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Introduction

With a great amount of online communities generating social media contents constantly 

as a high speed, understanding sentiments in social media contents is valuable for cus-

tomers, business owners, and other stakekholders. Sentiment analysis has become the 

most crucial application in the field of Natural Language Processing (NLP) [1–4]. Par-

ticularly, understanding explicit or implicit sentiments expressed in social media con-

tents is one of the most popular sub-areas in sentiment analysis. Performing sentiment 

analysis toward social media contents is definitely a big data analytics task. Early stud-

ies on sentiment analysis classify texts in a certain linguistic unit as positive, negative, 

or neutral—assuming a sentence is a self-contained unit in terms of expressing senti-

ments. Recent studies extend traditional sentiment analysis methods by assuming that 
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sentiments are expressed toward specific aspects (e.g., features/characteristics of prod-

ucts/services). This type of analysis is termed as the Aspect Based Sentiment Analysis 

(ABSA), which employs supervised machine learning techniques as the classification 

tools [5]. Taking the sentence, “I enjoyed this restaurant because of 

the chic atmosphere”, as an example. The positive sentiment (i.e., enjoyed, chic) is 

expressed toward a certain aspect (e.g., atmosphere).

Although, due to the design of the ABSA methods, there are three major shortcom-

ings. Firstly, they can only classify instances (e.g., sentences) to one of the pre-defined 

classes (e.g., aspect-sentiment pairs) [6]. However, consumers may express sentiments 

toward one or more aspects in the social media contents. For instance, a sentence “the 

food quality is decent, but the price is very steep” contains two 

aspect-sentiment pairs: “food, positive” and “price, negative”. Thus, ABSA should some-

times be treated as a multi-label classification problem, whereas an instance is classi-

fied to a subset of the predefined classes. Secondly, people sometimes on social media 

express sentiments to the entity itself (e.g., restaurants, movies), rather than a specific 

aspect of the entity (e.g., food of a restaurant, or cast of a movie). For example, in a sen-

tence “I like [movie name] as a horror movie”, the reviewer expresses 

positive sentiment toward the movie, with the movie being referred to as a horror movie. 

The ABSA methods typically cannot handle this type of analysis, because unlike in the 

context of ABSA (where sentiments are expressed toward certain aspects), the aspects 

and sentiments are independent of one another in this context. Last but not the least, 

due to the supervised nature of the classification techniques, a relatively large set of 

labelled data is required to train the machine learning models to achieve satisfactory 

results. However, quality labelled data is scarce in a variety of domains.

In order to address the aforementioned limitations, this study makes several research 

contributions toward the domains of sentiment analysis and transfer learning. Firstly, we 

extend recent ABSA methods by introducing the multi-label ABSA method. Secondly, 

we propose a new sentiment analysis method, which classifies textual contents into pre-

defined sentiment classes at a comprehensive linguistic level (e.g., documents), with 

considerations of the entity aspects. The entity aspects, unlike the aspects used in ABSA, 

are the aspects describing the entity as a whole (e.g., types of wines, genres of mov-

ies). We term this type of sentiment analysis as Aspect Enhanced Sentiment Analysis 

(AESA). Thirdly, we extend two recently released transfer learning models, namely BERT 

and XLNet, by making them as the analytical vehicles for multi-label ABSA and AESA 

classification problems. To the best of our knowledge, this is the first study using trans-

fer learning based approaches for multi-label ABSA and AESA tasks. We extensively 

evaluate the proposed approach using data from several different domains. The empiri-

cal results from the experiment show the superiority of our approach against a variety 

of baseline approaches. Additionally, this study also makes following impacts toward 

practitioners. Firstly, we propose an end-to-end solution for the multi-label sentiment 

classification problem, which is able to yield quality results without additional preproc-

essing of the data or the transformation of the problem. Secondly, our approach takes 

social media contents at different linguistic levels as the raw input, and yields quality 

ABSA/AESA classification results, with only limited number of epochs in model train-

ing. Lastly, we minimize human biases introduced in the analysis and relax the heavy 
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requirements of labelled data, by using the transfer learning models, which rely on the 

pre-trained deep learning models. Our proposed approach can be used to develop auto-

mated tagging schema that can be used in different domains, or other big data analytics 

applications (e.g., automated query machines).

Related work

Aspect based sentiment analysis

Sentiment analysis refers to the process of extracting explicit or implicit polarity of opin-

ions expressed in textual data (e.g., social media including online consumer reviews [1, 

7]). Sentiment analysis has been used for information seeking and demand addressing 

needs on the consumer side, whereas for business owners and other stakeholders for 

operational decision making (e.g., branding, preventive/reversal actions) [5]. Traditional 

sentiment analysis focus on extracting opinion polarities at a coarse level, which can-

not fully satisfy aforementioned purposes. Sentiments are normally domain depend-

ent (e.g. delicious indicates positive sentiment in the food domain, where it does not 

indicate any sentiment in the laptop domain). Additionally, consumers tend to express 

their sentiment regarding/associated to specific features or aspects of different goods or 

services. Extracting sentiments with consideration of the associated aspects is termed 

as Aspect Based Sentiment Analysis (ABSA) [8]. ABSA brings additional values to dif-

ferent audiences: users can better align their preferences based on sentiments and the 

associated aspects (e.g., a customer prefers the superior service over the chic ambience 

when selecting a restaurant); for business owners, sentiments toward different aspects 

can assist them making finer grained decisions of business operations (e.g. a restaurant 

owner focuses on the food quality rather than the location based on the customers’ col-

lective preference). Compared to traditional sentiment analysis methods, it is evidential 

that ABSA provides additional values to the stakeholders.

There are two major groups of ABSA methods, namely lexicon based and machine 

learning based [5]. For lexicon based methods, both sentiment and domain-specific 

aspect lexicons are required in the analyses. For example, a recent analysis relied on 

sentiment lexicons (i.e., dictionaries) containing Chinese words to extract aspect based 

sentiments from micro-blogs [9]. Machine learning based methods utilize unsupervised 

and/or supervised learning techniques to extract aspects and sentiments from textual 

contents. For example, Siering et al. [6] utilized text statistics and linguistic information 

to extract a variety of aspects from airline company reviews, then they trained the super-

vised classifiers to assign sentiments to different aspects, for the purpose of explaining 

and providing recommendations to (potential) customers. Additionally, Akhtar et  al. 

[7] designed an optimizer-based feature selection method to extract aspects terms from 

texts, then an ensemble machine learning model was trained to classify sentiments 

toward extracted aspects.

Given the state-of-the-art ABSA methods, several limitations can be identified within 

the machine learning based methods:

• Although lexicon based methods do not require any training, they suffer from infe-

rior performances with respect to accuracy due to the limited coverage of the lexi-
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cons. In addition, lexicon based methods are not applicable to domains that the 

definitive lexicons are non-existent.

• In order to use supervised machine learning techniques in ABSA, a fairly large 

labelled training dataset is required. Obtaining such dataset may be time consuming 

and labor intensive. In addition, unsupervised machine learning techniques do not 

require labelled training data, yet it is difficult to guarantee satisfactory performances 

from them.

• A majority of machine learning based ABSA methods follow a two-step fashion: 

treating classification of aspects and sentiments as separate steps. It is more efficient 

to treat both steps in a holistic fashion, to avoid separating the explicit or implicit 

logical/semantic connects between them.

• Several prior related studies extract aspects and sentiments at word level [6, 9]; while 

other studies rely on linguistic patterns among words [5, 10]. However, it is benefi-

cial to treat sentences as sequences (of words) to maintain the semantic meanings in 

them.

• In some domains, opinion polarities are not directly expressed toward aspects of 

products/services, rather than the entities being reviewed (e.g., restaurants, movies). 

However, these sentiments may be expressed toward the entities, along with certain 

aspects in consideration (e.g. a certain type of restaurants, or a certain genre of mov-

ies). Existing traditional sentiment analysis and ABSA methods have overlooked this 

type of analyses largely.

Multi‑label classification

As a variety sources of data (e.g., text, images, videos) being used in the field of machine 

learning, new applications have been designed to learn from these data sources. Such 

applications include text classification, and semantic annotation of images and videos. 

Traditional single-label based machine learning techniques have been proven inade-

quate in these applications. For example, an image may contain multiple objects to be 

detected, or a text excerpt may discuss multiple topics in a document. Thus, multi-label 

classification techniques, which classify instances to a subset of pre-defined classes, have 

attracted increasing attention recently [9]. Existing multi-label classification methods 

can be grouped into three categories, namely problem transformation based methods, 

algorithm adaptation based methods, and ensemble model based methods.

As suggested by the name, the problem transformation methods transform a multi-

label classification problem into one or multiple single-label classification problem(s). 

In the training phase, multi-label training data are transformed into single-label data, 

on which a single-label classifier, where a plethora of traditional machine learning 

techniques can be applied to, is trained. In the testing phase, multiple single-label 

predictions are made on each instance in the testing set. The simplest strategy in this 

category is the one-versus-rest (OR) strategy, which transforms a multi-label clas-

sification problem into multiple single-label classification problems, in which each 

instance in the dataset is classified into one label, or the rest of the labels in the set. A 

closely related strategy is Binary Relevance (BR) [11], in which a multi-label classifica-

tion problem is transformed into an example belongs to one label or not. Building on 
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the BR strategy, a new strategy namely Classifier Chains (CC) [12], which also classify 

whether an example belongs to one label or not, in a chain-like structure (where each 

link is a binary classifier, and the prediction of a subsequent classifier is dependent 

on the predictions of all predecessors). Compared to BR, CC can capture the inter-

dependencies between each pair of labels. Another type of the problem transforma-

tion methods transform the label space (the space containing all labels), rather than 

the data. This type of problem transformation strategy is called Label Powerset (LP) 

[13], in which each example is classified to a power set (subset) in the label space. A 

powerset is a combination of multiple (inter-related) labels, and the combined power-

sets are set as new labels so that examples in the dataset can be classified to.

The second group of multi-label classification methods are algorithm adaptation 

methods. Unlike problem transformation methods that work as wrappers over tra-

ditional machine learning techniques, algorithm adaptation methods transform tra-

ditional machine learning techniques so that they are capable of handling multi-label 

classification problems. For example, k Nearest Neighbors (kNN), as a popular tra-

ditional machine learning technique, has been combined with the BR strategy, and 

results in an algorithm called BRkNN [14]. Similarly, Zhang and Zhou [15] proposed 

MLkNN by relying on the maximum a posteriori (MAP) principle on trained kNN 

models to determine the proper label set that a testing example belonged to. Neu-

ral Network is another type of popular machine learning techniques. Benites and 

Sapozhnikova [16] proposed a fuzzy Adaptive Resonance Associative Map (ARAM) 

adaptation to the neural networks so that the proposed algorithm is useful for multi-

label classification problems.

The last group of multi-label classification methods are ensemble methods. In the field 

of machine learning, ensemble models typically refer to stack and/or combine different 

models together for better performances/results. In the context of multi-label classifica-

tion, the ensemble methods are developed based on the aforementioned problem trans-

formation and algorithm adaptation methods. The most well-known methods in this 

group include Random k-Labelsets (Rakel) [13] and Ensemble Classifier Chain (ECC) 

[17]. Rakel trains each base classifier based on a small random set of labels, and then 

train a single-label classifier to predict the powerset of each random subset. ECC treats 

CC as base classifiers, the final prediction is obtained by summing up the prediction by 

labels and then comparing the results to the threshold in order to select relevant labels.

In the context of multi-label sentiment analysis, there are a few limitations that can 

be identified from them:

• Traditional multi-label classification approaches require either additional process-

ing of the data (i.e. calculating posteriori rules for ML-kNN) or transformation of 

the problem (e.g. OR/BR/CC transforms the classification problem), which may 

increase computational complexity and/or possibility of introducing human biases 

(e.g. sequence of classifiers in CC).

• In order to let users trust the (multi-label) classification results, the results need to 

be at a satisfactory level, with regards to different evaluation metrics. It is deemed 

necessary to search for a better performing approach that is able to outperform 

traditional multi-label classification approaches (e.g., [9, 17]).
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Transfer learning

Transfer learning uses domain-specific data to fine tune the pre-trained deep learn-

ing models. The benefit of conducting transfer learning is twofold: The time spent 

in training is much less than the time used in training from scratch. In computer 

vision, it is a common practice to use transfer learning: Parameters of the fully con-

nected layers of a pre-trained CNN are replaced with randomly initialized values. A 

fine-tuning process is then performed by updating the new values only, using back-

propagation, while the parameters in the convolutional layers stay untouched [18, 19]. 

Transfer learning in NLP, however, has been shown as a somewhat difficult task. One 

early successful case involves fine-tuning the pre-trained word embeddings [20], has 

had a large impact in practice. Howard and Ruder [21] proposed a transfer learning 

method that fine-tunes a three-layered LSTM language model [22] for text classifica-

tion. In the first step of their approach, sentences of a training set are used to fine-

tune the parameters in the LSTM layers. The labels of the training set are then used in 

step two to update the parameters of the fully connected layers. This approach reuses 

the embeddings of the original language model. Radford et al. [23] used the Genera-

tive Pre-trained Transformer (OpenAI GPT) to achieve state-of-the-art results on 

many sentence-level tasks from the GLUE benchmark [24].

However, the aforementioned transfer learning models do not support multi-label 

classification natively. It is because the softmax function used in the output layers 

of the models only support single-label classification tasks. Essentially, the softmax 

function produces a probability distribution over all the classes, where only one class 

with the highest probability will be selected as the output. This limitation must be 

addressed since multi-label classification tasks require the predictions to have more 

than one classes.

Methodologies

Multi‑label aspect based sentiment analysis

To address the first shortcoming of the ABSA methods, we propose a multi-label 

classification extension to the existing ABSA methods. Essentially, those existing 

ABSA methods classify any one example (i.e. a review, a sentence) in a dataset into 

one of the pre-defined aspect/sentiment pairs (i.e., class); while the multi-label ABSA 

method proposed in this study classifies one example into a set of aspect/sentiment 

pairs (i.e., a set of classes). The details of multi-label classification mechanism used 

in our multi-label ABSA approach are discussed in “Our approach” subsection below.

We report a few examples to illustrate the labelling mechanism of the proposed 

multi-label ABSA method, in Tables  1, 2. Specifically, the second review example 

describes the food positively, the service negatively without mentioning the rest of 

other aspects. The review is then labelled as “10000000001000000000” (see Table 2). 

As for the experiment, we use the reviews that at least cover one of the aspects (i.e., a 

review must have at least one class labelled as 1). In other words, they are the reviews 

where the classes cannot be all zeros.
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Multi‑label aspect enhanced sentiment analysis

According to Do et al. [25], the study of sentiment analysis can be done at three dif-

ferent levels—document, sentence, and entity/aspect. Traditional sentiment analysis 

studies focusing on the document or sentence level assume that there is only one 

topic existing in the document/sentence, where the sentiment is expressed on. Thus, 

techniques like ABSA have been developed to bring sentiment analysis to a finer 

granularity: where sentiments are extracted along with different entities/aspects.

Despite the success of ABSA, in some scenarios, people are more interested in 

the overall sentiment expressed at the document (i.e., review) level, while also cap-

turing all the aspects in the document. For example, when a potential patron reads 

an online user review of a movie or a restaurant, she concentrates on whether the 

review recommends the movie/restaurant or not that is expressed as the overall 

sentiment. In the meantime, the reader cares about different entity aspects being 

reviewed. That is she may only be interested in American restaurants (type), or hor-

ror movies (genre). In other words, the reader focus on the overall sentiment of an 

entity being reviewed, along with certain entity aspects. The key difference between 

this type of analysis and ABSA is that: in ABSA, sentiments are expressed toward 

certain aspects, whereas the analysis here attempts to enhance document-level sen-

timents with aspects discussed in the document. Essentially, the document-level 

sentiments and the aspects are independent of one another. We define this type of 

sentiment analysis as Aspect Enhanced Sentiment Analysis (AESA). We use an exam-

ple (a wine review) in Fig.  1 to illustrate the proposed AESA method. It is worth 

noting that in Fig.  1, different aspects (e.g., winery location, variety of wine, and 

taste) of the entity (wine) are discussed (labelled in bold, underlined font), but no 

specific sentiments are expressed toward them. However, an overall positive senti-

ment (expressed as 94 points) are reported with the review. As a result, the labels 

are processed into a binary vector as shown in the lower part of Fig. 1. Since there 

are multiple 1s in the vector (a review must contain discussions of certain aspect(s) 

and the overall sentiment), AESA is by nature a multi-label classification problem.

Table 1 Examples of reviews and labels in multi-label ABSA

Reviews Labels

The food was delicious service always came quickly with a 

joke or a smile and the portions are unbelievably HUGE
10000000100000000000

The food selection was fantastic but waiting over hour to 

be seated
10000000001000000000

Everything that I have eaten here has put me in a coma of 

ecstasy so please bring a designated driver to take you 

home

10000000000000000000

They also have a cheap lunch buffet with Pad Thai and 

other dishes one of my favorite dishes there are the 

Garlic Wings

01001000000000000000

I really like the atmosphere here 00000000000010000000

Let me preface the following review by saying that if I 

didn’t absolutely have a terrible experience I wouldn’t 

have said anything

00000000000000000010
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Our approach

Feature selection is one of the major challenges in machine learning. It is even more 

challenging in multi-label classification than single-label classification, since it should 

extract features representing all the aspects and the sentiments. Transfer learning 

uses pre-trained deep learning models, where the feature selection process has been 

naturally embedded due to the use of raw data.

The transfer learning models used in this study are BERT [26] and XLNet [27]. Both 

BERT and XLNet have been reported as the state-of-the-art approaches in NLP-

related learning tasks. Both models are essentially based on an encoder–decoder net-

work, namely a transformer [28]. The original transformer’s encoder network uses 

a six-layered neural network, where each layer has two sub-layers: a multi-headed 

attention layer and a single-layered feed-forward network. Since the transformer was 

proposed for learning long time dependencies without using recurrent layers, it uses 

positional encoding in addition to word embedding for its input:

where pos is the position of a certain word token, i is the dimension, dmodel is the 

embedding dimension. For example, let us consider a sentence that has four words, 

{w0,w1,w2,w3} . Let dmodel = 4 and pos = 2 , the positional encoding of the third word, 

w2 , is computed as follows:

A position-dependent signal is added to each word-embedding to incorporate the order 

of words. This addition not only avoids destroying the embedding information but also 

adds the vital position information.

Following the input, a number of self-attentions are then calculated in the multi-

headed attention layer. The following shows the computation of one self-attention:

(1)

PE(pos,2i) = sin

(

pos

10, 0002i/dmodel

)

PE(pos,2i+1) = cos

(

pos

10, 0002i/dmodel

)

(2)

[

sin

(

2

10, 0000

)

, cos

(

2

10, 0000

)

, sin

(

2

10, 000
2
4

)

, cos

(

2

10, 000
2
4

)]

Fig. 1 An example of Aspect Enhanced Sentiment Analysis
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where X is an n × m matrix representing the embedding of one sentence that has n 

words; m is the embedding dimension that is set to 512; WQ , WK , and WV are three 

m × m matrices. In the original encoder, a total number of 8 attentions are calculated 

and then summarized into one, before passing through one single-layered perceptron. 

This attention mechanism, when used in generating encoded vectors, allows a current 

word to pay attention to the other words that either to its left or to its right. This is the 

reason that the transformer’s encoder is referred to as a bidirectional model. In terms of 

the configurations, both models uses a 24-layered transformer encoder, where each layer 

consists of a 16-headed self-attention layer in tandem with a single-layered feed-forward 

network. Both models share the same embedding dimension of 1024.

Despite the similarities shared by BERT and XLNet, parameters of BERT are obtained 

through the masked language modeling, where the model is trained to predict some 

masked-out words in given sentences. For example, in the original sentence, a cat 

sat on a mat, the word cat will be replaced with a mask token, [MASK], at a prob-

ability of 80%; the word will be replaced with a random word (e.g., a dictionary 

sat on a mat), at a probability of 10%; the sentence will not be changed at all 10% of 

the time. Instead of predicting the masked-out words, XLNet adopts a different language 

modeling approach, namely the permutation language modeling.

Given a sentence that has n words, there exist n! different word permutations. XLNet 

samples a permutation a time and tries to predict the target words based on the words 

that are permuted prior to the target words. As a concrete example, let us consider the 

sentence Tom Sawyer rolls the boat, where Tom Sawyer are the target words. 

In this case, BERT has the objective function of:

Suppose that XLNet samples the permutation: [rolls, the, boat, Sawyer, 

Tom]. The objective function of XLNet is:

In general, XLNet is able to cover more dependencies by not masking out the target 

words, and the permutation language modeling allows the model to gather more infor-

mation from all positions.

Technical novelties

In order to extend the existing transfer learning models so that they fit the multi-label 

classification nature of this study, we make the following three enhancements to them. 

Specifically, the technical novelties proposed in this study include:

• The enhancement to the output layers’ activation function.

• The enhancement to the models’ loss functions.

• The enhancement to the label encodings.

(3)softmax

(

(X · WQ) · (X · WK)⊤
√

dk

)

· (X · WV)

(4)JBERT = log(p(Tom|rolls the boat)) + log(p(Sawyer|rolls the boat))

(5)JXLNet = log(p(Sawyer|rolls the boat)) + log(p(Tomer|Swayer rolls the boat))
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The original setup of BERT and XLNet uses the softmax function as the output layers’ 

activation to compute a conditional probability distribution (Fig. 2), where the sum of 

all the probabilities is equal to 1. The softmax function is the best choice as the activa-

tion function, if the neural network is trained to perform single-label classification: 

Only one class with the highest probability is selected as the classification result. In 

this case, the classes are mutually exclusive.

However, since both ABSA and AESA are essentially multi-label classification prob-

lems, where the classes are not mutually exclusive and the classification result should 

include multiple classes with the probabilities higher than a threshold (Fig.  3). The 

nature of the analysis requires us to find a different activation function that computes 

the stand alone probability for each neuron in the output layer, rather than comput-

ing a probability distribution over all the neurons. Another requirement is that the 

function should be continuously differentiable, hence, we implement the logistic sig-

moid function, f(x), as the output layers’ activation function for the transfer learning 

models:

Fig. 2 A probability distribution based on the softmax activation

Fig. 3 A group of probabilities based on the sigmoid activation
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Originally, both transfer learning models use the categorical cross entropy as the loss 

function. The equation of computing the loss of the ith training instance, using the cat-

egorical cross entropy, is given as the following:

where prob(ŷ = yi) is the conditional probability of the correct class, yi , given by the 

softmax activation. Such loss function only measures the loss made by a single class that 

is when ŷ = yi . When there are multiple classes need to be considered, we will need to 

implement a different loss function that measures the loss for all classes:

 where d = W
C

· C
⊤ and d ∈ R

k . Notice that the sigmoid function is element-wise, 

meaning that every element in d is used as a single input for the computation. yij = 1 , 

when j is the correct class; yij = 0 , when j is the incorrect class. Therefore, the loss is 

computed for all classes. As the training process minimizing the loss, it is equivalent to 

maximize f (dij ) , when j is the correct class.

The general loss function is defined as:

where m is the batch size; �
2

· ||W||2 is the L2 regularization term to control overfitting, in 

which � is a constant parameter and ||W||2 represents the squared L2 norm of the train-

able parameters in both models.

Unlike in the single-label classification, where the labels are integers representing 

the correct classes, the labels in multi-label classification are in the multi-hot encod-

ing format (Table  2). Since BERT and XLNet are not built with the considerations 

of multi-label classification, we are required to make another enhancement so that 

the multi-hot encoding can be used as the labels. The enhancement is termed as the 

reversible binary encoding.

Specifically, each multi-hot encoding is firstly transformed to an integer according 

to the positions of the 1s. For instance, the label in Table  2 would be transformed 

into 524, 800 = 219 + 29 . The integer can then be processed by the models’ data pipe-

lines. Right before the computation of the losses, the integer is then transformed 

back into its multi-hot encoding format. Additionally, we discover that this type 

of encoding also alleviates the bottleneck of GPU computation. Since the encoded 

labels use less system memory than their original format, when the labels are being 

transmitted to the GPU, the process runs faster than directly using the multi-hot 

encoding.

(6)f (x) =
1

1 + e−x

(7)Li = −yi · log(prob(ŷ = yi))

(8)Li = −

k∑

j=1

(yij · log(f (d
i
j )) + (1 − yij) · log(1 − f (dij )))

(9)J =
1

m
·

m
∑

i=1

(

Li +
�

2
· ||W||2

)
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The analytical pipeline

Figure  4 shows a concrete example of our analytical pipeline. Given a piece of raw 

input text, such as great food and service, the raw input will first be trans-

formed into a stack of embeddings (E) that have a size of 5 × 1024 . [CLS] is a special 

word embedding token indicating the start of a text sequence. The embeddings are 

then used as the input of a 24-layered transfer learning model, each of which com-

putes 16 self-attentions in order to encode E. The final encoded output has the same 

exact size as the input ( 5 × 1024 ). The model then uses the encoded output of the 

token, [CLS] , to map the encoded output onto the classes, where the probability dis-

tribution for all the classes is computed as:

where C⊤ is the activation of the final single feed forward layer that has a size of 

1 × 4096 ; WC is a 4096 × k matrix that is used to map C onto k classes.

Experiment setup and result analysis

Datasets

We collected three datasets from social media in different domains in order to evalu-

ate our proposed approach. The first dataset [29], containing restaurant reviews, was 

collected from Yelp.com. The Yelp (YP) dataset was collected to demonstrate how the 

approach can be applied to the multi-label ABSA tasks. Due to the vast amount of 

restaurant review data (over 5 million reviews) available in the dataset, we selected 

the experiment data from several major metropolitan areas in U.S., including: Pitts-

burg, PA, Las Vegas, NV, and Charlotte, NC to ensure data volume and cultural/geo-

graphical coverage. We chose sentence as the unit of analysis in this experiment. Due 

to the complexity of manually labelling sentences with aspects and sentiments, we 

randomly sampled 10,000 sentences. Those sentences were labelled by three human 

coders, using a well-adopted schema in other related studies [30]. Five different 

aspects are defined for each review. Those aspects are: food (including drinks), price 

(including value), service, ambience (including location), and miscellaneous. There 

are four types of sentiments within each of the aspect: positive (pos), neutral (neu), 

negative (neg), and conflict (con). We define the conflict sentiment as both positive 

(10)P(k|E) = f (C⊤ · WC)

Fig. 4 The analytical pipeline of the proposed approach
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and negative sentiments are expressed toward the same aspect in the same sentence. 

Each review has 20 classes associated to itself. As a result, we are able to obtain 8172 

labelled sentences from the random sample. The labelling details of the YP dataset are 

illustrated in Tables 1 and 2.

The second dataset (Wine Reviews, WE) [31], containing descriptions and meta 

data of various types of wines, was scraped from winemag.com and made available 

on Kaggle. The third dataset (Rotten Tomatoes Movie Reviews, RT), was scraped 

from Rotten Tomatoes, a movie review website, and made available on Kaggle [32]. 

We prepared the WE and RT datasets to evaluate the performance of our proposed 

approach for the multi-label AESA tasks. In WE, the classes include the top 10 most 

popular countries, where the vineyards are located, the top 10 most popular wine 

varieties, and 3 sentiment polarities. Each example in the WE dataset is labelled with 

at least three 1s (one for country, variety, and sentiment, respectively). The WE data-

set contains 80,638 wine reviews, after filtering samples without valid labels. In RT, 

the classes include the genre(s) and the sentiment polarities. It is worth noting that 

Rotten Tomatoes labels a movie review as “fresh” (positive) or “rotten” (negative), and 

we adopted these sentiment categories in our experiments. In addition, we ruled out 

2 genres since there are too few reviews that support them. In total, 48,755 movie 

reviews are included the RT dataset under 21 genres and 2 sentiment categories. Each 

document in RT has a label that has at least two classes labelled as 1. In summary, the 

aspects and sentiment for both WE and RT are listed in Tables 3 and 4, respectively. 

Both the WE and RT datasets are multi-labelled. The labelling details of the WE data-

set are illustrated in Fig. 1, whereas the labelling of the RT dataset is similar. For all 

three datasets (YP, WE, and RT), we randomly select 80% of the data as the training 

sets, and the remainder 20% as the testing sets. We report the classes of the WE and 

RT datasets in Tables 3 and 4, respectively.

Table 3 Aspects and sentiment of the WE dataset

WE

Aspect Sentiment

U.S.A., Australia France, 

Austria Chile, Argen-

tina Portugal, Italy New 

Zealand,Spain (Country)

Chardonnay, Pinot Noir 

Cabernet Sauvignon 

Bordeaux-style Red Blend 

Red Blend,Zinfandel 

Sauvignon Blanc,Syrah 

Riesling,Merlot (Vari-

ety)

Positive Neutral 

Negative

Table 4 Aspects and sentiment of the RT dataset

RT

Aspect Sentiment

Action and Adventure, Animation Art House and Interna-

tional Anime and Manga, Classics Comedy, Documentary, 

Drama Cult Movies, Gay and Lesbian Faith and Spiritual-

ity, Horror Kids and Family Musical and Performing Arts 

Mystery and Suspense (Genre)

Positive Negative
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Evaluation metrics

Based on the multi-label classification nature of this study, we select four evalua-

tion metrics that are widely adopted in previous studies [9, 17]. The four evaluation 

metrics can be categorized into two groups, namely example based metrics and label 

based metrics. We do not select ranking based metrics, which is another group of 

multi-label classification models, since ranking of labels are not relevant in the scope 

of this study. We use two example based metrics, including the subset accuracy (accu-

racy) and the Hamming loss (Hamming loss), and two label based metrics, including 

the macro-average F1 score (macro F1) and micro-average F1 score (micro F1).

The subset accuracy is defined as the fraction of correct predictions, in which the 

predicted label set and the corresponding ground truth label set are exactly matched, 

in all the predictions (see Eq. (11)). The value of accuracy ranges within [0, 1]—the 

higher value indicates more superior performance.

The Hamming loss is defined as the fraction of incorrectly classified labels, normalized 

over the sample that it is reported from (see Eq. (12)). The loss value also ranges within 

[0, 1]; lower values indicate more accurate predictions.

where N and k are the total number of testing instances and the number of classes, 

respectively; yij is the label of the jth class in the ith testing instance; ŷij is the predict of yij .

The Micro average is computed as the average of micro-averaging precision and 

recall, which are defined as follows:

where ci stands for a particular predicted class (e.g. an aspect-sentiment pair). Similarly, 

the Macro average is computed as the average of macro-average precision and recall:

With the precision and recall (macro- or micro-average) calculated, we can use follow-

ing equation (see Eq. (17)) to calculate the Macro and Micro F1 scores, respectively.

(11)Accuracy =

number of accurately classified examples

total examples

(12)Hamming loss =
1

N · k

N∑

i=1

k∑

j=1

xor(yij , ŷ
i
j)

(13)precisionmicro =

∑
ci∈k

TPs(ci)
∑

ci∈k
TPs(ci) + FPs(ci)

(14)recallmicro =

∑
ci∈k

TPs(ci)
∑

ci∈k
TPs(ci) + FNs(ci)

(15)precisionmacro =
1

k
·

∑

ci∈k

TPs(ci)

TPs(ci) + FPs(ci)

(16)recallmacro =
1

k
·

∑

ci∈k

TPs(ci)

TPs(ci) + FNs(ci)
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The Macro F1 is the average of the harmonic mean of precisionmacro and recallmacro , 

which are measured over each label in the overall label set. The Micro F1 is the harmonic 

mean of precisionmicro and recallmicro , which are averaged over all the instances in the 

dataset and the label sets. The value of Macro/Micro F1 ranges in between 0 and 1—

higher value of Macro/Micro F1 indicates better multi-label classification results. The 

Macro F1 gives equal weight to each aspect, whereas Micro F1 gives equal weight to 

each testing instance.

Experiment setup

Baseline deep learning models

According to [25, 33], we select three most widely applied deep learning models in 

sentiment analysis as the baseline deep learning models, to compare with the transfer 

learning models in performance. Those baseline models include: LSTM, Bi-LSTM (Bidi-

rectional LSTM), CNN + LSTM. LSTM [34], as an enhanced recurrent neural network 

unit, is good at processing sequential information that has long-term dependencies, such 

as text sequences. Rather than processing the information based on only one direction, a 

Bi-LSTM [35–37] is able to process the sequences from both directions. A convolutional 

neural network (CNN) is commonly used in tandem with a LSTM in order to reduce the 

length of sequences, which can significantly facilitate the speed of training [38–40].

Baseline machine learning models

As discussed in "Related work" section, different methods can be used along with tra-

ditional machine learning models for multi-label classification problems. In this study, 

we select OR, LP, BR, and CC (problem transformation), RakelD (ensemble), MLARAM, 

MLkNN, BRkNNa, and BRkNNb [14] (algorithm adaptation) methods to enable the 

multi-label classification capability of base classifiers. Other multi-label classification 

methods are excluded in this article based on their inferior performances in a prelimi-

nary round. An additional point worth noting is that, we include Ensemble Classifier 

Chains (ECC) in our implementation of CC. Similar selection of multi-label classifica-

tion methods can be found in prior related studies [9, 17].

Both linear and non-linear based classifiers were selected in the experiment, which 

are used with problem transformation and ensemble methods. For linear based models, 

we selected Linear Regression (LR) models and linear Support Vector Classifiers (SVC) 

models, while for non-linear based classifiers we select Support Vector Machines (SVM) 

with Stochastic Gradient Descent training (SGD) models and random forest (RF) mod-

els. It is worth noting we also tested that other base classifiers, including (multi-nomi-

nal, Gaussian) Naïve Bayes models, decision tree models, artificial neural networks, and 

SVM models with other kernel functions (e.g., radial basis) in a pilot study. We finally 

selected the four models (LR, SVC, SGD, RF) based on their overall superior perfor-

mances, comparing to other base classifiers. Comparing to prior related studies [9, 17], 

we examined more base classifiers in the experiment.

(17)F1macro/micro = 2 ·
precisionmacro/micro · recallmacro/micro

precisionmacro/micro + recallmacro/micro
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As a result, we selected a total of 24 baseline machine learning models in this experi-

ment, including: 16 problem transformation models (4 method × 4 base classifiers), 4 

ensemble models (1 method × 4 base classifiers), and 4 algorithm adaptation models. 

We select these 24 baseline machine learning models to compare our proposed transfer 

learning based approach to the state-of-the-art multi-label classification models.

Model hyper‑parameters

To select the best hyper-parameters for the baseline deep learning models, we conducted 

a manual grid search over a series of combinations. We tested a number of different layer 

sizes, {32, 64, 128, 256, 512} together with different number of layers, {1, 2, 3, 4, 5} for the 

LSTM and BiLSTM layers. Based on the results of the testing, we selected the best com-

binations that can lead our models to the highest accuracy.

Hyper-parameters of the baseline models are shown in Table 5. Both the LSTM and 

Bi-LSTM models are set to be two layers, with the first layer has a size of 128 and the 

second layer has a size of 256. The CNN + LSTM model has two convolutional layers, 

where each of those has 32 filters with five strides, followed by a single-layered LSTM 

that has a size of 64.

Table  6 shows the hyper-parameters’ setup of both transfer learning models. The 

number of epochs controls the total number of times the models learning on an entire 

training set; the batch size is the number of documents used in each training batch; the 

maximum length allows the maximum number of words in one document to be 128; the 

learning rate is used in the optimization algorithm for updating the parameters in both 

models.

We follow the recommendations from prior related studies [9, 17] with respect to 

hyper-parameter settings, where applicable. Table  7 reports the hyper-parameters of 

three base classifiers used in the baseline machine learning models. No specific hyper-

parameter is set for the SVC model. Additionally, for the RakelD based models, we use 

min(2 × C , 100 ) models, where C is the number of classes is the respective dataset.

Table 5 The setup of the baseline deep learning models

Models Layers Layer sizes

LSTM 2 128 + 256

Bi-LSTM 2 128 + 256

CNN + LSTM 2 (CNN), 1 (LSTM) 32, 5 (CNN)
64 (LSTM)

Table 6 The setup of the transfer learning models

BERT XLNet

Yelp Wine Movie Yelp Wine Movie

Epochs 27 40 10 9 14 8

Batch size 32 16

Maximum length 128 128

Learning rate 2 × 10
−5

2 × 10
−5
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Experiment results

Result analysis of multi‑label ABSA

The result of multi-label ABSA is shown in Table  8, where our proposed transfer 

learning models indeed present the most superior performances: XLNet yields the 

best subset accuracy of 66.61%, followed by BERT with its subset accuracy being 

61.65%; the Hamming losses of BERT and XLNet are also among the lowest, whereas 

Table 7 The setup of the baseline machine learning models

Base classifier Hyper‑parameters

SGD Loss = ‘hinge’, penalty = ‘l2’, α = 1
training_size×5

 , 
maximal iteration = 20, toler-
ance = 1 × 10

−3

LR Solver = ‘lbfgs’

RF Num of trees = 100, maximal depth = 3

Table 8 Experiment results of Yelp reviews

Model Accuracy (%) Hamming loss Macro F1 Micro F1

Proposed models

 BERT 61.65 0.032 0.48 0.70

 XLNet 66.61 0.027 0.56 0.77

Baseline deep learning models

 LSTM 35.66 0.053 0.21 0.49

 BiLSTM 36.88 0.051 0.25 0.49

 CNN + LSTM 19.20 0.056 0.08 0.33

Baseline machine learning models

 SGD + OR 28.69 0.052 0.26 0.47

 LR + OR 15.35 0.051 0.12 0.29

 SVC + OR 27.72 0.049 0.24 0.45

 RF + OR 16.21 0.051 0.14 0.31

 SGD + BR 28.98 0.051 0.26 0.47

 LR + BR 15.35 0.051 0.12 0.29

 SVC + BR 27.72 0.049 0.24 0.45

 RF + BR 16.21 0.051 0.14 0.31

 SGD + CC 39.29 0.055 0.29 0.49

 LR + CC 31.67 0.056 0.16 0.43

 SVC + CC 41.12 0.053 0.26 0.51

 RF + CC 25.09 0.051 0.16 0.40

 SGD + LP 38.09 0.062 0.29 0.45

 LR + LP 39.00 0.060 0.20 0.45

 SVC + LP 40.44 0.059 0.29 0.47

 RF + LP 37.92 0.062 0.29 0.45

 SGD + RakelD 38.09 0.062 0.29 0.45

 LR + RakelD 39.00 0.060 0.20 0.45

 SVC + RakelD 40.44 0.059 0.29 0.47

 RF + RakelD 37.92 0.062 0.24 0.44

 BRkNNa 5.27 0.103 0.01 0.09

 BRkNNb 24.16 0.060 0.19 0.36

 MLARAM 20.50 0.080 0.02 0.26

 MLkNN 24.86 0.054 0.08 0.31
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the Macro/Micro F1 of the models are among the highest. Both models significantly 

outperform the rest of other models. BERT, the second best model, leads the third 

best model, SVC + CC, by a significant margin of 20.53%. Such results prove that the 

proposed transfer learning models are capable of multi-label ABSA, and they outper-

form mainstream deep learning and machine learning models.

The subset accuracy only measures the performance by examples, a finer grained 

analysis should be considered since different examples may have different amount 

of 1s in their labels. We report the label group accuracy (LGA), which measures the 

accuracy in a certain label group. A label group contains examples that have the same 

amount of classes that are labelled as 1. The proposed label group accuracy is defined 

as follows:

There are three label groups found in YP, which are 1-label group (only one class 

labelled as 1), 2-label group, and 3-label group. Figure 5 shows the LGA of the top three 

models. Both transfer learning models consistently outperform the SVC +  CC model 

in all the label groups, with XLNet yielding the best accuracy in the 1-label and 2-label 

groups. BERT performs the best in the 3-label group, where it achieves an accuracy of 

52.63%.

We also report the accuracy achieved by those three models, based on certain classes 

across the entire testing set. In particular, we select the top-three most frequent classes 

in YP, namely Food-Positive, Food-Negative, and Misc-Positive. Table 9 shows the accu-

racy values of respective models in each class, where the transfer learning models con-

sistently lead in the classification performance. With the proposed transfer learning 

(18)LGA =

number of accurately classified examples in a label group

total examples in a label group

Fig. 5 The label group accuracy of YP
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models excelling in the majority classes, it exhibits the proposed approaches are capable 

of capturing multi-label aspect based sentiments from online consumer reviews.

Result analysis of multi‑label AESA

The results of multi-label AESA are shown in Tables  10 and 11, respectively. In WE, 

BERT yields the best subset accuracy of 79.13%, followed by XLNet’s 78.41%. RF + LP 

Table 9 Class based accuracy of the top-three classes in the YP dataset

Class Model

XLNet BERT SVC + CC

Food-Positive 92.11 89.60 78.35

Food-Negative 94.25 93.45 90.42

Misc-Positive 97.06 97.25 89.12

Table 10 Experiment results of wine reviews

Model Accuracy (%) Hamming loss Macro F1 Micro F1

Proposed models

 BERT 79.13 0.021 0.86 0.92

 XLNet 78.41 0.021 0.86 0.92

Baseline deep learning models

 LSTM 58.01 0.037 0.72 0.85

 BiLSTM 56.75 0.039 0.73 0.85

 CNN + LSTM 51.92 0.042 0.64 0.83

Baseline machine learning models

 SGD + OR 34.10 0.053 0.58 0.77

 LR + OR 38.03 0.049 0.65 0.80

 SVC + OR 47.92 0.041 0.77 0.84

 RF + OR 64.97 0.029 0.83 0.88

 SGD + BR 33.81 0.053 0.58 0.77

 LR + BR 38.03 0.049 0.64 0.80

 SVC + BR 47.92 0.041 0.77 0.84

 RF + BR 63.35 0.030 0.82 0.88

 SGD + CC 50.51 0.056 0.62 0.78

 LR + CC 54.24 0.052 0.67 0.80

 SVC + CC 64.12 0.039 0.79 0.85

 RF + CC 68.06 0.030 0.83 0.88

 SGD + LP 58.25 0.051 0.72 0.80

 LR + LP 58.16 0.049 0.84 0.87

 SVC + LP 70.94 0.034 0.84 0.87

 RF + LP 72.54 0.035 0.82 0.87

 SGD + RakelD 46.95 0.052 0.70 0.80

 LR + RakelD 56.13 0.049 0.68 0.81

 SVC + RakelD 57.47 0.038 0.83 0.85

 RF + RakelD 70.82 0.034 0.83 0.87

 BRkNNa 45.91 0.062 0.67 0.76

 BRkNNb 46.13 0.060 0.66 0.77

 MLARAM 50.53 0.044 0.71 0.79

 MLkNN 48.25 0.055 0.68 0.77
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takes the third position across all the baseline models. The Hamming losses and the F1 

scores achieved by the two transfer learning models are among the lowest and among 

the highest, respectively. In RT, XLNet returns to the first position with its accuracy of 

89.86%, followed by BERT’s 87.57%. The third best model, SVC + CC, falls behind of the 

best one by nearly 10%.

All the examples in WE have exactly three classes labelled as 1. This is because a cer-

tain type of wine only belongs to one country, one variety, and can only be associated to 

one sentiment. Hence, the LGA is identical to the subset accuracy in WE. We select the 

top-five most frequent classes to show the models’ performances on each class. Those 

five classes include the top-two most frequent aspects, U.S.A. (country), Pinot Noir 

(variety), and the three sentiment polarities, Positive, Neutral, and Negative. Table  12 

summaries the class based accuracy for each model. Both BERT and XLNet are leading 

the baseline model in terms of all the classes.

Table 11 Experiment results of movie reviews

Model Accuracy (%) Hamming loss Macro F1 Micro F1

Proposed models

 BERT 87.57 0.011 0.95 0.96

 XLNet 89.86 0.009 0.94 0.97

Baseline deep learning models

 LSTM 76.99 0.021 0.87 0.92

 BiLSTM 71.34 0.025 0.82 0.90

 CNN + LSTM 76.73 0.021 0.87 0.92

Baseline machine learning models

 SGD + OR 74.88 0.022 0.94 0.92

 LR + OR 76.11 0.021 0.92 0.92

 SVC + OR 80.78 0.017 0.98 0.94

 RF + OR 73.40 0.023 0.95 0.92

 SGD + BR 75.06 0.022 0.94 0.92

 LR + BR 76.11 0.021 0.92 0.92

 SVC + BR 80.78 0.017 0.98 0.94

 RF + BR 72.07 0.023 0.95 0.92

 SGD + CC 75.16 0.022 0.95 0.92

 LR + CC 76.25 0.021 0.92 0.92

 SVC + CC 80.88 0.017 0.98 0.94

 RF + CC 72.99 0.024 0.94 0.91

 SGD + LP 74.58 0.023 0.94 0.92

 LR + LP 74.36 0.024 0.95 0.91

 SVC + LP 76.08 0.021 0.98 0.92

 RF + LP 72.64 0.024 0.97 0.91

 SGD + RakelD 72.73 0.024 0.94 0.91

 LR + RakelD 73.58 0.025 0.93 0.91

 SVC + RakelD 76.42 0.021 0.98 0.93

 RF + RakelD 72.56 0.024 0.97 0.91

 BRkNNa 71.93 0.025 0.96 0.91

BRkNNb 56.63 0.042 0.89 0.81

 MLARAM 30.85 0.048 0.89 0.82

 MLkNN 61.26 0.029 0.91 0.88
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The LGA of the top three models in RT is shown in Fig. 6. BERT and XLNet take the 

lead in performance in all the label groups, except for the seven-label group, where the 

baseline model performs the best. XLNet shows a slight edge over BERT in the groups of 

2, 3, 4, and 5. Both models perform equally well in the eight-label group.

Table  13 shows the class based accuracy of the three best models. The five classes 

include three aspects and two sentiment polarities. The baseline model slightly 

Table 12 Class based accuracy of the top-five classes in the WE dataset

Class Model

XLNet BERT RF + LP

U.S.A. 98.31 98.42 92.67

Pinot Noir 97.74 98.03 95.75

Positive 93.53 93.15 88.60

Neutral 89.96 89.49 84.49

Negative 96.39 96.34 94.69

Fig. 6 The label group accuracy of RT

Table 13 Class based accuracy of the top-five classes in the RT dataset

Class Model

XLNet BERT SVC + CC

Action 99.95 99.95 99.87

Comedy 99.89 99.95 99.90

Drama 99.89 99.95 99.85

Positive 90.55 87.92 80.58

Negative 90.55 87.91 80.58
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outperform XLNet in the comedy aspect prediction. However, the transfer models 

outperform the baseline model in predicting the sentiments as well as the rest of other 

aspects.

Discussions

Main findings

The experiment results undoubtedly exhibit the superior performances of our pro-

posed transfer learning models in multi-label ABSA and AESA, comparing to deep 

learning models and state-of-the-art multi-label classification methods. In two out of 

the three datasets, YP and RT, XLNet outperforms all other model configurations, 

including BERT, in accuracy, hamming loss, macro and micro F1s. Given the limited 

size of the labelled data in the YP dataset, we believe such results are attributed to 

several reasons. According to the original introduction article of XLNet [27], XLNet 

is built based on several pretraining novelties (including factorial permutations, 

independent of data corruption, segment recurrence mechanism, and transformer 

refactorization), which performs better with limited labelled data to finetune the pre-

trained model. However, BERT runs much faster in terms of the training time, where 

it takes about 0.7 s/batch on a single GPU (Nvidia GTX 1080Ti), whereas XLNet uses 

approximately 1.4 s/batch. Based on this observation, we recommend using BERT for 

transfer learning based multi-label classification, for speedier training processes.

Additionally, previous studies [9, 17] reported that ECC and Random Forest of Predic-

tive Clustering Trees (RF-PCT) performed best in their experiments. Although ECC (CC) 

performed best among all baseline machine learning models in two out of three datasets 

(YP and RT), RF-PCT did not pass our initial screening due to inferior performances. Such 

findings are consistent with previous studies’.

Research and practical impacts

Developing intelligent applications to extract opinions and polarities from social media 

contents is an very important and relevant topic in the field of big data analytics. The pro-

posed transfer learning based multi-label classification models are particularly useful in 

extracting sentiments from social media contents [41]. Due to the huge volume of data 

made available by social media, and its fast changing nature, relying on transfer learning 

models with the additional multi-label classification models can relax the constraints of 

large amounts of labelled data, which often are unavailable in different domains.

In addition to the extension of multi-label classification capabilities to the ABSA meth-

ods, we also propose a new Aspect Enhance Sentiment Analysis (AESA) approach, which 

extracts document-level (in contrast to sentence-level sentiments) in association with 

entity-level aspects (in contrast to topics discussed in detail). Additionally, this approach 

can predict usefulness/informativeness, as well as entity aspect signals from social media 

contents. Thus, the proposed AESA approach can lead to a variety of (big) data analytics 

applications, including tagging systems of social media contents, and (automated) querying 

machines [42]. Additionally, some aspects are not explicitly expressed in the text contents. 

Thus, the traditional keyword-matching based tagging mechanism may not always work. 
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With the assistance of the proposed AESA method, implicit aspects (i.e., aspects needed to 

be inferred) can be predicted given the text contents.

Limitations and future research

We acknowledge a few limitations of our proposed approach in this study, which may point 

to the directions of future research. Firstly, in the experiment results, we observe that BERT 

performs better than XLNet in terms of higher-label groups (e.g., the 3-label group in the 

YP dataset, and the 7-/8-label group in the RT dataset). Future studies can focus on the 

reason(s) to this phenomenon. Secondly, the transfer learning models yielded restricted 

performances when the input information is limited to sentence level. It may be interest-

ing to investigate how the models respond to other sentence level analyses. Last but not 

the least, the transfer learning models are memory-intensive, thus, the lengths of the input 

sequences (i.e., texts) are limited. Better network compression techniques can be investi-

gated to relax the memory requirements of the transfer learning models.

Conclusion

We propose a transfer learning based approach to enhance the analytical capabilities 

of recent developments in the field of sentiment analysis. The existing ABSA methods 

focus on predicting a single aspect-sentiment label at the sentence level. We design a 

multi-label ABSA method that predicts one or multiple aspect-sentiment labels from 

the text. To further extend the analytical capabilities, we design a method to capture the 

associations between aspects and sentiments in social media contents for the purpose of 

using the detailed aspects to enhance document (e.g., review) level sentiments. We term 

this type of sentiment analysis as Aspect Enhanced Sentiment Analysis (AESA). AESA 

is naturally a multi-label classification method, and it is capable of predicting/inferring 

implicit, entity aspect(s) from text. We employ the state of the art transfer learning mod-

els as the analytical vehicle of the proposed multi-label ABSA and AESA methods. Spe-

cifically, we extend two transfer learning models, namely BERT and XLNet, by making 

them end-to-end differentiable based on the multi-labelled data, such that the models 

can be trained directly using the gradients backpropagated from the errors.

We design a comprehensive empirical evaluation for the proposed approach. Three 

datasets from different domains are selected in the experiment: Yelp restaurant reviews 

(YP) are used to evaluate the proposed approach on multi-label ABSA tasks, and wine/

movie review (WE and RT, respectively) data are used to evaluate the proposed approach 

on multi-label AESA tasks. For comparison purposes, we select 27 mainstream multi-

label machine learning and deep learning techniques, which are widely adopted in previ-

ous multi-label classification studies, and apply them on all the datasets. Additionally, we 

select four popular evaluation metrics in the context of multi-label classification, includ-

ing the subset accuracy, the Hamming loss, the macro- and micro-average F1-scores, 

which cover example and label based metrics. We also complement these metrics with 

class based accuracy, as well as a newly-designed label group accuracy (LGA). The exper-

iment results show that the proposed transfer learning models consistently outperform 

the baseline models across all three datasets. Such results confirm that our approach is 

more than capable of tackling both the multi-label ABSA and AESA tasks.
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