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Abstract

Biological processes are fundamentally driven by complex interactions between biomolecules. Integrated high-
throughput omics studies enable multifaceted views of cells, organisms, or their communities. With the advent of
new post-genomics technologies, omics studies are becoming increasingly prevalent; yet the full impact of these
studies can only be realized through data harmonization, sharing, meta-analysis, and integrated research. These
essential steps require consistent generation, capture, and distribution of metadata. To ensure transparency, facilitate
data harmonization, and maximize reproducibility and usability of life sciences studies, we propose a simple
common omics metadata checklist. The proposed checklist is built on the rich ontologies and standards already in
use by the life sciences community. The checklist will serve as a common denominator to guide experimental
design, capture important parameters, and be used as a standard format for stand-alone data publications. The omics
metadata checklist and data publications will create efficient linkages between omics data and knowledge-based life
sciences innovation and, importantly, allow for appropriate attribution to data generators and infrastructure science
builders in the post-genomics era. We ask that the life sciences community test the proposed omics metadata
checklist and data publications and provide feedback for their use and improvement.

A Common Omics Metadata Checklist Proposal

M
odern life science technologies enable rapid and
efficient acquisition of omics data. These data compre-

hensively measure multilayered molecular networks and pro-
vide a snapshot of biological processes in a cell, organism, or
their communities. Collected on the same sample at the same
time, omics data provide information on the functioning of
biomolecules and their interactions. Omics studies are essential
for the systemic investigation of biological systems—an en-
deavor that is crucial to improve our ability to manage and cure
diseases, identify drug targets, understand regulatory cascades,
and predict ecosystem responses to environmental changes.

Through the pioneering efforts of Drs. Smarr and Snyder,
(Smarr, 2012; Bowden, 2012; Chen, 2012; Mias, 2013) two
powerful multi-omics human datasets were recently made
available. Smarr’s dataset includes a wide variety of molecular
measures and clinical parameters meticulously collected and
cataloged for years, while Snyder’s integrative personal multi-
omics study presents his personal genomics, transcriptomics,
proteomics, metabolomics, and autoantibody profiles collected
over a 14-month period. Both studies yielded unique physio-
logical insights not previously possible, including early indi-
cations of vulnerabilities to specific diseases.

In the near future these kinds of personal omics studies will
become routine and will inevitably result in vast and diverse
volumes of omics data. Therefore, the scientific community
must commit to a common format for publishing the design
and analysis of these studies that will ensure the compatibility,
reproducibility, and reuse of the resulting data.

The use, integration, and reuse of data require accurate and
comprehensive capture of the associated metadata, including
details describing experimental design, sample acquisition
and preparation, instrument protocols, and processing steps.
The data and metadata must be captured together in a rigor-
ous and consistent manner to allow the integration of data
across omics experiments. The use of ontologies, naming
conventions, and standards can increase the compatibility
and usability of these diverse data. Fortunately, life sciences
data have certain core similarities. However, combined with
these similarities come the different nuances among various
technology platforms, such as transcriptomics, proteomics,
and metabolomics, as well as application contexts such as
neuroscience and hematology. The differences are com-

pounded by the multiplicity of standards within a field—
transcriptomics alone has at least 15 standards potentially
applicable to the data (Tennenbaum, 2013; Field, 2009). Such
complexities not only make reproducible, integrative, accu-
rate, and comprehensive capture of data and metadata an
intricate challenge that must be overcome but also place an
excessive burden on researchers trying to convey metadata
(Tennenbaum, 2013; Editorial, 2011).

Pioneering attempts in this areaweremade in 2007when the
Minimum Information about a Biomedical or Biological In-
vestigation project brought many of these efforts for the life
sciences together into an umbrella organization: MIBBI (Tay-
lor, 2008; Kettner, 2010). In MIBBI, each set of guidelines is
developed by a working group concentrated in a specific field
(for example, functional magnetic resonance imaging [fMRI]
orquantitative trait locus [QTL]andassociation studies).Other
types of data sharing tools that have also been harmonized in
MIBBI include single omics checklists such as Minimum In-
formation About a Proteomics Experiment (MIAPE) by the
Human Proteome Organization (Taylor, 2007) and the Mini-
mum Information About a Microarray Experiment (MIAME)
by theMicroarrayGeneExpressionDataSociety (Alvis,2001).
Through this approach, MIBBI aspires to capture all essential
metadata and data that are necessary to replicate any given
experiment within a field. Also, the framework known as
Minimal InformationAbout anySequence (MIxS) expands the
breadth of information available by integrating the individual
genomics checklists developed by the Genomics Standards
Consortium with environmental information (Yilmaz, 2011).
In addition, the NIH’s National Center for Biotechnology In-
formation developeda format for cataloging informationabout
samples enabling furthermetadata availability (Barrett, 2012).
While these frameworks are critical to the reuseof data, they do
not fully take into account the interlocking aspects needed for
harmonization of diverse omics data types.

Recently, the Nature Publishing Group implemented a
publication checklist that provides another example of an ap-
proach to improve the transparency and reproducibility of life
sciences publications (Editorial, 2013; Reporting Checklist for
Life Sciences Articles, 2013). The checklist requires the re-
searcher and/or corresponding author to enter specific infor-
mation on experimental design, statistical analysis, and
reagents. This checklist is endorsed by the Data-Enabled Life
Sciences Alliance (DELSA Global) (Kolker, 2013).
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The unveiling of the Nature publication initiative brought
into focus the need for a complementary omics checklist that
allows the capture and publication of critical metadata associ-
ated with omics data sets. To this end, life sciences researchers
from DELSA Global (Data-Enabled Life Sciences Alliance,
2013a; Kolker, 2012b; Kolker, 2012d; Kolker, 2012c; Stewart,
2013) propose a single common omics metadata checklist as
described below. By integrating DELSA researchers’ collec-
tive experiences with omics guidelines and publication re-
quirements, one simplified, yet informative and flexible
checklist was created to capture the essential aspects of omics
studies (Data-Enabled Life Sciences Alliance, 2013b).

Publication of a completed checklist will serve to inform the
life sciences community of the details needed to properly utilize
the given data set. This type of ‘‘resource publication’’ has long
been done by Nucleic Acid Research in its annual database
issue. NanoPubs and MicroPubs are two newer publication
avenues that could serve to quickly and accurately share in-
formation (Nanopub, 2013; Micropub, 2013). There are also
other forms of data publications including, for example, In-
vestigation, Study, Assay (ISA) metadata tracking tools and the
journal Scientific Data (ISA tools, 2013; Scientific Data, 2013).

It is worth noting that multi-omics data from a longitudinal
study of a single individual (e.g., the Smarr and Snyder

Table 1. Multi-omics Metadata Checklist

Checklist version 1.0
Experiment information Description

Lab name Lab conducting the experiment
Date Checklist submission date
Author information Name, organization, contacts
Title of experiment One-sentence description of the particular experiment
Project Project name, ID, organization
Funding Funding sources for the project
Digital ID Multiple digital IDs may be listed, such as those to GEO, MOPED, PRIDE,

DOIs, etc.
Abstract A short description of the experiment briefly stating the goals of the

research and principal outcomes if any (100 words or less)

Experimental design Description

Organism For example, Human, mouse
OMICS type(s) utilized For example, Proteomics, metabolomics
Reference Published articles that utilize these data, their PubMed identifier (PMID), or

other relevant IDs or links
Experimental design Design specifications; type of replication (biological, technical, time

points); grouping of subjects; samples or replicates; randomization;
comparisons; other salient design attributes

Sample description Description of samples
Tissue/cell type ID For example, BRENDA
Localization ID For example, GO
Condition ID DOID, text

Experimental methods Description

Sample prep description Description of steps taken, kits used
Platform type For example, Microarray, LC-MS/MS, GC-MS, sequencing platform
Instrument name For example, LTQ-Orbitrap, psi-MS ontology, HiSeq, IonTorrent, chip

name (microarray)
Instrument details For example, Ion source, mass analyzer
Instrument protocol For example, Fragmentation method (CID, HCD, ETD), MS/MS scans per

MS scan, sequencing cycles, paired ends, single reads, hybridization
methods (microarray)

Data processing Description

Processing/normalization methods/software Description of processing and normalization methods & software
Sequence/annotation database Source, version or date
ID method/software Name of search engine used + post processing to ID molecules
ID/expression measures For example, Thresholds and cutoffs for ID, spectral counts, peak area,

reads, log2 expression
Data analysis method/software Methods and software used for expression analysis, error estimation
I/O data file formats List of file formats for raw and processed data (e.g., txt, xml, etc)

specifications and software tools to ensure readability
Additional Information Any additional information related to the experiment

ID, identification.
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datasets) in their entirety constitute essentially a whole new
data type. Supplied with detailed metadata, these data could
become a part of a greater, well-documented collage of data
within a specific domain. Because of the large amount of data
and the complexity of data acquisition, it is exceedingly
difficult to capture, disseminate, and interpret the metadata.
Generally, minimal reporting requirements are aimed at en-
abling replication of an experiment, a concept that is not
easily applied to the longitudinal personal omics studies.
Reuse of data can be enabled with more succinct and concise
reporting.

The checklist we propose, therefore, has a simple structure
covering four concise sections: experiment information, ex-
perimental design, experimentalmethods, and data processing.
The experiment information section includes details of the lab,
funding sources, data identification, and a brief abstract to
address why the experiment was done. The experimental de-
sign section is meant to capture the high-level data about the
experiment and its statistical design, including sample selec-
tion, replication, and randomization. The experimental meth-
ods section contains details about instrumentation and sample
preparation. The data processing section captures information
regarding methods and tools used in experimental data pro-
cessing and data analysis (see Table 1).

The metadata captured by this checklist will serve as in-
terlocking bridges for data harmonization. Therefore the
checklist focuses on details of the experimental design and
subsequent data analyses. In multi-omics studies, the re-
searcher would fill a checklist for each omics data-type
measured. As test cases, two datasets of the integrative per-
sonal multi-omics study were used (Snyder, 2013). The
proposed checklist integrates existing ontologies and stan-
dards in order to standardize terminology and simplify data
input. In its short, structured form, the checklist captures
important experimental parameters and strikes a balance
between comprehensiveness and ease of use. As such, the
checklist can serve as a guide to the design of omics studies.

Implementation of this checklist will enable efficient
portability and meta-analysis of the data, as well as trans-
parent communication and greater reproducibility of omics
studies. Yet the checklist is just the first step toward full
utilization of the data. Traditional publication avenues and
new data publications, for example, OMICS Journal of In-

tegrative Biology, Journal of Proteome Research, Big Data,
eLife, and Scientific Data, could test and adopt the format
to ensure that the crucial information needed to allow data
to be harmonized for broader usage is published (OMICS,
2013; Journal of Proteome Research, 2013; eLife, 2013).
The assessment of the metadata quality and the data they
accompany could be done through community resources
like PubMed Commons (PubMed Commons, 2013; Swartz,
2013).

Data submissions to single omics databases such as, for
example, ArrayExpress and GEO for transcriptomics, or
PRIDE and ProteomeXchange for proteomics, would benefit
from both additional omics metadata within the given data-
base and robust harmonization with other data-types in other
databases (Rustici, 2013; Barrett, 2013; Vizcaino, 2013;
ProteomeXchange, 2013). The checklist could also aid sub-
missions to multi-omics databases, data repositories, or data
clouds. Examples include data clouds, such as The Open
Science Data Cloud; data repositories, such as Dryad for raw

data; and MOPED for processed data (Open Science Data
Cloud, 2013; Dryad, 2013; Higdon, 2013; Kolker, 2012a).
When compatibility and sharing of data and metadata cease
to be an issue, a deeper understanding of cells, organisms, and
their communities will ensue.

Conclusions

The proposed metadata checklist offers a much-needed
and balanced approach to bring about data harmonization
across omics studies. This is accomplished while also
maintaining the flexibility needed to adapt to complex and
ever-evolving study designs and omics application contexts
in the post-genomics era of the life sciences.
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