor nodes

with different periods and frame sizes [13]. Due to this,

there may occur congestion during possible bursty intervals
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Fig. 1. Structure of the Paper

and much higher backhaul link (from aggregators to the

cloud) bandwidth is needed than that required for the non-

bursty traffic. In this direction, one of the important research

challenges is how to make the aggregated traffic as close to

the average traffic as possible.

In contrast to the conventional HTC traffic, there are sev-

eral unique features of MTC traffic [70] which need to be

considered while devising transmission scheduling and traffic

management strategies for wireless IoT networks. The amount

of small packets in IoT-type networks could become signifi-

cantly large due to the resource-constrained sensor devices and

the transmission of short packets from mMTC devices [12]. As

compared to the dominant downlink traffic in the conventional

cellular systems, uplink to downlink ratio for the MTC traffic

is much higher. Furthermore, MTC devices usually have

limited power budget and the MTC traffic consists of packets

with the short payload length. Also, MTC traffic may arrive in

the batch-mode due to high density of devices and correlated

transmission [71]. Moreover, the standard Poisson process may

not be suitable for modeling the MTC traffic since the MTC

transmissions usually exhibit spatial and temporal synchro-

nism. In addition, in contrast to the conventional voice traffic

which has a constant sampling rate for a given codec, MTC

traffic usually comprises of different packet sizes and inter-

arrival patterns [72]. Different MTC applications have distinct

characteristics and service requirements such as priority and

delay constraints, thus leading to the need of separate traffic

modelling and scheduling schemes to incorporate mMTC

devices in the current LTE-based cellular networks.

In addition, MTC devices have completely different QoS

requirements than that of the conventional HTC devices. MTC

nodes are usually constrained in terms of battery power and the

employed protocols need to be as energy-efficient as possible.

Although the previous research in the area of wireless sensor

network protocols mainly focused on monitoring applications

based on low-rate delay-tolerant data collection, the current

IoT-based research has moved to several new applications

such as eHealthCare, industrial automation, military and smart

home. These applications have different QoS requirements in

terms of delay, throughput, priority, reliability and different
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TABLE II

DEFINITIONS OF ACRONYMS

Acronyms Definitions Acronyms Definitions
ACB Access Class Barring NPSS Narrowband Primary Synchronization Signal
ACK Acknowledgement NSSS Narrowband Secondary Synchronization Signal
AI Artificial Intelligence NPBCH Narrowband Physical Broadcast Channel
BS Base Station NRS Narrowband Reference Signal
CE Coverage Enhancement NPDCCH Narrowband Physical Downlink Control Channel
CRA Coded Random Access NPDSCH Narrowband Physical Downlink Shared Channel
CS Compressive Sensing NOMA Non-Orthogonal Multiple Access
CIoT Cellular IoT OFDM Orthogonal Frequency-Division Multiplexing
DCI Downlink Control Information OFDMA Orthogonal Frequency-Division Multiple Access
DNC Deterministic Network Calculus PSK Phase-Shift Keying
DQCA Distributed Queuing Collision Avoidance PDU Periodic Update
eDRX Extended Discontinuous Reception PDCCH Physical Downlink Control Channel
EPDCCH Enhanced PDCCH PRACH Physical RACH
eMBB Enhanced Mobile Broadband PUSCH Physical Uplink Shared Channel
ED Event Driven RB Resource Block
FDD Frequency Division Duplex RRC Radio Resource Control
HARQ Hybrid Automatic Repeat Request RAN Random Access Network
HetNet Heterogeneous Network RA Random Access
HTC Human-Type Communications RACH Random Access Channel
H2H Human to Human RAR Random Access Response
IoT Internet of Things RAW Random Access Window
LSA Licensed Shared Access RL Reinforcement Learning
LTE Long Term Evolution SAS Spectrum Access System
LTE-A LTE-Advanced SCMA Sparse Code Multiple Access
MAC Medium Access Control SC-FDMA Single Carrier Frequency Division Multiple Access
MCL Maximum Coupling Loss SDN Software Defined Networking
MDP Markov Decision Process SL Sequential Learning
MTC Machine-Type Communications TA Timing Alignment
mMTC Massive MTC TDD Time Division Duplex
M2M Machine-to-Machine TTI Transmission Time Interval
ML Machine Learning UE User Equipment
MPRACH MTC PRACH UDN Ultra-Dense Network
MPDCCH MTC PDCCH URLLC Ultra-Reliable and Low-latency Communications
MUD Multi-User Detection UFMC Universal Filtered Multi-Carrier
NB-IoT Narrowband IoT QoS Quality of Service

traffic patterns such as event-driven, periodic and streaming

[73]. To this end, it is crucial to consider these distinct QoS

features while designing transmission and access techniques

for the MTC devices.

In the above context, several existing works deal with

the maximization of QoS while attempting to minimize the

energy consumption. Several techniques such as sleep mode

optimization, power control mechanisms, adaptation of the

data rates and learning-assisted algorithms have been em-

ployed in various settings [61]. However, the objective of QoS

maximization may lead to unnecessary energy consumption

and achieving satisfactory levels of QoS may be sufficient to

balance other performance metrics of systems such as energy

efficiency. In contrast to the existing works related to the

maximization of QoS, the objective of achieving satisfactory

QoS levels can provide several benefits as highlighted in Table

III [61].

Moreover, in time-critical MTC applications, several re-

quirements in terms of low end-to-end delay, deterministic

delay, bounds on systematic delay variations and linear delay-

payload (packet size) dependence need to be considered [74].

The packet arrival period in the HTC systems such as multi-

media ranges from 10 ms to 40 ms whereas this may range

from about 10 ms to several minutes in MTC systems [75].

In addition, some applications such as data reporting in the

smart grid have deterministic (hard) timing constraints and

serious consequences may occur in the case of violence of

these constraints. In this regard, multiplexing massive accesses

with these diverse QoS characteristics effectively is a crucial

challenge in ultra-dense IoT networks.

In the following subsections, we describe several aspects

of MTC systems, highlight existing challenges for QoS provi-

sioning in ultra-dense cellular IoT networks, present potential

enablers for the incorporation of MTC devices in cellular IoT

systems, and then present the characterization and modeling

of the MTC traffic.

A. Machine-Type Communications

MTC has got a wide variety of application areas ranging

from industrial automation and control to environmental mon-

itoring towards building an information ambient society. The

main applications of the MTC are listed below [6].

1) Industrial automation and control: This class includes

several scenarios such as production on demand, quality

control, automatic interactions among machines, opti-

mization of packaging, logistics and supply chain, and

inventory tracking.

2) Intelligent transportation: Under this category, MTC

finds applications in different scenarios such as logistic

services, M2M assisted driving, fleet management, e-

ticketing and passenger services, smart parking and

smart car counting.

3) Smart-grid: This category include various application

scenarios including automatic meter reading, power de-

mand management, smart electricity distribution and

patrolling, online monitoring of transmission lines and

transmission tower protection [76].

4) Smart environment: Several application scenarios in-

cluding smart homes/offices/shops, smart lighting, smart
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TABLE III

ADVANTAGES OF ACHIEVING DESIRED QOS LEVELS INSTEAD OF MAXIMIZING QOS

Advantages Related Causes
1. Reduction of energy consumption 1. Extraneous energy will be wasted while maximizing QoS.
2. Better compliance with the fixed data rate services 2. No need to maximize data rates for fixed data rate services

such as video surveillance and online gaming
3. A good perceived performance at the users’ end 3. End-users are usually insensitive to small changes.

in QoS levels, allowing the room for energy saving
4. Better support for emerging application-oriented networks 4. Desired QoS level is required only within a specific coverage area.
5. The set of feasible regions of optimization solutions are enlarged. 5. Relaxation of global optimum for the QoS maximization makes

the mathematical problems less restrictive.
6. Adaptive resource allocation problem leads to the cost-effective solutions. 6. No need to waste additional radio resources by considering

the conventional optimization assumptions such as full-buffer traffic.

industrial plants, smart water supply, environmental

monitoring and green environment can be enabled with

MTC.

5) Security and public safety: Several applications such

as remote surveillance, personal tracking and public

infrastructure protection can be considered under this

category.

6) e-Health: In this application area, various scenarios exist

such as tracking or monitoring a patient or a segment of

an organ in a patient, identification and authentication

of patients, diagnosing patient conditions and providing

real-time information on patients health related data to

the remote monitoring center.

Since MTC applications are significantly different from

their HTC counterparts, they have distinct QoS requirements

with different service features such as time-controlled, time-

tolerant, small data transmission, low or no mobility, group-

based connection, priority-based transmissions and low power

consumption [77]. In this regard, the 3GPP has identified

the following 14 features for M2M communications1: (i) low

mobility, (ii) time-controlled, (iii) time-tolerant, (iv) packet

switched only, (v) mobile originated only, (vi) small data

transmission, (vii) infrequent mobile terminated, (viii) M2M

monitoring, (ix) priority alarm message, (x) secure connection,

(xi) location specific trigger, (xii) network-provided destina-

tion for uplink, (xiii) infrequent transmission, and (xiv) group-

based policing and addressing.

Furthermore, the 3GPP has specified various general re-

quirements for the MTC systems [6, 10] in order to effectively

operate MTC devices and also to establish successful linkage

between an MTC subscriber and the network operator. Some

of the main technical requirements include: (i) providing a

control mechanism to the network operators for the addi-

tion/removal/restriction of individual MTC device features, (ii)

exploring a peak reduction mechanism for data and signaling

traffic when a number of MTC devices concurrently attempt

for their data transmissions, (iii) yielding a mechanism to

restrict downlink data traffic and also limiting access towards

a specific access point name in case of network overload, and

(iv) investigating techniques to maintain efficient connectivity

for a large number of MTC devices and to lower the corre-

sponding energy consumption.

In comparison to the conventional HTC, the emerging MTC

has the features of infrequent transmissions and low data

rates. Also, the size of signalling data packets can be much

1For the description of these features, interested readers may refer to [10].

larger than the size of user data packets in M2M applications

[56]. Furthermore, although M2M devices need to transmit

small amounts of data, communication infrastructure may get

congested if a huge number of M2M devices attempt to access

the network near-simultaneously [78]. Hence, the performance

of the existing cellular standards has to be evaluated for this

emerging type of traffic.

In addition, the 3GPP has identified the following per-

formance objectives to support mMTC in the emerging air

interface 5G New Radio (NR) [5, 79].

1) Very high connection density of about 106 devices per

km2 in an urban environment

2) Ultra-low complexity and low-cost IoT devices/networks

3) Battery life in extreme coverage beyond 10 years with

the battery life evaluated at 164 dB MCL, and a battery

capacity of 5 Wh.

4) Maximum Coupling Loss (MCL) of about 164dB for a

data rate of 160 bps at the application layer

5) Latency of about 10 seconds or less on the uplink to

deliver a 20-byte application layer packet (measured at

164dB MCL)

B. Challenges for QoS Provisioning in Ultra-Dense IoT Net-

works

There arise several challenges in incorporating MTC devices

in LTE/LTE-A based cellular networks. First, the massive

number of devices try to access the scarce network resources

in a short period of time and there may arise the need of either

utilizing the available resources efficiently or allocating addi-

tional bandwidth to incorporate these devices [80]. Secondly,

there are significant differences in the transceiver properties

and the applications of MTC devices from the existing LTE-

based user terminals [47]. In most of the applications, MTC

devices consume low power and have intermittent low rate

transmissions. Furthermore, due to the need of cost-effective

deployment of massive devices, MTC devices have degraded

transceiver performance and reduced coverage as compared

to the LTE user terminals. Besides, their effects in the com-

munication performance of the existing LTE-A users need to

be monitored and mitigated carefully. In this regard, one of

the important research questions is how to provide concurrent

access to a large number of MTC devices without degrading

the QoS of the existing cellular users.

Since a network interface is fully utilized during the peak

time, the devices may not be able to send or receive data and it
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Fig. 2. Challenges of existing cellular networks to support emerging massive machine-type communications.

is crucial to optimize the peak traffic in the emerging content-

centric wireless networks [81]. Furthermore, as highlighted

earlier in Section II-A, the emerging MTC applications are

quite different from the traditional HTC applications due to

unique features such as group-based communications, time-

controlled, small data transmissions, and low or no mobility

[77, 82]. These distinct features of MTC applications result

in diverse QoS requirements and it is important to take

these QoS requirements into account while devising multiple

access techniques for future cellular IoT networks. The main

performance indicators of an mMTC system are the number

of concurrent connections to be supported, energy efficiency

and network coverage [83].

Existing cellular networks face the following major prob-

lems in supporting MTC devices [10, 84, 85]. In Figure 2, we

present the pictorial representation of these issues in the form

of device-level and network-level challenges.

1) Highly dynamic traffic and random access time:

The data traffic arisen from the MTC devices is highly

dynamic in nature as compared to more predictable HTC

traffic. Furthermore, there arises a need to handle the

mixed traffic models with the event-driven and periodic

traffics. In addition, the existing contention-based radio

access schemes will need to coordinate random trans-

missions from the massive number of devices [14].

2) Ultra-low device complexity: Due to the requirement

of cheap MTC devices for mass deployment, the devices

are constrained in terms of computational and memory

resources, thus providing the limited performance.

3) Low battery lifetime: Because of the cost and space

constraints, MTC devices are limited in their battery

capacity. Furthermore, due to distributed nature of IoT

devices and the involved cost-issues in replacing the bat-

teries, the battery lifetime of MTC devices is expected

to be more than 10 years with the battery capacity of

5 Wh, thus leading to the need of investigating power

saving methods for ultra-dense cellular IoT networks.

4) Small data packet transmissions: In addition to the

huge signalling burden associated with a large number

of small packet transmissions from MTC devices, there

arise other challenges such as the requirement of higher

resource granularity and efficient channel coding for

short block lengths in contrast to the channel coding

schemes designed for long packets in the conventional

cellular systems [15].

5) Diverse QoS requirements: MTC devices have diverse

QoS requirements in terms of data rate and latency

requirements and existing cellular technologies need to

adapted to handle these features.

6) Network congestion: As highlighted earlier in Section

I-B, the incorporation of massive MTC devices in the

existing LTE/LTE-based cellular network may result in

congestion in different segments of the network includ-

ing RAN, the core network and the signalling network.

7) Highly scalable network: Because of the need to sup-

port a significantly large number of connected devices

ranging from a factor of 10× to 100× as compared to

the cellular devices, it is crucial to maintain the system

performance with the increase in the connection density.

8) Need for improving network coverage: There arises

significant shrinkage in the link budget due to the

reduced capability of MTC devices. In order to increase
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the coverage to the areas where MTC devices are

deployed (such as deep inside a building), LTE release

13 targeted the coverage extension of at least 15 dB for

the MTC devices. This coverage improvement enables

the support of the devices in the locations where the

conventional cellular networks face difficulty.

9) Distributed radio, computing and caching resources:

With the recent trend of migrating communications

networks from the connection-oriented to the content-

oriented nature, it is important to investigate syner-

gies among communications, computing and caching

resources which are distributed across different devices

in ultra-dense IoT networks [21]. However, the con-

ventional cellular networks based on the centralized

management are sluggish in terms of network resource

management and they need to evolve to deal with the

management of distributed resources.

Towards modeling and analysis of the QoS of wireless

networks, one of the important mathematical tools is Deter-

ministic Network Calculus (DNC), which is useful to calculate

delay parameters such as delay bound, backlog bound and

other service quality parameters by utilizing the traffic/packet

arrival and service curves [86]. This DNC tool enables the

determined boundary analysis for the system performance and

offers a strict service guarantee by considering the worst-

case scenarios. The main QoS metrics that can be evaluated

include delay bound and backlog bound. The metric delay

bound represents the maximum between arrival and service

curves while the backlog bound denotes the maximum vertical

deviation between these two curves.

In addition to providing high capacity to the fairly limited

number of traditional user equipments to support high data

rate services such as video streaming, the air interface of 5G

cellular network has to provide connectivity to the massive

number of concurrent transmissions coming from the MTC

devices [87]. Also, the exchange of signalling information

needs to be minimized both in the uplink and downlink due

to a large number of MTC devices to be supported with

the limited available radio resources. Furthermore, the RA

procedure at the device-side should be simplified as much as

possible by shifting the burden to the network side/eNodeB

due to the resource constrained and low-cost nature of MTC

devices.

Moreover, the conventional centralized approaches for con-

gestion management in cellular networks are not scalable

as desired by the MTC systems and also the distributed

scheduling approaches can not easily acquire the knowledge

about the network load and requirements of other applications

[88]. Furthermore, the conventional congestion management

process is mostly a reactive process instead of the proactive

one needed for MTC devices. By deferring and shaping

transmissions at the source itself in a network and being aware

of the underlying application properties, better congestion

management can be obtained for MTC devices [88].

Authors in [8] highlighted the difference between HTC over

cellular and MTC over cellular in terms of various parameters

such as uplink, downlink, subscriber load, device types and

requirements in terms of delay, energy, signalling and cellular
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Fig. 3. Potential enabling techniques for mMTC in cellular IoT networks.

architecture. Furthermore, the signalling overhead in the uplink

and downlink MTC links are analyzed considering the SMS-

type raw data size (< 248 bytes) and email-type raw data

size for smart metering and vehicular sensing applications

via experimental measurements. It has been shown that the

signalling overhead for the downlink control messages is

considerably higher than for the uplink case, and higher

signalling overhead occurs in vehicular applications than in

the smart metering applications.

C. Potential Enablers for mMTC in Cellular Networks

Due to some distinct transitions while going from the

conventional HTC platform to the emerging mMTC such as

from the larger packet sizes to the smaller packet sizes, from

the downlink-focused communication scenario to the uplink

dominant, and from high data rate to low data rate transmis-

sions from MTC devices, mMTC systems have new design

requirements than those of the conventional HTC systems.

To this end, it is important to look into the mMTC network

design problem from a different perspective than the tradition

approach followed for the HTC systems.

In Figure 3, we present the main enabling techniques being

considered to facilitate the incorporation of mMTC in the

upcoming cellular IoT networks. In the following, we briefly

describe these enabling techniques.

1) Flexible waveform design: The design of flexible wave-

forms can enable the in-band mMTC channels within

the LTE carrier [15]. In this regard, the traditional

waveforms designed for HTC communications need to

be adapted to support mMTC while considering various

aspects such as end-to-end latency, robustness against

time and synchronization errors, out-of-band radiations,

spectral efficiency and transceiver complexity [89].
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2) Dynamic resource allocation techniques: The 3GPP

suggested to allocate RACH resources dynamically to

address the RAN congestion problem [90]. For exam-

ple, by deciding the number of preambles adaptively

without knowing the number of devices and access

probability, the RACH throughput can be maximized

[91]. Furthermore, since this approach can dynamically

change the size of the RACH resource pool and other re-

sources, the total data collection time from the resource-

constrained MTC devices can be minimized in delay-

sensitive/emergency applications [92]. The two main

issues for employing this process are the requirement

of estimating the number of contending devices in an

RA slot and determining the preamble pool size.

3) Advanced spectrum sharing methods: Although both

the licensed and unlicensed bands can be exploited

for mMTC applications, lack of QoS guarantees in the

unlicensed band becomes highly problematic [4]. In this

regard, emerging advanced spectrum sharing techniques

such as Licensed Shared Access (LSA) and Spectrum

Access System (SAS) [93] could be potential solutions

for mMTC applications since they can provide better

interference characterization.

4) Clustering and data aggregation schemes: By group-

ing MTC devices into smaller clusters based on some

suitable criteria such as geographical locations or QoS

requirements and then aggregating the individual device

data at the MTC gateway/aggregator, the RAN conges-

tion can be significantly minimized [83]. Furthermore,

the investigation of energy-efficient clustering schemes

facilitates the deployment of low-power MTC devices

[83].

5) Software Defined Networking (SDN) and virtualiza-

tion techniques: Based on the functionalities of MTC

devices and their QoS requirements, a physical cellu-

lar network can be virtualized into different networks

such as industrial, vehicular, smart grids and emergency

networks, with all these networks sharing the same set

of radio, computing and networking resources [94]. The

dynamic sharing of resources and the reconfiguration

of network elements among thus virtualized networks

can be carried out by utlizing an SDN paradigm which

decouples the control plane from the data plane and

incorporates the capability of programming in the IoT

network.

6) Advanced RA schemes: Several emerging RA schemes

such as Non-Orthogonal Multiple Access (NOMA),

Sparse Code Multiple Access (SCMA), Coded Random

Access (CRA) [15] and distributed queueing based ac-

cess protocol [95] can be considered as the promising

enablers for the mMTC in cellular networks.

7) Constant envelope coded-modulation schemes: Due

to space/cost constraints, MTC devices need to use low-

cost amplifiers which are prone to non-linearities and

hardware imperfections. In this scenario, constant en-

velope signals can enable the non-linear power-efficient

and cost-effective operation at the MTC devices. There-

fore, constant envelope coded modulation schemes such

as Continuous Phase Modulation (CPM) can be consid-

ered as enablers for the mMTC [15].

8) Compressed Sensing (CS)-based Multi-User Detec-

tion (MUD): The amount of collisions in the IoT

access network can be further minimized by employing

advanced interference cancellation receivers. As an ex-

ample, the CS-MUD can enhance the resource efficiency

and serve higher number of users by using the combi-

nation of non-orthogonal RA and joint detection of user

data and activity [15]. In this regard, the combination of

advanced MAC protocols with the CS-based MUD can

be utilized by exploiting the sparse joint activity in the

mMTC environment [96].

9) Low signalling overhead MAC protocols: One of

the main technical challenges in an mMTC system is

to reduce the amount of signalling overhead generated

by the MTC devices and the design of low-signalling

overhead protocols will facilitate the deployment of

MTC devices in cellular networks [8].

10) Advanced transmission scheduling techniques: The

transmission scheduling techniques designed for cellu-

lar IoT systems should be able to accommodate the

MTC devices with heterogeneous QoS requirements in

addition to the legacy cellular users. In this regard,

advanced scheduling techniques such as latency-aware

scheduling [97], fast uplink grant [98] and learning-

assisted scheduling [11] seem promising to schedule the

sporadic transmissions from a huge number of MTC

devices over limited RACH resources.

11) Collaborative cloud-edge processing: Cloud comput-

ing platform has very high computational and storage

capacity, and has a global view of the network but

is not suitable for delay sensitive applications. On the

other hand, edge-computing is suitable for applications

demanding low delay and high QoS but has lower

computational resources and storage capacity. In this

regard, collaborative processing between these two plat-

forms will be a promising approach to address various

issues including latency minimization [99], dynamic

spectrum sharing [100], peak traffic management and

data offloading in ultra-dense IoT networks [21].

12) Energy-efficient techniques for green IoT: Due to

high energy consumption caused by the massive number

of IoT nodes and resource-constrained nature of IoT

devices, it is crucial to optimize sensing, processing

and communications operations to enhance the overall

energy efficiency of cellular IoT networks. In this regard,

a hierarchial framework comprising of sensing layer,

gateway layer and control layer could be a promising

energy-efficient architecture since it can balance the

traffic load as well as elongate the system lifetime by

utilizing energy-efficient mechanisms such as device

sleep mode, sleep scheduling, and wake-up protocol [9].

Also, several base station switch-off strategies including

random, distance-aware, load-aware and auction-based

can be employed to balance the energy related perfor-

mance trade-offs such as a trade-off between energy

efficiency and data throughput [102]. Furthermore, vari-
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ous green tag, sensing and internet technologies as well

as energy-efficient scheduling, offloading and energy

harvesting mechanisms can be utilized towards enabling

green IoT networks [103]. In addition, the concept of

energy internet [104] towards realizing the optimal usage

of highly scalable and distributed energy sources seems

promising to address the issues of energy shortage and

greenhouse gas emissions in emerging IoT network.

The ML-assisted techniques, detailed later in Section VI,

can address various issues related to self-configuration, self-

optimization and self-healing in emerging wireless networks

and seem promising in facilitating the implementation of the

most of the technology enablers listed in Fig. 3 towards

enhancing the performance of mMTC systems. However, the

ML techniques should be as simple as possible to be applied

in the MTC devices and the investigation of low-complexity

adaptive ML techniques is one of the emerging future research

directions as highlighted later in Section VII.

D. Traffic Characterization and Modeling for mMTC Systems

The characterization and modeling of mMTC traffic is cru-

cial to support MTC devices in the existing cellular networks

due to various reasons specified in the following. The incorpo-

ration of MTC devices in cellular networks may cause harmful

interference to the existing cellular users and may significantly

degrade the system performance of LTE/LTE-A based cellular

systems. To this end, it is important to analyze the impact of

MTC traffic on the existing cellular users by utilizing suitable

interference modeling in realistic wireless environments [101].

Furthermore, suitable interference mitigation, resource alloca-

tion and resource sharing schemes need to be investigated to

ensure the sufficient protection of the cellular users against

harmful interference caused by the massive number of MTC

devices and by utilizing the given MTC traffic models, these

schemes can be designed in an efficient manner. Moreover,

since MTC traffic is uplink dominant and the rigid QoS

support framework of LTE designed for voice and data services

may not be capable of addressing specific QoS requirements of

MTC traffic in terms of latency, jitter and packet loss, suitable

transmission scheduling techniques need to be investigated to

support a large number of MTC devices while fulfilling their

specific QoS requirements. Besides, to investigate suitable

traffic management schemes such as peak traffic reduction

in wireless IoT networks, it is essential to understand and

characterize the traffic models applicable for a particular IoT

application [14]. In addition, the traffic characteristics depend

on the application scenarios and the MTC devices usually have

heterogeneous traffic patterns in terms of their amplitudes,

starting times and activation periods [73].

Existing traffic models in telecommunication systems can be

categorized into: (i) source traffic models, mainly applicable

for video, data and voice transmissions, and (ii) aggregated

traffic model applicable for Internet, high-speed links and

backbone networks [105]. Since an IoT network consists of

a large number of sensors or MTC devices which are usually

controlled by a gateway/server, IoT traffic at the gateway

usually fits into the aggregated traffic model. In this regard,
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Fig. 4. Access intensity for two 3GPP based MTC traffic models.

the 3GPP has defined the following two types of aggregated

MTC traffic models [90].

1) Model 1: Uniform distribution over a duration T in

which MTC devices access the network uniformly over a

period of time, i.e., in a non-synchronized manner. This

model does not take account of the correlation between

the transmissions of the devices.

2) Model 2: Beta distribution over T in which a large

amount of MTC devices access the network in a highly

synchronized manner. This model generates correlated

traffic in a specific time interval.

For the first model, the following function can be consid-

ered.

fi(t) =

{

Pi, 0 ≤ t ≤ τi,
0, τi ≤ t ≤ Ti,

(1)

where Pi denotes the amplitude of the traffic profile for

the ith device and τi/Ti represents the corresponding duty

cycle. Similarly, for the second model, the probability density

function of the Beta distribution, is given by [90]

p(t, α, β) =
1

B(α, β)
t(α−1)(1− t)(β−1), (2)

where t denotes a single realization over the time axis, α >
0, β > 0 are the scale parameters, and B(α, β) denotes the

Beta function, which is a normalization constant to ensure

that the total probability equals to 1.

Considering M number of MTC devices and their activation

periods between t = 0 and t = T , the RA intensity for the

mth device is given by the probability distributions either in

(1) or (2) depending on the employed model. The number of

arrivals in the ith access slot is given by [90]

Iaccess(i) = M

∫ ti+1

ti

p(t)dt, (3)

where ti denotes the time of the ith access opportunity and

p(t) given by (1) or (2). The distribution of access attempts

should be limited over a certain observation period T in such

way that
∫ T

0
p(t)dt = 1. Figure 4 illustrates the RA intensity

of two 3GPP-based MTC traffic models with T = 1.

Although aggregated traffic modeling is suitable for scenar-

ios involving a large number of devices and is less complex to
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realize, it is less precise than the source traffic modeling since

it is not able to capture the real traffic features at the source

level [70, 105]. On the other hand, source traffic modeling

treats the traffic for every devices separately, and hence is more

precise. However, modeling source traffic becomes complex

for a large number of source devices. Therefore, it is crucial

to investigate suitable traffic models which can combine the

benefits of both the source and aggregate traffic models. In this

regard, coupled Markov modulated Poisson processes [105]

seems a promising approach, which has higher accuracy than

the aggregated modeling and has lower complexity than the

conventional source traffic modeling.

Considering a variety of applications, the MTC traffic can

be categorized into the following three traffic patterns: (i)

Periodic Update (PU), (ii) Event-Driven (ED) and (iii) payload

exchange [106]. The PU traffic has a regular pattern, constant

data size and is non-real time type (example: smart meter

reading) while the ED traffic has a variable pattern, varying

data size and is a real time traffic (example: health emergency

alarming). On the other hand, payload exchange traffic follows

either of the above traffic types and it may be of constant size

or variable size, real time or non-real time depending on the

application scenario. In addition, there exist three main types

of traffic shaping policies [107]: (i) traffic shaping for bulk

applications where each flow is assigned a fixed bandwidth,

(ii) traffic shaping for the aggregate traffic, and (iii) time-based

traffic shaping which is applied only at the peak-time to reduce

congestion and cost.

The uplink traffic generated from the sensors in most of

MTC applications is heterogeneous and can be classified into

[108]: (i) non real-time with no task completion deadline, (ii)

soft real-time with the decreased utility if the deadline not

met and (iii) firm real-time having zero utility if the deadline

is not met. As an example, industrial M2M traffic has very low

latency requirements in the order of a few milliseconds [109].

In general, the PU traffic is periodic with tight service deadline

while the ED traffic is random with all three traffic categories,

i.e., non real-time, firm or soft real-time. From the scheduler

designer perspective, it is crucial to maximize a system utility

metric in order to maximally satisfy the delay requirements of

all the classes [108].

Moreover, possible network applications in wireless IoT

networks can be classified into the following [77].

1) Elastic applications: This category corresponds to more

traditional HTC applications such as electronic email,

file transfer as well as the downloading of remote data

from the MTC servers. These applications are mostly

delay tolerant in nature and the user utility usually has

diminishing marginal improvements with the incremen-

tal increase in the achievable data rate.

2) Hard real-time applications: These applications have

a desired delay constraint with hard real-time require-

ments. Beyond the desired time frame, there is no

additional utility gain while increasing the data rate

and the user utility becomes the step function of the

achievable data rate.

3) Delay adaptive applications: Some delay sensitive

applications can occasionally tolerate a small delay with

a certain delay-bound violation and the packet dropping

probability. The user utility in these applications (such

as remote monitoring of e-Health services) deteriorates

rapidly when the achievable data rate becomes less than

the required intrinsic data rate.

4) Rate-adaptive applications: These applications try to

adjust their transmission rates based on the available

radio resources with the moderate delays. A highly

efficient scheduler is needed to enhance the performance

of these applications in time-varying channel conditions.

Traffic shaping, also called packet shaping, delays certain

types of data packets in order to optimize the overall per-

formance of a network. To achieve the optimized network

performance, Internet traffic thesedays is intentionally shaped

into ON/OFF pattern [110]. Also, ON/OFF pattern is generated

due to some inherent characteristics of applications such as

HTTP web browsing and MapReduce operation at the data

center/server. The main benefits in performing ON/OFF traffic

shaping include: (i) reduction of computing overhead at the

server-side, (ii) energy saving at the wireless terminals and (iii)

minimizing the bandwidth waste while delivering streaming

services. However, this On/OFF traffic shaping faces several

challenges such as the impact on packet drop probability,

harmful effect on other real-time applications and weakening

the congestion control function of the transmission control

protocol [110]. To address these issues, it is crucial to de-

sign suitable models to characterize the relation among the

associated parameters of ON/OFF traffic such as the ratio

of ON/OFF duration, burst size, and burst transmission rate,

and also the models for packet loss probability and temporary

congestion caused by the bursty transmissions.

Another approach to manage the peak-traffic is to employ

demand-side management, which adopts suitable measures at

the customer-side/sensor-side to optimize the overall network

performance [107]. On one hand, the demand profile can be

flattened to limit the amplitude fluctuations while simultane-

ously accommodating the same amount of traffic volume. For

example, a distribution reshaping concept can be employed

to reshape the traffic arrival distribution having burstiness

to a more flattened distribution of the RA attempts towards

reducing the RA collisions as well as enhancing the utilization

of RA resources [111]. On the other hand, the utilization

profile of network resources can be flattened by rescheduling

or delaying the services [81]. Some approaches for traffic

scheduling include limiting the queue size and setting a band-

width limit so that aggregate traffic size in the active queue

does not exceed the limit. However, scheduling techniques

cause delay for processing the network demand and it is

crucial to investigate suitable techniques to minimize the delay

introduced by traffic scheduling mechanisms. Furthermore, a

suitable bandwidth limit should be applied to balance the

trade-off between latency and energy saving [107].

III. RANDOM ACCESS PROCEDURE IN CELLULAR IOT

NETWORKS

An MTC device must go through the access procedure to

establish a connection to the Base Station (BS)/eNodeB/access
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point mainly in the following situations [52]: (i) while es-

tablishing an initial access to the network, (ii) while receiv-

ing/transmitting new data and MTC device is not synchronized

to the network, (iii) during the transmission of new data when

no scheduling resources are allocated on the uplink control

channel, (iv) to perform a seamless handover, (v) in order to

re-connect to the network in the case of radio link failure.

The RA methods in the LTE-based cellular systems can

be categorized into contention-based (for delay-tolerant access

requests) and contention-free (for delay-sensitive requests)

schemes [112]. Out of these, the contention-based scheme is

of the main interest here due to the limitation in the number of

available Resource Blocks (RBs) as compared to the massive

number of access requests to be supported. In the contention-

based RA approach, a huge number of MTC devices have

to select the same preambles because of the limitation in the

available preambles in the existing LTE-based cellular sys-

tems, and this results in significantly high number of collisions

in the access network and subsequently leads to the RAN

overload or radio access congestion problem in ultra-dense

IoT networks. In this direction, one important question to be

answered is how to concurrently support the massive number

of MTC devices in ultra-dense cellular IoT networks without

affecting the performance of the existing cellular devices by

using the current communication technologies/standards.

In the following, we briefly describe the RA procedure in

the legacy LTE systems and its inefficiency in handling the

massive number of devices in the mMTC environment, then

present some adaptations made to support MTC devices in

cellular networks, and subsequently highlight the main features

and access mechanisms in emerging cellular IoT standards,

namely, LTE-M and NB-IoT.

A. RA Procedure in Legacy LTE Systems

After an eNodeB broadcasts the system information to the

devices, the contention-based RA procedure follows a four-

stage message handshake procedure as depicted in Fig. 5 [52,

113], which mainly involves the following four stages: (i)

RA preamble transmission from the device to the eNodeB

(Message 1), (ii) RA Response (RAR) from the eNodeB to

the device (Message 2), (iii) connection request message from

the device to the eNodeB (Message 3), and (iv) connection

resolution message from the eNodeB to the device (Message

4).

In the first stage, each device randomly selects an RA

preamble from the set of available preambles broadcasted

by the eNodeB during the initial network synchronization

phase and sends the RA request (Message 1) by transmitting

thus selected preamble in an RACH. At this stage, the User

Equipments (UEs) just transmit the selected preambles and not

the device IDs. In the second stage, the eNodeB acknowledges

the received distinct preambles with an RA response (Message

2) which includes the preamble index being acknowledged,

instructions for the timing alignment and the command for

the RB allocation. Subsequently, in the third stage, the UE

recognizes the RA response addressed to it by noting the

preamble index it has used for the RA request in the first
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Fig. 5. Illustration of four-stage message handshake-based RA procedure
in LTE-based cellular systems (PRACH: Physical Random Access Channel,
PDCCH: Physical Downlink Control Channel, PUSCH: Physical Uplink
Shared Channel, PDSCH: Physical Downlink Shared Channel).

step and utilizes the dedicated RB on the Physical Uplink

Shared Channel (PUSCH). The devices which made current

transmissions of the RA request with the same preamble in

the first stage will be instructed to use the same RB in the step

3 and such transmissions will go through collisions. On the

other hand, for the packets (which contain the corresponding

device IDs) which are successfully decoded in step 3, the

eNodeB sends a contention resolution message (Message 4)

to the corresponding devices.

In this RA procedure, after sending the preamble in the

RA request (Message 1), the device sets an RAR window and

waits for the eNodeB’s response with an uplink grant (Message

2) in the RAR message. If the UE successfully receives its

Message 2 within the defined RAR window, the UE sends the

Radio Resource Control (RRC) connection request (Message

3) to the eNodeB. At this stage, the device starts the Message

4 timer and waits to receive its own RRC connection setup

message (Message 4) from the eNodeB [114].

In the above-mentioned RA procedure, the physical-layer

mapping of RACHs is called Physical RACHs (PRACHs)

which are time-frequency blocks specified by the eNodeB.

The periodicity of RA slots is broadcasted by the eNodeB

in terms of the PRACH configuration index, which varies

between every 1 ms (i.e., a maximum of 1 RA slot per 1
subframe) to 20 ms (i.e., the minimum of 1 RA slot every

2 frames) [52]. The transmission scheduling in terms of time

and frequency depends on the configuration of the PRACH.

For example, for the PRACH configuration index of 6, there

will be RACHs in every 5 ms within a bandwidth of 180 kHz,

with a duration ranging from 1 ms to 3 ms.
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B. Failure of RA Procedure and Its Inefficiency in mMTC

systems

The aforementioned RA procedure in the LTE/LTE-A based

networks may fail due to the following reasons [114].

1) Failure of preamble transmission: This occurs either

due to the collision of RACH preambles (caused due to

concurrent transmission of the same set of preambles

by more than one devices) or insufficient preamble

transmission power.

2) Failure of Message 2 reception: This occurs mainly due

to the lack of downlink radio resources (i.e., PDCCH)

to send the RA response (Message 2) to all the received

preambles within the devices’ RAR windows.

3) Failure of Message 3 transmission: This occurs due

to the failure in transmitting Message 3 to the eNodeB

by employing the Hybrid Automatic Repeat Request

(HARQ) process at the device.

4) Failure of Message 4 reception: This occurs due

to the failure in receiving Message 4 by the devices

within the Message 4 expiration time while using HARQ

transmission from the eNodeB either due to insufficient

PDCCH resources or an imperfect channel condition.

Out of 64 preambles used in LTE-A networks, 54 preambles

are used for the contention-based access, while the remaining

10 preambles are reserved for the contention-free access which

is needed for high-priority services such as handover. In every

5 ms, there arises an access opportunity and 200 access oppor-

tunities per second. This corresponds to the absolute maximum

capacity of 10, 800 preambles per seconds in the absence of

access collisions [52]. However, due to ALOHA type access

protocol and random backoffs, performance becomes much

lower than this maximum limit in practical cellular systems.

Furthermore, the situation becomes worse while supporting

the MTC devices. Besides the problem of supporting higher

number of nodes in ultra-dense IoT networks, other perfor-

mance metrics such as access delay and energy consumption

are important to be considered.

To study the performance of the aforementioned 4-stage

message handshake RA procedure in LTE systems, authors in

[115] studied the stability limit of this legacy RA procedure,

which indicates the probability of failure of the RA proce-

dure and the maximum achievable throughput. It has been

shown that the performance of the RA procedure deteriorates

rapidly while sharing the Physical Downlink Control Channel

(PDCCH) resources between Messages 2 and 4 with different

priorities and the overall RA performance can be enhanced by

increasing the size of the PDCCH resource.

Furthermore, in mMTC systems, the system performance

may severely degrade in the presence of concurrent massive

access requests due to high probability of collision caused

by the signaling and traffic load spikes since the contention-

based operation of the RACH in LTE-A networks is based on

ALOHA-type access [116]. One of the possibilities to reduce

the load of physical RACH is to increase the number of access

opportunities scheduled in a frame, however, this approach will

reduce the amount of resources needed for data transmission.

In this regard, it is crucial to balance the tradeoff between

the amount of resources available for data transmission and

the amount of access opportunities to be scheduled per frame

while designing an uplink scheduler for MTC applications by

taking into account of limited available bandwidth. Besides,

the main performance metrics to be improved include access

success probability, preamble collision rate, access delay and

device energy consumption [52].

The LTE RA procedure employed in legacy LTE systems

is not efficient to support MTC devices mainly due to the

following main reasons [87].

1) Because of the limited number of available preambles

for the contention-based RA procedure, the massive

number of concurrent transmissions of the same pream-

bles would cause the overload of the RA procedure both

in the uplink and the downlink and this will result in high

collision probability, access failure rate and the access

delay.

2) To support a huge number of access requests, additional

downlink resources need to be allocated since each RAR

message for one MTC device consists of 56 bits.

3) Even after an MTC device becomes successful in the RA

procedure, the signalling overhead degrades the overall

system efficiency since the size of the upload data

payload from the MTC device is significantly smaller

than the traditional cellular terminals.

C. Adaptation of RA Procedure for MTC devices

It should be noted that the RACH in the RA procedure is

related to two different channels, namely, PRACH and PDCCH

as illustrated in [112]. A single PRACH consists of six phys-

ical RBs and has a bandwidth of 1.08 MHz. Over the whole

system bandwidth, a maximum of 6 RACHs can be deployed

for time-division multiplexing with one RACH for frequency-

division multiplexing. However, while sending RAR in the

downlink channel, only a single PDCCH is responsible for

handling multiple PRACHs. Although this is not a problem in

the conventional HTC devices, this becomes a serious problem

in MTC devices due to their hardware limitations in terms of

their capacity to listen to the wideband PDCCH. In general,

a low-cost MTC device consists of a single RF interface

operating with 1.4 MHz bandwidth. To address this issue, the

3GPP has proposed Enhanced-PDCCH (EPDCCH) with the

narrow bandwidth of 1.4 MHz for low-cost MTC devices and

each PRACH has a dedicated NB EPDCCH. In this modified

RACH structure adapted for low-cost MTC devices, the RA

requests from the devices are distributed across multiple NB

channels, thus reducing the congestion caused due to wideband

nature of PDCCH in the conventional RA structure. Despite

this enhanced RACH structure designed for low-cost MTC

devices, the capacity of this RACH structure is not sufficient

to handle the massive number of RA requests coming from

the ever-increasing number of devices.

Towards addressing the problem of RACH overload in the

cellular IoT systems, several methods have been proposed

in the literature [112]. From the perspective that whether

the device or the eNodeB employs the solution, the existing

schemes can be broadly categorized into push-based and pull-

based. In the first approach, the RA requests are controlled
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TABLE IV

COMPARISON OF TWO MAIN CELLULAR IOT (LTE-M AND NB-IOT) TECHNOLOGIES

Feature/parameter LTE-M NB-IoT

Channel bandwidth 1.4 MHz 180 KHz
Transmission mode HD-FDD/FDD/TDD HD-FDD
Peak data rate 375 kbps (HD-FDD), 1 Mbps (TDD) 50 kbps (HD-FDD)
Latency 50-100 ms 1.5-10 seconds
Noise figure 9 dB (uplink), 5 dB (downlink) 5 dB (uplink), 3 dB (downlink)
Maximum coupling loss (MCL) 155.7 dB 164 dB
Modes of operation In-band Inband, guard-band and standalone
Power consumption Best at medium data rates Best at very low data rates
Mobility support Full mobility No connected mobility
Voice over LTE support Yes No

from the device-side while in the pull-based approach, the

contention in the RA procedure is controlled from the eNodeB.

Besides, there are some strict separation schemes and soft

separation schemes to concurrently support both the HTC

and MTC traffic in LTE-A networks [52, 116]. The strict

separation schemes mainly comprise of the following: (i) re-

source separation: orthogonal allocation of resources between

HTC and MTC traffic and dynamic shifting of resources

among two classes, (ii) slotted access methods which define

access cycles including the RA slots dedicated to the MTC

device access, and (iii) pull-based scheme in which the MTC

devices are allowed to access the PRACH only upon being

paged by the corresponding eNodeB. On the other hand, soft-

separation schemes include the following: (i) backoff tuning

which assigns longer back-off intervals to the MTC devices

which do not succeed during the preamble transmission of the

RA procedure and (ii) Access Class Barring (ACB) scheme.

A brief description of various existing and emerging solutions

for the RAN congestion problem is provided in Section V.

Most of the existing MTC related works focus on the BS

load balancing, radio resource management and the grouping

of MTC devices, and only a few studies have been conducted

in optimizing the access control of massive requests from the

MTC devices [86]. The incoming requests from the MTC

devices can be categorized into delay-sensitive and delay-

tolerant based on the delay tolerance level of the underlying

applications and the aggregator/BS can be equipped with two

queues with one having higher priority over the other in order

to deal with the two traffic classes. The criteria used for

defining delay tolerant and delay sensitive may differ from

one scenario to another [86].

The RA delay is one of the important aspects to be consid-

ered while designing RA techniques for mMTC in the existing

cellular networks. In this regard, authors in [119] derived lower

bounds for the LTE-A RA delay by considering uniformly

distributed and Beta-distributed traffic arrivals and analyzed

the effect of frequency of RA opportunities and the number

of preambles. It has been shown that the RA delay can be

reduced by several orders of magnitude by effectively tuning

these system parameters.

As briefly highlighted in Section I, cellular IoT standards

mainly comprise of two categories, namely, LTE-M and NB-

IoT, which are described in the following subsections. Also, in

Table IV, we highlight the key differences between these two

technologies optimized to provide cellular connectivity to IoT

devices [120, 121]. For the detailed differences among LTE-

M, NB-IoT and legacy LTE in terms of supported features

and functionalities for different uplink and downlink physical

channels, interested readers may refer to [49].

D. LTE-M: Key Features and Channel Access Mechanisms

While looking at the history of MTC, the first generation

of a full featured MTC device emerged in 3GPP Release

R12. In this release R12, the 3GPP has defined the category

0, i.e., CAT-0 for the low-cost MTC operation [48]. In the

subsequent releases, the efforts to incorporate mMTC devices

continued and LTE release 13 (R13) in 2016 introduced two

special categories, namely, CAT-M (also called LTE-M) for

MTC and CAT-N for the NB-IoT to support various features

of MTC/IoT applications. LTE Rel-14 enhancements were

completed in June 2017, and the improvements under the Rel-

15 are ongoing and are expected to be released by June 2018.

With respect to Cat-1 category which was the lowest UE

category in LTE Release 11 from the perspective of transmis-

sion capability (peak rate of 10 Mbps in the downlink and 5
Mbps in the uplink), Cat-0 devices have a reduced complexity

of about 50 % and have a reduced transmission rate of 1 Mbps

for both the downlink and the uplink [49]. Also, Cat-0 category

enables the use of only one receiver antenna with a maximum

receiver bandwidth of 20 MHz and supports FDD half-duplex

operation with relaxed switching time, eliminating the need

of dual receiver chains and duplex filters for low cost MTC

devices, respectively. In the subsequent LTE releases after the

introduction of LTE-M in release 13, several new features have

been added. The key features of LTE-M in different releases

are included in the following [79].

1) Release-13: The main features included in this re-

lease include Coverage Enhancement (CE) mode A/B,

bandwidth limited operations (1.4 MHz), half-duplex

support, in-band operation mode, RRC connection, data

transmission via a control plane, mobility support and

eDRX.

2) Release-14: The key features incorporated in this ver-

sion include multi-cast support with single-cell point-to-

multipoint, positioning enhancements such as enhanced-

cell ID requirements and observed time difference of ar-

rival support, larger channel PDSCH/PUSCH bandwidth

(up to 5 & 20 MHz), Voice over LTE enhancements, and

support for HARQ-ACK bundling and inter-frequency

measurements.

3) Release-15: The main features of this release are re-

duced latency and power consumption, lower UE power
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class, improved spectral efficiency, improved load con-

trol of idle UEs, eDRX enhancements and support for

higher UE velocity.

The four-stage message handshake procedure followed in

the current LTE standard results in very high overhead for

most of the IoT devices since the packets transmitted by the

resource-constrained IoT devices are quite short as compared

to the conventional cellular packets [52]. In this regard, several

approaches are being investigated to design efficient channel

access mechanisms to support MTC in the existing cellular

systems. One approach investigated in the literature is to

follow ALOHA-like immediate access without any reservation

[122]. Although this scheme completely eliminates the channel

reservation phase and provides very low latency, the system

throughput is limited by the slotted ALOHA capacity of 1/e.

Besides, another approach is to utilize a preamble-initiated

contention-based mechanism in which the nodes transmit

a randomly selected preamble to reserve a time/frequency

resource [7]. In contrast to the conventional RACH procedure

followed in LTE, this method eliminates Message 3 and

Message 4 of the four-stage message handshake procedure

and the data is transmitted on the RB specified in the RAR

message, thus significantly lowering the delay. However, if two

or more nodes choose the same set of preambles for the RA

request, the collisions occur which are detected by the lack of

Acknowledgement (ACK) message.

From the performance analysis carried out in [7], it is shown

that the preamble-initiated access achieves 86 % more capacity

in comparison to both the conventional LTE access mechanism

and ALOHA-like immediate transmission scheme for small

data packet transmissions in IoT application scenarios. How-

ever, in terms of delay, the ALOHA-like scheme reduces the

delay by about 62 % for low traffic loads in comparison to

the preamble initiated access and by about 77 % as compared

to the conventional LTE access mechanism.

To capture the signature of the LTE signal, an MTC device

will need to receive the synchronization signals which occupy

6 RBs of the eNodeB’s bandwidth [49]. Although decoding

PDCCH becomes impossible due to the bandwidth limita-

tion (only 1.4 MHz) of MTC devices, the enhanced version

EPDCCH, which uses only one RB, is a good candidate,

but is not sufficient for the required coverage enhancement

[123]. However, increasing its bandwidth to 6 RBS in the 1.4
MHz bandwidth on the MTC device along with the repetition

will provide the good coverage of about −14 dB and the

EPDCCH also supports beamforming to enhance the coverage

[47]. Therefore, 6 RBs, i.e., one narrowband is usually used

as the basic unit for the MTC bandwidth [49].

The main changes incorporated in the physical layer oper-

ation of LTE-M as compared to the legacy LTE are briefly

described below [49].

1) Frequency hopping: Due to narrow-bandwidth and a

single receiver chain at the MTC device, the benefits due

to spatial diversity and frequency diversity are not avail-

able. To compensate for the performance loss caused

due to frequency diversity, the concept of frequency

hopping, which allows MTC transmissions to hop from

one NB channel to another, is employed. The challenges

associated with frequency hopping in MTC devices

include the need of retuning the RF chain, and the prior

knowledge of the hopping pattern at the eNodeB and the

device.

2) Repetitions: To achieve sufficient link budget in the

downlink for the coverage enhancement, repeated copies

of the same signal are transmitted over time to boost

the link performance via time diversity. The main issue

involved with this repeated transmission strategy is the

requirement of increased decoding time, i.e., latency,

demanding for longer wake-up time for the MTC device.

3) MTC Physical RACH (MPRACH) and Physical

Downlink Control Channel (MPDCCH): To com-

pensate for the additional path-loss caused due to the

extended coverage for the MTC device, the PRACH of

legacy LTE needs to be modified. For this, frequency

diversity and repetitions need to applied to the MPRACH

to achieve the required diversity. Furthermore, additional

features such as defining downlink control formats and

enhancing control channel assignment procedure need to

be added to support frequency hopping and repetitions

in MPDCCH.

4) MTC search spaces: In order to reduce the number

of decoding trials by the devices in the LTE systems,

each MTC device can be assigned only a defined search

space area of the whole control region to be monitored.

In contrast to the legacy Enhanced PDCCH, there are

mainly two classes of search spaces in MPDCCH,

namely, device-specific search space and common search

space.

5) MTC Downlink Control Information (DCI) formats:

To reduce blind decoding iterations, i.e., device com-

plexity as well as to facilitate the use of frequency

hopping, repetition and enhanced coverage, three dif-

ferent DCI formats have been defined for uplink grant,

downlink scheduling and paging in MTC devices.

E. Narrowband IoT: Key Features and Channel Access Mech-

anisms

To address various challenges of supporting MTC devices in

cellular IoT networks specified in Section II-B, the 3GPP has

proposed the concept of NB-IoT in its Release 13 [85]. The

main objectives behind the NB-IoT concept include providing

better indoor coverage and support to a massive number of

low-throughput devices, with low power consumption and re-

laxed delay requirements [84]. To accomplish these objectives,

the NB-IoT follows the procedures of optimizing control plane

and user plane of Cellular-IoT (CIoT) evolved packet system

towards reducing the signalling overhead for small data packet

transmissions [124].

For both the uplink and downlink operations, NB-IoT can

operate with an effective narrowband operation of 180 kHz

bandwidth corresponding to one RB in the LTE network. In

the downlink of an NB-IoT system, Orthogonal Frequency-

Division Multiple Access (OFDMA) is employed with the

subcarrier spacing of 15 kHz over 12 sub-carriers while in the

uplink, both single tone and multi-tones are supported (single-

tone with the subcarrier spacing of either 3.75 kHz or 15 kHz)
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[125]. The NB-IoT usually can be operated in the following

three operation modes [85, 126].

1) In-band operation: This mode of operation utilizes the

RBs within an LTE carrier by reserving one RB for the

NB-IoT system.

2) Guard band operation: This mode uses the unused

resources within the guard band of the LTE carriers

while ensuring that this does not affect the normal

capacity of the LTE carrier.

3) Stand-alone operation: This mode utilizes the re-

farmed GSM low band already existing in several coun-

tries (700 MHz, 800 MHz, and 900 MHz) [126].

The NB-IoT technology provides greater flexibility for the

deployment of IoT devices in different applications such as

smart city, smart home, smart metering and smart agriculture

by reusing the existing network architectures. The main re-

quirements for the NB-IoT system include the following [126].

1) Low power consumption: NB-IoT systems utilize the

power saving mode and eDRX to maximize the battery

life.

2) Low channel bandwidth: Due to low channel band-

width of 200 kHz (180 kHz plus guard bands),

GSM channel re-farming is applicable for NB-IoT sys-

tems since a single NB-IoT channel can utilize one

GSM/GPRS channel.

3) Low cost for the end-device: Due to low channel

bandwidth of 200 kHz, the front-end and digitizer of

NB-IoT receivers are much simpler than that of the

existing LTE-based systems operating on the bandwidth

of 1.4 MHz, thus leading to low-complexity (cheaper)

devices.

4) Low deployment cost: Besides the device cost, due to

the capability of reusing existing GSM bands, the de-

ployment cost for the network operators is significantly

reduced.

5) Extended coverage: NB-IoT can provide about ten

times better coverage area compared to the legacy GPRS

systems as it can be achieve the additional 20 dB link

budget gain.

6) Support for massive number of connections: Due to

improved coverage and low channel bandwidth, it can

support significantly higher number of MTC devices.

The main signals and channels involved in the downlink

of an NB-IoT system are Narrowband Primary Synchro-

nization Signal (NPSS), Narrowband Secondary Synchroniza-

tion Signal (NSSS), Narrowband Physical Broadcast Channel

(NPBCH), Narrowband Reference Signal (NRS), Narrowband

Physical Downlink Control Channel (NPDCCH) and Narrow-

band Physical Downlink Shared Channel (NPDSCH) [127].

Out of these, NPSS and NSSS are used by an NB-IoT device

to carry out cell search procedure including cell identity de-

tection, and frequency and time synchronization. The NPBCH

includes the master information block while the NRS is used

to provide phase reference required for the demodulation of

downlink signals. Similarly, NPDCCH includes the scheduling

information for both the uplink and downlink data channels

while the NPDSCH carries various information such as system

information, paging message, RAR message and also data

from the higher layers.

Besides, the uplink transmission scheduling of devices in the

NB-IoT mainly comprises of Narrowband PRACH (NPRACH)

and Narrowband PUSCH (NPUSCH) [125]. Out of these,

NPRACH corresponds to the time-frequency resource used to

transmit RA preambles and the NPUSCH is used for carrying

the uplink data. The differences of the above-mentioned uplink

and downlink channels from the legacy LTE systems are high-

lighted in [127]. The key technique employed by an NB-IoT

system to obtain enhanced coverage with low complexity is

repetition, which utilizes the repeated transmission of both data

transmission and the involved control signalling transmission

[125].

The RA procedure in the NB-IoT system is responsible

for establishing a radio link during the initial access, for

scheduling the transmission requests and to achieve uplink

synchronization among the NB-IoT devices [127]. Three

different types of NPRACH resource can be configured by

assigning separate repetition values for a basic RA preamble to

serve the devices belonging to different coverage classes with

different ranges of path loss. The device estimates its coverage

level by measuring the downlink received signal power, and

then the device transmits an RA preamble in the NPRACH

resources configured for the estimated coverage level. The

configuration of NPRACH resources is made flexible in a time-

frequency resource grid to enable the deployment of NB-IoT

systems in different scenarios.

IV. TRANSMISSION SCHEDULING FOR MTC SYSTEMS

WITH QOS SUPPORT

Most of the models used to analyze the capacity of wireless

systems are based on physical layer models and they can not

capture the link-layer QoS requirements such as bounds on

the delay [128]. Therefore, physical-layer only models are not

suitable for QoS support mechanisms such as resource reser-

vation and admission control. Furthermore, in contrast to the

wired links, it is challenging to guarantee QoS requirements

in wireless systems due to low reliability, multi-path fading,

co-channel interference and time-varying capacities. In order

to incorporate complex QoS requirements into account, it is

important to understand the queuing behavior of the connec-

tions and to capture the QoS requirements while characterizing

the performance of packet-switching based wireless networks.

For analyzing the queuing behavior, the characterization of

source traffic as well as the services is an important aspect to

be considered [128].

Due to distinct QoS requirements of MTC devices, it is cru-

cial to provide QoS support for MTC devices in future wireless

networks. For example, non-real time MTC applications such

as data transmissions aim to enhance the reliability of trans-

mission and do not have strict delay constraint. Whereas, real-

time MTC applications such as video surveillance/demand,

the important QoS metrics are strict latency and data rate

requirements rather than high spectral efficiency [129]. To

meet the QoS requirements of different network applications

highlighted in Section II-D, it is crucial to design efficient
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radio resource allocation algorithms for the MTC devices in

the uplink while considering the constraints on the available

radio spectrum.

One of the potential candidate platforms to support MTC

devices is the LTE-A standard and the 3GPP has been working

on several enhancements of LTE-A standard towards this

direction. The 3GPP uses Single Carrier Frequency Division

Multiple Access (SC-FDMA) [130] as the multiple access

scheme in the uplink of LTE cellular networks due to its main

advantage of low Peak-to-Average Power Ratio (PAPR) as

compared to that of the OFDMA. Due to this feature, the

reduced requirements on the processing power and battery

are suitable for the resource-constrained MTC devices [129].

However, the allocation of RBs in the SC-FDMA becomes

complex as compared to that in the OFDMA scheme due to

the sequential transmission of the RBs in the SC-FDMA in

contrast to the transmission of orthogonal RBs in the OFDMA-

based systems.

The minimum resource unit used for scheduling downlink

and uplink transmissions in the LTE-A based cellular systems

is referred to as an RB. Each RB comprises of 12 sub-carriers

with each sub-carrier having the bandwidth of 180 kHz in

the frequency domain and one sub-frame of 1 ms duration in

the time domain [24]. The RB can be considered as a time-

frequency resource in which an UE performs RA and each

RA slot comprises of the bandwidth equivalent to the 6 RBs,

i.e., 1.08 MHz and its duration in the time domain is 1 ms.

In LTE-based cellular networks, the eNodeB broadcasts the

periodicity of the RA slots by means of a variable referred

to as the Physical RACH (PRACH) configuration Index [52],

and subsequently, the MTC devices and the legacy cellular

users can perform RA by using the PRACH channel. Even

though the data size from the MTC devices is significantly

small, the massive number of devices attempt to concurrently

communicate over the same radio channel, thus leading to the

network overload problem [24]. In contrast to the conventional

HTC services such as multimedia for which the packet arrival

periods range from 10 ms to 40 ms, the packet arrival periods

in MTC applications may range from 10 ms to several minutes

[75].

A. Framework for Performance Analysis with QoS Support

In this subsection, we present a mathematical framework

to carry out the performance analysis of mMTC systems

with QoS support in terms of the effective capacity, effective

SNR and the estimated number of MTC devices. For this

analysis, we consider the uplink in a single-cell of 3GPP LTE-

A networks serving multiple MTC devices with the SC-FDMA

scheme. This scenario can also be studied in conjunction with

the legacy cellular/HTC users as in [131], however, herein,

we deal only the case of MTC devices since we are interested

in providing QoS support for MTC devices while maximizing

some network performance metric subject to the constraints

on the available radio spectrum. In practice, these devices

can be grouped based on the employed transmission protocols

and QoS requirements, and can be deployed on the cluster

basis by using different wireless technologies such as WiFi,

Bluetooth and Zigbee [129]. Furthermore, MTC devices can

communicate to the eNodeB via an MTC gateway and the

total available RBs can be divided between the access link

(MTC devices to the MTC gateway) and the backhaul link

(from the MTC gateway to the eNodeB) in the time domain

as considered in [131].

Let us assume that there are M number of total MTC

devices in the coverage area of the eNodeB, indexed by the

set M = {1, . . . ,m, . . . ,M} and there are L number of

available RBs, indexed by the set L = {1, . . . , l, . . . , L}. We

assume Poisson distribution for the traffic arrival rate of the

MTC devices and block fading wireless channel between MTC

devices and the eNodeB/gateway as in [129]. Also, we assume

that channel coherence time is greater than the Transmission

Time Interval (TTI) and the channel gain remains constant

during a TTI.

To incorporate QoS requirements of MTC devices into the

problem formulation, one way is to define a QoS exponent for

each MTC device and to introduce this exponent in the defi-

nition of system capacity. Let θm denote the QoS exponent of

the mth MTC device indicating a steady-state delay violation

probability of the mth M2M device. Considering a queue of

infinite buffer size required due to a constant arrival rate λ,

the delay violation probability is given by [129]

δ = Pr(dm > dmax) ≈ φm(λ)e−θmdmax, (4)

where Pr(. ) denotes the probability operation, dm represents

the delay experienced by a source packet of the mth MTC

device, dmax is a delay bound, and φm(λ) = Pr(dm > 0)
indicates the probability of non-empty buffer. In this formula-

tion, the pair of (φm(λ), θm(λ)) can be used to characterize

the link from the mth device to the gateway/eNodeB.

In contrast to the conventional physical layer-based capacity,

we define the effective capacity to take the link-layer QoS

requirements into account. The effective capacity [128] is

defined as the maximum constant arrival rate that a given

service process can support to guarantee a QoS requirement

specified by θ and can be defined for the mth MTC device as

Rm
e (θm) = −

1

θm
lnE[e−θmRm ], (5)

where Rm
e denotes the effective capacity for the mth MTC

device, θm represents the statistical QoS exponent of the mth

MTC device, E(. ) denotes the expectation, and Rm is the

data rate of the mth MTC device. In order to guarantee a QoS

requirement of θm for the mth MTC device, the following

condition should be satisfied [129]: Rm
e (θm) ≥ λm, where λm

is the traffic arrival rate for the mth MTC device. By solving

the above relation, one can obtain θm. Subsequently, by using

the Shannon’s capacity formula, the maximum achievable

transmission rate for the mth MTC device can be expressed

as

Rm = Blog2(1 + γm) = Blog2

(

1 +
Pm|hm|2

σ2
n

)

, (6)

where B is the bandwidth of each RB, Pm is transmission

power of the mth MTC device, |hm|2 is the channel gain, σ2
n
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is the Additive White Gaussian Noise (AWGN) power, and

γm = Pm|hm|2

σ2
n

is the SNR for the mth MTC device.

Despite the significant benefits of SC-FDMA in terms of

power and battery requirements, there arise some restrictions

for uplink resource allocation (RB and power allocations)

while employing SC-FDMA in the uplink [130]. The main

aspects to be considered include: (i) a single RB can only be

allocated to at most one user, (ii) multiple RBs allocated to a

single user should be adjacent, and (iii) the transmit power on

all the RBs allocated to a user should be equal. Let us assume

that the set of RBs Lm is allocated to the mth MTC device in

the current TTI, then the achievable rate (upper bound) from

(6) in terms of effective SNR can be written as

Rm = B.Lmlog2(1 + γeff,m), (7)

where Lm = |Lm| denotes the cardinality of the set Lm and

γeff,m denotes the effective SNR for the mth MTC device.

Since each data symbol is spread over the whole bandwidth in

SC-FDMA transmission, the effective SNR can be computed

as an average of SNRs over the allocated set of RBs to a

particular MTC device as follows: γeff,m = 1
Lm

∑

l∈Lm
γm,l,

where γm,l is the SNR of the mth device for the lth RB. In

the following, we summarize the main steps for calculating

the maximum achievable rate for an MTC device in an SC-

FDMA based cellular system: (i) determine the bandwidth of

each RB and the set of RBs allocated to a particular MTC

device, (ii) calculate the effective SNR as the average SNR

over the set of RBs allocated to a particular MTC device, (iii)

Utilize (7) to compute the maximum achievable rate for the

considered MTC device.

Another aspect to be considered is how to effectively design

the medium access scheme to support the massive number

of devices. One approach is to determine the optimal size of

the Random Access Window (RAW) based on the estimated

number of MTC devices in the following way [132]. If there

are idle slots available at the RAW, the eNodeB/access point

can estimate the number of devices for the uplink access

by using suitable estimation techniques such as maximum

likelihood estimation method. Let Ĩ be the measured number

of idle slots in the uplink RAW, LUL be the number of slots

of the uplink RAW and NUL be the number of devices for

the uplink access. When NUL devices contend in LUL, the

probability of selecting a slot by a device for the uplink access

becomes 1
LUL

and the corresponding complementary probabil-

ity is (1− 1
LUL

). Thus, the idle probability that no devices for

the uplink access transmit the power save poll message, by

which the device requests for the downlink data or the ACK

frame from the eNodeB, is pidle = (1 − 1/LUL)
NUL and the

probability pidle is estimated as: p̂idle = Ĩ
LUL

. Subsequently,

the estimated number of devices for the uplink access by

utilizing the aforementioned idle probability can be calculated

as: N̂UL = log(p̂idle)

log(1− 1
LUL

)
.

On the other hand, the existing packet schedulers are mainly

designed for a specific wireless system such as LTE and do not

fully capture the heterogeneous characteristics of ultra-dense

IoT networks. In this regard, authors in [108] proposed delay-

efficient joint packet scheduling and subcarrier assignment

by considering the classification of the uplink MTC traffic

aggregated at the MTC aggregator into multiple classes based

on traffic features such as packet size, arrival rate and delay re-

quirements. By employing an MTC specific traffic model, the

incoming data from the sensors at the aggregator is categorized

either as ED or PU types and the delay requirements of these

PU and ED traffic types are mapped onto sigmoidal and step

utility functions, respectively. In addition, in order to ensure

that the packets transmitted by an MTC device are within

the delay budget, authors in [133] introduced a new MAC

element, called Packet Age, with which the device informs

the scheduler about the waiting time of the oldest packet in

the device buffer along with the buffer size specified in the

buffer status report.

B. Short Data Packet Transmission and Associated Issues

In this subsection, we briefly discuss various issues related

to short data packet transmission in IoT systems along with

its information theoretic perspective. One of the emerging

areas in the MTC systems is ultra-reliable and low-latency

communications, also known as mission-critical MTC. Some

of the applications of mission-critical MTC are industrial

control, intelligent transportation systems and smart grids for

power distribution automation [134]. As an example, industrial

control applications may need to transmit about 100 bits within

100 µseconds with 10−9 PER [135].

Existing wireless systems are designed to support the con-

ventional HTC traffic having long packet sizes and each packet

consists of information payload and the control information

(metadata) which usually contains various information about

logical addresses, packet initiation and termination, synchro-

nization and security. As compared to the transmission of long

packets, the transmission of short packets in the wireless IoT

systems differs mainly in the following two ways [12]. First,

existing transmission techniques are based on the assumption

that the metadata is negligible as compared to the size of

the information payload. However, this assumption does not

apply to the transmission of short packets since the metadata

size becomes no longer negligible, resulting in the need of

highly efficient encoding schemes. Secondly, for the case of

long packets, there exist channel codes which enable the

reconstruction of information payload with high probability.

The thermal noise and channel distortions average out for the

case of long packets due to the law of large numbers, however,

this averaging does not occur for the case of short packets

and the classical law of large numbers is not applicable for

mMTC applications, resulting in the need of new information

theoretic principles. In this regard, authors in [12] discussed

various information theoretic approaches to characterize the

transmission of short packets in wireless communication sys-

tems and applied these principles on the transmission of short

packets in various channels such as a two-way channel, a

downlink broadcast channel and the uplink RACH. In addition,

authors in [136] investigated the tradeoffs among reliability,

throughput, and latency for the transmission of information

over multiple-antenna Rayleigh block-fading channels.

In the above context, several recent works have investigated

different physical layer approaches to support small packet
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TABLE V

RECENT RESEARCH WORKS TOWARDS SUPPORTING SMALL DATA PACKET TRANSMISSIONS IN WIRELESS NETWORKS

Main Theme Applicable systems References

Optimization of pilot overhead IoT Sensor networks [137]
Design of air interface and waveforms Multicarrier 5G systems [138]
Coding and modulation schemes IoT Sensor networks [139]
Non-orthogonal multiple access MTC scenarios [140]
Minimization of the core network signalling 5G cellular network [141]
Joint encoding of grouped messages Wireless broadcast channel [142]
Autonomous transmission mode Delay tolerant IoT/MTC scenarios [143]
Receiver algorithms to enhance the reception quality 5G wireless networks [144]
Energy and information outage performance analysis Wireless powered network [145]
Exploitation of frequency diversity to enhance reliability Tactile Internet [146]

transmissions in mMTC/IoT environment by considering their

specific characteristics, which are briefly reviewed in the fol-

lowing paragraphs. Also, in Table V, we list the recent research

works towards supporting small data packet transmission in

wireless networks with their main themes and applicable

systems.

In short data packet transmissions, one effective way of

enhancing the packet transmission efficiency is to optimize the

pilot overhead [137]. However, most of the existing pilot over-

head optimization works considering the objective of ergodic

channel capacity maximization are based on the assumption of

sufficiently large packet length resulting in small packet error

probability, which is not suitable for short-packet transmission.

In this regard, authors in [137] formulated the optimization of

approximate achievable rate as a function of block length, pilot

length and error probability, and illustrated the importance of

considering packet size and error probability while optimizing

pilot overhead via numerical results.

Another potential enabling approach to support short packet

transmissions in IoT/mMTC environments is to design suitable

transmit waveforms. In the IoT environment, there are some

applications with very small packet sizes such as the data

transmitted from sensors like temperature sensors while some

other applications such as car to car and car to infrastructure

communications demand very fast response time. In order to

support these diverse set of applications, the 5G and beyond

air interface should be able to support transmissions with very

small air interface latency enabled by very short transmission

frames [138]. In this regard, it is important to investigate

suitable waveforms for supporting diverse applications in an

IoT environment. Among potential multi-carrier waveform

contenders such as filtered Cyclic Prefix-OFDM, Filter bank

multi-carrier and Universal Filtered Multi-Carrier (UFMC),

authors in [138] concluded UFMC as the best choice for

IoT systems with short burst transmissions due to its several

benefits in terms of supporting fast Time Division Duplex

(TDD) switching, low latency modes, low energy consumption

and small packet transmission.

In addition, investigating suitable coding and modulation

schemes is crucial to achieve high energy efficiency for short-

packet transmissions having low-duty cycles. Due to lower

duty cycle, time synchronization and phase coherency for

short-packet transmissions become non-trivial. Furthermore,

because of short packet length, a large coding can not be

achieved as in the conventional voice or data networks. More-

over, the overhead required to maintain time synchronization

and phase coherency becomes significantly large while using

the conventional coherent modulation schemes [139]. In this

regard, the time synchronization overhead can be reduced

by employing either non-coherent modulation/demodulation

schemes such as Phase-Shift Keying (PSK) with differential

encoding or orthogonal modulations. To this end, authors in

[139] analyzed the tradeoff between energy efficiency and

bandwidth in non-coherent short packet transmission systems.

Towards addressing the problem of scalability and efficient

connectivity to the massive number of MTC devices with short

packets, the NOMA scheme is considered as one candidate

multiple access solution [140]. Due to its benefit of improving

fairness and spectral efficiency for low-latency transmission

with respect to the orthogonal multiple access technique, it

is considered promising for IoT applications. In this regard,

authors in [140] analyzed a trade-off among the transmission

rate, transmission delay (in terms of block-length) and de-

coding error probability by considering a two user downlink

NoMA system with finite block-length constraints.

Furthermore, towards minimizing the signalling overhead

for small data packet transmissions, authors in [141] proposed

a framework based on 5G RAN controlled user-centric mobil-

ity, in which an anchor node is allocated and updated for each

end-device and it maintains the connection of the device to the

core network within its coverage area. In this approach, an user

centric area is dynamically allocated so that an user/device can

move freely and communicate with the network without any

state transitions signaling required in the existing connection

management schemes with RRC protocols [141].

Moreover, while implementing multiple-antenna based in-

terference suppression in IoT systems with small data packet

structures, the insufficient training period may result in severe

degradation in the estimation of the desired channel and

interference covariance matrix. The main challenge here is

to obtain the reliable channel estimation without significantly

affecting the data transmission duration, i.e., to balance the

trade-off between the pilot training period and the data trans-

mission period. In this regard, authors in [144] investigated

an efficient receiver structure which can exploit information

received during the data transmission period to enhance the

reception quality for the short packet transmissions. Moreover,

in the context of energy harvesting networks, authors in [145]

provided a comprehensive analysis of the backscatter wireless

powered communication with sporadic short data packets by

using a stochastic geometry framework.
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V. SOLUTIONS FOR RAN CONGESTION PROBLEM IN

CELLULAR IOT NETWORKS

In this section, we first review several existing techniques

towards addressing RAN congestion problem in cellular IoT

networks, and then discuss some emerging solutions.

A. Existing Techniques

Towards addressing the RAN congestion problem in LTE-

based cellular networks, 3GPP has specified the following six

different solutions of LTE RA congestion [90]:: (i) ACB, (ii)

MTC-Specific backoff, (iii) dynamic resource allocation, (iv)

Slotted random access, (v) separate RA resources and (vi) pull-

based RA. In the following, we briefly describe the principles

of these techniques along with other related solutions in the

literature [54, 90, 147]. Also, in Table VI, we provide the list

of these schemes along with their main principles and the

corresponding references.

1) Back-off based scheme: In this scheme, the devices

retransmit after a backoff time if they encounter a

collision. This scheme can enhance the network per-

formance under a low congestion level, however, be-

comes problematic in high-level congestions [148] This

is the conventional approach followed in contention-

based wireless networks and 3GPP has suggested several

improvements to solve the RAN overload problem. To

support MTC devices in the existing cellular networks,

3GPP has suggested the use of MTC-specific backoff

scheme in which MTC devices are subject to a larger

backoff interval than the HTC devices [90].

2) Access Class Barring (ACB) scheme: This scheme

classifies the contending devices into multiple access

classes with different access probabilities and each class

is assigned to an ACB parameter and an access barring

timer [90]. The working principle of the ACB scheme

can be summarized in the following way. First, the BS

broadcasts the ACB parameter, i.e., 0 ≤ p ≤ 1 to the

MTC devices and each MTC device trying to connect

to the BS generates a random number 0 ≤ r ≤ 1
uniformly. Then, the MTC device is allowed to start the

RA procedure if r < p and otherwise, the access to that

particular device is barred and the device has to wait for

a random backoff time determined based on the barring

duration of that class. Therefore, by controlling the ACB

parameter p, the BS can control the stabilization of RA

to optimize some network performance metrics such as

throughput [116].

However, in the presence of severe congestion caused

by the presence of massive number of IoT devices,

the value of p may be set to be extremely low, thus

leading to the intolerable delay. Also, the ACB scheme

is not suitable for event-driven applications in which the

contention may arise within a short time duration [52].

Furthermore, the operating parameters such as transmis-

sion probability should be adjusted based on the network

status and estimating the number of devices/network

status becomes challenging due to highly bursty traffic

in event-driven MTC communications [148].

To address the above drawbacks of the ACB scheme,

there have been some attempts in the literature. Some

of the important ones include the following.

a) Extended Access Barrier (EAB) scheme [149]: In

this scheme, devices belonging to a certain access

class are barred from the channel access to provide

some form of service differentiation [149]. The

operation of this scheme depends mainly on the

following two factors: (i) the sets of barred access

classes and (ii) the time of turning EAB on or

off. The larger the set of barred access classes,

the higher will be the access success probability

which comes at the cost of increased mean access

delay. Furthermore, the timing of turning EAB on

or off relies on the input network load which is

proportional to the number of devices concurrently

accessing the network.

b) Cooperative ACB scheme [117]: In this scheme,

ACB parameters are determined across the network

jointly by many BSs interconnected via the X2

interface [117] rather than individually calculated

at each BS. This scheme aims to balance the traffic

load among the BSs in a heterogeneous multi-

tier cellular network with the objective of reducing

the congestion level and also improving the access

delay.

c) Dynamic ACB scheme [118]: In this approach, the

ACB parameters are updated dynamically based on

the information about the number of collisions in

the previous time slots.

d) Prioritized RA with dynamic ACB [150, 151]:

This scheme pre-allocates the RACH resources

for different classes of MTC devices with class-

dependent backoff procedures and reduces the

number of concurrent requests for the RACH by

employing the dynamic ACB method.

3) Dynamic Resource Allocation: In this scheme, the BS

predicts the congestion level of the access network over-

load caused due to MTC devices and allocates additional

RACH resources dynamically in the time domain or

frequency domain or both for the MTC devices [54,

90]. However, the allocation of more radio resources for

RACH will reduce the radio resources available for the

traffic channels and this trade-off needs to considered

while implementing this solution.

4) Slotted Random Access: In this method, a dedicated

RA opportunity is provided to each MTC device and is

allowed to perform RA only in the access slot allocated

to it [90]. However, in ultra-dense IoT scenarios, this

method will result in very high access delay since the

duration for each RA cycle will be significantly large.

5) Separation of RA Resources: In this approach, different

RACHs are allocated to MTC devices and HTC devices

to avoid the impact of RA congestion on HTC devices.

The separation of RA resources can be done either by

splitting the available preambles into MTC and HTC

subsets or by allocating different RA slots for MTC and
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TABLE VI

SUMMARY OF EXISTING SOLUTIONS FOR RAN CONGESTION IN CELLULAR IOT NETWORKS

RA Scheme Main principle References

Back-off based scheme In the occurrence of collisions, devices retransmit after an MTC-specific backoff period. [90, 148]

Access Class Barring (ACB) Multiple access classes of devices are assigned different access probabilities. [116]

Extended Access Barrier (EAB) A certain access class of devices is barred from the channel access. [149]

Cooperative ACB scheme ACB parameter is designed by many BSs in a collaborative way. [117]

Dynamic ACB ACB parameter is updated dynamically based on previous collisions. [118]

Prioritized RA with dynamic ACB Utilizes class-dependent back-offs and dynamic ACB. [150, 151]

Dynamic resource allocation Congestion level is predicted at the BS and additional RACH resources are allocated dynamically. [54]

Slotted random access Each device is assigned a dedicated RA slot and is allowed to perform RA only in that slot. [90]

Separation of RA Resources Available preambles or RA slots are divided between MTC and HTC devices. [54, 90]

Pull-based/Paging-based Devices perform RA attempts only after receiving paging messages from the BS. [90]

Group-based RA RACH resources are allocated on the basis of groups formed based on some defined criterion. [152, 153]

Code-expanded RA RA codewords are generated and each device utilizes a set of preambles in each RA slot. [154]

HTC devices [54, 90].

6) Pull-based/Paging-based scheme: All the schemes de-

scribed above fall under the category of push-based

approach in which RA attempts are done randomly by

the devices. However, in the pull-based method, the

devices perform RA attempts only after receiving paging

messages from the BS. To reduce the number of paging

load in this approach, a number of MTC devices can

be paged together by following a group paging method

[90].

7) Group-based RA Scheme [152, 153]: The MTC devices

can be grouped based on some criterion such as having

similar QoS/delay requirements and being deployed in a

specific geographical region, and RACH resources can

be allocated on the group-basis to reduce the access

network congestion. In a group-based RA scheme pro-

posed in [152], the devices within one paging group are

partitioned into different access groups based on some

criterion and only one device within each access group,

called group delegate/header, is made responsible for

communicating with the BS. The group delegate can be

decided by the BS based on some suitable metrics such

as transmission power and channel conditions.

Another grouping approach is to divide the cell coverage

area into a different spatial groups and to enable the

use of same preambles at the same RA slot by the

MTC devices located in different groups if the minimum

distance of these MTC devices is larger than the multi-

path delay spread [112, 155]. While sending the RAR

message, the BS sends distinct RARs to all the detected

devices having different Timing Alignment (TA) values

even if they use the same preamble during the RA

preamble transmission phase.

8) Code-Expanded RA Scheme [154]: In this approach,

the contention space is expanded to the code domain

by creating the RA codewords. While initiating an RA

attempt, each device sends a set of preambles over the

given RA slots instead of transmitting only a single

preamble at any random RA slot, thus creating a set

of preambles in each RA slot.

9) Tree-based RA scheme [156, 157]: This category of

RA schemes utilizes the tree-based algorithms such as

q-ary tree splitting technique [158], which rely on the

utilization of feedback obtained after each contention

attempt [157]. This RA scheme is mostly used to ad-

dress the contention problem caused due to synchro-

nized arrivals of the traffic from a large number of

MTC devices. Furthermore, the combination of collision

avoidance techniques such as access barring can be used

in combination with tree-based collision resolution in

order to form a hybrid RA scheme [156].

In Table VII, we present the qualitative comparison of

the main existing RA schemes in terms of access delay,

energy efficiency, access success rate and QoS guarantee,

which are important to characterize the performance of an

RA scheme in LTE-based cellular networks [54]. It can be

depicted from Table VII that none of the techniques can

perform equally better in terms of all the desired performance

metrics and there arise trade-offs among these performance

metrics. For example, group-based and code-expanded RA

schemes perform better in terms of access delay but may not

provide QoS guarantee. Also, the slotted RA scheme performs

better in terms of energy efficiency and access success rate

but is worse in terms of access delay and QoS guarantee. On

the other hand, the prioritized RA scheme can provide higher

QoS guarantee and medium performance in terms of energy

efficiency and access success rate, but do not have a fixed

access delay.

B. Emerging Solutions

In the following, we provide some of the emerging research

directions to address RAN congestion problem in wireless IoT

networks.

1) Learning-based Techniques: Recently, learning-based

techniques have received important attention in addressing

the RAN congestion problem in cellular IoT networks. In

this direction, an RL scheme has been applied in [24] for

the selection of an appropriate BS for the MTC devices

with the objective of avoiding access network congestion and

minimizing the packet delay. In addition, a Q-learning based

access scheme has been studied in [11] to support MTC

traffic in the existing cellular networks. In this Q-learning

based approach, MTC devices learn to avoid collisions among

each other without involving a central entity and after the

learning convergence, each MTC device gets a unique RACH

slot. Furthermore, authors in [25] applied a Q-learning based

unsupervised algorithm in order to select an appropriate BS

for MTC devices on the basis of QoS parameters in dynamic
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TABLE VII

QUALITATIVE COMPARISON OF THE MAIN EXISTING SOLUTIONS FOR RACH CONGESTION.

RA Scheme Access delay Energy efficiency Access success rate QoS guarantee

Back-off based scheme high low low no

ACB, EAB and cooperative ACB schemes varied medium high high

Prioritized RA varied medium medium high

Dynamic resource allocation medium medium medium no

Slotted RA high very high very high very low

RA resource separation high low low no

Pull-based/Paging-based RA medium medium medium no

Group-based RA low medium high no

Code-expanded RA low very low high no

network traffic conditions. Moreover, a hierarchical stochastic

learning algorithm has been applied in [159] to enable each

device to make the access decision with the assistance of

common control information broadcasted from the BS. In

addition, in [23], a Q-learning algorithm has been applied to

dynamically adjust the value of a barring factor to be allocated

to the MTC device in the ACB scheme.

2) Distributed Queueing: The existing approaches to en-

hance the RACH performance are mainly based on the

ALOHA-type mechanisms which suffer from some level of

inefficiency, instability and uncertainty in the outcome of the

access opportunities to be assigned to the devices [52]. In

this regard, one promising approach is Distributed Queuing

Collision Avoidance (DQCA) [160] which is a distributed and

always-stable high performance protocol. This MAC protocol

behaves as an RA mechanism for low traffic load and switches

automatically and smoothly to a reservation scheme when

the traffic volume increases [160, 161]. More specifically, the

DCQA protocol utilizes two distributed queues which operate

in parallel [161]. The first queue, called collision resolution

queue, deals with the resolution of access-request signal col-

lisions, while the other queue, called data transmission queue,

helps to manage the data transmission. The main features of

this protocol are the following [160].

1) It can eliminate back-off periods and avoid collisions in

data packet transmissions.

2) Its performance is independent of the number of trans-

mitting nodes.

3) It is stable independently of the traffic conditions.

4) As compared to other centralized or distributed MAC, it

utilizes very few bits for signaling operation purposes.

Furthermore, authors in [95] proposed a distributed queuing-

based access protocol for LTE with the objective of improving

the RA performance for MTC systems without altering the

existing frame structure of LTE systems. The original version

of distributed queueing protocol envisions orthogonal mini-

slots as access opportunities and its implementation requires

a change in the LTE frame structure since the preambles in

LTE are not orthogonal in time domain. To address this issue,

the authors in [95] considered the distribution of allocated

preambles for MTC devices among Ng virtual groups, with

each virtual group having Np number of preambles and each

preamble being equivalent to one mini-slot considered in the

original distributed queueing protocol.

3) SDN and Virtualization for RAN Management: To sup-

port differentiated MTC services with diverse QoS require-

ments, a physical wireless network can be abstracted and sliced

into multiple virtual networks by employing suitable network

function virtualization techniques [94]. On the other hand,

Software Defined Networking (SDN) enables the separation

of a data plane and a control plane, and provides the capa-

bility of programming a network via a centralized controller.

Due to the global view of the underlying network, an SDN

controller enables the efficient management of radio resources

in dynamic network traffic and channel conditions. In cellular

IoT networks, a hypervisor can divide the physical network

into different IoT networks based on device classes and func-

tionalities, and the SDN controller can dynamically allocate

the available radio resources among these virtual networks to

meet the QoS requirements of different IoT networks. Among

these virtual networks, each MTC device can select one of

the virtual networks to access to the physical network while

meeting its connection requirements [162]. In addition to radio

resources, it is also possible to enhance the utilization of other

network resources such as computing, caching and networking

resources [94].

VI. LEARNING-ASSISTED SOLUTIONS FOR RAN

CONGESTION PROBLEM IN CELLULAR IOT NETWORKS

A. Advantages of Learning Techniques in Wireless Communi-

cations

The main questions this section attempts to answer are why

learning techniques are important in wireless communication

systems, which parameters to learn and for what purposes.

First, we present the main advantages of learning techniques

in wireless communications systems in general, and then

discuss why learning techniques are needed on the top of

the conventional link adaptation techniques. Subsequently, we

discuss various parameters which can be learnt by using

learning techniques in different application scenarios.

As highlighted earlier in Section I-C, the number of config-

urable system parameters has increased significantly from one

cellular generation to the next one. For example, the number

of configurable parameters has increased to about 1500 in a

4G node from about 500 in a 2G node and from about 1000
in a 3G node, and it is predicted to be around 2000 in a 5G

node [16, 17]. In this regard, the process of optimizing these

reconfigurable parameters in 5G and beyond systems becomes

extremely complex and performing self-configuration, self-

optimization and self-healing operations will be challenging.

Also, emerging ultra-dense networks will need to observe

environmental variations, learn uncertainties, plan response

actions and configure the network parameters effectively to
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TABLE VIII

USE CASES FOR THE APPLICATIONS OF LEARNING TECHNIQUES IN ULTRA-DENSE CELLULAR SYSTEMS

Use Case Sub-cases/related description Reference
RACH congestion minimization Learning to find the unique access slot for each MTC device [11]

Learning to adapt an ACB parameter [23]
Learning to associate MTC devices with the best eNodeBs [24, 25]

Autonomous adaptive resource allocation Learning to find the existence of the critical delay-sensitive messages [26]
Dynamic spectrum sharing Learning to predict the occupancy status of radio channels [163]
Learning-assisted edge-side processing Extracting useful information from the raw sensor data [43]

at the edge devices to reduce the communication burden [43]
Learning-assisted traffic offloading Learning to decide when and where to offload the traffic demands [44]

from the user-devices to enhance energy efficiency
Selection of a suitable RAT Learning to select a suitable RAT among different RAT technologies [164]

under network conditions and user preferences constraints
Network traffic control Learning to control network traffic to enhance computational efficiency and scalability [165]
Adaptation of transmission parameters Learning link quality/reliability to adapt parameters such as MCS and transmission slot [18, 19, 171–173]
Data analytics To extract user activity/mobility patterns, temporal, spatial and social correlations [62]
Provisioning of personalized services To learn network contexts for a global view of communications, computing [174]

and caching resources

handle these operations. To this end, emerging ML techniques

could bring potential benefits in efficient handling of these op-

erations. The main role of learning techniques include learning

the system variations/parameter uncertainties, classifying the

involved cases/issues, predicting the future results/challenges

and investigating potential solutions/actions [17].

ML techniques can be utilized to address various issues

in wireless networks including link adaptation, resource al-

location and user scheduling (as highlighted in Table VIII).

Typical problems, which are suitable to use ML, are usually

too complex to be modelled but have the hidden patterns which

can be explored with the assistance of ML. In this context, the

widely-used link adaptation could be an appropriate example

when it becomes a complex problem due to the impact of

dynamic communication environment, resource condition and

link quality. Therefore, in the following, first, we provide

the justification about the need of ML over the existing link

adaptation techniques, and then highlight its importance in

addressing other different issues.

Wireless systems utilize link adaptation techniques to adapt

the physical layer parameters such as modulation and coding

scheme based on the reliability/quality of the communication

link. In practice, different applications such as wireless video

broadcasting and VoIP demand for different reliability con-

straints. Before performing this link adaptation, the reliability

of a wireless link in the form of some metrics such as PER

is predicted for each set of physical layer parameters, needs

to be predicted [18]. During the link adaptation process, there

arises a tradeoff between data rate and reliability since the

PER calculated for a set of physical layer parameters is in

general inversely related to the data rate. In order to predict the

reliability, existing systems form explicit input/output models

of a wireless channel and then analyze the performance of

physical layer for each set of the parameters.

However, due to the increasing trend of using multiple an-

tennas, wideband signals and a number of advanced signal pro-

cessing algorithms, the above-mentioned reliability prediction

process becomes extremely complex [18] and the prediction of

PER with good accuracy becomes difficult in practice [175].

Furthermore, due to a significantly large number of environ-

mental parameters such as channel state information, signal

power, noise variance, non-Gaussian noise effect, transceiver

hardware impairments such as power amplifier non-linearity

and quantization error, it becomes challenging to provide the

near-optimal/optimal tuning of the transmission parameters to

achieve the efficient link adaptation [19]. The severity of this

problem greatly increases in ultra-dense networks due to the

involvement of various agents and system parameters such

as Signal to Interference plus Noise Ratio (SINR) mismatch

in ultra-dense small cell networks [176], and therefore, the

link adaptation in emerging ultra-dense networks becomes ex-

tremely challenging. Also, the existing link adaptation systems

are localized to individual links and small coverage areas, and

do not take into account of the consequences on other systems

from the system-level perspective.

In order to make the link/system adaptation more flexible

and efficient, existing works have applied ML techniques in

different settings [18, 19, 171–173]. The contribution in [18]

investigated an online learning framework for the link adapta-

tion by using a modified k nearest neighbor (kNN) algorithm

to learn the mappings between the channel conditions and

PER values for all possible Modulation and Coding Schemes

(MCS) supported by the system. In this online learning frame-

work, when a new packet is delivered, the predicted PER

associated with each MCS is calculated by using the kNN

algorithm and the best MCS is selected. After a packet is

transmitted, the packet is stored as a prior data of the selected

MCS for future prediction purpose. Although the accuracy of

PER prediction becomes more accurate with the increase in

the number of packet transmissions, this kNN-based approach

requires to store all the previous samples and has higher time

complexity, not suitable for a real time operation [18]. In

this regard, the authors in [19] proposed an online kernelized

support vector regression method which can work with the

minimal memory size and has low computational complexity

while providing a comparable performance to those of the

existing algorithms.

Learning techniques are expected to provide significant

benefits by adaptively learning numerous parameters in various

application scenarios as listed below. Also, we provide a brief

summary of these use cases along with the corresponding

references in Table VIII.

1) Learning to exploit an unique RA slot for each MTC

device within the considered transmission frame in a
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way that concurrent transmissions in the same RACH

opportunity can be avoided [11].

2) Learning to adapt an access control parameter, i.e.,

access barring factor for the RACH congestion [23].

3) Learning to associate MTC devices with suitable

BSs/eNodeBs with the objective minimizing overall ac-

cess network congestion [24, 25].

4) Learning the existence of delay sensitive/critical mes-

sages by IoT devices in heterogeneous ultra-dense IoT

networks so that enough resources can be dynamically

allocated and critical information can be successfully

transmitted to the BS/eNodeB/aggregator as soon as they

are generated [26]. Based on the learned information

about critical messages, IoT devices can collectively

adjust their uplink transmission parameters such as

orthogonal codes, transmission slot period, periodicity

of transmission and the received power for performing

autonomous resource allocation and the coordination for

the usage of available codes.

5) Learning the radio spectrum by dynamic spectrum shar-

ing among the systems/nodes in a collaborative manner

to predict the occupancy status of radio channels [163].

6) Learning the relationship of the contextual information

(related to the surrounding radio environment) collected

from IoT sensors to extract knowledge and to pre-

dict the future context at the edge devices [43]. In-

stead of transferring all the raw contextual data to the

network/cloud-centre, only the inferred knowledge can

be transferred, thus reducing the communication burden.

This approach deals with pushing learning intelligence

from the network to the distributed edge devices having

heterogeneous computing abilities.

7) Learning-assisted traffic offloading in a heterogeneous

cellular network for offloading time-varying traffic to

the nearby small cells by employing Q-learning with the

compact state representation algorithm (QC-learning)

with the objective of minimizing the total discounted

energy consumption while maintaining the QoS of the

cellular users [44].

8) Learning for the selection of Radio Access Technology

(RAT) while performing vertical handovers among het-

erogeneous networks having different RAT technologies

under the constraints of network conditions and user

preferences, which can be designed on the device-side,

network side or in a hybrid manner [164].

9) Learning for network traffic control (such as routing)

in ultra-dense heterogeneous networks to alleviate the

issues of computational efficiency and scalability of the

existing approaches [165].

10) Learning link quality/reliability to adapt the transmission

parameters (such as MCS, transmission slot, received

power etc.) of a wireless link. [18, 19, 171–173]

11) Learning to extract user activity/mobility patterns,

temporal, spatial and social correlations from raw

unstructured/semi-structured data coming from massive

number of sensors.

B. Overview of Existing Machine Learning Techniques

ML techniques learn necessary information either from the

available data-sets or by interactions with the surrounding

environments and make suitable decisions on future actions to

be followed by the agents either based on some learned models

or in a model-free manner. The classification of existing ma-

chine/deep learning techniques in terms of different bases such

as learning principles, objectives and the employed algorithm

is provided in Fig. 6 [165, 166]. On the basis of the employed

learning mechanisms, the existing ML and deep learning

techniques can be broadly categorized into the following [45,

165, 178]: (i) supervised learning, (ii) unsupervised learning,

and (iii) reinforcement learning. Figures 7 and 8 provide

the illustrations of the principles of these three categories

of ML techniques [179]. Furthermore, in Table IX, we have

pointed out the main advantages and disadvantages of super-

vised, unsupervised, reinforcement learning and deep learning

techniques along with the highlights on their applicability in

IoT/mMTC scenarios.

The first category of ML techniques, i.e., supervised learn-

ing requires the need of training data to be labelled and the

output of the algorithm needs to be already fed to the machine.

Being aware of the output, the learning agent builds a model

to move from the input to the output guided by the input

training set. Based on the employed learning algorithms, the

supervised learning techniques can be classified into [63, 165]:

Artificial Neural Networks (ANNs), Deep NNs, Bayesian Net-

works (BNs), Support Vector Machine (SVM), Deep Learning

(DL), Case-based Reasoning (CBR), Decision Trees (DTs),

K-Nearest Neighbor (KNN), Instance-based Reasoning (IBR)

and Naive Bayesian Classifier. The main difficulty of applying

supervised ML techniques in IoT scenarios is that they require

the processing of extensive data-set to learn from the dynamic

environment but IoT devices are limited in terms of computing

and caching/memory resources [45].

On the other hand, the second category of ML techniques,

i.e., unsupervised learning does not require the need of labels

of data-sets and is more complex than supervised learning

techniques in terms of the computational cost [165]. Although

this learning class has not been widely used as compared

to the supervised learning in the current context, it can be

considered as a promising future ML paradigm since the

main objective of ML is to make the learning agent capable

of learning without any supervision or human intervention.

Since the learning agent does not have any training data-

set and the knowledge of the output, the learning process

is quite complex as compared to the supervised counterpart.

This learning approach divides the unlabelled heterogeneous

data into smaller homogeneous sub-sets which can be eas-

ily understood and managed [63]. Therefore, unsupervised

learning techniques are mainly based on following three

objectives [165]: (i) clustering, (ii) dimensionality reduction,

and (iii) density estimation. For clustering-based unsupervised

learning, different ML algorithms such as K-means, spectral

clustering, Principal Component Analysis (PCA) and Dirchlet

processes can be utilized. Similarly, unsupervised learning

for dimensionality reduction can be employed by using ML
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Fig. 6. Classification of existing machine/deep learning techniques (Deep learning techniques are indicated in the italic format).

algorithms like auto-associative NN, local linear embedding

and Isometric Feature Mapping (ISOMAP). Furthermore, the

density estimation-based unsupervised learning can be realized

by using ML algorithms such as Kernel density, Gaussian

mixtures, Boltzmann machine and Deep Boltzmann machine.

In order to take the advantages of supervised and unsu-

pervised learning, there is another intermediate type of ML

techniques, called semi-supervised learning technique [180]

which uses both the labelled and unlabelled data for learning.

The main objective of semi-supervised learning scheme to

improve the learning accuracy by utilizing a small amount

of the labelled data along with the large amount of the

unlabelled data. The above-mentioned types of ML techniques

have been applied mainly in the centralized framework [178].

For example, cloud-based processing can enable the operation

of big data analytics to handle the massive amount of data

gathered from the heterogeneous IoT sensors/devices [21].

The third category of learning techniques, i.e., RL enables a

number of agents to interact with the environment and involves

an environment of states, actions to be taken by the agents,

state transition functions, an immediate reward and an initial

observation function [45]. In this approach, an agent learns

from the previous experience in the absence of the training

data set. This learning mechanism deals with finding a proper

balance between exploration for the random actions and ex-

ploitation of current knowledge, i.e., exploration-exploitation

trade-off. The role of exploration phase in RL learning is

to attempt some random actions towards searching better

rewarding actions, while the exploitation phase attempts to

utilize the previously learned utility to maximize the reward

for the agent [181].

Besides the above-discussed three categories of ML tech-

niques, some researchers have also considered another cat-

egory of learning techniques, called as Sequential Learning

(SL) [45], which helps the autonomous agents to learn the true

underlying state of the environment having binary states. In

this approach, the agents learn the system state in the sequence

by following a given order while observing the environment

and the actions or observations of previous agents, and then

eventually converge to a true underlying state with repeated

hypothesis testing [45]. The main advantage of employing

SL techniques in the IoT systems is its flexibility in terms

of memory requirements since it enables the convergence of

finite memory SL in the resource-constrained IoT devices

[177]. However, the main drawback of the SL approach is

that it relies on direct communication links among MTC

devices since the information required for SL comes from

other agents, thus leading to the requirement of additional

network resources.

Among several RL techniques, Q-learning requires low

computational resources for its implementation and does not

require the knowledge of the model of the environment,

thus being a suitable learning technique for the resource-

constrained IoT devices [181]. Furthermore, it is possible to

implement this technique in a distributed way. Therefore, in

the following subsection, we utilize the Q-learning technique

to address the problem of RACH congestion in cellular IoT

networks.

In addition to the aforementioned classical ML techniques,

several Deep Learning (DL) techniques are being investigated
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TABLE IX

ADVANTAGES AND DISADVANTAGES OF SUPERVISED LEARNING, UNSUPERVISED LEARNING, REINFORCEMENT LEARNING AND DEEP

LEARNING ALONG WITH THEIR APPLICABILITY IN IOT/MMTC SYSTEMS

Learning  

paradigms 

Advantages Disadvantages Applicability to IoT/mMTC environments 

 

 

 

 

 

Supervised 

Learning 

1. Data analysist has a full 

centralized control. 

2. Output is known in advance to 

learn the model. 

3. Suitable for learning problems 

where each input data point is 

labelled or belongs to a category. 

1. Need of labelled data 

2. Need of large training data-

sets 

3. Demands for high 

computational capacity. 

 

1. The main supervised learning techniques 

investigated for IoT applications in the literature 

include: Artificial Neural Networks (ANNs), 

Bayesian networks, case-based reasoning, instance-

based learning, ensembles of classifiers, decision 

trees, K-nearest neighbor, and support vector 

machines [62]. 

2. Supervised learning is difficult to implement in 

distributed environments and in resource-constrained 

IoT/mMTC devices. 

 

 

 

Unsupervised 

learning 

1. No need of labelled data 

2. Attempts to find hidden 

structure in the unlabeled data 

3. Minimizes the human error that 

may arise in supervised learning. 

4. Suitable for large and complex 

models where a data-point does 

not have a label or does not 

belong to a category. 

1. Only the input data-set is 

known and no prior 

knowledge of training data-set 

and expected output. 

2. The learning objective is of 

more subjective nature than 

that of the supervised learning. 

3. Data analysist does not have 

much control.  

1. The main unsupervised learning techniques 

studied in the context of IoT applications include 

clustering, association rule learning and ANNs [62].  

2. Unsupervised learning techniques are preferred 

over supervised learning in IoT applications which 

need faster results and require to extract hidden 

patterns from the massive IoT data. 

 

 

 

 

 

Reinforcement 

Learning 

1. No need of labelled data-and 

desired output  

2. Low computational complexity 

compared to supervised and 

unsupervised learning 

3. Easier distributed 

implementation and applicable for 

asynchronous network operation 

4. Explores the trade-off between 

exploration and exploitation 

5. Suitable for the learning 

problems having continuous 

interaction between the learning 

agent and environment via action-

reward feedback loop. 

1. No prior knowledge of 

underlying learning 

environment and feedback 

limited to only reward signal 

2. Convergence to the steady 

state can be time consuming 

3. The learning agent’s 

observations depend on its 

actions and may contain 

strong temporal correlations. 

4. May have to suffer from 

credit assignment problem in 

distributing credits to success 

among many involved 

decisions. 

1. Simplicity of operation and distributed 

implementation make RL more applicable for 

IoT/mMTC applications 

2. The continuous interaction between the learning 

agent and the environment in terms of action-reward 

feedback loop makes RL suitable for dynamic 

wireless IoT/mMTC environments. 

3. The main RL technique used for IoT/mMTC 

applications is Q-learning.  

 

 

 

 

 

 

 

Deep Learning 

1. Reduces the part of feature 

extraction/engineering which is 

the most time consuming part of 

classical ML. 

2. It is highly configurable and 

flexible than classical ML. 

3. DL techniques can achieve 

much higher learning accuracies 

than the classical ML. 

4. The performance scales much 

better with a large amount of data 

than with the classical ML. 

 

1. Involves several hyper 

parameters and training 

process is slower.  

2. DL techniques are sensitive 

to the data structure and size. 

3. Lack of theoretical tools for 

determining the topology, 

training method and hyper-

parameters. 

4. DL techniques demand for 

high-end GPU platforms for 

training with big data in a 

reasonable time. 

5. Interpretation of results with 

DL models becomes often 

difficult. 

 1. The main DL techniques considered in the 

literature for IoT/mMTC applications include deep 

CNNs, Recurrent Neural Networks (RNNs), deep 

belief networks, Long Short-Term Memory (LSTM) 

networks and deep Boltzmann machine [62]. 

2. Due to its multilayer structure, DL is 

advantageous for extracting accurate information 

from raw IoT data in complex IoT systems.  

3.  DL can be utilized for privacy preservation of IoT 

systems since the intermediate data usually have 

different semantics than that of the source data [35].  

4. Due to huge need for energy, battery and memory 

resources, the deployment of DL in resource-

constrained devices becomes difficult, leading to the 

need of efficient and compressed DL models [34].   

 

in wireless networks including IoT networks [35]. Although

feed-forward NN models have been employed in the past, the

limitation in the computational capabilities of the available

hardware was the major bottleneck in implementing more

deeper architectures. The recent advances in Graphics Pro-

cessing Units (GPUs) and hardware accelerators have led to

the development of different DL algorithms and architectures.

The main advantage of DL architectures over the classical ML

is that DL models comprise of several hidden layers with the

innermost layer being capable of recognizing more complex

features, and can learn hidden features from the raw data-set.

As illustrated in Fig. 6, the existing DL techniques fall

into three categories, i.e., supervised, unsupervised and RL.

Some of the important DL techniques under the category

of supervised learning include Convolutional Neural Network

(CNN), Deep Belief Network (DBN) and Recurrent Neural

Network (RNN). Similarly, deep Q learning and deep Q-

networks fall under the category of deep RL techniques.

Furthermore, the unsupervised DL incorporates various tech-

niques including CNN, DBN, Stacked Auto-Encoders (SAE)

and Deep Boltzmann Machine (DBM). Furthermore, depend-

ing on the objective of how a learning architecture will be

utilized, DL architectures can be broadly categorized into [35,

166]: generative, discriminative and hybrid. The main objec-

tive of a generative DL architecture is to extract the high-order

correlation features of the input data for further analysis while
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a discriminative DL architecture aims for pattern classification

or recognition. On the other hand, a hybrid DL architecture

combines the advantages of both generative and discriminative

architectures.

As compared to the classical NNs, CNNs provide much

better performance in terms of learning task specific fea-

tures due to its deeper network structure. The CNNs can be

trained by using supervised or unsupervised approaches but

the supervised approach requires a large number of input-

output pairs and a very large training data-set [166]. Also,

as the CNNs become more deeper, there arises the need of a

large-scale data-set and massive computing power for training

the learning models. Thus, a proper trade-off between the

computational complexity and the depth of the network needs

to be investigated.

The RNNs are mostly used in the sequential or time-series

problems with various length in which future prediction is

dependent on several previous samples. The depth of an RNN

can be adjusted to be as large as the length of the input

data sequence, and the extended version of backpropagation

algorithm, called Backpropagation through time [167] can be

utilized to train the network. The main issue with the RNNs is

that the long-term information has to sequentially pass through

various layers before it reaches to the final layer and there may

arise the issue of vanishing gradients across the layers [168].

This issue can be addressed partially with the Long-Short Term

Memory (LSTM) version of RNNs and the modified stochastic

gradient descent methods [169].

Another DL technique Stacked Auto-Encoders (SAE) be-

longs to the category of unsupervised learning and can be uti-

lized to perform dimensionality reduction or data compression

[166]. Its architecture comprises of an input layer followed by

a small number of hidden layers capable of encoding the input

data-set and an output layer which attempts to reconstruct the

input layer. Furthermore, DBM is another most commonly

used DL technique which comprises of stacked Restricted

Boltzmann Machines (RBMs) and enables the efficient training

of several layers of hidden units. Furthermore, some examples

of the deep version of RL, i.e., deep RL include the deep

Q networks and double Q-learning. Deep Q network, already

patented by Google, combines Q-learning with a deep NN and

can address the overestimation issue of Q-learning in certain

conditions. In addition, double Q-learning algorithm can be

generalized to any arbitrary function approximation to enhance

the performance of deep Q-networks [170].

C. Learning Techniques for IoT/MTC Systems

The main challenges of applying learning techniques in an

IoT environment include the following [45].

1) MTC devices have low computational capability, how-

ever, the widely-used ML techniques such as RL and

decision trees can be computationally complex to im-

plement.

2) Because of the distributed nature of IoT devices and high

energy required to maintain constant communication

with the BS/centralized aggregator, distributed learning

needs to be investigated for an IoT environment.

3) Due to limited radio resources and energy constraints,

only the limited amount of information is available at

the IoT devices, and therefore, it is necessary to adapt

the learning mechanisms based on the limited amount

of information.

4) In some critical applications such as eHealthCare and

industrial control, IoT devices need to learn quickly

in order to satisfy the ultra-reliable and low-latency

requirements. For this purpose, learning time should be

as small as possible to quickly adjust the performance

parameters.

5) To enable the harmonious coexistence of MTC and HTC

systems, learning techniques should consider both the

existing traffic as well as the new traffic from the MTC

devices.

Existing works have applied learning techniques in the

context of MTC/IoT in the following ways: (i) adaptation

of an access control parameter, i.e., access barring factor to

minimize the RACH overload [23], (ii) learning a dedicated

slot within the MTC transmission frame by using an intelligent

slot assignment strategy to avoid the collisions of access re-

quests [11], (iii) BS/eNodeB selection by using Q-learning/RL

techniques to minimize the access network overload [24, 25],

and (iv) sequential learning with finite memory in order to

learn transmission parameters under stringent memory and

computational constraints [26, 177]. In Table IX, we highlight

the main aspects related to the applicability of supervised,

unsupervised , reinforcement and deep learning in IoT/mMTC

scenarios.

Due to resource-constrained nature of IoT devices in terms

of computational capability and power, it becomes challenging

to employ supervised and unsupervised ML algorithms which

are usually computationally difficult to implement and require

the centralized mode of operation. Therefore, for wireless IoT

applications, it is crucial to investigate ML algorithms which

are computationally simpler and also have the distributed na-

ture of operation [45]. To this end, RL can be a promising solu-

tion due to its simplicity of operation as well as its distributed

implementation feature. The RL techniques are considered to

be computationally simpler since the function used for decid-

ing the next action is simple, for example, the operation of

Q-learning is purely algebraic. Also, an RL technique exploits

the interaction between the learning agents and the underlying

environment and a learning agent can utilize future rewards

to decide about the current action to maximize its long-

term rewards [182]. Furthermore, RL techniques can work in

model-free wireless environments where the system dynamics

are usually unknown [183]. More importantly, the action-

reward feedback loop of RL enables resource-constrained IoT

devices to interact with the environment continuously without

requiring the need of a supervisor, a training data-set and large

input data-sets as required in the supervised learning. Although

an RL technique requires the knowledge of state transition

function and it has slow convergence, its unique feature of

action-reward feedback to the agents makes this suitable for

the applications in IoT/mMTC systems.

In an RL technique, a learning agent interacts with the

underlying environment and alters the state of the environment
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by taking some actions. Then, based on the executed action,

the environment provides some reward to the agent which

then attempts to maximize its rewards over time by choosing

those actions which result in higher rewards, thus leading

to the unique aspect of action-reward feedback loop [182].

The learning agent’s knowledge about the environment is

reinforced during this learning process, i.e., the agent learns

to compromise with the rewards and risks from their past

experience.

Existing IoT related works have already exploited the

action-reward feedback to employ an RL technique in dif-

ferent settings. Authors in [184] employed RL for the real-

time task assignment among fog/edge servers in a fog IoT

network consisting of 200 IoT devices and 10 fog servers

of heterogeneous capabilities for task processing with the

objective of minimizing the total computation latency over a

long period. This RL approach exploited the pattern of the

state-reward pair (with the inverse of the latency as the reward)

to reinforce the task assignment action towards minimizing the

long-term latency and it was shown that the proposed RL based

method overcomes the conventional approach by about 16 %

in terms of long-term latency. Furthermore, another article

[185] employed an RL-based scheduling algorithm for access

control problem in edge-IoT systems, and also to minimize

prediction error in a battery prediction problem without any

knowledge of the model about the energy source and the

arrival process. In the access control problem, the BS employs

the RL-based Long Short-Term Memory (LSTM) Deep Q-

Network (DQN) with all the possible User Equipment (UE)

selection choices as the action space, and the received sum-rate

at the BS as the reward signal with the objective of maximizing

the long-term expected uplink sum-rate. In the joint problem

of action control and battery prediction, the mixture of sum-

rate and the prediction loss was considered as a reward signal.

Furthermore, ML techniques can be employed to enhance

the security, resiliency and robustness of IoT/mMTC sys-

tems. Compared with the conventional communication sys-

tems, IoT systems are usually more vulnerable to various

security issues including intrusions, spoofing attacks, jamming,

malwares, eavesdropping, Denial of Service (DoS) attacks

and distributed DoS [27]. Due to the limited computation

power, memory, battery resources and operating bandwidth,

execution of computationally intensive and latency inducing

tasks for security provisioning at the IoT devices becomes

complicated. However, most of the legacy security solutions

generate heavy communication and computation overhead for

the IoT devices. In this regard, authors in [28] identified

various IoT security threats and reviewed several ML-based

techniques IoT security solutions including IoT authentication,

secure offloading, access control, anti-jamming and malware

detection schemes. The main security threats in IoT include

DoS attackers, jamming, spoofing, man-in-the-middle attack,

software attacks and privacy leakage.

Various techniques based on supervised, unsupervised and

RL have been investigated to improve the security of IoT

systems. For example, SVMs can be used in IoT devices to

detect network intrusion [178] and spoofing attacks [30]. Also,

an IoT device can utilize K-NNs and random forest classifiers

to devise a malware-detection model [29]. In addition, Neural

Networks (NNs) can be utilized to detect network intrusion

and in this context, authors in [31] have provided a compre-

hensive review of ML and data mining techniques for intrusion

detection in cyber analytic applications. Furthermore, IoT

devices can utilize different unsupervised techniques including

multivariate correlation analysis to detect DoS attacks and

infinite Gaussian mixture model for physical layer authen-

tication [28]. Moreover, various RL techniques such as Q-

learning, Dyna-Q and deep Q-network can be utilized to

enhance the security of IoT protocols against various attacks.

As an example, authors in [32] showed that Q-learning based

offloading policy can reduce the spoofing rate by 50% and

jamming rate by 8% as compared to the conventional approach

without learning.

In addition, to address the scalability and accuracy issues of

classical ML techniques, emerging deep learning techniques

such as Long Short-Term Memory (LSTM) networks seem

promising. The LSTM networks not only reduce the burden

of feature engineering over the classical ML but also are found

to be resilient against adversaries with high detection accuracy

[33]. Furthermore, unlike the classical ML, LSTM networks

are suitable for training unstructured data-sets encountered in

IoT applications and also can be utilized to recognize the

repetitions of the attack patterns in the long sequence without

depending on a defined window size. Moreover, design and

implementation of robust attack detection systems for IoT

devices becomes challenging due to several issues including

latency sensitivity, and resource constraints. Although the re-

mote cloud can address the issue of computational and caching

resources, it suffers from the problem of high reaction time

and needs expensive transmission links to transmit to/from the

cloud. In this regard, authors in [33] utilized the self-learning

capabilities of deep learning techniques to detect cyber-attacks

by utilizing fog nodes as data and control processing centers

in fog-to-things computing platforms. In addition, the recent

article [34] utilized the Reservior Computing (RC) paradigm,

which is considered promising to address the training diffi-

culties of the conventional recurrent NNs, for the purpose of

attack detection in smart grids. The accuracy of the proposed

RC-based attack detection has been shown to be insensitive to

attack variations including the number of compromised meters

and the attack magnitude.

The emerging deep learning techniques enable the extraction

of accurate information from raw IoT data in complex wireless

networks. Also, due to multi-layer structure of DL techniques,

they become advantageous for complex edge computing en-

vironments [35]. Furthermore, DL can enhance the privacy

preservation in IoT systems since the intermediate data in

deep learning usually have different symantics than that of the

source data [36]. However, DL techniques demand for a sig-

nificant amount of energy, battery and memory resources and

their implementation in resource-constrained devices becomes

challenging. Therefore, it is crucial to investigate suitable

techniques to make DL techniques suitable for resource-

constrained IoT devices. Some promising techniques in this

direction include the following [35]: (i) network compression,

(ii) approximate computing, and (iii) accelerators.
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Network compression enables the conversion of a dense

network to a sparse network, thus reducing the storage and

computational capabilities of Deep Neural Networks (DNNs).

In this regard, authors in [37] investigated the applicability

of DL models on different hardware devices including Intel

Edison used in wearables, Snapdragon 800 employed in some

models of smartphones and Nvidia Tegra K1 used in IoT-

enabled vehicles by taking measurements of energy consump-

tion, time and memory footprint into account. Based on the

energy usage measurement, the performance of Convolutional

Neural Networks (CNNs) and DNNs was investigated in the

aforementioned three different hardware platforms and it was

shown that all the platforms were able to run the compressed

models of DL. In the context of CNNs, DL models can be

enhanced for resource-constrained IoT devices by replacing

convolutional layers with the feed-forward layers wherever

possible. Similarly, DL models with DNNs can be made

implementable in resource-constrained devices by reducing

the number of involved parameters, i.e., by removing the

redundant parameters, and the models can be made more time-

efficient by selecting a suitable activation function in DNNs.

Another enabling approach to make DL models imple-

mentable for IoT devices is to integrate DL models with

approximate computing [38]. The benefit of approximate com-

puting arises due to the fact that in many IoT applications, the

acceptable range of ML results with the desired quality works

without requiring the need of obtaining exact ML prediction

results. Furthermore, another promising method to enable the

implementation of DL models in IoT devices is to design

particular accelerators in the form of hardware and circuits

with the objective of optimizing memory footprint [39] and

energy efficiency [40] of DL models.

In several IoT applications including energy usage predic-

tion, demand side management and control, and non-intrusive

activity detection, time-series methods can be utilized [42].

The LSTM is one of the popular DL architectures in the

literature for addressing time-series problems and has been

investigated for several IoT applications [41, 42]. An LSTM

network consists of long short term memory blocks conprising

of memory cell units which enable LSTM to remember

the state values for the arbitrary period of time. In [41],

authors employed an LSTM model to predict the working

conditions of the power station equipments by analyzing the

data collected from sensors. The performance of the LSTM

model was found to be better as compared with that of the

Autoregressive Integrated Moving Average (ARIMA) model in

terms of the prediction accuracy. Furthermore, the contribution

in [42] compared the performance of LSTM and ARIMA

models in predicting the number of occupants at a given

time and location by using WiFi networks in a smart building

environment. Via numerical results, it was demonstrated that

LSTMs can achieve low root mean square error than the

ARIMA models but often require more training data and

need to tune several input parameters. Moreover, the article

[33] proposed an LSTM network for detecting distributed

cyber-attack in edge IoT networks by utilizing the feature

resilient feature of DL against morphing attacks. Also, authors

identified and analyzed various critical threats and attacks for

IoT devices and demonstrated the effectiveness of DL models

over the classical ML models in addressing the attack issues

in wireless IoT systems.

D. Q-learning for RACH Congestion Problem

The ML techniques can be utilized to address various non-

conventional challenges of IoT/mMTC systems highlighted

in Section I. In Section V, by considering RAN congestion

problem as a use-case example, we discussed various existing

solutions and emerging solutions including learning-assisted

techniques. Herein, we employ Q-learning for RACH conges-

tion problem as a use-case illustration of the application of

ML techniques for RAN congestion problem in cellular IoT

networks.

The main problem with the existing contention-based RA

schemes is that the occurrence of collisions is unavoidable and

the achievable RACH throughput in the presence of massive

access requests/loads gets significantly reduced [11]. For ex-

ample, the maximum throughput of the widely-used slotted

ALOHA technique is e−1 ( 37%). Furthermore, because of

low RACH throughput and the employed backoff strategies,

the aggregated traffic including both the newly generated and

the retransmitted exceeds the RACH channel capacity at a cer-

tain point, thus making the system unstable. Although Slotted

ALOHA can work well with the conventional cellular/HTC

traffic despite the instability issue, the support of M2M traffic

becomes problematic due to infrequent and massive number of

access requests, thus causing the problem of RACH overload.

Learning techniques can be employed at the MTC devices in

order to enable them to learn to avoid concurrent transmissions

during the RACH contention period without any assistance

from the central entity. After a learning technique achieves

its convergence, each MTC device can get a unique dedicated

slot, thus avoiding collisions among their transmissions. In

contrast to the conventional centralized Q-learning approach,

for example, Q-learning based ACB control in [23], we focus

on providing a framework for the distributed Q-learning mech-

anism in which each MTC device attempts to find its unique

time slot for its transmission towards minimizing the RACH

congestion. In the following, first, we present a framework

for the RL with a single MTC device and then develop the

formulation of Q-learning in the considered context.

The environment perceived by an MTC device can be

usually described by a Markov Decision Process (MDP) and

a finite MDP can be denoted by a tuple < X,U, f, ρ >,

where X represents the finite set of environment states, U is

the finite set of device actions, f denotes the state transition

probability function and captures the environmental dynamics,

and ρ is the reward function [64]. In this MDP modeling, a

state parameter xt ∈ X indicates the characteristics of the

environment at the tth time instance. At each time-step, the

device can change its state by taking actions ut ∈ U and due to

this action, the environmental state alters from the current state

xt to some other state xt+1 based on the employed transition

probability function f(xt, ut, xt+1). During this transition, the

device receives an instantaneous reward rt+1 ∈ R with the

defined function ρ, i.e., rt+1 = ρ(xt, ut, xt+1).
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Given a state, the device chooses its action based on its

policy π and the policy can be either stochastic or determin-

istic. Each time the device applies a policy, it accumulates

some rewards from the environment, resulting in the return

of
∑L

l=0 γ
lrl+1, where γ ∈ [0 1] is the discount factor

which provides more weights on the immediate rewards and

L denotes the length of one episode [65]. At each time-

step, the learning device aims to maximize the expected

discounted return in the long-term, i.e., long-term reward,

given by [64, 65]: Rt = E
(

∑L

l=0 γ
lrt+l+1

)

, where E denotes

the expectation operator and this is taken over probability state

transitions, i.e., dynamics of the considered environment.

In this RL process, the learning device attempts to maximize

its long-term performance, while only receiving feedback

about its immediate action, i.e., one-step performance. To

achieve this, the device needs to compute an optimal action-

value function, known as a Q-function. Given a certain policy

π, the expected return of a state-action pair, Qπ(x, u) is given

by

Qπ(x, u) = E

(

L
∑

l=0

γlrt+l+1|xt = x, ut = u, π

)

. (8)

Subsequently, the optimal Q-function can be written as:

Q∗(x, u) = maxπ Q
π(x, u) and it satisfies the well-known

Bellman optimality equation [64, 187].

One simplest way of choosing a future action by a de-

vice is to employ a greedy policy which selects the action

with the highest Q-value at every state as follows: π(x) =
argmaxu Q(x, u).

Among different ML techniques listed in Fig. 6, Q-learning

is simple to implement and uses a look-up table with the

Q-values representing the utilities for state-action pairs. The

utility of taking an action ‘u’ in a state ‘x’ is denoted by

Q(x, u) and can be calculated as the expected value of the sum

of immediate reward and discounted utility of the resulting

state after executing the action ‘u’. In the Q-learning process,

the current estimate of Q∗ value, i.e., Qt(xt, ut) is updated

by using the estimated samples computed by relating with the

actual experience from the execution of the action, in the form

of the pairs of subsequent states (xt, xt+1) and the rewards

rt+1. In this way, Q-learning involves an iterative procedure in

which the learning agent implicity assumes an initial condition

before making an update, i.e., the agent starts with an arbitrary

fixed Q-value. Then, at each time instant, the agent chooses an

action, observes a reward, and enters into a new state which

may depend on both the selected action and the previous state,

and subsequently the Q-value is updated. This iterative process

continues till the Q-value becomes stable [187].

To provide an example framework for the application of Q-

learning in an MTC scenario with N number of devices, we

consider a frame-based slotted ALOHA scheme as in [186,

188], in which a frame is divided into K number of access

slots. Each MTC node has individual Q values corresponding

to every slots in the frame and these values are updated based

on the outcomes of transmission, i.e., success or failure. At

the start, all the MTC nodes can start with zero or random Q

values, learn gradually via their transmissions, and then finally

reach to the optimal transmission strategy after finding unique

RA slots for their transmissions.

Let Q(i, k) indicate the preference of the i-th node to trans-

mit a packet in the kth RA slot. After every data transmission,

the new Q value is updated based on the previous Q value and

the current reward. A positive reward can be assigned for each

successful transmission while the reward becomes negative for

each failed transmission. At each instance of transmission, the

node selects a slot with the highest Q value and in case of

two or more maximum values, a random selection approach

can be applied [188].

Regarding the selection of learning rate in the Q-learning

process, the higher the value, the faster will be the convergence

of Q value towards the reward value. However, a small value

of learning rate is usually preferred in practice to enhance

the robustness with respect to infrequent collisions caused by

channel variations [186]. Furthermore, although the learning

rate is usually considered fixed in the existing works, it is

typically time varying in nature, decreasing with time and each

state-action pair may be associated with a different learning

rate [64].
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E. Exploration Strategies for Q-Learning

Q-learning aims at finding an optimal policy to select an

action in the current state and one of the design aspects for the

Q-learning algorithm is to balance the exploration-exploitation

tradeoff. The exploitation is performed by executing one of

the actions which maximizes Q(x, u) whereas the exploration

is carried out by randomly selecting an action to build a

better estimation of the optimal Q-function.There are several

strategies to create this balance and the widely-used three

strategies are described below [189, 190].

1) ǫ-greedy strategy: This is the most commonly used

exploration strategy in which the Q-learning algorithm

utilizes a parameter 0 ≤ ǫ ≤ 1 to decide on the

action to follow. The algorithm chooses the action with

the highest Q-value in the current state with (1 − ǫ)
probability and a random action with the probability

ǫ. The value of the parameter ǫ can be varied over

time as the learning progresses. The main drawback of

this approach is that it treats all the possible actions

equivalently during its exploration by choosing an action

uniformly from the set of possible actions.

2) Soft-max strategy: To address the drawback of ǫ-
greedy stage during the exploration phase, this soft-max

strategy uses either a Gibbs or Boltzmann distribution,

in which the learning device at a state x selects an

action u with the probability of π(x, u) = e
Q(x,u)

τ

∑
u
e
Q(x,u)

τ

,

where τ > 0 denotes the temperature parameter of the

Boltzmann distribution and depicts how randomly the

values are chosen. For example, τ = 0 case represents

no exploration at all while T → ∞ case reflects the

scenario in which the learning device chooses the action

values almost with equal probability.

3) Optimism in the face of uncertainty: This approach

encourages exploration by assigning higher initial values

to the Q-function. However, the convergence time will

be increased since the estimated Q-values can be quite

bad estimates of the actual Q-value and these bad esti-

mates may last longer during the learning process. Also,

in the presence of dynamic uncertainty, this technique

is not useful since the exploration mostly occurs at the

beginning of the learning process.

F. Performance Enhancement of Q-Learning

In the following, we present several variants of Q-learning

techniques which aim towards improving the performance of

the ordinary Q-learning.

1) Collaborative Q-learning: In this subsection, we de-

scribe the need of collaborative Q-learning in ultra-dense

IoT networks and review the related works. The traditional

Q-learning algorithm which is based on single state-action

may not be suitable for the multi-agent environment with

multiple policies. In this regard, collaborative learning can

be utilized by exploiting the overall/global objective/reward

of the collective environment instead of the reward for a

single learning device. Furthermore, the global reward can be

utilized in addition to the individual reward to improve the

performance of the existing learning schemes.

In a multi-agent environment like the case of ultra-dense

IoT networks, if all agents keep mappings of their joint states

and actions, this will require each learning device to maintain

very large Q-value tables, whose sizes are exponential in the

number of agents [191]. This becomes difficult even in the

case of a single state case. For instance, when M number of

learning devices play the repeated game with only two actions,

the size of the table becomes 2M . Therefore, it requires more

state space, information space and action space. Furthermore,

in the multi-agent case, state transitions, the instantaneous

rewards and future expected return are based on the joint

action of the multiple agents. In addition, instead of the

individual policies, a joint policy formed by individual policies

will impact the Q-function. Therefore, the design of state-

action pairs or the optimal policy to maximize the overall

reward becomes the joint/collaborative problem in a multi-

agent environment, thus leading to the need of collaborative

learning.

Some existing works have applied collaborative Q-learning

in different settings [43, 191, 193, 194]. One way of realiz-

ing collaborative Q-learning is to estimate the belief of the

opponent and the environment knowledge instead of the Q-

value function in a way that the learning agent does not

need to observe the opponents’ reward and their Q learning

parameters [191]. In this regard, the authors in [192] applied

the collaborative Q-learning framework to optimize the waiting

time in intelligent traffic control applications. Furthermore,

the authors in [43] employed a collaborative ML technique

at the edge computing devices with the objective of extracting

the statistical relationships among the contextual information

collected by the edge devices and constructing predictive

models to maximize the communication efficiency. With this

edge-centric learning approach, only the inferred knowledge

can be transferred to the network instead of transmitting all

the raw contextual information. Furthermore, the authors in

[193] used collaborative Q-learning in finding an optimal path

between any starting point and a target in a grid environment

for a mobile robot. In contrast to the conventional approach

of using a single Q-table, the work in [193] exploited the use

of two Q-tables, i.e., one local Q table and another Master Q

table.

Moreover, in a multi-agent environment, it is necessary for

a learning agent to keep the track of its environment, as well

as other agents’ actions. In such a multi-agent environment,

rather than considering individual actions of the agents as in

the ordinary Q-learning, the joint actions need to be considered

while devising a learning strategy. Instead of the Q-value used

in the ordinary Q-learning, a Nash Q-value function should be

defined [196], and the convergence of Q-learning algorithm

with the Nash Q-value function becomes slower since the

number of agents increases due to the resulted increase in

the joint action set [195].

2) Situation-Aware Adaptive Q-learning: The collisions of

the RA requests caused due to concurrent transmissions of

multiple RA requests in one RACH sub-frame results in higher

access delay since the devices have to retransmit their RA
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requests. Although the average access delay can be minimized

by using a higher number of RACH sub-frames, the sub-

frames available for data transmission will be reduced since

the sub-frames allocated for RACH procedure can not be used

for the data transmission purpose [197]. In this regard, it is

crucial to balance the tradeoff between the radio resources

allocated for RACH procedure and data transmission process.

Furthermore, in many cases, the network usage pattern (the

number of devices/users trying to connect to the network) is

time varying in nature. In this context, a network should be

capable of detecting the variation in the arrival rate of the

access request and should adapt the number of sub-frames

to be allocated for RACH accordingly [197]. In addition, it

is important to balance a tradeoff between exploration and

exploitation while adapting the Q-learning parameters to the

dynamic uncertain environment [198].

Although Q-learning has been shown to converge and has

been used in many fields including mechatronics control

and robotics, it has some issues such as how to improve

the convergence rate and to avoid the convergence in the

local optimum [199]. To address these issues, three different

parameters of the Q-learning technique, namely, learning rate

α, discount rate γ and temperature parameter τ in Boltzmann

distribution, should be dynamically adapted based on the

dynamicity of the underlying learning environment. One of

the widely used methods to adapt the learning parameters in

various applications is fuzzy-logic based learning, which is

briefly described in the following subsection along with the

related literature.

3) Fuzzy-logic based Adaptive Q-learning: In the Q-

learning process, the Q-values are usually stored in a look-up

table but this storage process becomes infeasible in practice

in the presence of a large number of state-action spaces and

with the continuous state space [200]. Although Q-values

can be stored by using feed-forward neural networks or self-

organizing maps, the learning process becomes slower. In

contrast, incorporation of Q-learning into fuzzy environments

seems promising since fuzzy interference systems being uni-

versal approximations can be considered as good candidates

to store Q-values and the prior knowledge can be provided

to the fuzzy rules in order to significantly reduce the training

part.

The implementation of Q-learning becomes impractical

and even impossible in continuous state spaces [200]. In

such cases, fuzzy-logic based approach helps to discretize

the continuous state or action spaces into finite states by

employing suitable fuzzy rules and also the speed of fuzzy-

logic based Q-learning can be increased by incorporating the

prior knowledge via fuzzy rules [201]. In other words, Fuzzy

Q-learning discretizes continuous variables by using fuzzy

labels and a fuzzy rule-based inference system is employed

to find an action for these discretized states [202].

Other drawbacks with the ordinary RL are that it is difficult

with the continuous states and behaviors in the real world

environment due to discrete set of actions and spaces, and it

becomes complex to learn the problem with multiple objec-

tives [203]. To solve these issues, fuzzy-logic based rules can

be employed to tune the learning parameters of the Q-learning

technique towards making it more adaptive.

In the context of cooperative fuzzy Q-learning, authors in

[202] utilized this learning approach to optimize the coverage

and capacity of cellular networks by adapting the tilting of

vertical antennas. The employed cooperative Fuzzy Q-learning

mechanisms enable cooperation among the learning agents

during the exploration phase and is fully distributed in the

exploitation phase. The cooperation in the exploration phase

is employed by utilizing the global reward of all the considered

cells instead of the local rewards belonging to individual cells.

This cooperation with the help of global reward helps to speed

up the exploration phase of the Q-learning process while also

allowing the learning agents to exploit the learned knowledge

independently while selecting their actions. Furthermore, a

self-learning cooperative strategy is developed in [199] by

combining adaptive Q-learning with the fuzzy method for its

application in robot soccer systems.

Moreover, the contribution in [204] recently proposed a

fuzzy Q learning-based user centric backhaul-aware user as-

sociation scheme in which the BSs broadcast their constraints

and capabilities in terms of meeting the requirements of

heterogeneous UEs in terms of the optimized bias factors.

The employed fuzzy-logic based Q-learning scheme helps to

dynamically adjust these bias factors based on network condi-

tions and users’ requirements in an automated and distributed

manner.

Similarly, authors in [205] proposed a fuzzy Q-Learning

based energy controller for a small cell powered by local

renewable energy, local storage, and the smart grid to elongate

the lifespan of the storage devices and to minimize the

electricity expenditures of the mobile operators. The employed

fuzzy Q-learning based controlled can be utilized without the

prior knowledge of the mobile traffic demand, energy pricing

and weather.

In order to avoid the inefficient and expensive manual tuning

of cellular network parameters in 5G small cell networks, it is

crucial to perform automatic configuration and optimization of

the network parameters including the handover parameters. In

this regard, authors in [206] employed a fuzzy logic controller

based dynamic fuzzy Q-Learning algorithm for mobility ro-

bustness optimization in a heterogeneous network. With the

proposed dynamic fuzzy Q-learning algorithm, the system

learns necessary parameter values towards optimizing the call

dropping ratio and handover ratio, and it has been shown that

the Q-Learning algorithm can lower the handover ratio while

keeping the call-dropping ratio at the lower level. Besides,

by considering various parameters such as link quality, the

available bandwidth, link quality, and relative vehicle move-

ment, authors in [207] proposed a fuzzy constraint Q-learning

algorithm for vehicular ad-hoc networks in order to evaluate

the quality of a wireless link towards finding the optimal route.

4) Model-based Q-Learning: The main drawback of

model-free learning is the convergence time. By predicting a

model about the transition state probabilities, the performance

of the learning techniques could be improved. In time-varying

dynamic scenarios, it becomes advantageous to predict the

environmental dynamics in the centralized entities such as

cloud-center and to utilize the corresponding model to enhance
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the performance of distributed Q-learning at the resource-

constrained IoT devices. In such a collaborative cloud-edge

processing framework [21], the predicted model at the cloud-

center can be communicated to the edge-side to improve the

performance of distributed learning at the edge-side of the

network.

Existing works have used model-based Q-learning in dif-

ferent applications such as robotic applications [208, 209] and

wireless channel allocation [210].

G. Discussion on the conventional and learning-based solu-

tions for RAN congestion

In Section V, we discussed various existing solutions for

RAN congestion problem and some emerging solutions includ-

ing learning-based solutions, distributed queueing, and SDN

and virtualization-enabled techniques. In addition, we have

presented the qualitative comparison of the main existing RA

solutions for RAN congestion problem in Table VII in terms

of the important performance metrics. In Section VI-A, we

discussed the advantages of learning techniques in wireless

communications along with various use-case examples from

the existing literature, and in Section VI-C, we provided an

overview of existing ML techniques along with their classifi-

cation. Furthermore, in Section VI-B, we discussed various ap-

plications related to learning techniques in IoT/mMTC systems

and in the later subsections, we presented a framework for the

application of Q-learning for RACH congestion problem along

with some performance enhancement techniques.

As highlighted in Table VI, there exist several schemes

including back-off based scheme, ACB, EAB, and slotted

random access to mitigate the RAN congestion in cellular net-

works. Most of these schemes are based on the adjustment of

either the retransmission back-off value or an ACB parameter.

Although the performance of these basic schemes in dense

access networks can be enhanced with various approaches

such as pull-based scheme, group-based RA scheme, code-

expanded RA scheme and tree-based RA method, most of

these techniques have been developed only in the context

of the conventional cellular networks. The incorporation of

IoT/mMTC devices in cellular networks brings various device-

level and network-level challenges as highlighted earlier in

Fig. 2. Furthermore, from the qualitative comparison presented

in Table VII, it should be noted that a single RA solution is

not perfect in terms of all the considered performance metrics

and the selection of a technique for a particular application

depends on the required trade-off among these metrics.

Due to highly bursty traffic and the massive number of

contending devices to be managed, it becomes highly chal-

lenging to employ the conventional RA schemes in ultra-dense

IoT/mMTC networks. Mainly, estimation of the number of

devices and network status, and the adaptation of operating

parameters such as transmission probability and access control

parameter become difficult in ultra-dense dynamic IoT net-

works. As an example, the instability issue of the conventional

slotted ALOHA RA scheme can be considered. This scheme

effectively works for the case of H2H traffic due to the low

dimensioning of the system and also due to regular pattern

of the RACH access requests. However, the performance of

this conventional slotted ALOHA RA scheme suffers while

supporting MTC traffic due to the massive number of irregular

and dynamic access requests, thus leading to the problem of

RACH congestion [11]. Therefore, it is crucial to investigate

suitable learning-assisted intelligent RA schemes which aim

to address the issue of access network congestion and support

massive connectivity in IoT/mMTC networks.

As described earlier in Section VI-A, learning-enabled tech-

niques can assist towards the mitigation of RAN congestion

problem in various ways. Some of the promising approaches

include: (i) by learning unique time slots to be allocated for

the contending MTC devices [11], (ii) by learning to adapt

an access control parameter used in the ACB scheme [23],

and (iii) by learning to associate MTC devices with suitable

eNodeBs [24, 25]. As illustrated in [11] with the help of

numerical results, Q-learning assisted RA scheme performs

better than the conventional slotted ALOHA RA scheme in

terms of the RACH throughput and average end-to-end delay.

Furthermore, authors in [23] employed Q-learning algorithm

to adaptively control the ACB factor to be assigned to MTC

devices based on the previous experience obtained from the

interaction with the environment and the performance of the

proposed scheme. Via numerical results, it was shown that the

success probability of accessing the RACH by MTC devices

increases as the learning progresses over time.

VII. SUMMARY OF LESSONS LEARNED, RESEARCH

CHALLENGES AND FUTURE DIRECTIONS

In this section, we present the summary of lessons learned

from this paper, existing research challenges and future di-

rections under the following topics: (i) Cellular connectiv-

ity for mMTC/IoT Systems, (ii) Spectrum management for

mMTC systems, (iii) Traffic characterization and modeling for

mMTC systems, (iv) Random access schemes for ultra-dense

IoT networks, (v) Distributed resource management in ultra-

dense IoT networks, (vi) Device heterogeneity and grouping-

based transmission schemes, (vii) ML applications in wireless

IoT/mMTC systems, and (viii) Deep learning for emerging

IoT applications.

A. Cellular Connectivity for mMTC/IoT Systems

Due to ever-increasing need to support the massive number

of connected sensors and MTC devices, cellular operators

have to face a number of unique device-level and network-

level challenges in supporting MTC devices with the existing

cellular networks. The main issues include diverse QoS re-

quirements, RAN congestion, highly dynamic and sporadic

MTC traffic, ultra-low device complexity, low battery life-

time, huge signalling overhead, small data packet transmission,

network scalability, need for enhanced coverage, and efficient

management of distributed computing, caching and commu-

nication resources. Also, MTC devices may cause harmful

interference to the existing cellular users and may significantly

degrade the system performance of LTE/LTE-A based cellular

systems. Towards addressing these issues, some potential
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enablers identified in this paper include flexible waveform de-

sign, dynamic resource allocation techniques, advanced spec-

trum sharing techniques, clustering and data aggregation tech-

niques, SDN and virtualization-based techniques, advanced

RA schemes, constant envelope coded modulation schemes,

CS-based MUD, MAC protocols with low signalling overhead,

advanced transmission scheduling techniques, collaborative

edge-cloud processing and energy-efficient techniques for the

green IoT.

However, several challenges need to be addressed to support

diverse QoS requirements (transmission reliability, latency,

data rate and spectral efficiency) of MTC devices in wireless

IoT systems due to mult-path fading, low reliability, co-

channel interference and time-varying capacities. Also, most

of the available physical layer-based capacity models do not

capture the link-layer QoS requirements and the investiga-

tion of suitable QoS-based capacity models is necessary to

characterize the performance of MTC systems. In this regard,

this paper presented a mathematical framework to analyze the

performance of MTC systems with the QoS support in terms

of effective SNR, achievable rate and the estimated number of

devices for the uplink access in Section IV.

Current protocols designed for cellular IoT such as NB-

IoT and LTE-M are based on the assumption of the low-

latency requirement. This requirement results in significant

cost in terms of device price and system capacity [53]. Besides,

the main issues involved in providing cellular connectivity

to the low-power MTC devices include the device battery

life, system capacity, coverage and cost. Due to low cost

and low capability of MTC devices, a significant compromise

in the link performance needs to be made resulting in the

shrinkage of the coverage area. One way of compensating

this coverage loss is to utilize an extended transmission time

interval, which, however, will lead to the increase in the battery

consumption. Therefore, it is crucial to balance the tradeoff

between energy consumption and coverage expansion while

designing transmission technologies for the MTC devices.

Furthermore, transmission schemes should be able to sup-

port a significantly large number of devices within a given

bandwidth while ensuring higher battery efficiency. In this re-

gard, the concept of effective bandwidth [53] could be utilized

to achieve a good balance between the spectral efficiency for

a given coverage and the corresponding transmission time.

On one hand, the bandwidth allocated for a device should

not be far less than the effective bandwidth to avoid the

excessive transmission time. On the other hand, for a given

sensitivity level of the device, it is preferred to have allocated

bandwidth not more than the effective bandwidth in order to

accommodate more number of devices in the saved bandwidth

without significantly increasing the transmission time. More-

over, advanced transmission scheduling techniques and low

signalling overhead MAC protocols need to be investigated to

effectively support the massive number of MTC devices in the

upcoming 5G and beyond cellular networks.

B. Spectrum Management for mMTC Systems

Since the available usable spectrum below 6 GHz is limited,

it is crucial to investigate suitable spectrum sharing solu-

tions for emerging 5G and beyond systems including eMBB,

URLLC and mMTC. The most commonly discussed dynamic

spectrum sharing solutions for 5G and beyond systems in-

clude interweave cognitive communications, underlay cogni-

tive communications, carrier aggregation, Licensed Assisted

Access (LAA), Licensed Shared Access (LSA) and Spectrum

Access System (SAS) [93]. Another option is to explore higher

frequency bands such as millimeter wave (mmWave) bands.

However, due to propagation related and hardware imper-

fections issues in mmWave bands, it becomes challenging

to operate mMTC devices in mmWave bands as they are

constrained in terms of resources and are mostly deployed in

indoor or underground environments where propagation issues

could become problematic. Therefore, for mMTC applications,

the frequency bands below 6 GHz is of more importance. In

this spectrum region, there arises the issue of whether licensed

or unlicensed band becomes suitable for mMTC applications

as pointed out in the following.

In the spectrum region below 6 GHz, the operation in

the unlicensed band by using carrier aggregation and LAA

could be a cost-effective solution for mMTC applications

since these frequencies are freely available to any device.

However, uncontrolled interference conditions resulted from

the free access from the massive number of devices and the

lack of QoS guarantees may severely limit the ability of

utilizing unlicensed bands for mMTC applications [4]. On

the other hand, emerging techniques such as LSA and SAS

provide better interference characterization due to the central-

ized control and seem more suitable for mMTC applications.

Besides, some of the mMTC applications based on periodic

data reporting such as smart metering can effectively work

with the shared spectrum bands in a demand-based manner

instead of exclusively assigning the portion of a licensed

spectrum. Due to low bit-rate requirements of mMTC appli-

cations, the bandwidth requirement may not be significant,

however, the exclusive licensed spectrum can be allocated to

more demanding applications such as eMBB and URLLC.

To this end, it is an important future research direction to

investigate the feasibility of utilizing shared spectrum for

mMTC applications.

In summary, one of the crucial challenges in mMTC systems

is to address the issue of the scarcity of the available usable

radio spectrum either by exploiting suitable spectrum sharing

schemes or by exploring higher frequency bands such as

mmWave bands. However, it may be challenging to operate

mMTC devices in the mmWave bands due to propagation

related issues and resource constraints of the devices. Out

of licensed band and unlicensed bands below 6 GHz, unli-

censed bands seems to be promising for the low-cost mMTC

systems but the issue of uncontrolled interference may be

problematic for QoS guarantee of some applications. Also,

emerging dynamic spectrum sharing techniques such as LSA

and SAS provide better interference characterization due to

the centralized control and seem more suitable for mMTC

applications.
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C. Traffic Characterization and Modeling for mMTC Systems

Since traffic characteristics in IoT sensory networks usually

depend on the application scenarios, traffic characterization

is considered to be an important issue for the design and

optimization of the network infrastructure. The mMTC net-

works may generate various types of traffic patterns such as

PU, ED and streaming, and these traffic patterns may have

different amplitudes, activation periods and starting times [73].

Besides, the data packets generated by MTC devices can be

of varying sizes and bandwidth requirements. For example,

the data packets generated by the temperature and humidity

sensors are usually of small size in the order of bytes, whereas

video monitoring devices can generate data sizes in the order

of megabytes.

MTC devices have completely different QoS requirements

than those of the conventional HTC devices, and also the

nature of MTC traffic is significantly different than the HTC

traffic. MTC devices usually have heterogeneous traffic pat-

terns in terms of their starting times, amplitudes and duty

cycles. Also, IoT/mMTC systems may need to support dif-

ferent heterogeneous applications including elastic, hard real-

time, delay adaptive and rate-adaptive applications. However,

existing cellular networks are mostly designed to support the

conventional HTC traffic and a suitable characterization of

mMTC traffic is crucial to support MTC devices. In this

regard, the 3GPP has already defined the following two types

of aggregated MTC traffic models: (i) uniform distribution

over a duration T , and (ii) Beta distribution over T . Although

such an aggregated traffic modeling is suitable to the scenarios

with a huge number of devices and is simpler to realize,

this approach can not capture the real traffic features at

the source level and is less precise than the source traffic

modeling. On the other hand, source traffic models although

being more precise become complex for a large number of

devices. Therefore, there arises a need to investigate suitable

hybrid approaches such as coupled Markov modulated Poisson

processes, which can combine the advantages of both the

aggregated traffic modeling and source traffic modeling.

Furthermore, as compared to the existing wireless systems

which are mainly designed to support the conventional HTC

traffic having long data-packets, the transmission of short

data-packets in mMTC/IoT systems creates new challenges

since the size of metadata is no longer negligible and the

classical law of large numbers does not become applicable.

Therefore, it is a crucial research issue to design efficient

techniques to tackle the challenges caused by short data-

packet transmissions, and also to investigate suitable informa-

tion theoretic principles to characterize the short data-packet

transmission in IoT/mMTC systems. In this regard, several

research works have already investigated different physical

layer approaches to support small data-packet transmissions

as highlighted in Table V. The main approaches include the

optimization of pilot overhead, design of waveforms and air

interface, modulation and coding schemes, NOMA scheme,

minimization of core network signalling, joint encoding of

grouped messages, autonomous transmission mode, receiver

algorithms to enhance the reception quality and frequency

diversity to enhance transmission reliability.

As highlighted in Section II-D, the 3GPP has defined two

different models for the aggregated traffic of the mMTC

systems. The first model based on uniform distribution is

for the non-synchronized type of traffic whereas the second

model based on Beta distribution suits more for the highly

synchronized traffic. This aggregated traffic modeling is sim-

pler but is less precise than the source traffic modeling which

treats the traffic for each MTC device separately and is more

complex. In this regard, investigating suitable low-complexity

and precise traffic modeling is an important future research di-

rection. Furthermore, the Transmission Control Protocol (TCP)

employed at the transport layer of current LTE-A networks is

not efficient for MTC traffic due to several issues associated

with connection set up, congestion control, data buffering and

real-time applications [73]. Therefore, it is crucial to develop

an enhanced version of TCP over LTE/LTE-A to address

various issues faced by the existing TCP for supporting the

MTC traffic.

D. Random Access Schemes for Ultra-Dense IoT Networks

Regarding the RA schemes in ultra-dense cellular

IoT/mMTC networks, investigating suitable contention-based

schemes to concurrently support the massive number of MTC

devices without affecting the performance of the existing

cellular users is a crucial challenge since the available RBs

are limited as compared to the massive number of access

requests. In the existing LTE/LTE-A based cellular networks,

the limitation in the number of available preambles may result

in significantly high number of collisions among the access

requests, and subsequently lead to the RACH congestion

problem in the IoT access network. The widely-followed RA

procedure in LTE/LTE-A based cellular networks follows a

four stage message handshake procedure and this RA pro-

cedure may fail due to various reasons including the failure

of preamble transmission, message 2 reception, message 3

transmission and message 4 reception. In the absence of

access collisions, the absolute maximum capacity of an RACH

channel in LTE-A networks is 10,800 preambles per seconds.

However, because of the ALOHA type RA protocol and

random backoffs, the practical performance becomes much

lower than this maximum limit and the situation becomes

further worse while supporting massive MTC devices.

In the above context, the four-stage message handshake

procedure employed in the legacy LTE systems is not efficient

to support MTC devices due to various reasons including

the limited number of available preambles, need of additional

downlink resources and huge signalling overhead in the short

data-packet transmissions from MTC devices. Another limi-

tation arises due to the hardware limitations of MTC devices

in terms of their capacity to listen to a wideband PDCCH

channel and in this regard, the 3GPP has proposed a modified

RACH structure, i.e., EPDCCH with the narrow bandwidth of

1.4 MHz for low-cost MTC devices and each PRACH having

dedicated NB EPDCCH. Furthermore, there exist two main

categories of cellular IoT standards: (i) LTE-M, and (ii) NB-

IoT, whose main differences were highlighted in Table IV.
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As compared to the legacy LTE systems, the main changes

incorporated in the LTE-M standard include the support of

frequency hopping, and repetition procedures in the PRACH

and PDCCH, MTC search spaces to reduce the number of

decoding trials and three different DCI formats for uplink

grant, downlink scheduling and paging in MTC devices. On

the other hand, NB-IoT systems can operate in three different

modes: (i) in-band operation, (ii) guard band operation and

(iii) stand-alone operation. And, the main requirements of NB-

IoT systems include low power consumption, low channel

bandwidth, low cost for end devices, low deployment cost,

extended coverage and support for massive connectivity.

Towards addressing RAN congestion problem, several

schemes (listed in Table VI) have been investigated in the

literature. The main existing RA based solutions include the

back-off based scheme, ACB, EAB, cooperative ACB scheme,

dynamic ACB, prioritized RA with dynamic ACB, dynamic

resource allocation, slotted RA, RA resource separation, pull-

based/paging-based scheme, group-based, code-expanded and

tree-based RA schemes. Although there are recent advances

in the areas of novel RA schemes towards supporting mMTC

devices with the existing cellular networks, these schemes

may not be sufficient to support the massive number of

connections concurrently while satisfying their diverse QoS

requirements. Some emerging techniques for future research

include learning-based schemes, distributed queueing, and

SDN and virtualization based techniques. Furthermore, grant-

based random access and Compressive Sensing (CS)-based de-

vice activity detection for enabling the use of grant-free access

scheme to minimize the delay of the existing contention-based

random access schemes seem promising [213].

E. Distributed Resource Management in Ultra-Dense IoT Net-

works

In contrast to the connection-oriented design approach of

the existing wireless networks while considering only the

communication resources, future content-oriented networks

are expected to utilize other resources such as computing

and caching resources. In ultra-dense IoT networks, these

communications, computing and caching resources are usually

distributed across the different entities of the network includ-

ing the devices, aggregator/eNodeBs and core-network/cloud-

center. The coordination of these distributed resources to

enhance the performance of ultra-dense IoT networks involv-

ing low-end MTC devices is an important research issue.

Furthermore, in the emerging cloud-assisted IoT networks, it

is advantageous to handle computationally intensive task at

the cloud-center due to the availability of huge computing

and storage capabilities while it becomes beneficial to handle

delay-sensitive applications at the edge-side of the network.

In this regard, it is an important future research direction

to investigate suitable techniques for edge-cloud collaborative

processing in various applications including dynamic spectrum

sharing, event detection, context-aware resource allocation,

live data analytics and security enhancement [21].

Moreover, various features of MTC device transmissions

such as time-controlled, time tolerant, priority alarm message,

infrequent transmission, group-based policing and addressing

can be useful to utilize the distributed cache embedded in MTC

devices. The caching capabilities distributed across heteroge-

neous IoT devices can enable the scheduling of sporadic trans-

missions from the MTC devices in order to significantly reduce

the peak traffic in an IoT access network as demonstrated in

[14]. This will subsequently reduce the demand for the radio

resources at the peak time, thus significantly saving the radio

resource cost for the telecommunication operators. In addition,

distributed caching can be exploited to enable aggregate trans-

mission for various other applications such as saving energy

for low-power IoT devices and reducing signalling/protocol

overhead for MTC device transmissions. Also, the physical-

level cache embedded in low-end distributed MTC devices

can be exploited to facilitate the implementation of a cross-

layer based transmission scheduling in pushing data from the

physical layer to the MAC layer at the suitable intervals.

In ultra-dense cellular IoT networks, one crucial challenge

is to investigate the efficient coordination of distributed com-

puting, communication and caching resources. Furthermore,

the heterogeneity of MTC devices in terms of cache size,

computing capability, battery power, latency and data rate

requirements creates challenges in providing efficient QoS

provisioning in ultra-dense IoT networks. One of the potential

approaches to address some of the existing problems including

power consumption and signalling congestion is to enable

the group-based operation as highlighted in the following

subsection.

F. Device Heterogeneity and Grouping-based Transmission

Schemes

The heterogeneity of MTC devices in terms of different as-

pects such as computing capability, cache size, battery power,

data rate and latency requirements becomes problematic for

the efficient QoS provisioning in ultra-dense IoT networks.

Furthermore, RAN congestion, high signalling overhead and

power consumption are critical issues to be addressed in ultra-

dense IoT networks. In this regard, grouping-based features of

MTC transmissions such as group-based policing and group-

based addressing [10] can be utilized to enable the group-

based operation in the mMTC environment towards alleviating

various problems such as signalling congestion and power con-

sumption. Furthermore, by implementing a group-based access

authentication technique, severe signalling congestion caused

by the conventional independent access authentication scheme

in the existing cellular systems can be avoided [211] and the

security of emerging MTC applications can be significantly

enhanced.

By grouping MTC devices on the basis of either service

requirements or the physical locations of MTC devices, group-

based data gathering, aggregation and reporting can be uti-

lized in ultra-dense IoT networks including IEEE 802.11ah

based systems [212]. In such group-based schemes, a group

header/cluster head collects the access requests, uplink data

packets, and device status information from the resource-

constrained MTC devices belonging to that group, and then

forwards the aggregated traffic to an eNodeB/aggregator [6].
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Also, the downlink data packets and signalling messages

can be relayed to the MTC devices by the group header,

thus significantly reducing the radio resources required for

direct communications between the devices and the eNodeB.

Moreover, as the jittering constraints become challenging

while transmitting small data packets from a large number of

devices, this issue can be addressed by employing grouping-

based resource scheduling which allocate radio resources to

the specific groups having similar QoS characteristics [82].

However, the existing device grouping mechanisms are formed

mostly in a traditional way by selecting the devices in a

random fashion or in an uniform manner, and it is an important

research direction to investigate efficient grouping mechanisms

by exploiting the QoS characteristics and locations of hetero-

geneous MTC devices.

G. ML Applications in Wireless IoT/mMTC Systems

Emerging ML-assisted solutions can be employed to mit-

igate various problems in wireless systems and also to ad-

dress the non-conventional challenges of IoT/mMTC systems.

Mainly, the emerging ultra-dense IoT networks will need

to observe the environmental variations, learn uncertainties,

plan response actions and configure the network parameters

effectively, and in this regard, the ML-assisted techniques

can be significantly useful in acquiring the environmental

parameters, in automating management and operational tasks,

in classifying the involved use cases and in predicting future

results/challenges. As listed in Table VIII, ML techniques

find significance to address various issues in ultra-dense

cellular systems including RACH congestion minimization,

adaptive resource allocation, dynamic spectrum sharing, edge-

side processing, traffic offloading, RAT selection, network

traffic control, adaptation of transmission parameters, data

analytics and provisioning of personalized services.

Existing ML techniques can be broadly categorized into

supervised, unsupervised and reinforcement learning as de-

picted in Fig. 6. In Table IX, we provided the pros and cons

of these learning techniques along with their applicability to

IoT/mMTC environments. Supervised learning benefits from

the full centralized control but requires the labelled data-sets

and also needs the prior knowledge of a training data-set as

well as the expected output. On the other hand, unsupervised

learning techniques attempt to find hidden patterns in the

data without the need of any labelled data, training data-set

and expected output but the learning process becomes more

complex since there is no clear guidance and the learning ob-

jective is of more subjective nature. The unsupervised learning

is preferred over supervised learning in large and complex

models having deep hierarchies where there exists a large gap

between the input and output observations. As compared to the

classical ML, DL techniques are highly flexible/configurable

and can achieve much higher learning accuracy but involve a

number of hyper-parameters and demand for highly capable

GPU platforms.

While employing ML techniques in an mMTC environment,

an important aspect to be considered is how to make ML tech-

niques more practically realizable for the resource-constrained

MTC devices. To achieve this objective, the following issues

need to be considered. First, the convergence rate/learning time

of the employed learning algorithm should be as small as pos-

sible and there may arise the issue of a local minimum. Since

the required learning time may reduce the time for data trans-

mission purpose, their trade-off should be designed properly.

Second, in mMTC environments, the distributed implementa-

tion of the algorithm needs to be considered across multiple

learning devices. Third, different parameters associated with

the learning algorithms such as learning rate α, discount rate

γ and exploration-exploitation tradeoff parameter ǫ should be

adapted dynamically to enhance the performance of Q-learning

algorithm in dynamic environments. Furthermore, there may

arise the fairness issue while applying learning algorithms

in a multi-agent environment since different devices may

reach to convergence at different time intervals, thus creating

different learning times for different devices. Moreover, the

heterogeneity of MTC devices need to be considered in terms

of different aspects such as learning capability, cache size, data

rate and delay tolerance limit.

With regard to the application in IoT/mMTC systems,

the RL technique seem to be more promising due to its

simplicity of operation as well as the feasibility of distributed

implementation. Furthermore, an RL technique utilizes the

action-reward feedback by exploiting the interactions between

learning agents and the underlying environment in model-free

settings. One of the important applications where ML can

be advantageous in IoT/mMTC systems is the security en-

hancement and privacy preservation. The resource-constrained

IoT/mMTC devices may not be able to implement legacy

security solutions since they demand for huge computation

and communication capabilities. To this end, ML/DL-assisted

security techniques including access control, secure offloading,

IoT authentication and malware detection schemes can be

significantly useful in addressing various IoT security threats

including jamming, spoofing, DoS attacks, software attacks

and privacy leakage. Also, DL schemes are suitable for pri-

vacy preservation since the intermediate data and source data

in the DL architectures have different semantics. However,

the implementation of DL techniques in mMTC systems is

challenging since they demand for a significant amount of

memory, energy and battery resources. In this regard, some

potential enabling techniques include network compression,

approximate computing and accelerators.

One of the promising RL techniques suitable for IoT/mMTC

devices is Q-learning since its operation is purely algebraic

and can be implemented in a distributed manner. In this regard,

we provided a framework for the application of Q-learning for

RACH congestion in Section VI-D as an illustration of the use-

case example. With this approach, each MTC device attempts

to find its unique time slot for its transmission towards mini-

mizing the RACH congestion. In a distributed set-up, all MTC

nodes start with zero or random Q values and learn gradually

by utilizing the reward obtained based on the success or failure

of their transmissions till they all come across unique RA

slots for their transmissions. One of the design strategies for

Q-learning is to balance the exploration-exploitation tradeoff

and the widely-used three strategies include ǫ-greedy strategy,
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soft-max strategy and optimization in the face of uncertainty.

Furthermore, the performance of Q-learning can be enhanced

with several novel concepts including collaborative Q-learning,

situation-aware adaptive Q-learning, fuzzy-logic based adap-

tive Q-learning and model-based Q-learning.

In the above context, future works should focus on ad-

dressing the aforementioned issues to employ the ML-assisted

solutions towards enabling the incorporation of MTC devices

in the upcoming 5G and beyond cellular networks. Various

emerging techniques described in Section VI-F such as col-

laborative learning, situation-aware adaptive learning, fuzzy-

logic based Q-learning and model-based learning could be

exploited to enhance the performance of the ML techniques in

ultra-dense IoT networks involving MTC devices. In summary,

investigating low-complexity ML solutions which are feasible

to implement in the resource-constrained MTC devices is one

of the future research challenges. Also, tuning of different

parameters of ML/DL algorithms and their convergence time

to reach a steady solution are other important aspects to be

considered. In the emerging DL algorithms, another important

issue is how to balance the tradeoff between the depth of the

network and the computational complexity.

H. Deep Learning for Emerging IoT Applications

In real-world IoT environments, one of the major issues

is how to reliably extract the meaningful information out of

the massive amount of unstructured/semi-structured IoT data

obtained from a complex and noisy environment. Conven-

tional ML learning techniques may fail in such complex and

dynamic environments and deep learning can be considered

as a promising solution [60]. Due to multi-layer structure

of DL, it is considered as an effective approach for the

edge-computing environment in order to accurately extract

necessary information from the raw IoT sensor data [214].

Since it is possible to offload the parts of learning layers

in the edge-side of the network and transfer the reduced

intermediate data to the remote cloud-center, the DL model

seems suitable for the emerging edge computing paradigms

in IoT systems. Another interesting advantage of DL in

edge-computing environment is that it can provide privacy

preservation in transferring the intermediate data. In contrast to

the traditional big data systems such as Spark or MapReduce in

which intermediate data contains the user privacy information,

the intermediate data generated in DL networks usually have

different semantics than that in the original source data [60].

In practical IoT systems, the data is usually dynamic and

unlabelled, and the conventional statistically trained models

are not efficient to handle the large unlabelled and dynamic

data-set. Furthermore, it is highly impractical to manually

label all the IoT raw data. Due to this, the conventional

supervised training-based learning techniques are not suitable

for large-scale IoT/mMTC environments [215]. Moreover, the

conventional cloud-based architecture requires the transfer of

a huge amount of IoT data from the edge-devices to the

cloud-center. To address these issues, the application of DL

with collaborative cloud-edge/fog processing seems to be a

promising future research direction [21, 215].

However, the application of DL in IoT systems faces the

crucial challenge of meeting the computational requirements.

The main associated issues include the high-speed training

of large-scale IoT networks with the massive data-sets and

embedding DL capability in low-power IoT devices [216].

This computational challenge caused due to the expected

growth in the size of the data-sets and the algorithmic com-

plexity of ML algorithms is demanding the need of improving

the computational efficiency of existing computing platforms.

Also, it is not feasible to offload all the data to the cloud-

center for processing due to constraints on the bandwidth,

privacy and battery life, and the computational efficiency at

the device-side needs to be accelerated for DL applications.

In this regard, some of the potential future solutions to

improve computational efficiency of ML algorithms include

deep-learning accelerators, approximate computing and post-

CMOS device technologies [216].

Many IoT products have already used the ML techniques

to acquire and analyze the environmental data. For example,

Google’s Nest Learning Thermostat uses ML algorithms to

understand the patterns of its users’ temperature schedules and

preferences by utilizing the temperature data recorded in a

structure way. However, unstructured multimedia data such as

visual images and audio signals are difficult to learn by using

the conventional ML techniques. In this regard, some emerging

IoT devices are already using sophisticated DL techniques to

capture and understand the complex environments [46]. As

an example, the face-recognition security system from the

Microsoft’s Windows IoT team uses deep-learning technology

to perform tasks such as unlocking a door by recognizing its

users’ faces.

Due to demanding real-time requirements of IoT applica-

tions in terms of latency and high cost of radio resources

required in delivering information to the cloud-center, it is

advantageous to implement DL techniques at the device-

side. However, due to the limited computing power and low

memory size of IoT devices, it is challenging to implement

DL at the device-side. Therefore, most of the time, existing

DL applications require third-party libraries and it may be

difficult to migrate them to the IoT devices [46]. In this regard,

it is an important future research direction to investigate

suitable paradigms such as convolution neural networks based

inference engine [46] to facilitate the implementation of DL

at the IoT devices.

VIII. CONCLUSIONS

Future cellular IoT networks are expected to support the

massive number of resource-constrained MTC devices while

satisfying their diverse QoS requirements and will need to

deal with several challenges for enhancing the access la-

tency, scalability, connection reliability, energy efficiency and

network throughput. To this end, this paper has discussed

various challenges of mMTC systems such as QoS provision-

ing, mMTC traffic characterization, transmission scheduling

with QoS support, small data packet transmission and RAN

congestion, and has provided a detailed review on the existing

studies attempting to address these issues. By considering
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machine learning as an important enabler to address some of

these issues in ultra-dense cellular IoT networks, the paper

has identified the potential advantages, research challenges

and the application scenarios of ML-assisted solutions. Among

potential ML techniques, the application of Q-learning in

minimizing the RAN congestion has been presented along with

some performance enhancement techniques. Finally, a sum-

mary of lessons learned, some important research issues and

interesting directions for future research have been provided.
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