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Abstract—In Parkinson’s disease (PD), on-demand deep brain 

stimulation (DBS) is required so that stimulation is regulated to 

reduce side effects resulting from continuous stimulation and PD 

exacerbation due to untimely stimulation. Also, the progressive 

nature of PD necessitates the use of dynamic detection schemes 

that can track the nonlinearities in PD. This paper proposes the 

use of dynamic feature extraction feature extraction and dynamic 

pattern classification to achieve dynamic PD detection taking into 

account the demand for high accuracy, low computation and 

real-time detection. The dynamic feature extraction and dynamic 

pattern classification are selected by evaluating a subset of 

feature extraction, dimensionality reduction and classification 

algorithms that have been used in brain machine interfaces. A 

novel dimensionality reduction technique, the maximum ratio 

method (MRM) is proposed, which provides the most efficient 

performance. In terms of accuracy and complexity for hardware 

implementation, a combination having discrete wavelet 

transform for feature extraction, MRM for dimensionality 

reduction and dynamic k-nearest neighbor for classification was 

chosen as the most efficient. It achieves mean accuracy measures 

of classification accuracy 99.29%, F1-score of 97.90% and a 

choice probability of 99.86%.  

 

Index Terms—Biomedical signal processing, deep brain 

stimulation (DBS), dimensionality reduction, dynamic detection, 

dynamic pattern classification, feature extraction, Parkinson’s 

disease, semi-synthetic LFP generation. 

I. INTRODUCTION 

LINICAL deep brain stimulation (DBS) for Parkinson’s 

disease (PD) uses continuous, high frequency voltage or 

current pulses in order to mitigate PD. The major setbacks of 

present clinical DBS are stimulation induced side effects and 

shortening of pacemaker battery life [1], which can be 

addressed using on-demand DBS. It regulates stimulation by 

controlling the stimulation intensity and timing using feedback 

signals from the stimulation site [2]. On-demand DBS has the 

potential of improving stimulation efficacy, reducing power 
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consumption and reducing side effects [1]. 

Several studies have proposed different ways of obtaining 

minimally invasive feedback signals for on-demand DBS. 

Primary focus has been placed on internal, e.g. LFP (local 

field potentials), ECoG (electro-corticography) [1], [2]; and 

external (e.g. EMG) neuro-electrophysiological signals [3]; 

biochemical signals [4]; and mechanical signals [3]; some of 

which have shown promising results. Electrophysiological 

signals obtained from external measurements are less suitable 

for detecting spontaneous PD activity due to their low 

correlation with rigidity and bradykinesia [5], [6]. The 

discomfort experienced by patients due to externally attached 

sensors may also be an issue. Using biochemical signals, 

detection may not be instantaneous, and may be hindered by 

the need for bulky and complex devices in some cases. 

Internal electrophysiological signals such as LFP  are known 

to provide an indication of PD symptoms such as rigidity, 

slowness of movement or tremor [7]. Also, recordings can be 

obtained from the same electrodes that are used for stimulation 

[8], making them minimally invasive. However, LFP 

correlations to bradykinesia and rigidity are functionally 

different from those of tremor [9]. This reinforces the need to 

identify distinguishing features in the data for individual 

patients. 

Various studies have mainly focused on monitoring beta 

band LFP only [1], [10], [11]. However, using only beta band 

LFP may not be sufficient, as they have not displayed 

satisfactory consistency across time and patients [1], [12]. 

Furthermore, the correlation of gamma [7], [13], [14], and 

tremor [15] bands with PD symptoms, raises more questions 

on the suitability of using beta band activities alone. In 

essence, triggering DBS using characteristics from only a 

single band may be ineffective. Alternatively, in order to 

create robust (effective) feedback algorithms, identifying the 

most relevant recording channels (in multichannel recording) 

and frequency bands can provide a better mapping between 

LFP recordings and disease states. Hence, for every patient 

and at certain intervals of time, the channels and/or frequency 

bands that display the most pronounced variation between PD 

and non-PD events can be determined and used to detect PD 

states; this implies using fewer features, which are 

dynamically updated. 

The mapping between the LFP features and PD states may 

not be straightforward, which can cause the selected features 

to perform poorly. Detection accuracy can be improved using 
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Fig. 1. Typical bio-signal processing chain of PD state determination during 

on-demand DBS. 
 

an additional dynamic stage consisting of dynamic classifiers. 

The processing chain is shown in Fig. 1. The implementation 

of a robust PD detection scheme is necessary because 

inaccurate detection results in administering stimulation when 

it is not required, and this may lead to stimulation induced side 

effects [16]. Or, inaccurate detection may result in the non-

administering of stimulation when it is required, which may 

worsen patient condition [17]. 

This paper examines and evaluates a subset of brain 

machine interface algorithms suitable for on-chip 

implementation of PD detection in real time with high 

performance and low complexity. Computationally efficient 

on-chip (online) PD detection would facilitate the 

development of fully implantable closed loop DBS systems 

that could automatically adjust stimulation parameters by the 

brain response in real time. The optimum combination of 

algorithms in terms of detection accuracy and computational 

complexity consisting of feature extraction (FE), 

dimensionality reduction (DR) and dynamic classifier 

algorithms is identified. A novel DR technique, the maximum 

ratio method (MRM) is proposed. The algorithms are tested 

using representative PD and non-PD datasets to choose the 

best algorithm combination for real time hardware 

implementation. This paper presents a thorough study of the 

preliminary work in [18]. 

The rest of the paper is organized as follows. Section II 

details the methodology for evaluating the algorithms. Section 

III describes the candidate FE, DR and dynamic classifier 

algorithms. Section IV compares the performance of the 

examined algorithms in terms of accuracy and complexity. 

Discussion and concluding remarks are presented in Section V 

and Section VI respectively. 

II. METHODS 

A. LFP Datasets 

In order to evaluate the performance of the algorithms, 

accurately labeled LFP recordings for PD patients are needed. 

Studies have used modelled subthalamic nucleus (STN) LFP 

recordings for controlling DBS [10], [19]. These may be 

inadequate since LFP recordings have been reported to be 

modulated by cognitive, emotional and behavioral tasks [7], 

[14], [20] which introduce unpredictable variations. Using real 

physiological recordings produces better models that 

incorporate the dynamic variations present in LFP signals. So 

far, studies in PD detection have been hindered by the 

unavailability of standard databases of Parkinsonian LFP 

signals that could be used for evaluating algorithms. A 

possible solution is to use LFP recordings from PD patients 

subjected to levodopa (L-dopa), a common pharmacological 

therapy for PD patients, consisting of periods in which 

patients are ON and OFF L-dopa. The ON L-dopa periods are 

periods when L-dopa medication is effective and is normally 

accompanied by little or no PD symptoms, while OFF L-dopa 

periods are when PD symptoms return, signifying periods of 

motor deficit [21], [22]. The test datasets used were LFP 

recordings from the STN of subjects exhibiting a combination 

of bradykinesia and/or rigidity during the onset of PD, with 

less noticeable tremor. Recordings were made from nine 

patients with PD who had bilaterally implanted DBS 

electrodes in their STN and are referred to as dataset A–I. 

Each patient recording contained separate ON and OFF L-

dopa data between 5 to 10 minutes long.
1
 ON and OFF L-dopa 

LFP data are referred to as non-PD and PD data respectively. 

In order to increase the length of recordings which mimic the 

unpredictable nature of LFP recordings, semi-synthetic 

datasets can be modelled using the LFP recordings from each 

dataset. There are a number of approaches to achieving this as 

summarized below. 

1) Semi-Synthetic Data Generation Techniques: Semi-

synthetic data generation provides the flexibility to manipulate 

the signal characteristics such that all underlying conditions 

are represented. This enables conclusions that could be 

extended to an entire population. LFP are extracellular 

activities obtained from a localized population of neurons, 

making it necessary to utilize inherent statistical properties 

that maintain the information modelled by individual samples, 

as well as segments of the signal. Nevertheless, there are a 

number of ways this could be done depending on the property 

to be exploited. Two statistical properties that could be 

exploited are non-Gaussianity and stationarity of the signals. 

- For non-Gaussian signals, the pattern of activity from 

statistically independent sources that contribute to the 

parent signal can be obtained using spatial source 

separation techniques. Contributions from various 

spatial sources can be modelled to create semi-

synthetic data sources. This is pertinent because the 

brain models information in a statistically sophisticated 

way using multi-physiological activity [23]. However, 

most neural signals are Gaussian [24], making it 

                                                             
1
 The data was obtained from the Department of Clinical Neurology, 

University of Oxford. Recordings were made prior to the connection of a 

subcutaneous DBS pacemaker and stimulation was completely off during 

recording. Details on the daily drug dosage, on and off unified Parkinson’s 

disease rating scale (UPDRS) score and dominant symptoms for eight of the 

nine patients are summarized in [1]. The permanent quadri-polar macro-

electrode used was model 3389 (Medtronic Neurologic Division, Minneapolis, 

MN) consisting of 4 platinum-iridium cylindrical contacts. Its contacts are 

numbered 0, 1, 2 and 3, with 0 being the most caudal and 3 being the most 

cranial for both right and left electrodes – making a total of eight monopolar 

channels for each patient. 
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Fig. 2.  Semi-synthetic LFP generation. (a) An original LFP epoch and two of 

its possible forecasted paths based on Monte Carlo simulations. (b) Snapshot 

of semi-synthetic LFP recordings consisting of PD (blue) and non-PD (red) 

segments. Both figures are for patient (dataset) C. 

 

difficult to separate them into their independent 

sources.  

- Alternatively, stationarity could be exploited. For 

stationary or weakly stationary signals, autoregressive 

moving average (ARMA) models could be fitted to the 

signal [25]. 

- Finally, for non-stationary signals, an autoregressive 

integrated moving average model (ARIMA) can be 

used. 

Since the original LFP recordings in this study are weak (or 

wide) sense stationary (WSS), an ARMA model was fitted. 

2) ARMA Model: For each channel in each dataset a 

suitable ARMA (p, q) model was fitted to the original LFP 

signal – for both PD and non-PD data. An ARMA (p, q) 

model has autoregressive (AR) process of order p, and a 

moving-average (MA) process of order q [26]. As an example, 

an ARMA (1, 1) can be represented as, 

𝑋!  −  𝜇 =  𝛼!(𝑋!!! −  𝜇) +  𝑍! +  𝛽!𝑍!!! (1) 

where the observations are X1, X2,…, XK, with Xt as the current 

observation and Xt–1 as the previous observation; with µ as the 

mean, α1 and β1 are the AR and MA parameters respectively; 

while Zt is a purely random process with mean zero and 

variance σZ
2
. For model fitting, the original LFP signal was 

low-pass filtered (tenth-order Butterworth filter, with cutoff 

frequency at 50 Hz which is in the range of PD relevant LFP 

[14]), down-sampled to fs = 128 Hz (from 2048 Hz) and 

detrended. Detrending makes the datasets stationary. In 

selecting the appropriate order and parameters for the AR and 

MA terms, residual analysis was used (residual = observation 

– fitted values). For a good model, more than 95% of the 

residual autocorrelations should lie within the range ±2/ K, 

where K is the number of observations. After fitting the 

appropriate models for both PD and non-PD data, longer 

recordings consisting of PD and non-PD periods are created. 

The process is summarized as follows: 

1. The PD data is firstly divided into one second 

epochs. A 300 second PD recording thus consists of 

300 epochs. These epochs are used as templates for 

the semi-synthetic data generation. 

2. All the epochs are segmented into three regions based 

on their similarity – measured using the normalized 

cross-correlation between epochs. Thus, a 300 epoch 

dataset is divided into three segments consisting of 

approximately 100 epochs (templates) per segment. 

The aim of this segmentation was to ensure that any 

three succeeding PD epochs attached to create long 

PD periods were selected from different segments, 

which introduces a distinctly different characteristic. 

3. Using the fitted ARMA models, inferred residuals 

and individual epochs, a number of possible forecasts 

can be realized. Using an original epoch, Fig. 2(a) 

shows forecasts from two possible Monte Carlo paths 

taken by a semi-synthetic epoch. For each one second 

original epoch, 100 Monte Carlo forecasts (with one 

second duration) are made. Thus, for LFP recordings 

consisting of 300 templates, 30,000 semi-synthetic 

epochs were created. 

4. Steps 1 – 3 are repeated for the non-PD data. 

5. To create long recordings consisting of alternating 

PD and non-PD episodes that imitate the progression 

of LFP signals in PD; a Poisson distribution was used 

to define the duration of the PD and non-PD 

episodes. This was done to observe how well the 

algorithm performed when tested with few and 

rampant PD episodes that mimic real life situations 

[27], [28]. The original and newly generated epochs 

in steps 1–4 were used to synthesize twelve-hour 

long LFP recordings. 

During LFP synthesis, random permutation sampling was used 

for epoch selection. To maintain all frequency components 

present in the original signal and to avoid introducing 

unwanted frequencies, successively attached epochs were 

slightly overlapped and averaged at the overlapping points 

[29]. Fig. 2(b) shows a sample of the synthetically generated 

LFP recordings indicating PD (blue) and non-PD (red) 

periods. Portions of the synthetic LFP were used to train the 

system to detect the patient state for unseen recordings. 

During FE, in instances where the sliding window selects 

segments of LFP data that have nearly equal proportions of 

non-PD and PD, are tagged as transition states. 

B. Complexity Estimation 

Complexity is quantified using a weighted cost of the 

number of operations (NOP) and the estimated microchip area. 

The smallest unit for the NOP is 1-bit addition. Subtraction is 

considered to be equal to addition. Each multiplication or 

division is considered to be L additions, using a quantization 

of L bits/sample. Microchip area is divided into logic and 

memory area. Adders, subtractors and comparators are 

assumed to be the same size. Following the procedure in [30] 

for a 90 nm CMOS process, each 1-bit adder is estimated to be 

20.46 µm
2
. The size of multipliers and dividers are assumed L-

times the size of adders for L bits/sample quantization. 

Memory is calculated based on the number of registers needed 

for each computation. A 1-bit register size was reported to be 

15 µm
2
 for a 90 nm CMOS process [30]. By labelling each 

combination of detection stages as n, and the complexity cost 

of each combination as CompCostn, the weighted complexity 

cost can be calculated as, 
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TABLE II 

THE VARIOUS ALGORITHMS TO BE EVALUATED 

Dynamic Feature Extraction Dynamic Pattern 

Classifiers Feature 

Extraction (FE) 

Dimensionality 

Reduction (DR) 

DWT 

STFT 

MRM 

PCA 

Dynamic k-NN 

Dynamic LR 

Dynamic SVM 

 

TABLE I 

METRICS FOR EVALUATING ALGORITHMS 

Error Cost Complexity Cost Combined Cost 

F1-score NOP Error Cost 

Choice Probability  Area Complexity Cost 

 

CompCost
n
=
1

2

NOP!

max NOP!,  NOP!,…NOP!!!,  NOP!

+
area!

max(area!,  area!,… area!!!,  area!)
  

 

 

 

(2) 

where NOPn is the NOP for the combination labeled as n, and 

max(…) computes the maximum value of the various 

combinations. The complexity cost assigns a 50% weight to 

both NOP and area. A maximum complexity cost of 1 can be 

obtained for a combination concurrently having the largest 

area and largest number of operations. Table I summarizes the 

various costs used in evaluating the algorithms. 

C. Detection Accuracy Calculations 

The PD detection scheme consisting of FE, DR and 

dynamic pattern classification, were tested in MATLAB. 

Combinations consisting of all the three stages in the PD 

detection scheme were evaluated using the algorithms in Table 

II. Each combination was evaluated using the following 

metrics:  

1) Classification Error (Err): It gives the proportion of 

incorrectly classified test cases and is defined as 

 
Err =

FN + FP

TP +FP +FN +TN
 

(3) 

where TP represents the true positives (the epochs that are 

actually PD and were correctly detected to be PD), TN 

represents the true negatives (the non-PD epochs that were 

correctly detected), FN represents the false negatives (the PD 

epochs that were wrongly detected to be non-PD) and FP 

represents the false positives (the non-PD epochs that were 

wrongly detected to be PD). 

2) F1-score: It is used in situations like PD detection, where 

a single metric is needed to analyze the performance of a 

classifier in terms of precision and sensitivity [31]. The F1-

score is defined as 

 
F1 =

2TP

2TP + FN + FP
. 

(4) 

3) Receiver Operating Characteristics (ROC): ROC is a plot 

of sensitivity and false positive rate and has an area under the 

curve (AUC) of between 0 and 1. It is used to evaluate the 

performance of the various detection algorithms. The AUC of 

the ROC, also called the choice probability (CP), represents 

the probability that the detector will correctly classify an event 

in a two-alternative forced-choice classification. See [32] for a 

more detailed description. 

4) Error Cost: Each complexity cost (CompCostn), has a 

corresponding error cost (ErrCostn) that is calculated at 10% 

classification error and is 

ErrCostn= 
1 − 𝐹! + 1 − 𝐶𝑃

2
. 

(5) 

A maximum error cost of 1 can be obtained for a combination 

having F1 = 0 and CP = 0. 

D. Model Assumptions 

The algorithms evaluated were chosen based on their 

efficiency in previous brain machine interface and bio-signal 

processing applications. The process involved evaluating a 

subset of FE, DR and machine learning models used in pattern 

classification. The detection scheme uses ON and OFF L-dopa 

signals as representative data for non-PD and PD cases 

respectively. It is also assumed that training occurs only once 

a day. 

III. ALGORITHMS 

A. Feature Extraction (FE) 

In order to extract meaningful information, acquired 

physiological data which is normally in the time domain, is 

transformed to a computationally efficient form for further 

processing. In applications like PD state detection where 

power at certain frequencies can serve as biomarkers that 

indicate pathological states, time-frequency analysis is 

required. Frequency data provides information on where the 

power is concentrated for each pathological state, and the time 

domain data provides the instant they occur. Short time 

Fourier transform (STFT) and discrete wavelet transform 

(DWT) are examined and compared.  

1) STFT: It uses the fast Fourier Transform (FFT) to obtain 

time-frequency data. This is achieved by dividing the signal 

into windows and FFT is applied to each window [33]. 

Mathematically STFT is given by 

 

𝑋! [𝑡; 𝑓] =  𝑥[𝑡 + 𝑛]

!!!

!! !

 𝑒
!!
!!

!
!"

 

(6) 

where t is the discrete time index, W is the window length into 

which the signal is split and f is the discrete frequency index. 

For this application, the time-stamped measurements are split 

into 2 seconds overlapping epochs, with 50% overlap between 

epochs. In addition, the power bands (features) are divided 

into 5 Hz bands, with 3 Hz overlap between bands; 0–5 Hz, 3–

8 Hz, … 45–50 Hz. This provides a total of 16 features. The 

window is chosen such that a balance between time and 

frequency resolution is obtained. 
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Fig. 3. The power spectrum (PD) of some of the channels in dataset C, shown 

having nearly similar characteristics. L or R is for Left or Right electrodes 

respectively, which are numbered from 0 to 3 (caudal to cranial contacts). 

 

 

Fig. 4. Two-dimensional depiction of the desired orientation for PD and non-

PD clusters in order to create the largest variation using the two features (f1, 

f2) with the maximum ratio (a) Scenario 1: feature space formed when each 

of the clusters (PD and non-PD) has the maximum sum for one of the 

features. In this case the PD cluster has higher f1 values, while the non-PD 

cluster has higher f2 values. (b) Scenario 2: feature space formed when only 

one of the clusters has the maximum sum for both features (Non-PD in this 

case). It also demonstrates how the channel with the highest Euclidean norm 

between clusters is approximated using weighted ratios. 
 

2) DWT: It is a time-frequency representation that uses 

multi-resolution transformation. Mathematically DWT is 

given by 

W u,2j = s n  
1

2
j
2

 Ψ (
n-u

2j
)

∞

n= -∞

 

 

(7) 

where u is the translational parameter representing the time 

axis, 2
j
 (j is an integer) is the scale parameter representing the 

frequency axis and ψ is the wavelet function [34]. Based on 

the scale parameter in (7), at each level (j), it is down-sampled 

by 2 to the power of that level (2
j
). For the DWT, a 4-level 

decomposition using the Haar wavelet was obtained. The 

average power at each level of decomposition consisting of 2 

seconds overlapping epochs, with 50% overlap between 

epochs are obtained as features. The five features are defined 

as detail coefficient level 1 (32–49.5 Hz), level 2 (16–32 Hz), 

level 3 (8–16 Hz), level 4 (4–8 Hz) and approximation 

coefficient level 4 (0.5–4 Hz). 

B. Dimensionality Reduction (DR) 

DR involves reducing the number of features that will be 

used for patient state detection. A high number of features 

increases the possibility of data over-fitting, which results in 

poor generalization of unseen data. Also, periodically 

changing the extracted features used results in dynamic FE. 

This work explores the principal component analysis (PCA), 

and the MRM (which is eventually chosen for this work).  

1) PCA: In PCA, the orthogonal basis (or principal 

components) that indicates the principal directions in which 

data varies is calculated [35]. In (8), high dimension features X 

can be reduced to low dimension features Z, 

 𝒁 = 𝐏𝐂𝒊
!
× 𝑿 (8) 

where 𝑿 ∈ ℝ!×! consists of the training features, m is the 

number of training features and n is the feature vector 

dimensions. Additionally, 𝐏𝐂 ∈ ℝ!×! contains the coefficients 

of all principal components, 𝐏𝐂𝒊 ∈ ℝ
!×! contains the 

coefficients of the principal component up to the i-th principal 

component, making i the reduced feature vector dimension 

and 𝒁 ∈ ℝ!×! consists of the new training features with 

reduced dimensions.  

In addition to feature dimension reduction, DR will be used 

for channel selection. For PCA, the channel with the least 

projection error using two dimensional projection is selected. 

This was done because PD tracking using recordings from all 

channels may introduce redundancy as recordings from 

various channels might provide nearly similar information, as 

can be seen in the spectrum of the channels in Fig. 3 which 

have nearly similar characteristics. On the other hand, 

randomly selecting any one of the channels for FE can be 

counterproductive, as the channel with the least variation 

between PD and non-PD clusters may be selected. This 

necessitates the use of a methodical approach for channel and 

feature selection. 

2) MRM: Unlike PCA, the novel MRM is a DR method that 

uses labeled samples during training. The process of MRM 

starts by identifying the channel having features with the most 

pronounced variation in activity. The goal is to obtain the 

feature space depicted in Fig. 4 which makes classification 

easier. The MRM is a computationally simple method. Using 

example values, the steps are described in Fig. 5 and are 

outlined below:  
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Fig. 5. Detailing the maximum ratio method (MRM). This shows a situation 

where the channel and feature selection for MRM uses only the two 
prominent features in ranking the channels. 

1. LFP recordings from each monopolar channel are 

split into M training epochs with equal number of PD 

and non-PD training examples. In Fig. 5, M = 128 

results in 64 epochs for both PD and non-PD. 

2. Each epoch is divided into N bands (features). For 

each feature, the sum of that feature for all training 

examples for both PD and non-PD cases are obtained. 

In Fig. 5, N = 5 is selected with the power in each of 

the five bands for both PD and non-PD training 

examples shown. 

3. For the summed features (calculated in step 2), the 

ratio of correspondingly indexed features for PD and 

non-PD are calculated. The smaller of the two is 

made the divisor. The division is indicated in red in 

Fig. 5 with the obtained result shown in step 3 of Fig. 

5. 

4. The ratios are arranged in descending order. This 

order shows the relative variation for each feature 

between PD and non-PD for the training examples – 

from the largest to the smallest. 

5. The maximum ratio is multiplied by 4 and the second 

maximum ratio is multiplied by 2 and the rest are 

unchanged. If k features are used for classification, 

the sum of the first k features gives the channel 

weight. In Fig. 5, if weights based on two features are 

required, step 5 shows the channel weight in red 

which is 38. The channel weight gives a low 

computation approximation of the channel with the 

largest Euclidean norm between PD and non-PD 

clusters for the selected features. The approximate 

Euclidean norm rank is obtained using a modified 

version of [36].  

6. Steps 1 to 5 are repeated for the rest of the channels. 

The channel with the largest weight is selected and 

recordings from that channel are used for 

classification until another training phase, after which 

the new highest ranked channel is adopted. Using the 

values in step 6 of Fig. 5, the channel with the 

maximum weight is selected, which is channel #0 

with a weight of 38. 

C. Dynamic Pattern Classification 

Dynamic classification uses a modified version of 

traditional pattern classifiers in order to accurately track the 

nonlinearities in the extracted features. The classifiers must 

not be so simple that they are unable to distinguish between 

classes, yet not so complex as to over-fit the training data [35]. 

The best classifier will be selected based on a trade-off 

between computational complexity and performance. The 

dynamic pattern classifier steps through three orders of the 

traditional pattern classifiers to be evaluated. The first order 

classifier is used if it achieves a classification accuracy greater 

than 90% on validation data, else a higher order classifier is 

invoked until the criteria is satisfied. If the criteria is not 

satisfied, the best performing classifier of the three is used. 

Below is a brief description of the evaluated pattern 

classifiers.  

1) Dynamic k-Nearest Neighbor (k-NN): k-NN uses a non-

parametric method for classification. Amongst the various 

classes to distinguish between, it uses the predominant k 

closest samples in the feature space in classifying unlabeled 

points, where k is a natural number [37]. The function fkNN(x) 

for k-NN is 

 
𝑓!"" 𝑥 =  𝑦!

! ∈ !!(!)

 
(9) 

where x is the test case, yn are the labels for the training 

datasets, Nk(x) is the index of k-nearest neighbors of x in the 

training set. Generally, k-NN does not require the normal 

iterative learning phase necessary in order to fit the training 

data to a classification model. The dynamic k-NN steps 

through 3-NN, 5-NN and 7-NN in that order. Odd nearest 

neighbors are employed for the dynamic classifier because 

there are two classes and simple majority voting is required. 

2) Dynamic Logistic Regression (LR): LR uses probability 

of class membership for predicting a test case. Considering a 

binary classification problem, with class membership 

𝑦 ∈ {0, 1}, 1 for PD cases and 0 for non-PD cases, x
(i)

 the 

extracted features for training examples with corresponding y
(i)

 

labels. Then the logistic function fLR(x) for classification in 

(10) is [38], 

 
𝑓!" 𝑥 = 𝑔 𝜃

!
𝑥 =  

1

1 +  𝑒!!
!!

 
(10) 

which produces an fLR(x) between 0 and 1, in order to predict 

the binary states. θ
T
 is a vector of threshold and weight 

parameters that is specific to a dataset. Using the logistic 

function fLR(x), the two possible outcomes of PD detection can 

be represented as 

 
PD =

1        if   𝑓!" 𝑥 ≥ 0.5

0        if   𝑓!" 𝑥 < 0.5
 

(11) 

where true PD detection is signified as 1, and false PD 

detection as 0. The polynomial order of the function θ
T
x 
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determines the type of LR. For the dynamic LR, steps through 

a linear function, third order and fifth order classifiers in that 

order. Functions having only odd degree polynomials are 

tested since the parameter e in the logistic function fLR(x) in 

(10), needs to be raised to a negative power. 

3) Dynamic Support Vector Machine (SVM): SVM uses the 

widest margin between differing states to discriminate. In 

(12), the discriminating function fSVM(x), used in classifying 

test cases is obtained using the training examples as [39] 

 
𝑓!"# 𝑥 = 𝑦!𝛼!

!

𝐾 𝑥! , 𝑥 + 𝑏 
(12) 

where xi are the support vectors and their labels yi, x is the test 

case,  K(xi, x) is the kernel transformation, αi is a weight vector 

and b represents the classification threshold. In order to handle 

the complex nature of physiological signals, the decision 

function can be transformed for use with different kernels, 

notably the linear kernel, polynomial kernel and the radial 

basis function (RBF). This can be achieved by replacing the 

K(xi, x) in the kernel transformation, with the appropriate 

kernel function. For dynamic SVM classification, a linear 

kernel, quadratic kernel and RBF are used in that order. 

IV. RESULTS 

The results were tested in MATLAB on the described LFP 

test datasets.  

A. Feature Space 

A visualization of the feature space formed by the two 

features selected using MRM for dataset C is shown in Fig. 6.  

The STFT shows a clearer separation (for PD, Trans and non-

PD training examples) compared to the DWT, due to the use 

of a reduced frequency by the STFT. A reduced band provides 

better confinement of the relevant frequencies and reduces 

sensitivity to outliers. The two methods are compared to 

identify the optimum performance in terms of detection 

accuracy and complexity. Generally, STFT is ideal for 

capturing sinusoidal features, and the DWT is ideal for 

detecting non-continuous frequencies. This was concluded in 

[34] using the Haar wavelet. 

For toolbox based analysis of DWT (such as FieldTrip and 

EEGlab), Morlet wavelets are used. For toolbox based STFT, 

spectral smoothing is introduced using multi-tapering. 

However, time-frequency analysis in this work was guided by 

considerations for hardware implementation, which are not 

fundamental for toolbox based analysis. For hardware 

implementation, the possible improvement in accuracy due to 

spectral smoothing, is not commensurate with the 

computational cost incurred. As demonstrated in Section IV.B 

on accuracy, all the examined combinations achieve less than 

10% classification error even without spectral smoothing. 

Both DWT (Haar wavelet) and STFT (without multi-tapering) 

have been shown as suitable in hardware-aware 

implementations for time-frequency analysis [40]. 

B. Complexity and Accuracy Measures 

Various measures such as choice probabilities, classification 

error and F1-score were used in order to evaluate the detection 

methods. In each case the average result from 100 runs of 

Monte Carlo analysis was found in order to obtain the general 

trend.  

1) Error Calculations: For the classification error averaged 

over all datasets, the goal was to obtain the minimum 

parameters (minimum number of features, minimum level of 

quantization and minimum training examples) that resulted in 

90% classification accuracy (10% classification error), so as to 

compute the complexity of each combination. Fig. 7 presents 

the effect of varying the features used in classification. In Fig. 

7(a), the results for the combinations that use DWT for FE are 

presented; the k-NN based algorithms (combinations) present 

the best performance, having a classification accuracy greater 

than 90% irrespective of the number of features used for 

classification. The second best performance was obtained by 

the SVM based classifiers, with the DWT-MRM-SVM having 

a superior performance compared to the DWT-PCA-SVM, 

even though both require at least two features to attain the 

90% accuracy mark. The LR based algorithms behave in a 

similar way as the SVM based algorithms; however, they have 

a more gradual slope. In Fig. 7(b), the combinations using 

STFT for FE have nearly identical characteristics as those 

using DWT for FE. That is, the k-NN based classifiers have 

the best performance, followed by the SVM based classifiers 

and then the LR-based classifiers. Like the DWT algorithms in 

Fig. 7(a), the STFT algorithms in Fig. 7(b) achieve an 

accuracy of 90% with two or less features. 

With respect to the minimum training examples, Fig. 8(a) 

 

Fig. 7. Effect of feature vector dimension on classification error using: (a) 

DWT (b) STFT. The plots with the dashed lines are those using PCA for DR, 

while those without dashes use MRM for DR. The goal is to determine the 

minimum number of features that achieve a classification accuracy of 90% 
(10% classification error). 

 

Fig. 6. Feature space formed using MRM for the two prominent features of 

the selected channel of dataset C using: (a) DWT (b) STFT. LFP epochs at 

transition points (consisting of PD and non-PD of equal length) are labeled 

as “Trans”. 
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TABLE III 

COMBINATIONS OF ALGORITHMS AND THE LEVEL OF COMPLEXITY NEEDED 

TO ACHIEVE 90% CLASSIFICATION ACCURACY 

Combination Number of 

Features 

Quantization 

(bits) 

Number of 

Training 

Examples 

Complexity 

NOP 

(×10
5
) 

Area 

(mm
2
) 

DWT-MRM-

KNN 

1 7 58 0.26 0.84 

5 5 14 0.61 1.48 

DWT-PCA-

KNN 

1 6 110 0.24 0.81 

STFT-MRM-

KNN 

1 8 24 0.90 2.12 

16 4 22 0.36 1.15 

STFT-PCA-

KNN 

1 6 58 0.56 1.40 

DWT-MRM-

LR 

2 5 16 0.24 1.05 

5 8 8 1.51 3.98 

DWT-PCA-LR 2 6 236 0.39 1.84 

STFT-MRM-

LR 

1 8 28 0.89 2.70 

16 4 20 0.31 1.26 

STFT-PCA-LR 2 6 102 0.56 1.96 

DWT-MRM-

SVM 

2 5 14 0.24 1.05 

5 4 8 0.39 1.25 

DWT-PCA-

SVM 

2 6 30 0.37 1.45 

STFT-MRM-

SVM 

1 8 26 0.89 2.70 

16 4 8 0.29 1.11 

STFT-PCA-

SVM 

1 6 170 0.57 1.94 

 

presents the performance of the algorithms using k-NN based 

classifiers. For a classification accuracy of 90%, algorithms 

using MRM for DR require many fewer training examples: 24 

for STFT-MRM-KNN and 58 for DWT-MRM-KNN. 

However, the PCA based algorithms require at least 58 

training examples for STFT-PCA-KNN and 110 for DWT-

PCA-KNN. Another notable characteristic is that the 

combinations using STFT require fewer training examples 

compared to those using DWT. This may be attributable to the 

narrower frequency bands used in STFT, which makes it 

easier to discern patterns with few training examples – wider 

frequency bands like in DWT may be more susceptible to 

noise.  

For the required bit quantization in Fig. 8(b), the PCA based 

algorithms outperform their MRM counterparts. The PCA 

based algorithms requires fewer quantization levels possibly 

because of the need for less detail in the number 

representation after PCA transformation. Training examples 

are less packed together after PCA transformation, because 

PCA transforms features to a new feature space with a higher 

variance. The need for less detail after PCA transformation 

enables the use of fewer quantization levels. The minimum 

parameters needed in order to achieve a classification 

accuracy of 90% for the rest of the algorithms is summarized 

in Table III. It can be seen that the k-NN and LR based 

algorithms have a higher median number of training examples, 

compared to the SVM. This is because the k-NN and LR are 

population dependent algorithms that extrapolate properties 

more accurately when larger training sets are used. In Table 

III, it can be seen that 7 combinations require only one feature 

to achieve 90% classification accuracy. In terms of the 

quantization, the median is 6 bits resolution (excluding the 

shaded rows). The shaded rows are the parameters that 

achieve 90% classification accuracy if all features are used for 

dynamic detection. From Table III for the MRM algorithms, 

when the maximum number of features are used, the required 

training examples and quantization needed to achieve 90% 

classification accuracy are reduced. However, for the STFT-

MRM combinations (STFT-MRM-KNN, STFT-MRM-KNN 

and STFT-MRM-SVM) using all features presents a lower 

NOP for 90% classification accuracy compared to its low 

feature alternative. This may be because computing STFT and 

extracting power from a single band (single feature) requires 

slightly less computation than extracting power from all the 

allocated bands (16 in this case). However, the extra 

computation incurred is offset by the fewer training examples 

and quantization levels required when all the bands (features) 

are used.  

Mathematically the NOP calculation is given by  

 
NOP =   

Training NOP

86,400
+ Operating NOP. 

(13) 

The training NOP is divided by 86400 because it is assumed 

that training occurs once in a day (86,400 seconds), and the 

patient state is updated every second during normal operation. 

2) Choice Probability and F1-Score: Using the optimum 

combination for quantization, features and training examples 

that achieved 90% classification accuracy (summarized in 

Table III), Fig. 9(a)–9(d) present the performance of the 

algorithms in terms of their F1-score and CP. For the 

classifiers, it is clear that the k-NN based algorithms present 

the best performance (having the least error cost), followed by 

the SVM-based and then the LR-based. The STFT-MRM-

KNN has the least error cost of 0.0075 [in Fig. 9(b)], while the 

STFT-PCA-SVM has the maximum error cost with 0.0778 [in 

Fig. 9(d)]. 

C. Combined Cost 

The combined cost represents the cost incurred by a given 

combination. Fig. 10 shows a plot of error cost vs complexity 

cost. An ideal detection algorithm is required to have a 

combined cost at the origin of Fig 10. The error cost is 

obtained at 10% classification error and consists of costs 

resulting from a low average choice probability, and a low 

 

Fig. 8. Optimum values of complexity parameters using one feature 

classification for k-NN in order to achieve 90% classification accuracy (a) 

Optimum number of training examples. (b) Quantization (in bits). 
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Fig. 10. The combined cost for different combinations of algorithms. Both 

axes are normalized such that the maximum cost in each case is equal to 1. 

average F1-score. The choice probability is included because 

it shows how well a detector ranks PD cases compared to non-

PD cases. The F1-score is included because it shows how 

good the precision and sensitivity of the detector is. These two 

factors are not apparent when only classification error is used 

in assessing the error cost of a detector. They are added to 

ensure that the error cost is robust enough to cover all 

accuracy measures. For the complexity cost, the NOP and 

estimated area are used as the measures. In Fig. 10, the 

detector with the low costs are indicated by blue markers, and 

are the DWT-MRM-KNN, DWT-MRM-SVM and DWT-

PCA-KNN. There are six medium cost detectors indicated by 

green markers. The high cost detectors are indicated by red 

markers and are the STFT-PCA-SVM, DWT-PCA-LR and 

STFT-PCA-LR. The algorithms using DWT for FE, are 

mainly closer to the origin, hence the DWT based algorithms 

have the optimal trade-off between complexity and accuracy. 

For DR, the MRM based algorithms have the lowest cost 

while for classification the k-NN based algorithms have the 

lowest cost. Thus, the combination closest to the origin is the 

DWT-MRM-KNN, which represents the optimal trade-off 

between accuracy and complexity; while the worst performing 

algorithm is the STFT-PCA- SVM.  

V. DISCUSSION 

A. Semi-Synthetic Datasets 

Semi-synthetic data was generated by taking advantage of 

statistical properties in the data to fit ARMA models. 

Moreover, for every single epoch a range of Monte Carlo 

forecasts were simulated based on the underlying variations. 

To the best of our knowledge, there is no literature on semi-

synthetic LFP data generation using real-life recordings. 

However, for other signals such as spikes and ECG there is 

extensive literature. Using statistical parameters like the ones 

used in defining spike [41] or ECG [42] activity could be 

misleading; because they have a unique morphology which 

can be varied using simple measures, such as the amplitude or 

shape. On the other hand, LFPs result from the activity of a 

localized population of sources; hence using statistics that are 

not population based corrupts and destroys the signal fidelity. 

In this work a number of properties were exploited, among 

which are:  

1) Statistical Similarity: To measure the sensitivity of the 

algorithms to all forms of PD and non-PD variations, it was 

ensured that statistically dissimilar epochs (measured using the 

normalized cross-correlation) were attached together during 

periods of long PD or long non-PD synthesis. This introduced 

some randomness by attaching epochs with varying similarity, 

which enabled the assessment of the algorithms’ robustness to 

instantaneous changes within the same patient state. 

2) Dispersion and Random Permutation Sampling: 

Dispersion was introduced using ARMA models to forecast a 

range of Monte Carlo variants for each epoch. This was to 

create a large diversity pool that overcomes sampling bias 

(since sampling bias can lead to poor generalizability). Epoch 

selection using random permutation sampling was applied to 

avoid data leakage which can cause over generalizability. 

3) Poisson Distribution Defined PD and non-PD Duration: 

Signal length was defined using a Poisson distribution to make 

PD and non-PD episodes pseudo-random. This ensured that a 

“randomly guessing” algorithm that changes state prediction 

based on a predefined pattern is flagged because of the 

pseudo-random PD and non-PD periods. 

B. Spectral Bands and MRM 

 In the normalized autospectra shown in Fig. 11 the largest 

variation between the PD and non-PD autospectra is between 

10–25 Hz, which mostly lies in the beta band; 13–30 Hz. The 

gamma band (> 30 Hz) shows little relative activity.  

However, Table IV in which the two frequency bands with the 

most activity for each of the nine datasets is summarized, it 

can be seen that the gamma band is not strictly without 

activity. Datasets A, F and G have their most pronounced 

 

Fig. 9. Plot of choice probability (CP) and F1-score (SMRM is STFT-MRM, 

DMRM is DWT-MRM, SPCA is STFT-PCA and DPCA is DWT-PCA). (a) 

Plot of CP and F1-score for different combination of algorithms; (b) Plot of 

error cost for algorithms using k-NN for classification; (c) Plot of error cost 

for algorithms using LR for classification; (d) Plot of error cost for algorithms 
using SVM classification. 
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Fig. 11. Average normalized autospectra for all the datasets. The PD and non-

PD plots are normalized such that the total autospectra sum in each case is 

equal to 1. 

TABLE IV 

SUMMARIZING THE TWO FREQUENCY BANDS WITH THE MOST PRONOUNCED 

VARIATION 

Dataset STFT DWT 

Maximum 

Variation 

Band (Hz) 

2
nd

 

Maximum 

Variation 

Band (Hz) 

Maximum 

Variation 

Band (Hz) 

2
nd

 

Maximum 

Variation 

Band (Hz) 

A 6–11 9–14 32–49.5 4–8 

B 12–17 15–20 16–32 8–16 

C 21–26 18–23 32–49.5 16–32 

D 0.5–5 6–11 4–8 8–16 

E 12–17 15–20 8–16 16–32 

F 18–23 15–20 32-49.5 16–32 

G 45–49.5 42–47 32–49.5 16–32 

H 36–41 33–38 0.5–4 4–8 

I 18–23 21–26 16–32 32–49.5 

 

variation in the gamma bands (level 1 detail coefficients) 

when DWT is used for FE. While using STFT, it was only 

visible for dataset G. The little activity in gamma bands is 

corroborated by [13], in which there are occasions where there 

is little activity, while at other times they have the most 

pronounced activity.  

The frequency bands for the STFT and DWT in Table IV 

appear to be unexpectedly different. This is due to different 

sized frequency bands. For instance, in dataset (patient) D, the 

0.5–5 Hz band presents the most pronounced variation for 

STFT, while the 4– Hz band provides the most variation for 

DWT. This shows that most of the power is within the 4–5 Hz 

band, giving rise to the dominance of the bands containing 

these frequencies. The difference between the STFT and DWT 

in other cases can be explained because the most pronounced 

variation is dependent on the relative power between PD and 

non-PD. That is, there are cases in which a PD band can have 

the greatest absolute activity compared to other PD bands. But 

when compared to its corresponding non-PD band, it may not 

have the most pronounced variation. This was the case for 

datasets A and H. As a result of the varying frequency spread 

present, particularly in the DWT, only the activity of the much 

lower bands of the DWT should be expected to show some 

semblance in behavior to the STFT. These are the cases were 

the frequency spread is quite close and at the higher 

frequencies, they cannot be compared because a single DWT 

band covers more than five STFT bands.  

In Fig. 12, it is shown that the MRM algorithm can detect 

the bands with the most pronounced variation even though the 

training examples are a small fraction of the entire population. 

In Fig. 12(a), it accurately detects the band with the most 

pronounced variation for all 100 runs while in Fig. 12(b) it 

accurately detects the three prominent bands for all runs. Most 

of the average ranks approximate to the real rank showing that 

most of the time, it ranks the bands in their right order. This 

demonstrates that the training examples used have enough 

diversity present in the entire signal. The MRM algorithm also 

assists in channel selection by approximately determining the 

channel with the largest Euclidean norm between PD and non-

PD clusters. Hence, instead of using all eight monopolar 

channels for detection, only the channel with the most 

pronounced variation is selected. This makes classification 

less computationally intensive.   

C. Dynamic Detection 

The dynamic schemes are used to obtain a classifier that is 

compatible with the dynamic FE and at the same time 

achieves the right balance between complexity and 

classification accuracy. The dynamic classifier operates in two 

phases – concurrent detection and training, and detection only. 

Compatibility between dynamic FE and dynamic pattern 

classification is determined periodically during the concurrent 

detection and training phase. The dynamic detection operates 

in real-time since both phases involve detection. Determining 

 

Fig. 12. Shows the mean plot of how the MRM algorithm ranks the frequency 

bands using: (a) DWT for FE (b) STFT for FE. The rank is from the band 

with the most pronounced variation (ranked 1) to the least pronounced 
(ranked 5 for DWT and 16 for STFT). 

 

Fig. 13. Comparison of the classification error for static and dynamic 

detection schemes: (a) using the STFT-MRM-KNN detector; (b) using the 

STFT-MRM-SVM detector. 
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compatibility is necessary because high order classifiers may 

sometimes provide inferior performance compared to low 

order classifiers, making the use of high order classifiers 

redundant. A classic example of this is shown in Fig. 13(a), 

which uses the STFT-MRM-KNN algorithm. Apart from the 

region where few features (one to four features) are used in 

which there is a struggle for dominance, the 3-NN completely 

dominates when five or more features are used. Thus, making 

the higher order classifiers (5-NN and 7-NN) redundant. 

Nevertheless, the benefits of dynamic detection are obvious 

since a mean reduction of 0.019% in classification error is 

obtained between the dynamic classifier and the 3-NN. This is 

because different kernels are selected for different datasets 

(A–I). In the long term, these slight differences of 0.019% 

between the dynamic classifier and the best performing static 

classifier can cumulatively lead to more beneficial effects in 

therapy since there is a higher likelihood for detection. 

Conversely, in Fig. 13(b), which depicts the result for the 

STFT-MRM-SVM algorithm, there are two regimes of 

operation: when 8 features or less are used for classification, 

the RBF, which is the highest order kernel dominates. On the 

other hand, when more than 8 features are used the lower 

order poly kernel dominates, similar to Fig 13(a). This shows 

that dynamic detection takes advantage of the best operating 

regimes of various kernels to produce performance superior to 

those of static classifiers as is shown in Fig. 13. As a result the 

three different classifiers in the dynamic scheme are 

complementary.  

VI. CONCLUSION 

Dynamic PD detection is beneficial for on-demand DBS 

because it personalizes PD detection. This eases tracking of 

the dynamic variations common in PD pathophysiology. The 

results presented show that on-chip (online) PD detection is 

possible. It has been demonstrated that the change in power 

characteristics of LFP signals, can be tracked using a 

combination of DWT for FE, dimensionality reduction using 

the MRM (a novel algorithm proposed in this paper) and 

dynamic k-NN for classification. This combination can create 

an efficient algorithm that has the best trade-off between 

computational complexity and detection accuracy. In addition 

to PD detection, the algorithm could be extended to other 

applications that require on-demand DBS for efficient 

modulation of therapy. 
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