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Abstract—Most of the recent advances in the design of high-
speed wireless systems are based on information-theoretic princi-
ples that demonstrate how to efficiently transmit long data packets.
However, the upcoming wireless systems, notably the 5G system,
will need to support novel traffic types that use short packets. For
example, short packets represent the most common form of traffic
generated by sensors and other devices involved in Machine-to-
Machine (M2M) communications. Furthermore, there are emerg-
ing applications in which small packets are expected to carry criti-
cal information that should be received with low latency and ultra-
high reliability.

Current wireless systems are not designed to support short-
packet transmissions. For example, the design of current systems
relies on the assumption that the metadata (control information)
is of negligible size compared to the actual information payload.
Hence, transmitting metadata using heuristic methods does not
affect the overall system performance. However, when the packets
are short, metadata may be of the same size as the payload, and
the conventional methods to transmit it may be highly suboptimal.

In this article, we review recent advances in information theory,
which provide the theoretical principles that govern the transmis-
sion of short packets. We then apply these principles to three ex-
emplary scenarios (the two-way channel, the downlink broadcast
channel, and the uplink random access channel), thereby illustrat-
ing how the transmission of control information can be optimized
when the packets are short. The insights brought by these exam-
ples suggest that new principles are needed for the design of wire-
less protocols supporting short packets. These principles will have
a direct impact on the system design.

I. INTRODUCTION

The vision of the Internet of Things promises to bring wire-

less connectivity to “. . . anything that may benefit from being

connected. . . ” [1], ranging from tiny static sensors to vehicles

and drones. A successful implementation of this vision calls for

a wireless communication system that is able to support a much

larger number of connected devices, and that is able to fulfill
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much more stringent requirements on latency and reliability

than what current standards can guarantee. Among the various

current research and standardization activities, the one aimed

at the design of fifth generation (5G) wireless systems stands

out as the largest globally orchestrated effort towards addressing

these challenges.

So far, each new generation of cellular systems has been

mainly designed with the objective to provide a substantial gain

in data rate over the previous generation. 5G will depart from

this scheme: its focus will not only be on enhanced broadband

services and, hence, higher data rates. This is because the vast

majority of wireless connections in 5G will most likely be

originated by autonomous machines and devices rather than

by the human-operated mobile terminals for which traditional

broadband services are intended. 5G will address the specific

needs of autonomous machines and devices by providing two

novel wireless modes: ultra-reliable communication (URC) and

massive machine-to-machine communications (MM2M) [2]–[4].

URC refers to communication services where data packets are

exchanged at moderately low throughput (e.g., 50 Mbit/s) but

with stringent requirements in terms of reliability (e.g., 99.999%)

and latency (e.g., 4 ms). Example of URC include reliable cloud

connectivity, critical connections for industrial automation, and

reliable wireless coordination among vehicles [4]–[6].

With MM2M one refers to the scenario where a massive

number of devices (e.g., 10 000) needs to be supported within

a given area. This is relevant for large-scale distributed cyber-

physical systems (e.g., smart grid) or industrial control. Also in

this case, the data packets are short (and often contain correlated

measurements) and reliability must be high to cope with critical

events.

The central challenge with these two new wireless modes is

the capability to support short packet transmission. Indeed, short

packets are the typical form of traffic generated by sensors and

exchanged in machine-type communications. This requires a

fundamentally different design approach than the one used in

current high-data-rate systems, such as 4G LTE and WiFi.

It is appropriate at this point to formally define what is meant

by short/long packets. The transmission of a packet is a process

in which the information payload (data bits) is mapped into

a continuous-time signal, which is then transmitted over the

wireless channel. A continuous-time signal with approximate

duration T and approximate bandwidth B can be described by

n ≈ BT complex parameters. It is then natural to refer to n as

the packet length, i.e., the number of degrees of freedom (channel

uses) that are required for the transmission of the information

payload.
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Fig. 1. An example of a packet structure with data and metadata. In many
wireless systems, metadata consists of preamble (PA) and header (H). (a) Long
data packet used in current wireless systems; (b) Short data packets needed to
support novel 5G applications, such as URC and MM2M.

A channel code defines a map between the information pay-

load and the signal transmitted over the n channel uses. The

task of a wireless receiver is to recover the information payload

from a distorted and noisy version of the transmitted signal. A

fundamental result in information theory [7] tells us that when n
is large (long packets), there exist channel codes for which the

information payload can be reconstructed with high probability

(in a sense we shall make precise in Section II). Intuitively, when

n is large both the thermal noise and the distortions introduced

by the propagation channel are averaged out due to the law of

large numbers. However, when n is small (short packets) such

averaging cannot occur.

Another defining element of long packets, besides the large

number of channel uses, is the fact that the payload contained in

a packet is much larger than the control information (metadata)

associated with the packet. As a consequence, a highly subopti-

mal encoding of the metadata does not deteriorate the efficiency

of the overall transmission, see Fig. 1(a). On the contrary, when

the packets are short, the metadata is no longer negligible in size

compared to the payload, see Fig. 1(b).

To summarize, in short-packet communications (i) classic

information-theoretic results are not applicable because the law

of large number cannot be put to work; (ii) the size of the

metadata is comparable to the size of the payload and inefficient

encoding of metadata significantly affects the overall efficiency

of the transmission.

During the last few years, significant progress has been made

within the information theory community to address the problem

of transmitting short packets. Particularly for point-to-point

scenarios, information theorists have gained some understanding

of the theoretical principles governing short-packet transmission

and possess metrics that allow them to assess their performance.

In contrast, so far information theorists have mostly viewed the

design of metadata as something outside their competence area.

Consequently, the transmission of metadata has been largely left

to heuristic approaches. In fact, practically all current protocols

are based on a tacit assumption that the control information is

perfectly reliable. A classic example is the proverbial “one-bit

acknowledgement”, which is always assumed to be perfectly

received.

In this article, we present a comprehensive review of the the-

oretical principles that govern the transmission of short packets

MAC

overhead

channel

encoder

PHY

overhead

ki k = ki + ko ne n = ne + no

[bits] [bits] [symbols] [symbols]

Fig. 2. Block diagram that illustrates how a packet is created.

and present metrics that allow us to assess their performance.

We then highlight the challenges that need to be addressed to

optimally design URC and MM2M applications by means of

three examples that illustrate how the tradeoffs brought by short-

packet transmission affect protocol design.

The paper is organized as follows. In Section II, we describe

the structure of a packet and review two classic information-

theoretic metrics that are relevant for long packets: the ergodic

capacity and the outage capacity. In Section III, we introduce a

performance metric, the maximum coding rate at finite packet

length and finite packet error probability, that is more relevant

for the case of short packets. By focusing on the case of additive

white Gaussian noise (AWGN) channels and on the case of

fading channels, we explain how to evaluate this quantity and

discuss the engineering insights brought by it. In Section IV, we

illustrate through three example how to use the maximum coding

rate performance metric to optimize the protocol design and

the transmission of metadata in short-packet communications.

Concluding remarks are offered in Section V.

II. ANATOMY OF A PACKET

Modern wireless systems transmit data in packets. Each trans-

mitted packet over the air carries not only the information bits

intended for the receiver but also additional bits that are needed

for the correct functioning of the wireless protocols. Such bits,

which will be referred throughout as control information or

metadata—in contrast to the actual data to be transmitted—

include packet initiation and termination, logical addresses,

synchronization and security information, etc. . .

As illustrated in Fig. 2, a packet consists of k payload bits,

which are made up of ki information bits (information payload)

and ko additional bits, containing metadata from the media-

access-control (MAC) layer and higher layers. The payload bits

are typically encoded into a block of ne data symbols (complex

numbers) to increase reliability in packet transmission. Finally,

no additional symbols are added to enable packet detection,

efficient synchronization (in time and frequency), or estimation

of channel state information (CSI), which is needed by the

receiver to compensate for the distortion of the transmitted signal

introduced by the wireless channel. The total packet length n is

thus equal to ne + no. With a slight abuse of notation, we shall

refer to the additional ko bits and no symbols as metadata.

The ratio R = ki/n, i.e., the number of information bits per

complex symbol (or, equivalently, the number of transmitted

payload bits per second per unit bandwidth) represents the net

transmission rate and is a measure of the spectral efficiency of

a communication system. In some wireless standards (such as

LTE) specific physical/logical channels are reserved to carry

exclusively metadata (control channels). This lowers further the

spectral efficiency.

In most current wireless systems, we have that ki ≫ ko
and that ne ≫ no, so the net transmission rate R is roughly
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k/ne. Consequently, the performance of such systems essentially

depends on the efficiency of the channel code. Furthermore, ki
(and hence also ne) is typically large. It follows that information-

theoretic metrics such as capacity [7] and outage capacity (also

known as capacity-versus outage) [8] are accurate, in spite of

being defined for asymptotically large packet sizes. In summary,

encoding the data payload using a good channel code allows

for reliable transmission at rates close to the capacity of the

underlying channel.

In order to facilitate the review of the relevant information-

theoretic metrics, we shall need a reference communication

channel. A communication channel—the central part of a com-

munication model—describes the relation between the input

signal and the output signal over the available n channel uses.

As mentioned in Section I, each channel use corresponds to

the transmission of a complex symbol. Throughout most of the

paper, we shall focus on the following channel model (and its

multiple-antenna extension):

Yk = HkXk +Wk, k ∈ N. (1)

Here, Xk denotes the complex symbol transmitted over the kth

channel use, Yk is the corresponding channel output, Hk is the

channel coefficient that represents fading and other propagation

phenomena and Wk is the additive Gaussian noise, which we

shall assume to be drawn from a stationary memoryless process.

If Hk is taken equal to a deterministic constant c independent

of k and known to transmitter and receiver, i.e., Hk = c for all

k, then (1) describes an AWGN channel. The AWGN channel

is an example of an ergodic channel, that is, it exhibits an

ergodic behavior over the duration of each packet (recall that the

noise process {Wk} is assumed stationary and memoryless). For

such ergodic channels, the relevant performance metric is the

capacity C, defined as the largest rate k/ne for which the packet

error probability can be made arbitrarily small by choosing ne

sufficiently large. We shall treat the AWGN channel in more

detail in Section III-B. Another example of an ergodic channel

is the memoryless block fading channel, see Section III-C. In

this model, Hk, which can be thought of as a multiplicative noise,

is assumed not known a priori by the transmitter/receiver and to

vary according to a block-memoryless process.

A completely different situation is the one in which the fading

coefficient Hk is random but does not depend on k, i.e., Hk = H .

Hence, the fading coefficient stays constant over the packet

duration [9, p. 2631], [10, Sec. 5.4.1]. For this nonergodic chan-

nel, if H can take arbitrarily small values, the error probability

cannot be made small by choosing ne large. This is the case for

most fading distributions, e.g., Rayleigh, Rician, and Nakagami.

Indeed, when |H| is small (deep fade), then the entire packet

is lost, independently of its length. In such a nonergodic case,

a relevant performance metric is the outage capacity Cǫ (also

known as capacity-versus-outage or ǫ-capacity)—defined as the

largest rate k/ne for which a packet error probability less than

a fixed ǫ > 0 can be achieved by choosing ne sufficiently large.

We note that both capacity and outage capacity require that

the codeword length ne (i.e., the packet size) and, hence, also

the size of the data payload k be large. When the packets are

short, the situation changes drastically. On the one hand, new

information-theoretic performance metrics other than capacity

encoder channel

B1, . . . , Bk X1, . . . , Xn
Y1, . . . , Yn

decoder
B̂1, . . . , B̂k

Fig. 3. Information-theoretic description of a communication system.

or outage capacity are needed to capture the tension between

reliability and throughput, as well as the cost incurred in exploit-

ing time-frequency and spatial resources (PHY overhead). On

the other hand, when the packets are short, the MAC overhead is

significant and needs to be designed optimally, perhaps together

with the data. We shall address the former issue in Section III

and the latter issue in Section IV.

III. RETHINKING PHY PERFORMANCE METRICS

A. Backing Off from the Infinite Blocklength Asymptotics

In this section, we discuss information-theoretic performance

metrics for short-packet wireless communications. We account

for the metadata symbols required for the estimation of CSI, but

ignore other issues such as packet detection or synchronization.

As is common in information theory, we view the blocks channel

encoder and PHY overhead in Fig. 2 as one encoder block

and consider the transmission of metadata symbols for channel

estimation, such as pilot symbols, as a possible encoding strategy.

We note that the use of pilot symbols to estimate the channel is a

widely adopted heuristic strategy that may be strictly suboptimal

in some cases.

Mathematically, the encoder is modeled as a function fn
that maps the k information bits B1, . . . , Bk to the sequence

of symbols X1, . . . , Xn to be transmitted over the channel; see

Fig. 3. We shall refer to the number of transmitted symbols n as

the packet length or blocklength and to the sequence X1, . . . , Xn

as a codeword. It is common to impose a power constraint ρ on

the transmitted symbols to account for restrictions on the transmit

power, e.g., due to the devices’ limited battery life or regulatory

constraints. An often-used power constraint is the average power

constraint, under which the transmitted symbols must satisfy

1

n

n
∑

k=1

|Xk|2 ≤ ρ. (2)

The task of the decoder is to guess the information bits

B1, . . . , Bk from the n channel outputs Y1, . . . , Yn. The decod-

ing procedure is modeled as a function gn that maps the channel

outputs Y1, . . . , Yn to the estimates B̂1, . . . , B̂k.

Let Pe denote the packet error probability, i.e., the probability

that the decoder makes a wrong guess about the information bits

B1, . . . , Bk. Note that Pe does not only depend on the decoder

gn, but also on the encoder fn.

The rate R of a communication system is defined as the

fraction k/n of information bits to the number of transmitted

symbols. Ideally, we would like to design communication sys-

tems for which R is as large as possible while, at the same time,

the packet error probability Pe is as small as possible. We denote

by R∗(n, ǫ) the maximum coding rate at finite packet length n
and finite packet error probability ǫ, i.e., the largest rate k/n for

which there exists an encoder/decoder pair (fn, gn) of packet

length n whose packet error probability Pe does not exceed ǫ.
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Traditional information-theoretic metrics, such as capacity

[7] and outage capacity [8], can be directly obtained from

R∗(n, ǫ) by taking appropriate limits. Specifically, the outage

capacity Cǫ is defined as the largest rate k/n such that, for every

sufficiently large packet lengthn, there exists an encoder/decoder

pair (fn, gn) whose packet error probability does not exceed ǫ.
Thus, in contrast toR∗(n, ǫ), the definition ofCǫ does not involve

encoder/decoder pairs of a given fixed packet length n; instead,

we consider encoder/decoder pairs whose packet lengths are

large enough for the error probability to fall below ǫ. It follows

that Cǫ can be obtained from R∗(n, ǫ) via

Cǫ = lim
n→∞

R∗(n, ǫ). (3)

The capacity C (in wireless communications also referred to

as ergodic capacity) is defined as the largest rate k/n such

that there exists an encoder/decoder pair (fn, gn) whose packet

error probability can be made arbitrarily small by choosing the

packet length sufficiently large. Thus, in contrast to the definition

of the outage capacity that demands a packet error probability

smaller than some ǫ, the definition of capacity is stronger in

that it demands an arbitrarily small packet error probability. It

follows that C can be obtained from Cǫ by letting ǫ tend to 0:

C = lim
ǫ→0

Cǫ = lim
ǫ→0

lim
n→∞

R∗(n, ǫ). (4)

Intuitively, the capacity characterizes the largest transmission

rate at which reliable communication is feasible when there

are no restrictions on the packet length. Likewise, the outage

capacity characterizes the largest transmission rate at which

communication with packet error probability not exceeding ǫ
is feasible, again provided that there are no restrictions on the

packet length. It follows that both quantities are reasonable per-

formance metrics for current wireless systems, where the packet

size is typically large. However, assessing the performance of

short packet communications requires a more refined analysis of

R∗(n, ǫ). Unfortunately, the exact value of R∗(n, ǫ) is unknown

even for channel models that are much simpler to analyze

than the one encountered in wireless communications. Indeed,

determining R∗(n, ǫ) is in general an NP-hard problem [11],

and its complexity is conjectured to be doubly exponential in

the packet length n.

Fortunately, during the last few years, significant progress

has been made within the information theory community to

address the problem of quantifying R∗(n, ǫ) and, hence, solve

the long-standing problem of accounting for latency constraints

in a satisfactory way. Building upon Dobrushin’s and Strassen’s

previous asymptotic results, Polyanskiy, Poor, and Verdú [12]

recently provided a unified approach to obtain tight bounds on

R∗(n, ǫ). They showed that for various channels with positive

capacity C, the maximal coding rate R∗(n, ǫ) can be expressed

as

R∗(n, ǫ) = C  
√

V

n
Q  1(ǫ) +O

(

log n

n

)

(5)

where O(log n/n) comprises remainder terms of order log n/n.

Here, Q  1(·) denotes the inverse of the Gaussian Q function and

V is the so-called channel dispersion [12, Def. 1]. The approxi-

mation (5) implies that to sustain the desired error probability

50 150 250 350 450 550 650 750 850 950

0.2

0.4

0.6

0.8

1.0

capacity

converse bound

achievability bound ≈ normal approximation

blocklength, n

ra
te
,
R

Fig. 4. Upper bounds, lower bounds, and normal approximation on R∗(n, ǫ)
for the AWGN channel with SNR ρ = 0 dB. The packet error probability ǫ is
10  3. The upper bound is obtained using the metaconverse theorem [12, Th. 41];
the lower bound is the Shannon cone-packing bound [13], [12, Eq. (41)]. The
normal approximation is indistinguishable from the lower bound.

ǫ for a given packet size n, one incurs a penalty on the rate

(compared to the channel capacity) that is proportional to 1/
√
n.

We next provide an interpretation for (5). The classic approach

of approximating R∗(n, ǫ) ≈ C for large packet sizes and

small packet error rates according to (4) allows one to model a

communication channel as a “bit pipe” that delivers reliably C
bits per channel use. This holds under the assumption that good

channel codes are used. The expansion provided in (5) suggests

the following alternative model, which is more accurate when

the packets are shorts: A communication channel can be thought

of as a bit pipe of randomly varying size. Specifically, the size of

the bit pipe behaves as a Gaussian random variable with mean

C and variance V/n. Hence, V is a measure of the channel

dispersion. In this interpretation, the packet error probability ǫ
is the probability that R∗(n, ǫ) is larger than the size of the bit

pipe.

B. AWGN Channel

Arguably, one of the best-understood channel models in the

information theory literature is the average-power constrained

AWGN channel. Its canonical form can be obtained from (1) by

setting Hk = 1, which yields

Yk = Xk +Wk. (6)

Here, the inputs {Xk} satisfy the average-power constraint (2).

When the additive noise has unit variance, the power constraint

ρ becomes equal to the signal-to-noise ratio (SNR).

For the AWGN channel, the capacity and the channel disper-

sion are given by [12, Th. 54]1

C(ρ) = log(1 + ρ) (7)

V (ρ) = ρ
(2 + ρ)

(1 + ρ)2
(log e)2. (8)

1The capacity of the real-valued AWGN channel has been obtained by
Shannon [7]. The channel dispersion of the real-valued AWGN channel has
been reported in [12, Eq. (293)]. One obtains (7) and (8) by noting that the
transmission of a codeword of blocklength n over the complex-valued AWGN
channel corresponds to the transmission of a codeword of blocklength 2n over
the real-valued AWGN channel with the same SNR.
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It has been observed that a good approximation for R∗(n, ǫ) can

be obtained by replacing the remainder terms on the right-hand

side of (5) by (log n)/(2n) [12], [14]. The resulting approxima-

tion, which is commonly referred to as normal approximation, is

plotted in Fig. 4, together with nonasymptotic upper and lower

bounds on R∗(n, ǫ) (see [12] for details).

As shown in the figure, the upper and lower bounds provide an

accurate characterization of R∗(n, ǫ), which lies in the shaded

region. According to the bounds, to operate at 70% of capacity

with a packet error rate of 10 3, i.e., at 0.7 bits/channel use, it

is sufficient to use codes whose blocklength is between 110 and

138 channel uses. For the parameters considered in the figure, the

normal approximation is indistinguishable from the achievability

bound. We also see that capacity is an inaccurate performance

metric for packet sizes that are as short as the ones considered

in the figure.

C. Fading Channels

We shall next discuss how to extend the results reported in

Section III-B for the AWGN case to multiple-antenna fading

channels. Throughout, we shall focus on the memoryless block-

fading model [15], depicted in Fig. 5, according to which the

fading coefficient stays constant for nc channel uses and then

changes independently. In general, nc can be interpreted as the

number of “time-frequency slots” over which the channel does

not change. We shall refer to each interval over which the fading

coefficients do not change as a coherence interval.

The memoryless block-fading model is perhaps the simplest

model to capture channel variations in wireless channels. Al-

though inferior in accuracy to stationary channel models, where

the channel varies continuously (see e.g., [16]), its simplicity

enables analytical approaches that are currently out of reach for

more sophisticated models.

For ease of notation, we shall write the symbols to be trans-

mitted in each coherence interval in a nc × mt matrix whose

entry at position (i, j) corresponds to the ith symbol transmitted

from antenna j. Likewise, we write the received symbols in a

nc × mr matrix. Within the kth coherence interval, the input-

output relation of the block-fading channel with mt transmit and

mr receive antennas is given by

Yk = XkHk +Wk. (9)

Here, Xk ∈ C
nc×mt and Yk ∈ C

nc×mr are the transmitted

and received matrices, respectively; Hk ∈ C
mt×mr denotes

the fading matrix; Wk ∈ C
nc×mr denotes the additive noise,

which is assumed to have independent and identically distributed

(i.i.d.), zero-mean, unit-variance, complex Gaussian entries. For

the sake of simplicity, we assume Rayleigh fading, i.e., we

assume that the fading matrix Hk has i.i.d., zero-mean, unit-

variance, complex Gaussian entries. However, this assumption

is not essential. In fact, most results presented in this paper were

either originally derived for more general fading distributions

or can be generalized with some effort. For convenience, we

shall assume that each codeword spans ℓ coherence intervals,

i.e., n = ℓnc.

We shall say that CSI is available at the transmitter, receiver, or

both if the corresponding blocks have access to the realization of

nc

n = nc`, ` ∈ N

Fig. 5. Block-fading model: the fading coefficient stays constant overnc channel
uses (coherence interval) and then changes to an independent realization. Coding
is performed over ℓ coherence intervals (number of time-frequency diversity
branches).

H1, . . . ,Hn. In practice, CSI at the transmitter allows for trans-

mission strategies that make use of the actual fading realization,

thereby using the available transmit power more efficiently; CSI

at the receiver facilitates the decoding task. Note that CSI at the

receiver can be acquired by transmitting training sequences (so-

called pilots) that are used at the receiver to estimate the channel.

CSI at the transmitter can, for example, be established by feeding

channel estimates from the receiver back to the transmitter. How-

ever, the transmission of training sequences incurs a rate loss,

sometimes referred to as channel-estimation overhead. Likewise,

the creation of a feedback link is associated with additional

costs or overheads. Analyses relying on the assumption that CSI

is available at the transmitter, receiver or both simply ignore

these overheads. In this spirit, analyses that are based on the

assumption that no CSI is available at the receiver do not assume

that the receiver does not perform a channel estimation. On

the contrary, they account for the overhead associated with the

acquisition of CSI. For example, the transmission of training

sequences can be viewed as a specific form of coding. Thus,

by analyzing the fading channel (9) under the assumption that

no CSI is available at the receiver, the rate loss incurred by the

transmission of pilot symbols is automatically accounted for.

1) Capacity-versus-outage at finite blocklength: We shall first

discuss the case where the channel remains constant over the

packet duration, i.e., ℓ = 1. In this case, the fading channel

is said to be quasi-static, to reflect that the fading matrix is

random but stays constant during the packet transmission.2 When

communicating over quasi-static fading channels at a given rate

R, the realization of the random fading matrix Hk may be very

small, in which case the decoder will not be able to guess the

transmitted information bits correctly, no matter how large we

choose the packet length n. In this case, the channel is said

to be in outage. For fading distributions for which the fading

coefficient can be arbitrarily small (which is, for example, the

case for Rayleigh fading), the probability of an outage is positive.

Hence, the packet error probability is bounded away from zero

for every positive rate R > 0 and the capacity, defined as the

largest rate for which reliable communication is feasible, is zero

[8], [9].

One may argue that the definition of capacity is too restrictive

for quasi-static channels. Indeed, for sufficiently small (but

positive) rates, the probability that the channel is in outage is

typically small. Thus, while reliable communication cannot be

guaranteed because there is always a chance that the channel

is in outage, the probability that this happens is small. In other

2In the information theory literature, the quasi-static channel model belongs
to the class of composite channels [9], [17], also known as mixed channels [18,
Sec. 3.3].
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words, most of the time the channel is not in outage and reliable

communication can be achieved by choosing a sufficiently large

packet length. Capacity, however, is determined by those rare

events where the channel is in outage. For applications where

a positive packet error probability is acceptable, the outage

capacity Cǫ is arguably a more relevant performance metric

than capacity, because it allows for outage events as long as they

happen with probability less than ǫ.
The outage capacity is often regarded as a performance met-

ric for delay-constrained communication over slowly-varying

fading channels (see, e.g., [19]). In fact, the assumption that

the fading matrix stays constant during the packet transmission

seems plausible only if the packet size is small. Nevertheless, the

definition of outage capacity requires that the blocklength tends

to infinity; cf. (3). For example, for a single-antenna system, the

outage probability as a function of the rate R is given by [20],

[19], [17]

Pout(R) = P
[

log
 

1 + |H|2ρ
)

< R
]

(10)

and the outage capacity Cǫ is the supremum of all rates R
satisfying Pout(R) ≤ ǫ, namely

Cǫ = sup{R : Pout(R) ≤ ǫ}. (11)

The rationale behind this result is that, for every realization of

the fading coefficient H = h, the quasi-static fading channel can

be viewed as an AWGN channel with channel gain h, for which

communication with arbitrarily small packet error probability is

feasible if, and only if, R < log(1 + |h|2ρ), provided that the

packet length is sufficiently large.3 However, it is prima facie

unclear whether the quantity log(1+ |h|2ρ) is meaningful when

the packet size is small.

To better understand the relevance of the outage capacity for

delay-constrained communication, a more refined analysis of

R∗(n, ǫ) was presented in [21]. It was shown that [21, Ths. 3

and 9]

R∗(n, ǫ) = Cǫ +O
(

log n

n

)

(12)

irrespective of the number of transmit and receive antennas, and

irrespective of whether CSI is available to transmitter, receiver,

or both. Comparing (12) with (5), we observe that for the quasi-

static fading case the channel dispersion is zero, i.e., the 1/
√
n

rate penalty is absent. This suggests that R∗(n, ǫ) converges

quickly to Cǫ as n tends to infinity, thereby indicating that the

outage capacity is indeed a meaningful performance metric for

delay-constrained communication over slowly-varying fading

channels. Numerical examples that support this claim can be

found in [21, Sec. VI]. Furthermore, a simple approximation for

R∗(n, ǫ) is proposed in [21, Eqs. (59) and (95)]. For the single-

antenna case, this approximation can be written in the following

form [21], [22]

ǫ ≈ E



Q





C(ρ |H|2) + (log n)/(2n)  R∗(n, ǫ)
√

V (ρ |H|2)/n







 . (13)

3Indeed, the capacity of the AWGN channel with channel gain h follows from
(7) by changing the SNR from ρ to |h|2ρ.

Here, C(·) and V (·) are the functions defined in (7) and (8),

respectively.

The asymptotic expansion (12) provides mathematical support

to the observation reported by several researchers in the past

that the outage probability describes accurately the performance

over quasi-static fading channels of actual codes (see [19] and

references therein). The intuition behind this result is that the

dominant error event over quasi-static fading channels is that

the channel is in a deep fade. Since the transmitted symbols

experience all the same fading, it follows that coding is not

helpful against deep fades in the quasi-static fading scenario,

hence R∗(n, ǫ) is close to Cǫ already for small blocklengths.

It has been observed that the outage capacity Cǫ does not

depend on whether CSI is available at the receiver [9, p. 2632],

[21, Ths. 3 and 9]. Intuitively, this is true because the fading

matrix stays constant during the whole transmission, so it can

be accurately estimated at the receiver through the transmission

of
√
n pilot symbols with no rate penalty as the packet length

n tends to infinity. This in turn implies that the outage capacity

does not capture the channel-estimation overhead. Consequently,

outage capacity is an inaccurate performance metric when the

coherence interval nc is small.

2) Tradeoff between diversity, multiplexing, and channel es-

timation: When communicating over multiple-input multiple-

output fading channels, a crucial question is whether the spatial

degrees of freedom offered by the antennas should be used to

lower the packet error probability for a given data rate (through

the exploitation of spatial diversity) or to increase the data rate

for a given packet error probability (through the exploitation

of spatial multiplexing). These two effects cannot be harvested

concurrently, but there exists a fundamental tradeoff between

diversity and multiplexing. This tradeoff admits a particularly

simple characterization in the high-SNR regime [23].

Specifically, Zheng and Tse [23] defined the diversity-

multiplexing tradeoff as follows. Assume that ℓ and nc are fixed.

Further assume that the packet error probability vanishes with

increasing ρ as

ǫ(ρ) = ρ dℓ (14)

where d ∈ {1, . . . ,mtmr} is the so-called spatial diversity gain.

The multiplexing gain r(d) corresponding to the diversity gain

d is defined as

r(d) = lim
ρ→∞

R∗
 

n, ǫ(ρ)
)

log ρ
. (15)

For the case where CSI is available at the receiver and nc ≥ mt,

one can show that r(d) is the piecewise linear function connect-

ing the points [23], [24]

r
 

(mt  k)(mr  k)
)

= k, k = 0, . . . ,min{mt,mr}. (16)

Let m∗ = min{mt,mr, ⌊nc/2⌋}, where ⌊a⌋ denotes the largest

integer that is not larger than a. For the case where no CSI is

available at the receiver andnc ≥ 2m∗+mr+1, the multiplexing

gain is given by [25], [26]

r
 

(mt  k)(mr  k)
)

=

(

1  m∗

nc

)

k. (17)
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It is thus equal to (16) multiplied by (1  m∗/nc). The expres-

sions (16) and (17) describe elegantly and succinctly the tradeoff

between diversity gain and multiplexing gain at high SNR.

Note that m∗/nc is roughly the number of pilots per time-

frequency slot needed to learn the channel at the receiver when

m∗ transmit antennas are used. A comparison of (17) with (16)

thus illustrates how an analysis of the diversity-multiplexing

tradeoff under the assumption of no CSI at the receiver captures

the channel-estimation overhead.

It has been recently demonstrated that for data packets of

1000 channel uses or more and for moderately low packet-error

probabilities (around 10 2), one should typically operate at

maximum multiplexing [27]. In this regime, which is relevant

for current cellular systems, diversity-exploiting techniques are

detrimental both for high- and for low-mobility users. For high-

mobility users (where nc is significantly smaller than the packet

size n), abundant time and frequency selectivity is available, so

diversity-exploiting techniques are superfluous. For low-mobility

users (where nc is large), the fading coefficients can be learnt at

the transmitter and outage events can be avoided altogether by

rate adaptation.

However, when the packet size becomes small and/or smaller

packet-error probabilities are required, these conclusions may

cease to be valid. For example, for packet lengths of, say, 100
channel uses (which is roughly equal to a LTE resource block)

and packet error probability of 10 5 or lower, spatial diversity

may be more beneficial than spatial multiplexing. Furthermore,

when the coherence interval nc is small, the cost of estimating

the fading coefficients may be significant and must therefore be

taken into consideration.

Studies based on capacity or outage capacity are inherently in-

capable of illuminating the entire diversity-multiplexing-channel-

estimation tradeoff. Indeed, recall that the capacity is defined as

the largest rate at which reliable communication is feasible as the

packet length tends to infinity. Specialized to the block-fading

channel, capacity is typically studied by letting the number

of time-frequency diversity branches ℓ grow to infinity while

holding the coherence interval nc fixed. For example, when

nc > 1 and no CSI is available, the capacity is given by [28]

C(ρ) = m∗

(

1  m∗

nc

)

log ρ+O(1) (18)

where O(1) comprises error terms that are bounded in the SNR.

Observe that (18) reflects the cost of estimating the fading matrix

through nc, but it hides away the effects of spatial diversity,

since by letting ℓ tend to infinity we achieve an infinite time-

frequency diversity gain already through coding. Conversely,

the definition of outage capacity is based on the assumption that

the coherence interval nc grows to infinity while the number of

diversity branches ℓ is held fixed (cf. Section III-C1 where we

chose ℓ = 1). For example, in the absence of CSI, the outage

capacity is given by [8]

Cǫ(ρ) = sup

{

R : inf
Qℓ

Pout(R,Qℓ) ≤ ǫ

}

(19)
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Fig. 6. Upper and lower bounds on the maximum coding rate R∗(n, ǫ) for a
Rayleigh block-fading channel with mt = mr = 2, n = 168, ǫ = 10  5, ρ =
6 dB. The maximum coding rate lies in the shaded area between the upper and
lower bound. Upper and lower bounds on the maximum coding rate achievable
using an Alamouti inner code are also depicted to indicate the performance of a
configuration in which transmit antennas are used to provide exclusively transmit
diversity. The curve for the outage capacity has been obtained by numerically
evaluating (19). The curve for the ergodic capacity follows by tightening (18);
see [31] for more details. This figure appeared first in [31].

where Pout(R,Qℓ) denotes the outage probability

Pout(R,Qℓ) = P

[

1

ℓ

ℓ
∑

k=1

log det
 

I+H
H
k QkHk

)

≤ R

]

(20)

and where the infimum in (19) is over all positive-definite

mt × mt matrices {Q1, . . . ,Qℓ} = Qℓ whose traces satisfy

(1/ℓ)
∑ℓ

k=1 tr(Qk) ≤ ρ. In (20), the symbol I denotes the

identity matrix, and (·)H denotes Hermitian conjugation. For

ℓ = 1, the outage probability (20) specializes to (10). Observe

that (19) captures the effects of spatial and time-frequency

diversity through the dimension of Hk (mt ×mr) and the value

of ℓ. However, as already mentioned at the end of Section III-C1,

it hides away the cost of estimating the fading coefficient, since

for an infinite coherence interval nc the channel can be estimated

perfectly without a rate penalty.

To investigate the entire diversity-multiplexing-channel-

estimation tradeoff for small packet lengths, bounds on R∗(n, ǫ)
were presented in [29]–[31]. Here, we provide an example, taken

from [31], which illustrates the benefit of a nonasymptotic anal-

ysis of the diversity-multiplexing-channel-estimation tradeoff.

Specifically, we consider a scenario based on the 3GPP LTE

standard [27] where the packet size is n = 168 symbols, which

corresponds to 14 OFDM symbols, each consisting of 12 tones.

We set the SNR to 6 dB and the packet error rate to 10 5, which

corresponds to a URC scenario, and compute the bounds on

the maximum coding rate obtained in [31] as a function of

the coherence time nc or, equivalently, the number of diversity

branches ℓ (recall that n = ℓnc) for a 2× 2 MIMO system.

The upper and lower bounds on the maximum coding rate

obtained in [31] for the above example are depicted in Fig. 6.

We see from the figure that, given n and ǫ, the rate R∗(n, ǫ) is not

monotonic in the coherence interval nc, but there exists a value

n∗

c (in this case 14) that maximizes the rate. This accentuates the

fundamental tradeoff between time-frequency diversity (which
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decreases with nc) and the ability of estimating the fading

coefficient (which increases with nc).

We further observe that both outage capacity and capacity

(computed for the scenario where CSI is not available at the

receiver—see [32] for a recent review) fail to capture this tradeoff,

although their intersection predicts surprisingly well the rate-

maximizing coherence interval. Indeed, the outage capacity

only captures the increase in time-frequency diversity, whereas

capacity only captures the channel-estimation overhead. We also

note that when the coherence interval is smaller than 8 channel

uses, one of the two transmit antennas should be switched off,

because the cost of estimating the fading coefficients overcomes

the benefit of using two antennas at the transmitter.

In Fig. 6, we also depict bounds on the maximum coding rate

obtainable using an Alamouti inner code [33], a configuration

in which the transmit antennas are used to provide exclusively

transmit diversity. Since the gap between the rate achievable

using Alamouti and the maximum coding rate converse is small,

we conclude that for the scenario considered in Fig. 6, the

available transmit antennas should be used to provide diversity

and not multiplexing.

D. Channel Dispersion versus Error Exponents

Traditionally, the tradeoff between reliability and throughput

for small packet lengths has been studied by means of error

exponents. In this section, we briefly discuss the relation between

error exponents and asymptotic expansions of the maximum

coding rate, such as (5), that express R∗(n, ǫ) as a function of

channel capacity and channel dispersion.

Recall that the capacity C is the largest transmission rate for

which the packet error probability Pe vanishes as the packet

length n tends to infinity. It turns out that for every fixed trans-

mission rate R < C, the packet error probability vanishes even

exponentially in n [34]. It is therefore meaningful to expand Pe

for every fixed R < C as

Pe = e  n[E(R)+o(1)] (21)

where o(1) comprises remainder terms that vanish as n tends to

infinity. The exponent E(R) in (21) is referred to as the error

exponent corresponding to the rate R. For more details on error

exponents, see [35] and references therein.

Intuitively, (21) characterizes the packet error probability Pe

as a function of n and R. In contrast, (5) characterizes the

transmission rate R as a function of n and Pe. It may therefore

seem plausible to view the expansions (5) and (21) as two

equivalent characterizations of the triple (R,n, Pe). However,

(5) and (21) contain remainder terms, specifically O(log n/n)
and o(1), and are therefore only accurate if the packet length n is

sufficiently large. Since Pe decays exponentially in n, it follows

that for packet lengths for which (21) is a good approximation,

Pe is very small. Likewise, R∗(n, ǫ) converges to the capacity

C as n tends to infinity, so for packet lengths for which (5) is a

good approximation, R∗(n, ǫ) is very close to C.

In summary, the error exponent E(R) characterizes the triple

(R,n, Pe) when the rate R < C is held fixed and Pe is very

small. In contrast, the channel dispersion V characterizes the

triple (R,n, Pe) when Pe ≤ ǫ is held fixed and R is very close

to capacity. For wireless communications, where a small but

positive packet error probability can be tolerated, the asymptotic

expansion of R∗(n, ǫ) provided in (5) seems more meaningful.

E. Further Works

The work by Polyanskiy, Poor, and Verdú [12] has triggered a

renewed interest in the problem of finite-blocklength information

theory. This is currently a very active research area. Here, we

provide a (necessarily not exhaustive) list of related works

dealing with wireless communications at finite blocklength.

When CSI is available at the receiver, the dispersion of fading

channels was obtained in [37]–[39] for specific scenarios. Upper

and lower bounds on the second-order coding rate of quasi-

static multiple-input multiple-output (MIMO) Rayleigh-fading

channels have been reported in [40] for the asymptotically

ergodic setup when the number of antennas grows linearly with

the blocklength. The channel dispersion of single-antenna, quasi-

static fading channels with perfect CSI at both the transmitter

and the receiver and a long-term power constraint has been given

in [41], [42].

For discrete-memoryless channels, feedback combined with

variable-length coding has been shown to dramatically improve

the speed at which the maximum coding rate approaches ca-

pacity [43]. Such improvements can be achieved by letting the

receiver feed back a stop signal to inform the transmitter that

decoding has been successful (stop feedback, also known as

decision feedback). One can relax the assumption that decoding

is attempted after each symbol, with marginal performance

losses [44].

Coding schemes approaching the performance predicted by

finite-blocklength bounds have been also proposed. In [45],

list decoding of polar codes is shown (through numerical sim-

ulations) to operate close to the maximum coding rate. The

finite-blocklength gap to capacity exhibited by polar codes

has been characterized up to second order (in terms of the so-

called scaling exponent) in [46]–[48]. A comparison between

the finite-blocklength performance of convolutional codes (both

with Viterbi and with sequential decoding) and LDPC codes

is provided in [49]. Bounds and exact characterizations on the

error-vs-delay tradeoff for codes of very small cardinality have

been recently provided in [50].

In Fig. 7, we provide an overview of the performance of codes

for the binary-input AWGN channel from 1980 to present. The

first eight codes in the legend of Fig. 7 are from [51]. The BCH

(Koetter-Vardy) code is from [52, Fig. 2]; here, the decoder uses

soft-decision list decoding. As shown in the figure, ordered-

statistic decoding (OSD) [53] of BCH codes improves the perfor-

mance further. OSD decoding of nonbinary LDPC codes turn out

to yield similar performance as BCH-OSD. Indeed, this decoding

technique seems to yield state-of-the-art performance for very

short packets (between 100 and 200). For larger packet size, list

decoding of polar codes combined with CRC [54] and multi-edge

(ME) type LDPC codes [55] are a competitive benchmark.

Moving to coding schemes exploiting decision feedback, de-

signs based on tail-biting convolutional codes combined with the

reliability-output Viterbi algorithm have been proposed in [56].

Finally, second-order characterizations of the coding rates for
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some problems in network information theory have recently been

obtained. A comprehensive review is provided in [57].

F. spectre: short-packet communication toolbox

To optimally design communication protocols for short-packet

transmission, one needs to rely on accurate physical-layer per-

formance metrics. spectre–short-packet communication tool-

box [58] is a collection of numerical routines for the evaluation of

upper and lower bounds on the maximum coding rate for popular

channel models, including the AWGN channel, the quasi-static

fading channel, and the Rayleigh block-fading channel. This

toolbox can be freely accessed online and is under development.

All the numerical simulations reported in this paper can be

reproduced using spectre routines.

IV. COMMUNICATION PROTOCOLS FOR SHORT PACKETS

In simple terms, a communication protocol is a distributed

algorithm that determines the actions of the actors involved in

the communication process. Protocol information, also referred

to as metadata or control information, can be understood as a

source code [59] that ensures correct operation of the protocols

and describes, e.g., the current protocol state, the packet length,

or the addresses of the involved actors.

Only few results are available on the information-theoretic

design of communication protocols, e.g., [60]–[62], and most of

them deal with the (source coding) problem of how to encode the

network/link state that needs to be communicated as a protocol

information. The problem of how to transmit the protocol-related

metadata has been largely left to heuristic approaches, such as the

use of repetition coding. Broadly speaking, whereas information

theorists busy themselves with developing capacity-approaching

schemes for the reliable transmission of the information payload,

they often see the design of metadata as something outside their

competence area, or as stated in [43]: “. . . control information is

not under the purview of the physical layer . . . ” Such a line of

thinking is fully justifiable when the ratio between the data and

metadata is the one depicted in Fig. 1(a), where the metadata

occupy a small fraction of the overall packet length. However,

for applications where the data is comparable in size to the

metadata—see Fig. 1(b)—this approach seems questionable.

In the following, we shall argue that a thorough understanding

of how the maximum transmission rate R∗(n, ǫ) depends on

the packet length n and on the packet error probability ǫ is

also beneficial for protocol design. As mentioned above, only

few results are available on the information-theoretic design of

protocols, and there is even less work that considers protocol

design for short-packet transmission, e.g., [63]–[66]. This section

is therefore based on three simple examples that illustrate how the

tradeoffs brought by short-packet transmissions affect protocol

design. We believe that these examples unveil a number of

interesting tradeoffs worth exploring and we hope that they may

motivate the research community to pursue a better theoretical

understanding of protocol design.

For simplicity, we assume throughout this section an AWGN

channel with SNR ρ = 10, and we approximate R∗(n, ǫ) as

R∗(n, ǫ) ≈ C  
√

V

n
Q  1(ǫ) +

1

2n
log n (22)

where C and V are given in (7) and (8), respectively.4 We expect

that tradeoffs similar as the ones we shall illustrate for the AWGN

case will occur also for the fading case (see [67] for an example

that supports this claim). Solving (22) for ǫ yields the following

approximation of the packet error probability as a function of

the packet length n and the number of information bits k = Rn
which we shall use throughout this section:

ǫ∗(k, n) ≈ Q

(

nC  k + (log n)/2√
nV

)

. (23)

A. Reliable Communication Between Two Nodes

Consider the two-way communication protocol illustrated in

Fig. 8, where the nodes acknowledge the correct reception of a

data packet by transmitting an ACK. The correct transmission

of a data packet from, say, node 1 to node 2 would result in the

following protocol exchange sequence:

4Recall that, as mentioned in Section III, replacing the remainder terms in (5)
by 1

2n
logn yields a good approximation for R∗(n, ǫ).
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node 1 node 2 

Fig. 8. Scenario of a two-way communication with data from node 1 and
acknowledgement from node 2.

1) The packet from node 1 is correctly received by node 2. We

shall denote the probability of this event by 1  ǫ1;

2) Node 2 sends an ACK to node 1. We shall denote the

probability that an ACK is received correctly by 1  ǫ2.

As noted in [68], if we communicate over a noisy channel and

we are restricted to use a finite number of channel uses, then no

protocol will be able to achieve perfectly reliable communication.

Indeed, it is possible that either a packet is received incorrectly

(an event which has probability ǫ1) or that the ACK is received

incorrectly (which happens with probability ǫ2). By (23), decod-

ing errors are particularly relevant if the packet size is small, in

which case ǫ1 and ǫ2 are large. Thus, the often-made assumptions

of perfect error detection or perfect ACK-transmission (so-called

“1-bit feedback”) are particularly misleading if the considered

packet length is small.

Let us consider the following example. Let each node have

a 6-byte address and assume that node 1 has 12 data bytes to

send. Assume that the packet sent by node 1 contains the source

address, the destination address, one bit for flow control and

the data bytes. Hence, node 1 transmits ki,1 = 96 data bits and

ko,1 = 97 metadata bits, resulting in k1 = ki,1+ko,1 = 193 bits.

The ACK packet sent by node 2 consists of the source address and

the destination address and one ACK bit.5 For the ACK packet,

this yields ki,2 = 0 data bits and ko,2 = 97 metadata bits, so

k2 = ki,2+ko,2 = 97 bits. Let n be the total number of channel

uses available to send the data and the ACK. To optimize the

protocol, we may want to find the optimal number of channel uses

n1 by node 1 and n2 = n  n1 by node 2 such that the reliability

of the transmission, given by
 

1  ǫ∗(k1, n1)
) 

1  ǫ∗(k2, n2)
)

,

is maximized. These values can be found numerically using the

approximation (23). For example, the minimum value of n that

offers reliability of transmission

 

1  ǫ∗(k1, n1)
) 

1  ǫ∗(k2, n2)
)

> 0.999

is n = 203, out of which n1 = 132 channel uses are for sending

the data packet and n2 = 71 channel uses are for sending the

ACK.

As another example, fix n = 250 as the maximal allowed num-

ber of channel uses. The numerical optimization that yields the

largest reliability
 

1  ǫ∗(k1, n1)
) 

1  ǫ∗(k2, n2)
)

gives n1 =
158 and n2 = 92. The resulting reliability is almost 1 and the

resulting throughput is
 

1  ǫ∗(k1, n1)
) 

1  ǫ∗(k2, n2)
)

ki,1/n =
0.384 bits/channel use.

In many cases, it is not practical to have variable values for

n1 and n2, and a fixed time division duplex (TDD) structure in

which n1 = n2 is preferred. In such a structure, there is no need

5Note that the source/destination addresses are necessary in order to uniquely
identify the link to which the ACK belongs.

node 1 

node 2 

node 3 

Fig. 9. Example of a scenario with downlink communication from a Base
Station over a broadcast channel to three nodes.

of explicit ACK packets, since the acknowledgement is typically

piggybacked on a data packet. In order to align this scenario

with the last example, we assume that n1 = n2 = 125, such

that the acknowledgment for the packet arrives within n = 250
channel uses from the start of the data transmission. A packet

sent by nodes 1 and 2 contains 194 bits, of which 96 are data bits,

96 are bits for addresses, 1 bit is for flow control, and 1 bit for

the acknowledgment. Evaluating (23) for these parameters gives

ǫ∗(k1, n1) = ǫ∗(k2, n2) = 0.0118. Observe that the reliability is

markedly decreased, although the throughput is almost doubled

to 0.759 bits/channel use.

These simple examples show that adjusting the packet length

and the coding rate has the potential to yield high reliability.

Note, however, that flexibility in the packet length necessarily

implies that the receiver needs to acquire information about it.

This means that the protocol needs to reserve some bits within

each packet for the metadata that describes the packet length.

Our simple calculations have not accounted for this overhead.

The use of a predefined slot length yields a robust system

design, since no additional error is caused by the exchange

of length-related metadata. This indicates that, in designing

protocols that support ultra-high reliability, a holistic approach

is required that includes all elements of the protocol/metadata

that are commonly assumed to be perfectly received.

B. Downlink Multi-User Communication

We now turn to an example in which a base station (BS)

transmits in the downlink to M devices; see Fig. 9. The BS

needs to unicast D bits to each device. Hence, it sends in total

MD bits. As a reference, we consider a protocol where the

BS serves the users in a time division multiple access (TDMA)

manner: each device receives its D bits in a dedicated time slot

that consists of n channel uses. Thus, the TDMA frame consists

of M slots with a total of Mn channel uses. In order to avoid

transmission of metadata, we assume that the system operates

in a circuit-switched TDMA manner: (a) all devices and the BS

are perfectly synchronized to a common clock; (b) each device

knows the slot in which it will receive its data. The performance

of this idealized scheme can be considered as an upper bound on

the performance of practical systems, such as GSM, as it assumes

that there is a genie that helps the devices remain synchronized.

The approximation on ǫ∗(k, n) in (23) suggests that, for short

packet sizes, it may be more efficient to encode a larger amount
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Fig. 10. Example of a scenario with uplink communication from a set of three
nodes over a multiple access channel to a common Base Station.

of data than the one intended to each device. Thus, instead of

using TDMA, the BS may concatenate all the data packets for

the individual devices. In this way, the BS constructs a single

data packet of MD bits that should be broadcasted by using Mn
channel uses. Each receiving device then decodes the whole data

packet and extracts the bits it is interested in from the decoded

MD bits.

As a concrete example, assume that the BS wishes to transmit

D = 192 bits to each device and that there are M = 10 devices.

Furthermore, assume that n = 125. We consider for simplicity

one-shot communication. Accounting for retransmissions would

require a more elaborate discussion.

In the reference scheme, the probability of error experienced

by each device is 0.007. If concatenation is used, however, the

probability of error drops to about 10  12, which puts the trans-

mission scheme in a different reliability class, while preserving

the same overall delay. The price paid is the fact that each device

needs to decode more data than in the reference scheme.

Note that if one ignored the dependency of the packet error

probability ǫ∗ on the packet size n, one would conclude that the

circuit-switched TDMA protocol is the most efficient, since all

channel uses can be devoted to the transmission of payload bits.

In contrast, by taking the dependence of ǫ∗ on n into account, we

see that an unconventional protocol that concatenates the data

intended to different devices outperforms the traditional TDMA

protocol by orders of magnitude in terms of reliability.

C. Uplink Multi-User Communication

Our last example is related to the scenario depicted in Fig. 10

in which M devices run a random access protocol in order

to transmit to a common receiver BS. Specifically, there are

M users, each sending D bits to the BS. Each packet should

be delivered within a time that corresponds to n channel uses.

These n channel uses are divided into K equally-sized slots of

nK = n/K channel uses. The devices apply a simple framed

ALOHA protocol: each device picks randomly one of the K
slots in the frame and sends its packet. If two or more users pick

the same slot, then a collision occurs and none of the packets

is received correctly (see [67] for a more elaborate example).

If only one device picks a particular slot (singleton slot), then

the error probability is calculated using (23) for D bits and nK

channel uses.

We are interested in the following question: given M , D,

and n, how should we choose the slot size nK in order to

maximize the packet transmission reliability experienced by each

individual device? This problem entails a tradeoff between the

probability of collision and the number of channel uses available

for each packet, which by (23) affects the achievable packet

error probability in a singleton slot. Indeed, if K increases,

then the probability of a collision decreases, while the packet

error probability for a singleton slot increases. Conversely, if K
decreases, then the probability of collision increases, while

the packet error probability for a singleton slot decreases. The

probability of successful transmission is given by

PS =
M

K

(

1  1

K

)M  1

·
 

1  ǫ∗ (D,nK)
)

. (24)

Here, (M/K) (1  1/K)
M  1

is the probability of not experi-

encing collision, and ǫ∗(D,nK) is the probability of error for

a packet of D bits sent over nK channel uses, which can be

approximated by (23).

As a concrete example, let us consider the setup where D =
192 bits, M = 10 devices, and n = 800 channel uses. The

number of slots that maximizes (24) is K = 6. In contrast, the

classic framed-ALOHA analysis, which assumes that packets

are decoded correctly if no collisions occur (i.e., ǫ∗ = 0 in (24)),

yields K = M = 10. In fact, the same is true for any positive

error probability ǫ∗ that does not depend on nK .

V. CONCLUSIONS

Motivated by the advent of novel wireless applications such as

massive machine-to-machine and ultra-reliable communications,

we have provided a review of recent advances in the theory of

short-packet communications and demonstrated through three

examples how this theory can help designing novel efficient

communication protocols that are suited to short-packet trans-

missions. The key insight is that—when short packets are

transmitted—it is crucial to take into account the communication

resources that are invested in the transmission of metadata. This

unveils tradeoffs that are not well understood yet and that deserve

further research, both on the theoretical and on the applied side.
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