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Abstract

This paper studies the off-policy evaluation prob-

lem, where one aims to estimate the value of a

target policy based on a sample of observations

collected by another policy. We first consider the

single-state, or multi-armed bandit case, estab-

lish a finite-time minimax risk lower bound, and

analyze the risk of three standard estimators. For

the so-called regression estimator, we show that

while it is asymptotically optimal, for small sam-

ple sizes it may perform suboptimally compared

to an ideal oracle up to a multiplicative factor that

depends on the number of actions. We also show

that the other two popular estimators can be ar-

bitrarily worse than the optimal, even in the limit

of infinitely many data points. The performance

of the estimators are studied in synthetic and real

problems; illustrating the methods strengths and

weaknesses. We also discuss the implications of

these results for off-policy evaluation problems

in contextual bandits and fixed-horizon Markov

decision processes.

1 Introduction

In reinforcement learning including multi-armed bandits,

one of the most fundamental problems is policy evaluation

— estimating the average reward obtained by running a

given policy to select actions in an unknown system. A

straightforward solution is to simply run the policy and

measure the average reward collected. In many applica-

tions, however, running a new policy in the actual system

can be expensive or even impossible. For example, flying

a helicopter with a new policy can be risky as it may lead

to crashes; deploying a new ad display policy on a website

may be catastrophic to user experience; testing a new treat-

ment on patients may simply be impossible for legal and

ethical reasons; etc.

Appearing in Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2015, San Diego,
CA, USA. JMLR: W&CP volume 38. Copyright 2015 by the
authors.

It is the purpose of off-policy evaluation (Precup et al.,

2000, Sutton et al., 2010), sometimes referred to as offline

evaluation in the bandit literature (Li et al., 2011) or coun-

terfactual reasoning (Bottou et al., 2013) to overcome this

problem. Here, we still aim to estimate the average reward

of a target policy, but instead of running it directly, we only

have access to a sample of observations made about the un-

known system, which may be collected in the past using a

different policy. Off-policy evaluation has been found use-

ful in several important applications (Langford et al., 2008,

Li et al., 2011, Bottou et al., 2013) and can also be regarded

as a key building block for policy optimization which, as

in supervised learning, can often be reduced to evalua-

tion, as long as the complexity of the policy class is well-

controlled (Ng and Jordan, 2000). Accordingly, off-policy

evaluation was found to be useful in many optimization

algorithms for Markov decision processes (e.g., Heidrich-

Meisner and Igel 2009) and bandit problems (Auer et al.,

2002, Langford and Zhang, 2008, Strehl et al., 2011).

In the context of supervised learning, off-policy learning is

known as the covariate shift problem, where one estimates

losses under changing distributions for model selection

(Quiñonero-Candela et al., 2008, Yu and Szepesvári, 2012)

and is also related to active learning (Dasgupta, 2011). In

statistics, the problem appears in the context of causal ef-

fect estimation from controlled experiments (e.g., Holland

(1986)), where one is to estimate an intervention’s effect on

outcomes based on observational data that are collected by

a different intervention. Thus, results established here may

have useful implications in these related problems.

The topic of the present paper is off-policy evaluation in

finite settings, under a mean squared error (MSE) crite-

rion. As opposed to the statistics literature (e.g., Hirano

et al. (2003)), in addition to the asymptotics, we are also

interested in results for finite sample sizes. In particular,

we are interested in limits of performance (minimax MSE)

given fixed policies, but unknown stochastic rewards with

bounded mean reward, as well as the performance of esti-

mation procedures compared to the minimax MSE. We are

not aware of prior work that would have studied the above

problem (i.e., relating the MSE of algorithms to the best

possible MSE). The pros and cons of minimax estimation

are discussed at length in well-known textbooks (Kiefer,
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1987, Lehmann and Casella, 1998). We view achieving the

minimax optimal MSE as a modest goal: if an estimator

fails to achieve it (up to a constant factor), its use is not rec-

ommended unless additional knowledge is available. How-

ever, as we will see in our problem setting, even achieving

this modest goal is nontrivial. The picture is further compli-

cated by the fact that our estimators are not given a bound

on the mean reward function.

Our main results are as follows: We start with a lower

bound on the minimax MSE, as well as an asymptotic lower

MSE to set a target for the estimation procedures. Next,

we derive the exact MSE of the importance sampling es-

timator (IS), which is shown to have an extra (uncontrol-

lable) factor as compared to the lower bounds. We then

consider the weighted version of the IS estimator (WIS)

and argue that it shares the same limitation as the IS es-

timator. Next, we consider the estimator which estimates

the mean rewards by sample means, which we call the re-

gression estimator (REG). The motivation of studying this

estimator is both its simplicity and also because it is known

that a related estimator is asymptotically efficient (Hirano

et al., 2003). The main question is whether the asymptotic

efficiency transfers into finite-time efficiency. Our answer

to this is mixed: We show that for a large class of settings

the MSE of REG is within a constant factor of the mini-

max MSE lower bound; however, the “constant” depends

on the number of actions (K), or a lower bound on the

variance. We also show that the dependence of the MSE

of REG on the number actions is unavoidable. Therefore,

while REG is asymptotically optimal, in finite-sample set-

tings it may be less than ideal except for “small” action sets

or high noise setting, when it can be thought of as a mini-

max near-optimal estimator. We also show that for sample

sizes up to
p
K all estimators must suffer a constant MSE.

2 Multi-armed Bandits

We first introduce the problem studied. Let A =
{1, 2, . . . ,K} be a finite set of K actions. Data Dn =
((A1, R1), . . . , (An, Rn)) 2 (A⇥R)n is generated by the

following process: Given a distribution πD 2 ∆A over A
(i.e., πD : A ! [0, 1] such that

P
a πD(a) = 1),

Ai ⇠ πD(·), Ri ⇠ Φ(·|Ai), i = 1, . . . , n ,

for some collection Φ = (Φ(·|a))a∈A of distributions over

the reals, indexed by actions. It is assumed that each pair

(Ai, Ri) is independent of the others. We think of Ri as the

random reward for action Ai, and πD as a policy generating

the actions. The problem is to estimate the value

vπ
Φ
:= EA∼π,R∼Φ(·|A)[R ] (=

P
a π(a)rΦ(a) )

of some target policy π 2 ∆A, possibly different from

the data generating policy πD. Here, in the second expres-

sion shown in the parenthesis, rΦ(a) = ER∼Φ(·|a)[R] is

the mean reward of action a. The estimate bv must be con-

structed based on π, πD, and the data Dn only and we view

an estimator A as a function that maps triplets (π,πD, Dn)
to some estimate bv 2 R. The quality of an estimate bv pro-

duced by an estimator is measured by its mean squared er-

ror, MSE (bv) := E
⇥
(bv � vπ

Φ
)2
⇤
. The off-policy value es-

timation problem in multi-armed bandits is the problem of

constructing estimators of the above form with low mean

squared error (MSE). This can be viewed as the simplified

version of the full-blown off-policy value estimation prob-

lem in Markovian Decision Problems, which is more preva-

lent in the literature (see the references in the introduction

and Section 3).

The task is clearly infeasible if πD(a) = 0 for some a 2 A,

hence in what follows we always assume that πD(a) > 0
for all actions a 2 A. The question then is how sensitive

an estimator will be or must be to small values of πD. The

fact that πD is small alone will not necessarily lead to high

MSE. For example, if π agrees with πD, then the fact that

some values of πD(a) are small will not matter. Similarly,

if the reward variance σ
2
Φ
(a) := VR∼Φ(·|a)(R) is very

small, even a few reward observations at the a are suffi-

cient to estimate the mean reward rΦ(a) with a small error,

mitigating the negative effect a small probability πD(a).
A “reasonable” estimator exploits these effects. Indeed,

from a reasonable estimator we expect that if a problem

instance is “easier,” the estimator will have a smaller MSE,

i.e., the estimator should adapt to the difficulty of problem

instances. A rigorous study of this problem is the main

topic of the present paper.

The rest of the paper is organized as follows: To define

what can be reasonably expected from an estimator, in Sec-

tion 2.2 we will first establish several lower bounds on the

MSE of unrestricted estimators, both for finite n and when

n ! 1. In the next sections (Section 2.3 and Section 2.4)

we will investigate several popular estimation methods,

comparing upper bounds on their MSE to the previously

obtained lower bounds, thus highlighting their strengths

and weaknesses. These findings are complemented in Sec-

tion 2.5 with simulation results both on synthetic and real-

world data (illuminating the strengths and weaknesses of

the theoretical results), while in Section 3 we will look at

the implications of our results beyond multi-armed bandits.

2.1 Notation

We shall denote by πD ⌦ Φ the common distribution un-

derlying the random pairs (Ai, Ri) (i.e., πD ⌦ Φ is a dis-

tribution on A ⇥ R). We let π
∗
D := mina πD(a) and

π(B) :=
P

a∈B π(a) for B ✓ A. For convenience, we

identify a function f : A ! R with the K-dimensional

vector whose kth component is f(k). Thus, rΦ, σ2
Φ

, etc. are

considered vectors. For x, y 2 R
K , x  y means xi  yi

for all 1  i  K. The set of all distribution families
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(Φ(·|a))a∈A indexed by A is denoted by Ψ. We let R+

denote the set of nonnegative reals and for σ2 2 R
K
+ , we

denote by Ψ
σ
2 the set of Φ 2 Ψ such that σ2

Φ
 Φ, while

we denote by Ψ
σ
2,Rmax

the subset of Ψ
σ
2 such that for any

Φ 2 Ψ
σ
2,Rmax

, 0  rΦ(a)  Rmax holds for all a 2 A.

The following quantities will facilitate discussions:

V1 := E


V

✓
π(A)

πD(A)
R|A

◆�
=

X

a

π
2(a)

πD(a)
σ
2
Φ
(a) , (1a)

V2 := V

✓
E


π(A)

πD(A)
R|A

�◆
= V

✓
π(A)

πD(A)
rΦ(A)

◆

=
X

a

π
2(a)

πD(a)
rΦ(a)

2 � (vπ
Φ
)2 . (1b)

Note that V1 and V2 are functions of Φ,πD and π, but

this dependence is suppressed. Also, V1 and V2 are inde-

pendent in that there are no constants c, C > 0 such that

cV1  V2  CV1 for any π,πD,Φ. For subsets B ✓ A,

we denote by pB,n the probability that none of the actions

in Dn falls into B; that is, pB,n = P(A1, . . . , An /2 B).
Hence, pB,n = (1 � πD(B))n. For singletons B = {a},

the shorthand pa,n is used instead of p{a},n.

2.2 Lower Bounds

We start with establishing a minimax lower bound that

characterizes the inherent hardness of the off-policy value

estimation problem. As noted before, an estimator A

is considered as a function that maps (π,πD, Dn) to an

estimate of vπ
Φ

, denoted bvA(π,πD, Dn). Fix σ
2 :=

(σ2(a))a∈A. We consider the minimax optimal MSE over

the class of problems where Φ 2 Ψ
σ
2,Rmax

:

R∗
n(π,πD, Rmax,σ

2) :=

inf
A

sup
Φ∈Ψ

σ
2,Rmax

EπD⊗Φ

⇥
(bvA(π,πD, Dn)� vπ

Φ
)2
⇤
,

where by EπD⊗Φ we denote the expectation oper-

ator underlying the probability measure PπD⊗Φ un-

der which the joint distribution of the data Dn =
((A1, R1), . . . , (An, Rn)) is (πD⌦Φ)n. The restriction on

the magnitude of the mean reward function through Rmax

is necessary because limRmax→∞ R∗
n(π,πD, Rmax,σ

2) =
1. The intuitive explanation of this is that for any n > 0,

the probability that for some action a 2 A there is no re-

ward observed for a is positive. Under this event no es-

timator can guess a correct value of the underlying mean

reward. Of course, one may object that an estimator may

not need to estimate the mean reward of the actions, but

a rigorous formal argument shows that this does not allow

any estimator to escape from having an unbounded MSE

when the range of rΦ is unbounded.

The first part of the theorem below shows that the minimax

MSE scales quadratically with Rmax, while the second part

shows that when Rmax or n is large, the minimax MSE

scales with V1/n where V1 is defined like in (1a), with σ
2
Φ

replaced by σ
2—the largest possible variance within the

class Ψ
σ
2,Rmax

. Thus, as expected, larger variances make

the problem harder, though V1 captures more finely the re-

lationship between π,πD and the variances. The final part

shows that the constant multiplying V1/n can be increased

to 1 asymptotically, as n becomes large.

Theorem 1. For any n > 0, πD, π, Rmax and σ
2, one has

R∗
n(π,πD, Rmax,σ

2) � 1

4
R2

max max
B⊂A

π
2(B)pB,n .

Furthermore, provided that

max
a

π(a)σ2(a)

πD(a)

r
0.6

V1


p
nRmax , (2)

we also have that

R∗
n(π,πD, Rmax,σ

2) � 0.02
V1

n
,

where V1 =
P

a
π
2(a)

πD(a)σ
2(a). Finally,

lim inf
n→∞

R∗
n(π,πD, Rmax,σ

2)

V1/n
� 1. (3)

One may wonder about the necessity of condition (2) re-

quired by the second lower bound. However, intuitively, a

lower bound of the form V1/n can only hold when Rmax

is large compared to at least V1/n since the minimax MSE

over Ψ
σ
2,Rmax

converges to zero as Rmax ! 0. Indeed, a

minimax estimator for the class Ψ
σ
2,Rmax

may well use the

knowledge of Rmax to limit its loss by exploiting that the

value to be estimated lies in the interval [0, Rmax], hence,

only estimates that belong to this interval make sense. A

well known technique to exploit such knowledge is to trun-

cate a preliminary estimate to this interval. However, in this

paper we focus on estimators that have no a priori knowl-

edge of an upper bound on the range of rewards, hence we

will not consider this problem. On a related note, it is pos-

sible to extend the proof to remove condition (2) at the ex-

pense of a more complicated lower bound. We also leave

this to future work.

Proof sketch. Full proofs for the three parts are given in

Appendices A.1–A.3, respectively. The first part’s proof

follows the intuition already given in the text. The second

part is proved by standard lower bounding techniques: We

choose two problems with similar reward distributions, Φ1

and Φ2, so that achieving ε MSE within {Φ1,Φ2} is equiv-

alent to telling which of Φ1 and Φ2 is the true distribution

that generated data Dn. Fano’s inequality is then applied

to yield the desired result. The third part is proved directly

by the Cramer-Rao lower bound.

A simple corollary of the previous theorem is that the mini-

max risk is constant when the number of samples is “small”

and the worst target policy is chosen:
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Corollary 1. For K � 2, n 
p
K,

sup
π
R∗

n(π,πD, Rmax,σ
2) = Ω(R2

max).

Proof. Choose B ⇢ A to minimize πD(B) subject to the

constraint |B| = b
p
Kc. Note that P (A1, . . . , An 62 B) =

(1�πD(B))n � (1� |B|
K )n � (1� 1√

K
)
√
K � (1� 1√

2
)
√
2.

Choosing π such that π(B) = 1 gives the result.

In particular, the result means that in a worst-case sense,

no estimator can achieve a nontrivial MSE for small sam-

ple sizes, or alternatively, all estimators are equally poor

in this regime, at least in the above worst-case sense. The

proof also reveals that the worst-case target policy is sup-

ported on the subset of Θ(
p
K) actions that πD is the least

likely to sample from. We conjecture that the result can be

strengthened by increasing the upper limit on n.

2.3 Importance Sampling Estimators

One of the most popular estimators is known as the propen-

sity score estimator in the statistical literature (Rosenbaum

and Rubin, 1983, 1985), or the importance weighting es-

timator (Bottou et al., 2013). We call it the importance

sampling (IS) estimator, as it estimates the unknown value

using likelihood ratios, or importance weights:

bvIS(π,πD, Dn) :=
1

n

nX

i=1

π(Ai)

πD(Ai)
Ri.

This estimator is unbiased: E[bvIS(π,πD, Dn)] = vπ
Φ

, im-

plying that the MSE is purely contributed by the variance of

the estimator. The main result in this subsection shows that

this estimator does not achieve the minimax lower bound

up to any constant. The proof (given in Appendix A.4) is

based on a direct calculation using the law of total variance.

Proposition 1. MSE (bvIS(π,πD, Dn)) = (V1 + V2)/n .

In the next section, we will see that

lim
n→∞

R∗
n(π,πD, Rmax,σ

2)

V1/n
= 1 , (4)

showing that
bvIS(π,πD,Dn)

R∗
n(π,πD,Rmax,σ2) = 1 + V2

V1
+ ω(1), i.e., the

risk of IS is (asymptotically) 1+ V2

V1
times the optimal risk;

the larger V2 and the smaller V1 are, the worse is the risk of

IS in the limit compared to the optimum.

A modification of the IS estimator, known as the weighted

importance sampling estimator, is meant to overcome this

weakness. This estimator is given by

bvWIS =

nX

i=1

π(Ai)
πD(Ai)Pn

j=1
π(Aj)
πD(Aj)

Ri .

By the law of large numbers, 1
n

P
j

π(Aj)
πD(Aj)

!
E

h
π(Aj)
πD(Aj)

i
= 1 as n ! 1, showing that the WIS esti-

mator is consistent. Using the delta method, its asymptotic

MSE is given by: (Liu, 2001)

MSE (bvIS)+ (vπ

Φ
)2

n V

⇣
π(A)
πD(A)

⌘
� 2vπ

Φ

n Cov

⇣
π(A)
πD(A) ,

π(A)R
πD(A)

⌘
,

where (A,R) ⇠ πD ⌦ Φ. Therefore, when
π(A)
πD(A) and

π(A)R
πD(A) are highly correlated, as often seen in practice, WIS

is a more efficient estimator than IS. Unfortunately, WIS

still fails short of being asymptotically minimax optimal.

Appendix A.5 gives a full proof of the following theorem:

Theorem 2. Assume Gaussian reward distributions. Then,

for some constants (ca)a∈A that depend on π,πD only

but not on the reward variances or means, it holds that

MSE (bvWIS(π,πD, Dn)) =
V1+

P
b cbπ

2(b)

n + ω

�
1
n

�
.

Based on (4), we see that
MSE(bvWIS(π,πD,Dn))
R∗

n(π,πD,Rmax,σ2) = 1 +
P

b cbπ
2(b)

V1
+ ω( 1

V1
). Since V1 can be made arbitrarily

small while keeping
P

b cbπ
2(b) (which only depends on

π and πD) constant, we indeed see that even WIS fails to

be asymptotically minimax optimal.

2.4 Regression Estimator

For convenience, define n(a) :=
Pn

i=1 I(Ai = a) to be

the number of samples for action a in Dn, and R(a) :=Pn
i=1 I(Ai = a)Ri the total rewards of a. The regression

estimator (REG) is given by

bvReg(π, D
n) :=

X

a

π(a)br(a),

where br(a) :=
(
0, if n(a) = 0;
R(a)
n(a) , otherwise .

For brevity, we will also write br(a) = I{n(a) > 0}R(a)
n(a) ,

where we take 0
0 to be zero. The name of the estimator

comes from the fact that it estimates the reward function,

and the problem of estimating the reward function can be

thought of as a regression problem.

Interestingly, as can be verified by direct calculation, the

REG estimator can also be written as

bvReg(π, D
n) =

1

n

nX

i=1

π(Ai)

bπD(Ai)
Ri , (5)

where bπD(a) = n(a)
n is the empirical estimate of πD(a).

Hence, the only difference between the IS estimator and

REG is that the former uses πD to reweight the data, while

the latter uses the empirical estimates bπD. It may appear

that IS is superior since it uses the “right” quantity. Sur-

prisingly, REG turns out to be much more robust, as will
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be shown shortly; see Appendix D for further discussions

of a related problem. The robustness of regression estima-

tors is also independently suggested by Nicol (2015).

For the next statement, the counterpart of Proposition 1, the

following quantities will be useful:

bn :=
X

a

π(a)rΦ(a)pa,n ,

V0,n := b2n +
X

a

π
2(a)r2

Φ
(a) pa,n(1� pa,n) and

V3,n :=
X

a

E


I{n(a) > 0}

bπD(a)
� 1

πD(a)

�
π
2(a)σ2(a) .

Note that bn = vπ
Φ
� E [bvReg] is the negative bias of bvReg.

Proposition 2. Fix π,πD and assume rΦ � 0. Then it

holds that MSE (bvReg(π, D
n))  V0,n+

V1+V3,n

n . Further-

more, if Φ consist of normal distributions, MSE (bvReg) �
V1

n + 4b2n
�
1 + V1

n

�
+ 2

n

P
a

π
2(a)

πD(a)σ
2
Φ
(a)pa,n.

A full proof is given in Appendix A.6.

Here comes the main result of this section that characterizes

the MSE of REG in terms of the minimax optimal MSE.

Theorem 3 (Minimax Optimality of the Regression Esti-

mator). Let Dn = {(Ai, Ri)}i=1,...,n be an i.i.d. sample

from (πD,Φ). Then, the following hold:

(i) For any π,πD 2 ∆K , σ2 2 R
K
+ , Rmax > 0, Φ 2

Ψ
σ
2,Rmax

, n > 0 such that (2) holds,

MSE (bvReg(π, Dn))  {C + 250} R∗
n , (6)

where R∗
n = R∗

n(π,πD, Rmax,σ
2) and C =

min(4K2, 50Kmaxa
r2
Φ
(a)

σ
2
Φ
(a)

).

(ii) A suboptimality factor of Ω(K) in the above result is

unavoidable: For K > 2, there exists (π,πD) such

that for any n � 1,

MSE (bvReg(π, Dn))

R∗
n(π,πD, Rmax, 0)

� ne−2n/(K−1) .

In particular, for n = K−1
2 , this ratio is at least K−1

2e .

(iii) bvReg is asymptotically minimax optimal:

lim sup
n→∞

MSE (bvReg(π, Dn))

R∗
n(π,πD, Rmax,σ2)

 1 .

While in the proof we will upper bound V3,n in terms of

O(V1), there remains a gap between the lower and upper

bounds in this proposition as the second term in the defini-

tion of V0,n cannot be matched by any of the terms in the

lower bound. Nevertheless, the result shows that for Rmax

large (or n large), the MSE of REG is upper bounded by a

constant multiple of the minimax MSE over Ψ
σ
2,Rmax

.

However, there are two limitations with the first result in

the theorem. First, it only holds for restricted values of

Rmax (or n) when (2) holds. This is because the lower

bound on the minimax MSE expressed in terms of V1/n
only holds for a restricted range of values, which as ex-

plained is due to that when Rmax is small, V1/n cannot be

a lower bound. As a result, for such small values of Rmax,

REG cannot be “near-minimax” over the class Ψ
σ
2,Rmax

.

As mentioned earlier, if one is given the prior information

that the problem instance belongs to Ψ
σ
2,Rmax

, this can be

exploited by introducing a truncation. In the case of REG,

this could be done by truncating the estimates of the mean

reward to lie in [0, Rmax]. Although it would be interest-

ing to check whether with this modification REG becomes

near-minimax optimal, since here we are more interested

in the case when no upper bound on the range of rewards

is known, we do not pursue this direction. The second is-

sue with the first bound is that the constant multiplier of the

minimax optimal MSE that allows us to bound the MSE of

REG in terms of the minimax optimal MSE scales with the

number of actions K. In fact, the multiplier scales quadrat-

ically with K. In the second part of the theorem we show

that a linear scaling of the multiplier as a function of K is

inevitable: For n = Θ(K), the MSE of REG will be at

least Ω(K) times larger than the minimax optimal MSE.

Finally, the last part of the result shows that although for

small values of n, the MSE of REG can be significantly

larger than the minimax optimal MSE, asymptotically, as

n ! 1, the MSE of REG is optimal. This result also

shows that the minimax optimal MSE is asymptotically

equal to V1/n.

Proof sketch of Theorem 3. Full proofs for the three parts

are given in Appendix A.7. For the first part, we use Propo-

sition 2: MSE (bvReg(π, Dn))  V0,n +
V1+V3,n

n . We then

prove that V3,n  4V1 and that V0,n is upper bounded by

min
⇣
K2 maxa π

2(a)r2
Φ
(a)pa,n,Kmaxa∈A

⇣
r2
Φ
(a)

σ
2(a)

⌘
V1

n

⌘
.

We conclude by using Theorem 1 to upper bound each

term in the previous min by O(R∗
n) provided that (2) holds.

For the second part, we choose π(a) = πD(a) =
1/K, rΦ(a) = 1. For K � 2, pa,n = (1 �
1/K)n = e−n log(1/(1−1/K)) = e−n log(1+1/(K−1)) �
e−n/(K−1). Hence, MSE (bvReg) � (E [bvReg � vπ

Φ
])2 =

(
P

a π(a)rΦ(a)pa,n)
2 � e−2n/(K−1). Now consider IS.

Choosing σ
2 = 0, we have V1 = 0 and so by Proposition 1,

sup
Φ:0≤rΦ≤1,σ2

Φ
=0

MSE (bvIS) = sup
Φ:0≤rΦ≤1,σ2

Φ
=0

V2

n
 1

n
.

Hence,
MSE(bvReg)

R∗
n(π,πD,1,0) � e−2n/(K−1)

sup
Φ:0≤rΦ≤1,σ2

Φ
=0

MSE(bvIS)
�

ne−2n/(K−1).

Finally, for the last part, we derive a refined bound V3,n =

O(V1

p
log(n)/n) to derive that for any π,πD, σ2, Φ such
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Figure 1: nMSE of IS, WIS and REG in the first synthetic

experiment. IS(a) and WIS(a) are almost identical.

that σ2
Φ
 σ

2, we have, for n large enough, MSE (bvReg) 
V0,n+

V1+V3

n  ce−n/c+ V1

n

✓
1 + c

q
lnn
n

◆
, where c > 0

is a problem dependent constant. Combining this with (3)

of Theorem 1 gives the desired result.

Summary. The results so far can be summarized as fol-

lows: The asymptotic MSE of REG is V1/n, which is op-

timal in an asymptotic sense for any instance Φ 2 Ψ. The

REG estimator is minimax optimal up to a constant multi-

plier of O(K2) starting from a well defined range of val-

ues for Rmax (or n). In this bound, the constant cannot

be reduced below Ω(K), thus for an intermediate range of

sample sizes, REG will work worse as the number of ac-

tions K becomes large. No algorithm can achieve nontriv-

ial MSE in a worst-case sense for small value of n, i.e.,

when n = O(
p
K). The IS/WIS estimators are subopti-

mal, even in an asymptotic sense. Both IS and WIS will

have a positive MSE even when the variance of the reward

distribution for each action is zero. The MSE of IS is neg-

atively impacted by the variability of the scaled mean re-

ward. While WIS improves most of the time on IS, this re-

lies on the correlation between the importance weights and

the importance weights multiplied by the random reward.

2.5 Simulation Results

This subsection corroborates our analysis with simula-

tion results that empirically demonstrate the impact of key

quantities on the MSE of the three estimators. We will first

use a synthetic setup to demonstrate the behavior of various

estimators that is predicted by our analysis above. Then,

we use a real dataset to show such phenomena can indeed

happen in realistic problems. In all experiments, we repeat

the data-generation process (with πD) 10, 000 times, and

compute the MSE of each estimator.

2.5.1 Synthetic Data

Two sets of synthetic experiments are done. All reward

distributions are normal distributions with σ
2 = 0.01 and

0
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Figure 2: nMSE of REG in the second synthetic experi-

ment. The curves correspond to different numbers of arms.

different means. We then plot normalized MSE (MSE mul-

tiplied by sample size n), or nMSE, against n.

The first experiment is to compare the finite-time as well

as asymptotic accuracy of bvIS, bvWIS and bvReg. We choose

K = 10, rΦ(a) = a/K, π(a) / a. Three choices of

πD are used: (a) πD(a) / a, (b) πD(a) = 1/K, and (c)

πD(a) / (K � a). These choices lead to increasing values

of V2 (with V1 approximately fixed).

As seen in Figure 1, the nMSE of bvIS remains constant as

n increases, equal to V1+V2, as predicted in Proposition 1.

The nMSE of bvWIS is much smaller and remains roughly

unchanged as well. In contrast, the nMSE of bvReg is large

when n is small, because of the high bias, and then quickly

converges to the asymptotic minimax rate V1 (Theorem 3,

part iii). As V2 can be arbitrarily larger than V1, it fol-

lows that bvReg is preferred over bvIS, as least for sufficiently

large n that is needed to drive the bias down.1 Furthermore,

although bvWIS can be most efficient when sample size is

small, it is inferior to bvReg asymptotically.

The second experiment is to study how K affects the nMSE

of bvReg. Here, we choose πD = 1/K, rΦ(a) = a/K,

π(a) / a, and vary K 2 {50, 100, 200, 500, 1000}. As

Figure 2 shows, a larger K presents a greater challenge to

bvReg, which is consistent with Theorem 3 (part i). Not

only does the maximum nMSE grow approximately lin-

early with K, the number of samples needed for nMSE to

start decreasing also scales roughly as K/2, perfectly con-

sistent with part ii of Theorem 3.

2.5.2 Real-world Data

We now examine the performance of these popular estima-

tors in a more realistic scenario, using actual data collected

on a major commercial search engine. When a query is

submitted, the search engine returns a SERP (Search En-

gine Result Page) that contains an ordered list of URLs. If

1It should be noted that in practice, after Dn is generated, it is
easy to quantify the bias of bvReg simply by identifying the set of
actions a with n(a) = 0.
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Figure 3: nMSE for query “facebook” (K = 2178). The

asymptotic rates V1 and V1+V2 are provided for reference.

the page contains useful results, the user clicks on the page

more likely. For the purpose here, each query defines a

multi-armed bandit, where actions are the possible SERPs,

and the reward is 1 if the page is clicked on and 0 otherwise.

Over a long period of time, due to constant engineering ef-

forts to improve it, the search engine inevitably displays

diversified results — for the same query it may return dif-

ferent SERPs in different time. We first choose a few popu-

lar queries such as “facebook” and “gmail”. Then, for each

of them, we collect all SERPs that have been returned by

the search engine in a six-month period, together with their

frequencies (i.e., how many times they were returned) and

average click probabilities. To avoid unreliable click prob-

abilities, SERPs with low frequencies are removed.

For a fixed query, the data above can be used to build a

bandit model (the actions and each action’s Bernoulli re-

ward distribution). The sampling probability, πD(a), is the

relative frequency of a in the data. Finally, the target pol-

icy π is one that chooses uniformly at random the 10 arms

with highest frequencies. The off-policy evaluation prob-

lem is to estimate the click rate of π, using data collected

by πD. The setup above is intended to mimic realistic sce-

narios where (good) target policies tend to choose similar

arms, and we are interested in estimating click rates from

search log, without running expensive online experiments.

Results for query “facebook” is given in Figure 3, where

nMSE of the three estimators are compared as sample

size increases. Similar to the synthetic experiments, IS is

asymptotically non-optimal. The nMSE of REG is relative

large with intermediate sample size, but decreases very fast

to the asymptotic minimax optimum as n grows. The ac-

curacy of WIS is particularly strong in this case, enjoying

a very small nMSE with small sample size and is compet-

itive with REG in the limit. However, for another popular

query, “gmail”, as shown in Figure 4, nMSE of WIS fails to

converge to the asymptotic minimax optimum. Therefore,

despite the popularity of WIS in empirical studies, it is not

necessarily the most accurate estimator.

Results for the other popular queries we tried are quali-
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Figure 4: nMSE for query “gmail” (K = 648). The asymp-

totic rates V1 and V1 + V2 are provided for reference.

tatively similar to one of the two shown here. They sug-

gest our theoretical findings do provide useful insights and

predictions for both finite-time and asymptotic accuracy of

these popular estimators in real-world applications.

Finally, it is worth mentioning that we also ran prelimi-

nary experiments with an estimator that simply combines

IS/WIS and REG using bvReg + bvWIS

P
a:n(a)=0 π(a) (or

replace bvWIS with bvIS) to obtain the best of both worlds.

The results were encouraging but due to space limitation

they are not reported here. It also remains for future work

to study the theoretical properties of such estimators.

3 Extensions

In this section, we consider extensions of our previous re-

sults to contextual bandits and Markovian Decision Pro-

cesses, while implications to semi-supervised learning are

discussed in the supplementary material.

3.1 Contextual Bandits

The problem setup is as follows: In addition to the finite

action set A = {1, 2, . . . ,K}, we are also given a con-

text set X = {1, 2, . . . ,M}. A policy now is a map π :
X ! [0, 1]A such that for any x 2 X , π(x) is a probability

distribution over the action space A. For notational conve-

nience, we will use π(a|x) instead of π(x)(a). The set of

policies over X and A will be denoted by Π(X ,A). The

process generating the data Dn = {(Xi, Ai, Ri)}1≤i≤n is

described by the following: (Xi, Ai, Ri) are independent

copies of (X,A,R), where X ⇠ µ(·), A ⇠ πD(·|X) and

R ⇠ Φ(·|A,X) for some unknown family of distributions

{Φ(·|a, x)}a∈A,x∈X and known policy πD 2 Π(X ,A) and

context distribution µ. For simplicity, we fix Rmax = 1.

We are also given a known target policy π 2
Π(X ,A) and want to estimate its value, vπ,µ

Φ
:=

EX∼µ,A∼π(·|X),R∼Φ(·|A,X)[R] based on the knowledge of

Dn, πD, µ and π, where the quality of an estimate bv
constructed based on Dn (and π,πD, µ) is measured by
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its mean squared error, MSE (bv) := E
⇥
(bv � vπ,µ

Φ
)2
⇤
,

just like in the case of contextless bandits. Let

σ
2
Φ
(x, a) = V(R) for R ⇠ Φ(·|x, a), x 2 X , a 2

A. An estimator A can be considered as a function

that maps (µ,π,πD, Dn) to an estimate of vπ,µ
Φ

, denoted

bvA(µ,π,πD, Dn). Fix σ
2 := (σ2(x, a))x∈X ,a∈A. The

minimax optimal risk subject to σ
2
Φ
(x, a)  σ

2(x, a) for

all x 2 X , a 2 A is defined by R∗
n(µ,π,πD,σ2) :=

infA sup
Φ:σ2

Φ
≤σ

2 E
⇥
(bvA(µ,π,πD, Dn)� vπ,µ

Φ
)2
⇤
.

The main observation is that the estimation problem for the

contextual case can actually be reduced to the contextless

bandit case by treating the context-action pairs as “actions”

belonging to the product space X⇥A. For any policy π, by

slightly abusing notation, let (µ ⌦ π)(x, a) = µ(x)π(a|x)
be the joint distribution of (X,A) when X ⇠ µ(·), A ⇠
π(·|X). (We also let µ⌦ π(B) =

P
(x,a)∈B(µ⌦ π)(x, a)

for any B ⇢ X ⇥ A.) This way, we can map any contex-

tual policy evaluation problem defined by µ,πD, π, Φ and a

sample size n into a contextless policy evaluation problem

defined by µ⌦ πD, µ⌦ π, Φ with action set X ⇥A.

Thus all results reported in previous sections apply to this

contextual bandit setting (see Theorem 5 of Appendix B).

3.2 Markov Decision Processes

The results in Section 2 can also be naturally extended to

fixed-horizon, finite Markov decision processes (MDPs).

An MDP is described by a tuple M = hX ,A, P,Φ, ν, Hi,
where X = {1, . . . , N} is the set of states, A =
{1, . . . ,K} the set of actions, P the transition kernel,

Φ : X ⇥ A 7! R the reward function, ν the start-state

distribution, and H the horizon. A policy π : X 7! [0, 1]K

maps states to distributions over actions, and we use π(a|x)
to denote the probability of choosing action a in state x.

Given a policy π 2 Π(X ,A), a trajectory of length H ,

denoted T = (X,A,R) (for X 2 XH , A 2 AH , and

R 2 R
H ), is generated as follows: X(1) 2 ν(·); for h 2

{1, . . . , H}, A(h) ⇠ π(·|X(h)), R(h) ⇠ Φ(·|X(h), A(h)),
and X(h + 1) ⇠ P (·|X(h), A(h)). The policy value is de-

fined by vπ
Φ
:= ET [

PH
h=1 R(h)]. For simplicity, we again

assume Rmax = 1. The off-policy evaluation problem is

to estimate vπ
Φ

from data Dn = {Tt}1≤t≤n, where each

trajectory Tt is independently generated by an exploration

policy πD 2 Π(X ,A). We assume an unknown reward

distribution Φ; other quantities including ν, P , H , π, and

πD are all known. The quality of an estimate bv is measured

by its MSE: MSE (bv) :=
⇥
(bv � vπ

Φ
)2
⇤
.

By considering a length-H trajectory of state-actions as an

“action”, one can apply all the results from the previous

sections to this setting (see Theorem 6 of Appendix C).

Finally, us note that the exponential dependence of the min-

imax risk on the horizon H is unavoidable. An exam-

ple is the “combination lock” MDP with N states X =

{1, . . . , N} and K = 2 actions A = {L,R}; the start state

is x∗ = 1. In any state x, action L takes the learner back to

the initial state x∗, while action R takes the learner to state

x+ 1. Assume reward is always 0 except in state N where

it can be 0 or Rmax. It is easy to verify that, if there exists

constant p∗ such that p∗  πD(L|x) for all x, then it takes

exponentially many steps to reach state N from x∗ under

policy πD. Consequently, it requires at least exponentially

many trajectories to evaluate a policy π that always takes

action R, no matter what evaluation algorithm is used.

4 Conclusions

We have studied the fundamental problem of off-policy

evaluation. We focused on the case when there is only one

state, also known as the problem of off-policy evaluation

problem in multi-armed bandits. Despite the simplicity of

this problem, we found that it has a surprisingly rich struc-

ture. Our paper is best viewed as making the first steps

towards exploring this structure.

In particular, we proved new results that reveal the weak-

nesses of both the simple “importance sampling” (IS) and

its more sophisticated weighted (WIS) version. These are

confirmed empirically on both synthetic and real-world

data. We have not found such results formally proved in the

literature, despite the popularity of these estimators. We

also considered another estimator, REG, which estimates

the mean reward for each action. Our analysis indicates

that REG has different qualities. While it less exposed to

the magnitude of importance ratios, it may suffer in the low

data regime (as compared to an ideal, optimal estimator),

which may happen in practice often when the number of

actions is large. This was also confirmed by the experi-

ments. In Section 2.5.2 we also proposed an estimator that

combines IS/WIS and REG to merge their strengths, but

it remains for future work to explore the properties of this

estimator. Another interesting problem is to design near-

minimax estimators for the case when a bound on the mean

reward function is known (the above methods do not use

this knowledge even if available).

Finally, in the paper, we focused on the simplest context-

less, finite setting, and showed that our results can be ex-

tended to more complex settings like contextual bandits and

MDPs. Under additional regularity assumptions, the off-

policy value estimation problem can be solved more effi-

ciently. Studying such structures and corresponding mini-

max estimators is another interesting future direction.
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Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and

Robert E. Schapire. The nonstochastic multiarmed ban-

dit problem. SIAM Journal on Computing, 32(1):48–77,

2002.
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