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Abstract

One of the key factors to measure the progress of a re-

search problem is the design of appropriate evaluation pro-

tocols defined on suitable databases. Recently, the introduc-

tion of comprehensive databases and benchmarks of face

videos has had a great impact on the development of new

face recognition techniques. However, most of the protocols

provided for these datasets are limited and do not capture

requirements of unconstrained scenarios. That is why some-

times the performance of face recognition methods on cur-

rent benchmarks seems to be saturated. To address this lack,

the tendency is to collect new datasets, which is more ex-

pensive and sometimes the main the problem is not the data

but the protocols. In this work, we propose new relevant

evaluation protocols for the YouTube Faces database (REP-

YTF) supporting face verification and open/closed-set iden-

tification. The proposal better fits realistic face recogni-

tion scenarios and allows us to test existing algorithms at

relevant assessment points, under different openness values

and taking both videos and images as the gallery. We pro-

vide an extensive experimental evaluation, by combining

several well-established feature representations with three

different metric learning algorithms. The obtained results

show that by using the proposed evaluation protocols, there

is room for improvement in the recognition performance on

the YouTube Faces database.

1. Introduction

Despite face recognition in videos has seen significant

breakthroughs in the last few years, it is still considered

an unsolved problem in unconstrained scenarios, as sup-

ported by the poor performance of state-of-the-art methods

on practical applications (e.g., video surveillance, access

control, etc.). In order to measure the advances in this area

and to compare existing algorithms, appropriate evaluation

protocols defined on suitable databases are needed.

Several databases are available for the evaluation of un-

constrained face recognition in videos [2, 6, 8, 9, 14, 18,

19]. However, few of them have been released with op-

erationally relevant protocols. That is why sometimes the

performance of face recognition methods on current bench-

mark datasets seems to be saturated achieving near to per-

fect score. As a result, the research community usually

focuses on collecting new data when the problem is not

mainly the data but the limitations of the existing protocols

that do not exploit all the available data and do not capture

the requirements of operationally unconstrained scenarios.

For example, the limited ability to evaluate algorithms at

operationally relevant False Acceptance Rate (FAR) (e.g.,

0.01% and 0.1%).

The YouTube Faces (YTF) database [19] is a leading

benchmark for video face recognition, containing videos

from a large number of persons. Several state-of-the-art

methods [4, 5, 13, 16] have been evaluated and compared on

this database, achieving accuracies higher than 90%. How-

ever, the standard protocol of the YTF database only con-

siders the face verification scenario with a limited number

of matching comparisons (2,500 genuine and 2,500 impos-

tor matches), which do not provide a complete picture on

the capabilities of the methods that are tested on it. For ex-

ample, when evaluating performance at FAR = 0.1% only

less than three impostor matches are available, which is not

statistically sound. Moreover, a classification accuracy of

97.3% may imply a FAR of 2.7%, which is not suitable for

1526



unconstrained face recognition applications in which usu-

ally low FAR values are demanded.

In order to address the above limitations, we design new

relevant evaluation protocols for the YTF database (REP-

YTF), which better fit operational face recognition systems.

Specifically, we propose a new face verification protocol

that makes full use of the whole database allowing the

evaluation at low FAR values. Moreover, open/closed-set

identification protocols are designed considering different

gallery sizes, as well as, both video-to-video and video-to-

image comparisons. Table 1 summarizes the main differ-

ences between the standard protocol and our proposal for

face recognition evaluation in the YTF database.

We test several methods under the proposed REP-YTF,

including well-known representations that have been previ-

ously evaluated by using the standard protocol of the YTF

database, which are combined with different metric learn-

ing algorithms. The obtained results highlight that uncon-

strained video face recognition is still an unsolved and chal-

lenging problem, even in existing benchmark datasets such

as YTF. The baseline code and evaluation scripts are avail-

able online 1.

The main contributions of the proposed REP-YTF are:
• It is clear and easy to understand.

• A more statistically sound evaluation at low FAR val-

ues is provided, thanks to the fact that a greater number

of impostor comparisons is considered for face verifi-

cation.

• Both open and closed-set face identification experi-

ments are included using different gallery sizes.

• Besides video-to-video, video-to-image comparisons

are included, thus a larger number of methods for dif-

ferent scenarios can be evaluated.

• The conducted experiments with 21 face recognition

approaches (seven face representations with three met-

ric learning algorithms) show a contrary perception of

recognition performance on YTF being saturated.

• It is proved that more appropriate test protocols can

be defined using existing benchmarks (e.g., YTF) to

provide a more realistic evaluation of face recognition

methods.

• It is publicly available to encourage and support algo-

rithms development for unconstrained face recognition

in videos.

The paper is organized as follows. Section 2 describes

the YTF database benchmark as well as the limitations of its

standard protocol. Section 3 details the proposed REP-YTF.

The baseline methods used for the evaluation are presented

in Section 4. Section 5 provides a large set of experiments

illustrating the performance of the evaluated methods on the

YTF database under the proposed protocols. Section 6 con-

cludes the paper.

1http://www.cenatav.co.cu/doc/code/REP-YTF.zip

2. The YouTube Faces Database

The YouTube Faces database [19] is a large video dataset

designed for unconstrained face verification in videos. It

contains 3,425 videos of 1,595 subjects with significant

variations in expression, illumination, pose, resolution, and

background. An average of 2.15 videos are available for

each subject. The average length of a video clip is 181.3

frames.

The standard protocol of the YTF database provides

a pair-matching benchmark for a ten-fold cross-validation

testing. Specifically, 5,000 video pairs from the database

were randomly collected, half of which are pairs of videos

of the same person and the other half of different subjects.

These pairs were divided into ten splits, each one containing

250 ‘same’ and 250 ‘not-same’ pairs. These pairs were di-

vided ensuring that, if videos of a subject appear in one split,

no video of that subject is included in any other split. The

test procedure consists of using the defined pairs of each

split for algorithm evaluation and report the obtained per-

formance. Hence, in the whole benchmark, although there

are a large number of potential comparisons, only a reduced

number of genuine and impostor matching scores are com-

puted for classification.

Currently, the best-performing methods on the YTF

database report more than 90% of accuracy by using deep

learning-based representations [4, 5, 13, 16]. Nevertheless,

this performance is too optimistic for most practical systems

where the evaluation needs to be at low FARs like 0.01%,

which is not possible to measure with the standard protocol

since less than three impostor scores are available. More-

over, in the defined 5,000 video pairs, not all the videos

from the database are included. There are more than 190

videos which are not taken into account. In addition, by

considering only a face verification scenario, is not possible

to provide all the capabilities of the face recognition meth-

ods.

Since that the standard YTF protocol is very limited and

does not consider the whole available data, we exploit all

the 3,425 face videos and propose new relevant evalua-

tion protocols (REP-YTF) supporting face verification and

open/closed-set face identification scenarios.

3. REP-YTF Description

In this section, we describe in detail the experimental

setting of the designed protocols and the performance mea-

sures used for the evaluation.

3.1. Experimental Setting

We divided the YTF database into ten random trials of

training and test sets. On each trial, we ensure that videos

from subjects that are included in the training set are not

considered in the test set. The training set of each trial in-
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Standard Protocol REP-YTF

Used all available data No Yes

Closed-set identification protocol No Yes

Open-set identification protocol No Yes

Face verification protocol Yes Yes

# Genuine comparisons (not-duplicated) 2,500 2,277

# Impostor comparisons (not-duplicated) 2,500 3,314,989

Table 1: Differences between the standard protocol of the YTF database and the REP-YTF.

cludes the videos of 395 subjects from which 243 subjects

on average have more than one face video. As a result, each

training set contains more than 800 face videos available

for the algorithms to build models and learn face variations.

The testing sets are composed of the videos from the re-

maining 1,200 subjects, where about 744 subjects have at

least one video, resulting in more than 2500 face videos

tested on average for each trial.

For the verification protocol, the test set of each trial

is used to compute the matching scores by face recogni-

tion algorithms for performance evaluation. On average,

2,277 genuine comparisons and 3,314,989 impostor com-

parisons are obtained in each trial, ensuring that they are

not-duplicated. Thus, over 3,317,266 video pairs compar-

ison scores are computed for each trial. This allows us to

evaluate face recognition algorithms at low FARs. For ex-

ample, at FAR = 0.1% there are more than 3,300 impostor

comparisons available for each trial, which is more statisti-

cally sound.

In the case of identification, for each trial, we randomly

partitioned the test set into three subsets, the gallery set G,

the genuine probe set PG, which contains the same subjects

included in G but with different videos, and the impostor

probe set PI , which consists of subjects that are not present

in G. In the closed-set identification protocol, PG is eval-

uated against G, while in the open-set identification proto-

col, PI is also tested. Besides, to evaluate the performance

of the methods with different gallery sizes, this partition-

ing procedure is repeated three times, varying the openness

(Op), that is defined as the ratio between the genuine com-

parisons and the impostor comparisons in the probe set. As

a result, in each trial, three different configurations of the

test set are obtained by using the openness values: 0.2, 0.5

and 0.9. In Table 2, all the described experimental setting is

summarized.

In addition, we designed two kinds of galleries: one

composed by a face video per subject and the other by a sin-

gle image per subject. In the last case, to simulate real ap-

plications where the gallery image quality is usually good,

we selected for each subject, the best face frame from the

video gallery. This means that the frame with a frontal or

near frontal pose, uniform lighting, neutral expression, no

occlusion, and no blur is used.

#Subjects #Videos

Train 395 849

Test

Verification 1,200 2,576

G 200 200

Op (0.2) PG 200 370

PI 1,000 2,005

G 400 400

Op (0.5) PG 400 728

PI 800 1,448

G 533 533

Op (0.9) PG 533 975

PI 667 1,068

Table 2: Experimental setting for REP-YTF. Numbers are

averaged over the 10 trials. G, PG and PI are the gallery,

the genuine probe set and the impostor probe set, respec-

tively.

3.2. Performance Metrics

In the face verification scenario, the goal is to decide

whether two face videos belong or not to the same iden-

tity. In this case, we used the Receiver Operating Char-

acteristic (ROC) curve and the Equal Error Rate (EER) as

performance metrics. ROC curve is a plot of the True Ac-

ceptance Rate (TAR) versus the FAR by changing the deci-

sion thresholds, while EER is the point on the ROC curve

where the errors of false acceptance and false rejection are

the same.

Open-set identification consists of two steps: first, to de-

termine if the identity of a face in the probe is present in

the gallery or not; and, if it is, to find the top-k most similar

faces in the gallery. Closed-set identification is a particu-

lar case of open-set identification, which assumes that the

subject in the probe is present in the gallery. For evaluat-

ing open-set identification, detection and identification rate

(DIR) [15] and FAR performance metrics are considered,

while the Cumulative Match Characteristic (CMC) curve

[15] is used for the case of closed-set identification.

Both for face verification and identification, the perfor-

mance metrics are computed and averaged over the ten ran-

dom trials, and the standard deviation is also reported.
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4. Baselines for Video Face Recognition

As one of the most used benchmark on video face recog-

nition, YTF database has largely promoted the research on

feature descriptors, metric learning algorithms, and deep

learning-based representations. Thus, we examine and

study the performance of some well-established represen-

tations combined with several metric learning algorithms

under the REP-YTF.

First of all, we used the Local Binary Patterns (LBP)

descriptors provided with the YTF database2. These de-

scriptors were extracted taking into account different pose

based strategies as described in [19]. Specifically, we used

the most frontal pose and the smallest head rotation angle

strategies. In the first case, two videos will be compared

based on the LBP descriptors of the frame of each video

with the most frontal face pose and in the second one, the

LBP descriptors of the frames with the smallest head rota-

tion angle between them.

On the other hand, we evaluated three representations

based on the Fisher Vector (FV) encoding of local descrip-

tors. Specifically, we tested the Video Fisher Vector Faces

(VF2) descriptor[12] that encodes SIFT features, and the

Binary Video Fisher Vector Faces (BinVF2) [10] and the

Logistic Binary Video Fisher Vector Faces (LBinVF2) [11],

which efficiently encode BRIEF descriptors. In all the

cases, we used the parameters given by the authors in their

corresponding papers.

Deep convolutional neural networks trained with mas-

sive labeled outside data have reported the best performance

on the YTF database. We used the descriptors obtained

from two pre-trained deep networks which have been ap-

plied on face recognition. First, the VGG-Face descrip-

tors which are extracted by using the off-the-shelf CNN

model based on the VGG-Very-Deep-16 CNN architecture

described in [13]. The other is the model provided in

Dlib open source machine learning library [7], which is a

ResNet network with 27 convolutional layers, inspired on

the ResNet-34 network from [5].

All the obtained descriptors are projected into a 200-

dimensional PCA subspace in order to reduce their dimen-

sion and then, a metric learning algorithm is used to perform

the comparison. The common objective of metric learning

is to learn a suitable distance function to reduce the distance

of positive pairs and enlarge the distance of negative pairs

at the same time. Specifically, we tested the Large Margin

Nearest Neighbor (LMNN) [17], the Joint Bayesian (JB) [3]

and the Linear Discriminant Analysis [1].

In Large Margin Nearest Neighbor (LMNN) [17], the

goal is to learn a Mahalanobis distance metric for kNN clas-

sification, where the distances are viewed as generalizations

of Euclidean distances. This approach has the advantage of

2http://www.cs.tau.ac.il/ wolf/ytfaces/index.html

improving the original Euclidean distance from a classifi-

cation perspective and, in some cases, to provide a lower-

dimensional embedding of the data. The Joint Bayesian

(JB) approach [3] models the joint distribution of feature

vectors of a pair of face images belonging to the same or

different subjects and uses the log-likelihood ratio of intra-

and inter-class probabilities as the similarity measure. Lin-

ear Discriminant Analysis (LDA) [1] is a type of metric

learning method which learns a projection such that it maxi-

mizes the inter-class scatter over the intra-class scatter. This

is solved using a closed-form expression based on a gener-

alized eigenproblem.

5. Experimental Evaluation

In this section, we analyze the results obtained by us-

ing the proposed evaluation protocols. Specifically, we test

the baselines methods for video face recognition described

previously in Section 3. In total, 21 face recognition ap-

proaches (7 face representations, each one with three differ-

ent metric learning algorithms) are evaluated.

For the VGG-Face network, the input has to be a face

image of size 224× 224 pixels. For the remaining methods,

all video frames were center cropped to 150× 150 pixels.

5.1. Face Verification

Figures 1a, 1b and 1c show the verification ROC curves

of the different face representations with LMNN, JB and

LDA metric learning algorithms, respectively. Besides, in

Table 3 the mean TAR at FAR values of 0.1% and 1%,

and the mean EER obtained across the ten trials are sum-

marized.

It can be appreciated that, in general, LDA and JB per-

form better than LMNN. The best results for each evalu-

ated metric learning are obtained by deep learning-based

representations, while LBP descriptors achieve a very poor

performance, what is consistent with previous results in the

standard protocol of the YTF database. We can see from

the Figure 1 that for all cases, at lowest FAR (< 0.01%),

the TAR of algorithms drops below 20% on average. The

lowest EER and top TAR values at different FARs showed

in Table 3 are achieved by Dlib+LDA, which are still far

from the desired performance.

It should be noticed that REP-YTF verification protocol

provides 3,314,989 impostor matches on average, which al-

lows performance evaluation at low FAR values that is not

covered under the standard YTF protocol.

5.2. Face Identification

For REP-YTF open/closed-set identification protocols

we defined two different scenarios. In the first one (video-

to-video comparison), both probe and gallery sets are com-

posed by face videos, while in the second one (video-to-

image comparison), the gallery contains a single image per
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Figure 1: Average ROC curves of the different face representation using (a) LMNN, (b) JB and (c) LDA metric learning

algorithms for REP-YTF verification protocol. It can be seen that rates drop with decreasing FAR values, and even though

the deep learning-based representations perform better, the results at low FARs are poor.

TAR @ FAR = 0.1% TAR @ FAR = 1% EER

LMNN JB LDA LMNN JB LDA LMNN JB LDA

LBP(most-frontal) 5.98 ± 0.3 6.81 ± 0.2 6.33 ± 0.4 13.19 ± 0.4 16.26 ± 0.5 14.60 ± 0.4 38.01 ± 0.8 32.46 ± 0.4 35.39 ± 0.5

LBP(nearest-pose) 6.47 ± 0.5 7.35 ± 0.4 7.31 ± 0.3 13.10 ± 0.5 15.95 ± 0.6 14.66 ± 0.4 38.32 ± 0.7 32.65 ± 0.6 35.74 ± 0.5

BinVF2 9.76 ± 0.7 12.35 ± 0.9 15.47 ± 0.9 20.87 ± 0.8 24.62 ± 0.9 28.56 ± 0.7 25.58 ± 0.7 24.73 ± 0.8 23.04 ± 0.5

LBinVF2 14.88 ± 0.8 18.12 ± 0.7 21.27 ± 0.5 30.41 ± 0.9 35.25 ± 1.0 39.59 ± 0.8 20.14 ± 0.4 18.99 ± 0.9 18.12 ± 0.7

VF2 14.76 ± 1.0 20.29 ± 0.8 20.84 ± 0.4 32.01 ± 1.5 39.83 ± 1.1 40.68 ± 0.8 19.18 ± 0.7 16.73 ± 0.6 16.37 ± 0.5

VGG-Face 27.33 ± 1.3 43.04 ± 1.9 34.38 ± 0.9 51.84 ± 1.3 66.91 ± 1.4 59.67 ± 0.6 14.05 ± 1.8 9.93 ± 0.8 12.37 ± 1.3

Dlib 41.50 ± 1.5 27.64 ± 2.9 50.70 ± 1.2 67.98 ± 1.2 58.53 ± 2.4 75.98 ± 0.9 9.12 ± 1.5 10.11 ± 0.1 7.59 ± 0.4

Table 3: Performance evaluation for REP-YTF verification protocol, in terms of mean TAR (at FAR values of 0.1% and 1%)

and mean EER with their corresponding standard deviations over the 10 trials.

subject and the probe set consists of face videos. For open-

set identification we report DIR at rank-1 for 1% and 10%

FAR values, respectively, while for closed-set CMC curves

at different rank levels for each gallery size are reported.

5.2.1 Video-to-video comparison

Table 4 and 5 show the open-set identification results of the

baseline algorithms reported as mean DIR at rank-1 and it

corresponding standard deviation across the 10 trials, for

1% and 10% FAR values, respectively. We can clearly ob-

serve that the performance of most of the methods is quite

low. The best representation for each metric learning at each

openness value is highlighted in the tables. Deep learning-

based representations achieve the best results. However, the

performance is not good enough, which indicates the real

challenge of the REP-YTF open-set identification protocol.

For example, at FAR = 1%, the top DIRs for the three open-

ness values (0.2, 0.5 and 0.9) are achieved by Dlib+LDA,

obtaining 25.97%, 20.12%, and 17.99%, respectively, and

the corresponding rates at FAR = 10% are 47.55%, 41.98%,

and 39.02%, which also reveal that the open-set identifi-

cation performance significantly drops for low FAR values.

Moreover, we notice that similar to the case of face verifica-

tion, in general, LDA performs better than LMNN and JB

approaches for all the representations. On the other hand,

we can see the impact of including impostor comparisons

in the identification experiments, which is not usually con-

sidered in existing protocols. It can be appreciated that, in

general, when the openness value increases, the rates drop,

and for the best algorithms, the falls are greater.

Closed-set identification results of the baseline methods

for the different gallery sizes are shown in Figures 2, 3 and

4. It can be seen that, also in this scenario, LDA algorithm

performs better than JB and LMNN for all the descriptors

and deep learning-based representations remain the most

discriminative ones. For example, at rank-1, both VGG-

Face and Dlib with LDA achieve identification rates higher

than 50% for the three gallery sizes. We observed that the

recognition performance of all the evaluated methods de-

creases while increasing gallery set size. For example, for

the smallest gallery size (i.e., 200 subjects) the best results

at rank-10 range between 80%-90%, while for the largest

gallery size (i.e., 533 subjects) range between 70%-85%.

All the algorithms, except LBP-based representations, ob-

tained more than 70% identification rates at rank-100 but

this is still far from the ideal performance.

5.2.2 Video-to-image comparison

In the case of video-to-image scenario, the LBP-based rep-

resentations were not included in the comparison since its
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DIR @ FAR = 1%

LMNN JB LDA

Op (0.2) Op (0.5) Op (0.9) Op (0.2) Op (0.5) Op (0.9) Op (0.2) Op (0.5) Op (0.9)

LBP(most frontal) 2.31 ± 0.8 1.75 ± 0.3 1.70 ± 0.2 2.79 ± 0.7 2.43 ± 0.5 2.29 ± 0.4 2.24 ± 0.7 2.03 ± 0.4 1.85 ± 0.3

LBP(nearest pose) 2.52 ± 1.0 2.23 ± 0.5 2.34 ± 0.3 2.27 ± 0.8 2.13 ± 0.5 2.09 ± 0.4 2.76 ± 0.7 2.32 ± 0.3 2.29 ± 0.6

BinVF2 5.44 ± 1.4 4.13 ± 0.7 4.26 ± 0.6 6.84 ± 1.6 5.29 ± 0.5 5.30 ± 0.4 8.36 ± 1.6 6.86 ± 0.7 7.05 ± 0.8

LBinVF2 7.27 ± 2.1 5.94 ± 0.8 5.82 ± 0.7 8.98 ± 1.9 7.47 ± 1.1 7.29 ± 0.7 10.05 ± 2.1 8.57 ± 0.8 8.18 ± 1.0

VF2 7.15 ± 1.9 5.75 ± 0.7 5.69 ± 0.8 10.86 ± 2.2 8.47 ± 1.0 8.33 ± 1.0 10.67 ± 2.4 8.47 ± 0.9 8.84 ± 0.9

VGG-Face 12.36 ± 2.9 9.52 ± 1.2 9.18 ± 1.2 22.83 ± 3.6 18.16 ± 1.8 16.28 ± 1.5 14.10 ± 2.4 10.53 ± 1.3 10.25 ± 0.9

Dlib 19.92 ± 3.6 15.03 ± 1.7 13.39 ± 1.9 8.45 ± 3.2 5.67 ± 1.3 4.89 ± 1.5 25.97 ± 3.0 20.12 ± 1.2 17.99 ± 1.5

Table 4: Performance of baseline methods for REP-YTF open-set identification under different openness values, at FAR

= 1% in video-to-video scenario. The results are reported as the mean DIR (%) at rank-1 and the corresponding standard

deviation over the 10 trials.

DIR @ FAR = 10%

LMNN JB LDA

Op (0.2) Op (0.5) Op (0.9) Op (0.2) Op (0.5) Op (0.9) Op (0.2) Op (0.5) Op (0.9)

LBP(most frontal) 4.84 ± 1.3 3.67 ± 0.5 3.56 ± 0.5 5.32 ± 0.8 4.56 ± 0.7 3.97 ± 0.6 5.29 ± 1.4 4.33 ± 0.7 3.99 ± 0.7

LBP(nearest pose) 5.20 ± 1.0 4.16 ± 0.5 3.89 ± 0.5 5.77 ± 1.0 4.49 ± 0.6 4.19 ± 0.5 6.21 ± 1.4 4.52 ± 0.7 4.40 ± 0.6

BinVF2 8.60 ± 1.8 7.05 ± 0.4 6.81 ± 0.6 10.95 ± 1.1 8.63 ± 0.6 8.50 ± 0.8 14.26 ± 2.0 11.41 ± 1.1 10.61 ± 1.0

LBinVF2 13.43 ± 2.2 10.29 ± 1.4 9.90 ± 1.1 16.31 ± 1.1 13.22 ± 1.1 12.16 ± 0.8 19.14 ± 2.1 15.59 ± 1.2 14.97 ± 1.2

VF2 13.29 ± 2.1 10.24 ± 0.9 10.02 ± 0.9 18.34 ± 2.5 15.11 ± 1.1 14.13 ± 0.7 19.91 ± 3.5 15.58 ± 1.3 14.94 ± 0.8

VGG-Face 29.19 ± 2.2 23.44 ± 0.9 21.77 ± 1.2 39.38 ± 2.8 32.86 ± 1.6 30.52 ± 1.9 32.38 ± 3.2 26.92 ± 1.2 25.12 ± 1.0

Dlib 37.26 ± 4.1 30.88 ± 2.2 28.21 ± 2.5 25.90 ± 3.9 18.07 ± 2.1 16.33 ± 1.9 47.55 ± 3.1 41.98 ± 2.2 39.02 ± 1.8

Table 5: Performance of baseline methods for REP-YTF open-set identification under different openness values, at FAR =

10% in video-to-video scenario. The results are reported as the mean DIR (%) at rank-1 and the corresponding standard

deviation over the 10 trials.

DIR @ FAR = 1%

LMNN JB LDA

Op (0.2) Op (0.5) Op (0.9) Op (0.2) Op (0.5) Op (0.9) Op (0.2) Op (0.5) Op (0.9)

BinVF2 1.77 ± 0.7 1.39 ± 0.4 1.36 ± 0.3 2.80 ± 0.7 2.18 ± 0.4 2.13 ± 0.4 4.49 ± 1.2 3.37 ± 0.6 3.29 ± 0.5

LBinVF2 3.16 ± 1.1 2.83 ± 0.5 2.69 ± 0.3 5.28 ± 1.4 3.87 ± 0.5 3.58 ± 0.5 6.58 ± 1.5 4.78 ± 0.8 4.53 ± 0.5

VF2 3.09 ± 0.8 2.61 ± 0.3 2.43 ± 0.4 5.74 ± 1.9 4.81 ± 0.5 4.68 ± 0.6 5.95 ± 1.5 4.92 ± 0.6 4.82 ± 0.7

VGG-Face 6.60 ± 1.9 4.96 ± 1.1 4.81 ± 1.0 17.33 ± 2.9 14.20 ± 2.4 13.14 ± 1.1 10.36 ± 2.0 7.44 ± 0.8 7.01 ± 0.7

Dlib 9.51 ± 2.6 7.93 ± 1.4 6.76 ± 1.3 5.16 ± 2.0 3.68 ± 1.4 3.09 ± 1.1 16.62 ± 4.2 14.26 ± 1.7 11.41 ± 1.0

Table 6: Performance of baseline methods for REP-YTF open-set identification under different openness values, at FAR =

1% in video-to-image scenario. The results are reported as the mean DIR (%) at rank-1 and the corresponding standard

deviation over the 10 trials.

DIR @ FAR = 10%

LMNN JB LDA

Op (0.2) Op (0.5) Op (0.9) Op (0.2) Op (0.5) Op (0.9) Op (0.2) Op (0.5) Op (0.9)

BinVF2 4.27 ± 1.1 3.19 ± 0.5 3.09 ± 0.4 5.82 ± 1.1 4.19 ± 0.6 3.99 ± 0.7 8.34 ± 1.1 6.59 ± 1.0 6.08 ± 0.6

LBinVF2 7.23 ± 1.5 5.64 ± 0.4 5.28 ± 0.5 9.60 ± 2.1 7.40 ± 0.8 7.06 ± 0.6 12.73 ± 2.2 10.03 ± 1.2 9.56 ± 0.7

VF2 7.81 ± 1.9 6.35 ± 0.8 5.88 ± 0.7 12.33 ± 1.8 9.55 ± 0.9 8.96 ± 1.0 13.58 ± 2.7 10.74 ± 1.3 10.46 ± 0.8

VGG-Face 19.09 ± 2.4 14.32 ± 1.2 13.20 ± 1.0 32.34 ± 3.0 26.93 ± 2.0 24.78 ± 1.2 26.88 ± 2.8 20.65 ± 1.4 19.64 ± 1.0

Dlib 22.42 ± 3.4 18.32 ± 1.8 16.24 ± 1.6 16.91 ± 3.8 12.34 ± 1.8 10.88 ± 2.0 34.55 ± 4.0 30.50 ± 1.3 28.01 ± 1.7

Table 7: Performance of baseline methods for REP-YTF open-set identification under different openness values, at FAR =

10% in video-to-image scenario. The results are reported as the mean DIR (%) at rank-1 and the corresponding standard

deviation over the 10 trials.

corresponding results presented in Section 5.2.1 are already

considering only one frame per video.

The performance obtained by the remaining baseline al-

gorithms at FAR values of 1% and 10% are presented in

Table 6 and Table 7, respectively. For each metric learn-

ing at each openness value, the best rank-1 DIR is high-

lighted. It can be seen that when the gallery is composed of

still images, the performance is worse than those obtained

when both gallery and probe are videos. We suspect that

this is because a video contains multiple frames, thus pro-
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Figure 2: Average CMC curves of the different face representations using (a) LMNN, (b) JB and (c) LDA algorithms under

the REP-YTF closed-set identification protocol for video-to-video scenario. The gallery size is 200 subjects.
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Figure 3: Average CMC curves of the different face representations using (a) LMNN, (b) JB and (c) LDA algorithms under

the REP-YTF closed-set identification protocol for video-to-video scenario. The gallery size is 400 subjects.
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Figure 4: Average CMC curves of the different face representations using (a) LMNN, (b) JB and (c) LDA algorithms under

the REP-YTF closed-set identification protocol for video-to-video scenario. The gallery size is 533 subjects.

viding more discriminative information for the recognition.

Moreover, deep learning-based representations perform bet-

ter than the others, however, the best results for each open-

ness value, achieved by Dlib+LDA, are very poor being just

16.62%, 14.26% and 11.41%, respectively, at FAR = 1%,

and 34.55%, 30.50% and 28.01%, respectively, at FAR =

10%. Compared with the video-to-video scenario, the best

result for each openness value drops more than 10%.

Figures 5, 6 and 7 show the results of the baseline meth-

ods under REP-YTF closed-set identification scenario at

different gallery sizes. Although the general behavior of

the algorithms is similar to that obtained in the video-to-

video scenario, the performance drops when the gallery is

just a single image per subject. For example, in the case of

video-to-video, the best performing algorithm (Dlib+LDA)

for the smaller gallery size achieves 70%, 90% and 99% at

rank-1, 10 and 100, respectively (see Figure 2c), while in

the video-to-image scenario Dlib+LDA obtains 55%, 78%

and 97%, respectively, as it can be seen in Figure 5c.

6. Conclusion

In this work, we designed new relevant evaluation proto-

cols for the YouTube Faces database (REP-YTF). The pro-
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Figure 5: Average CMC curves of the different face representations using (a) LMNN, (b) JB and (c) LDA algorithms under

the REP-YTF closed-set identification protocol for video-to-image scenario. The gallery size is 200 subjects.

BinVF
2

LBinVF
2

VGG−Face  

Dlib

VF2 

10
0

10
1

10
2

0

20

40

60

80

100

Rank

Id
e
n
ti
fi
c
a
ti
o
n
 R

a
te

 (
%

)

(a) LMNN

10
0

10
1

10
2

0

20

40

60

80

100

Rank

Id
e
n
ti
fi
c
a
ti
o
n
 R

a
te

 (
%

)

(b) JB

10
0

10
1

10
2

0

20

40

60

80

100

Rank

Id
e
n
ti
fi
c
a
ti
o
n
 R

a
te

 (
%

)

(c) LDA

Figure 6: Average CMC curves of the different face representations using (a) LMNN, (b) JB and (c) LDA algorithms algo-

rithms under the REP-YTF closed-set identification protocol for video-to-image scenario. The gallery size is 400 subjects.
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Figure 7: Average CMC curves of the different face representation using (a) LMNN, (b) JB and (c) LDA algorithms algo-

rithms under the REP-YTF closed-set identification protocol for video-to-image scenario. The gallery size is 533 subjects.

posal, which is publicly available, allows the research com-

munity to advance face recognition methods under both un-

constrained face verification and open/closed-set identifica-

tion scenarios.

The paper provided an extensive experimental evalua-

tion, including several well-know feature representations

with different metric learning algorithms. The results

showed that even for the best methods, recognition perfor-

mances still have a way to go. The benchmark results pre-

sented in this paper establish a baseline for evaluating fur-

ther comparative research on video face recognition.

With this work, we demonstrated that there is room for

improvement in the face recognition performance even on

well-used benchmarks such as YouTube Faces database.

One of the main reasons of that is the lack of appropriate

evaluation protocols that model more closely the require-

ments of operational unconstrained video face recognition

scenarios.
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