
Toward Online 3-D Object Segmentation and Mapping

Evan Herbst Peter Henry Dieter Fox

Abstract— We build on recent fast and accurate 3-D re-
construction techniques to segment objects during scene re-
construction. We take object outline information from change
detection to build 3-D models of rigid objects and represent
the scene as static and dynamic components. Object models are
updated online during mapping, and can integrate segmentation
information from sources other than change detection.

I. INTRODUCTION

Service robotics is an expanding field. Indoor service

robots need to understand their environments geometrically,

topologically, and in terms of objects and other semantic

concepts. Accurate 3-D object models are used in training

object detectors and in most approaches to object manipula-

tion. This paper makes progress toward acquiring detailed 3-

D object models with as little human intervention as possible.

Over the last few years robotic vision systems have gotten

much better at detailed and very fast 3-D reconstruction

of static scenes using volumetric approaches running on

the GPU [1], [2], [3]. The ability to detect scene changes

between detailed 3-D maps was demonstrated in [4]. In this

paper we demonstrate high-quality object segmentation and

modeling during scene reconstruction.

Imagine that a robot makes recordings of the same scene

at several points in time, separated by perhaps a day—

long enough for some objects to have moved. We should

be able to partition the 3-D reconstruction of the scene into

a “background map” of everything that never moves and a

set of dynamic rigid objects that move at least once betwen

two mapping visits. We use change detection to provide

segmentation information, because over long periods of time,

objects that can move probably will be moved.

One way in which object segmentation with change

detection can fail is in being unable to separate objects

that move to or from a spatially adjacent configuration.

Another issue is that a robot seeing a previously unobserved

region of space has no change detection information for the

region. To address these problems, our mapping framework

is able to take in information about segmentation in the

current scene that does not come from change detection.

We demonstrate this capability by using information from

a human-provided movement of a single object that can

improve our segmentation of that object and others that it

touches. This is complementary to work (e.g. [5]) in which

a robot pushes objects to make them move and attempts to

segment all moved objects using dense motion estimation.

E. Herbst, P. Henry and D. Fox are with the University of Washington
Department of Computer Science & Engineering, Seattle, WA 98195.

This work was funded in part by an Intel grant, the NSF under contract
IIS-1227234, and ONR MURI grant N00014-07-1-0749.

We use some of the same techniques used therein, but as that

work demonstrates, segmentation from motion data without

very strong regularizers (e.g., a very strong bias for the

idea that objects are entirely convex) doesn’t currently work

very well. Therefore, here we instead acquire known-correct

segmentation information from a human teacher.

Our method avoids requiring visual point features, except

during background alignment (see sec. III). One of our goals

is to as much as possible build a principled framework

around one main tool, change detection, used in a variety

of ways, to combat the tendency of mobile robotics systems

toward heuristics and magic numbers. All of our modeling

happens online.

This paper is organized as follows. In sec. II we discuss

related work. Sec. III explains our reconstruction and change

detection, and sec. IV discusses how we use them in an

online fashion. Sec. V introduces our object modeling. We

discuss using additional segmentation information in sec. VI.

Finally we mention efficiency in sec. VII and future work in

sec. VIII.

II. RELATED WORK

We cannot list all of the immense amount of work in object

segmentation and modeling with vision; we hope to provide

a useful sample.

Representing scenes using objects and background is an

old idea. In mobile robotics it goes back at least to Biswas

et al. [6], who process a set of previously aligned 2-

D occupancy grid maps with change detection in an off-

line fashion to identify movable objects. Haehnel et al.

[7] separate moving and static regions of 2-D laser scans

in an online fashion in order to navigate through moving

obstacles. They also model moving objects, by extending the

2-D profiles of dynamic regions through a 3-D laser scan.

Finman et al. [8] use a combination of 3-D change detection

(using depth but not color) and running per-object learned

segmentation models on each of a set of maps to extract

a set of potential objects that could be input to an object

discovery algorithm. Their algorithm is also off-line, but runs

on multiple large-scale maps built separately. Probably the

most similar work to this paper is that of Alimi et al. [10],

who create an RGB-D background map after running change

detection on many pairs of temporally adjacent views of

a scene. Their camera is static and their views are single

frames. There is also work on linking maps of objects and

background using semantic relations: in [11], Wurm et al.

analyze a laser scan to identify objects and background,

using the table-plane assumption and other heuristics to avoid

solving segmentation. They create octree maps of objects

and background separately, potentially at different spatial

resolutions, and connect them with semantic concepts such

as “supported-by”. Salas-Moreno et al. [9] match the scene

to previously built geometric object models at each frame

during reconstruction in order to build a separate information

layer with object poses and labels. They update the poses of

matched objects online as the 3-D reconstruction changes.

Online motion segmentation is also an active area of

research. Pundlik and Birchfield [12] match point features

in RGB-D video as input to sparse motion segmentation,

and use spatial regularization over pixels to extend the seg-

mentation to a dense one. Roussos et al. [13] perform motion

estimation and reconstruction of 3-D rigid objects from RGB

video in an off-line way, using recent optimization techniques

to allow them to include all pixels in the optimization

objective.

This paper improves on previous work that segments

objects using change detection given videos of multiple

visits to a scene, assuming the scene is static during each

visit. We can use static SLAM to build a static map from

each video. Change detection run over pairs of these maps

gives us some information about the geometry of movable

objects in the scene. We can merge the unchanged parts

of each map into an overall “background map”; the other

segments from all scenes are models of moved objects. This

approach was taken in [14], [8]. In this work, we instead

perform change detection in an online fashion, comparing

each new video frame to a previous map while running SLAM

instead of mapping each scene before detecting changes.

There are three major advantages to the online approach.

Firstly, Newcombe et al. [1] demonstrate improved alignment

performance during SLAM from aligning new frames to

existing maps rather than aligning frames to each other in

traditional visual odometry style. In experiments not detailed

herein we have found a similar effect when aligning frames

from one video to a map made from another video for change

detection purposes. Secondly, if we perform change detection

during reconstruction rather than afterward, we can improve

the quality of models of objects present in the current scene

(the scene that we’re processing a frame at a time). Because

we know, given partial object views, the approximate sizes of

objects, we can make high-resolution models of small regions

including these objects, while mapping the rest of the scene

in relatively low resolution to save memory and time. Thirdly,

we want to extend this work to involve active segmentation,

in which the robot can move the camera and/or objects being

modeled in order to get more informative views. This is only

possible if objects are modeled in real time.

The research contributions of this paper are as follows.

We combine the idea of making separate maps for static

background and dynamic objects with recent advances in

online reconstruction. We apply frame-to-map alignment,

shown by Newcombe et al. [1] to improve single-map

alignment, to alignment between multiple maps. We discuss

what information change detection gives us for the purpose

of modeling our knowledge about object boundaries.

III. CHANGE DETECTION

If the robot visits a room, goes away and comes back

hours or days later, probably some objects have moved.

We can find them by using change detection, looking for

statistically significant differences between two models of

the same phenomenon. In our previous work [4] we use

change detection to compare two or more maps produced

by a SLAM algorithm. Our main building block is a change

detection algorithm operating on one 3-D map and one RGB-

D frame. One weakness of that work is that each map is

reconstructed fully in order to align the frames of each map

to each other map. The global consistency of static SLAM

is poor enough that these frame-to-map alignments can be

improved. In this work we do so by aligning each frame of a

video separately to a map made from previous videos before

running change detection. We have found this to improve

change detection and dense alignment.

Our change detection procedure takes as input a relative

pose between two scenes (in this paper, an aggregated map

M and an RGB-D frame F), renders M into F’s camera,

and compares sensor measurements at each pixel to decide

whether the surface appearing at that pixel in M also appears

at that pixel in F . The decision is made mostly on a per-

pixel basis, using the “expected” and “observed” attributes

rendered from M and F respectively. Change detection

is asymmetric: it matters which scene is considered the

“observation”. We use a probabilistic noise model for RGB-

D sensors based on that used in our previous work. Let

zs =< zd, zc, zα > denote the set of measurements (depth,

color, surface normal) taken from F associated with a surface

patch s in M, and let z∗s =< z∗d , z
∗
c , z

∗
α > denote the

expected measurements computed from s. We denote by m

the Boolean variable representing whether s changed. From

[4],

p(m | zs, z
∗
s) =

p(m, z∗s)p(zs | m, z∗s)

p(zs, z∗s)
(1)

∝ p(m)p(zs | m, z∗s) . (2)

We now want two sensor noise models p(zs | m = 1, z∗s)
and p(zs | m = 0, z∗s) to compare at each pixel the

hypotheses that the surface at that pixel in one scene has

(m = 1) and has not (m = 0) moved in the other. For this

paper we modify the model that assumes the surface has

not moved. In this case, we condition the color and normal

distributions on the depth distribution. This allows us to use

the depth value to determine whether the measurement was

actually caused by the expected surface or by some other

surface (due to moving occluders, for example). To do so, we

introduce a binary random variable h whose value represents

whether the expected surface caused the measurement.

p(z | m = 0, z∗) = p(zd, zc, zα | z∗) (3)

= p(zd | z∗d)p(zc | zd, z
∗)p(zα | zd, zc, z

∗)

≈ p(zd | z∗d)p(zc | zd, z
∗)p(zα | zd, z

∗)

p(zc | zd, z
∗) = p(zc | zd, z

∗,h) p(h | zd, z
∗
d) (4)

+ p(zc | zd, z
∗,¬h) p(¬h | zd, z

∗
d).

The bold quantities here are defined in [4], sec. III B. The

distribution over surface normal is similar to that over color.

We calculate p(h | zd, z
∗
d) as

p(h | zd, z
∗
d) =

p(zd | h, z∗d)

p(zd | h, z∗d) + p(zd | ¬h, z∗d)

=
p(zd | z∗d)

p(zd | z∗d) + p(zd | ¬h, z∗d)
(5)

and analogously for ¬h. In [4] we modeled the uncertainty in

the expected depth measurement, but not that in the observed

depth. Including the observation uncertainty reduces the

model’s certainty (i.e. moves the output probability toward

.5) in cases where the observed depth value is not very

certain. This is useful both for points with large observed

depth (which we mostly avoided using in [4]) and for points

near depth boundaries, which can be misaligned in the image

plane. In the model used in this paper we replace p(zd | z∗d)
in eqns. 3 and 5 with a marginalization over the observed

depth zd: instead of p(zd | z∗d) we use p(zd | z∗d , σd, σ
∗
d),

where

p(zd | z∗d , σd, σ
∗
d)

=

∫

z∗

d

∫

zd

p(zd | z∗d , σ
∗
d)dzddz

∗
d

=

∫

z∗

d

fexp(z
∗
d)

[
∫

zd

fobs(zd)pbin(zd, z
∗
d)dzd

]

dz∗d

≈

∫

z∗

d

fexp(z
∗
d) [Bfobs(z

∗
d)] dz

∗
d , (6)

where we have made the dependence on uncertainty infor-

mation explicit: σd and σ∗
d are the standard deviations of

zd and z∗d respectively. p(zd | z∗d , σ
∗
d) is what [4] referred

to as p(zd | z∗d). pbin(zd, z
∗
d) is an indicator function for

whether the two depth values are quantized to the same value

by the sensor: for bin size B = 1 mm (a camera-specific

value), pbin(z, z
′) =

{

1, |z − z′| < B
2

0, else
. fobs quantifies

observation noise: we use it to average over values that might

have been observed. Similarly, fexp is used to average over

possible values of the expected depth. Both are modeled as

Gaussians: for pixel p, fobs(z) = N (z | zd(p), σd(p)) and

fexp(z) = N (z | z∗d(p), σ
∗
d(p)). We compute σd(p) using

alg. 1, which takes nonlocal depth information into account

to increase depth uncertainty near depth boundaries and near

pixels with invalid depth readings. For now we compute

σ∗
d(p) using the same algorithm; ideally we would compute

depth uncertainty from the volumetric map using a custom

rendering algorithm.

IV. ONLINE CHANGE DETECTION

Since change detection can operate on a map and a single

frame, we can run it online between a previously built map

and each frame of a new scene. This can be used to aggregate

change detection results on a map of the new scene that

is built after the video is taken, as was done in [4], but

it can also be used to separate our map of the scene into

components for the static background and moved objects.

Algorithm 1 computation of frame depth uncertainties using

nonlocal information. σmax is an uncertainty value assigned to

invalid pixels; we use 1m.

for each pixel p do
σd(p)← StereoNoiseAtDepth(z(p))

I ← the set of pixels with invalid depth values or large depth
discontinuities
Compute the Euclidean distance transform D(p) of pixels to I
for each pixel p such that D(p) < 3 do

α ← D(p)
3

σd(p)← eα log(σd(p))+(1−α) log(σmax)

Upon receiving each video frame, we update a map of the

background and models of all movable objects, both those

that appear in the new video but not previous videos and

those that appear in previous videos but not the new one.

The background is represented as a volumetric map, as is

each object. We use the Patch Volumes SLAM system [2]

for aligning and adding RGB-D frames to volumetric maps.

Patch Volumes represents a scene as one or more truncated-

signed-distance-function (TSDF) volumes. Each such patch

volume consists of four voxel grids that store the signed

distance to the nearest surface, a measure of certainty of

the TSDF value, the color in each voxel, and a measure

of certainty of the color. The certainty weights allow for

efficient depth map fusion using the technique of Curless

and Levoy ([15]) on the GPU (as introduced by [1]). A new

frame is aligned against this surface prediction by iteratively

minimizing a dense error function incorporating depth and

color information. The volumetric representation allows for

parallel ray casting for surface prediction given a camera

pose, and the current scene model can be extracted at any

time as a colored mesh. Patch Volumes runs mostly on the

GPU and can extend the size of the modeled volume as

necessary. For efficiency in this paper we use statically sized

volumes, although we do resize volumes periodically for

object modeling.

Fig. 1 includes an example of change detection. Figs. 1(a)

and 1(d) show frames from two scenes, and figs. 1(c) and

1(b) show change detection results of each scene with respect

to the other.

V. ONLINE MAPPING AND SEGMENTATION

Fig. 2. our algorithm for processing each frame of a new scene.

The techniques of sec. IV allow us to create 3-D models

of objects that move while the robot is away from the scene.

At a high level, this is done by maintaining one map for each

spatially connected region of surface that change detection

marks as changed, and adding nearby pixels to these maps

(a) old scene (b) (c) (d) new scene

(e) old-scene model (f) (g) new-scene model

Fig. 1. (a), (d) two scenes of a desk on which a cup has moved; (f) the background map and (e), (g) object models resulting from running
online change detection on them. (b), (c): change detection results for the first frame of the second video with respect to the map of the
first scene and vice versa. Yellow regions are present in one scene but not the other; orange regions are occluded or uncertain; red regions
are judged unchanged. Dark blue denotes no information at that pixel in at least one of the two change detection inputs.

as the video progresses according to a measure of how likely

each pixel is to be part of the object modeled by each map.

We create new object maps for pixels that don’t match well

to any existing object.

We can obtain the initial background for processing a

video either from an empty map (all voxels are considered

“unseen”) or from the result of processing one or more

previous scenes. We must initially align the video to the

background map. This is done with point feature matching

as in [4] but with the second map replaced by a single frame,

and we ignore incoming frames until we have a good match.

From then on, we process each frame with the procedure

shown in fig. 2. We use the pose of the previous frame

as an estimated pose for differencing the frame against the

previous map (the result of running our procedure on zero or

more previous visits to the scene) to perform outlier rejection

by identifying pixels likely to be part of movable objects.

We mask out those pixels, realign with Patch Volumes

to get a more accurate alignment, and add the frame to

the background map. Although Patch Volumes downweights

likely outliers during alignment, we find that our outlier

rejection works much better in practice. Except for runtime

considerations we could run outlier rejection and realignment

alternately to convergence. Next we run change detection

again with the updated alignment to update the set of pixels

that need to be explained with objects (i.e. outlier pixels with

respect to the background scene motion). These pixels are

segmented using information from both the current frame

and object models we have already made, and each segment

is added to one or more existing object models or used

to create a new model. We run change detection in both

directions to model both newly seen and no-longer-seen

objects. After processing an entire scene in this fashion, we

have a background map containing none of the objects seen

to move as well as a model of each moved object seen

in the current scene or in the background model used to

process this scene. The assignment of pixels to models is

Algorithm 2 the 2.5-D connected components algorithm used to

do per-frame segmentation prior to adding segments to models. δz0

is the base distance threshold; we use 8 mm.

P ← the set of pixels with high probability of change
initialize a component for each pixel in P
for each pixel p ∈ P do

for each pixel q ∈ P within Manhattan distance w of p do
d ← the Manhattan distance from p to q
if |qz − pz| < δz0 × d then

connect the components containing p and q

one of the most computationally heavy parts of the system.

Each existing model is rendered in the frame. Pixels to

be added are segmented using 2.5-D connected components

(alg. 2), and each segment is run through change detection

with respect to each model. (This segmentation of the frame

reduces the noise concomitant with choosing a model for

each pixel separately.) A segment is added to each model

that it matches well according to a change-detection-based

score: for image segment s and existing model M, we add

s to M if Js,M > τ , where

Js,M =

{
∑

p∈s
ep(

1

2
−pp(m))

∑
p∈s

ep
,

∑

p∈s ep > 0

0,
∑

p∈s ep = 0
.

Here ep is Boolean and is 1 iff the sum of the magnitudes

of all log-probabilities used in change detection is nonzero

at pixel p (i.e. if there is any evidence at the pixel), and

pp(m) is the probability of change at pixel p. The value

of J is in [−.5, .5]; we apply a threshold τ ∈ [.3, .4] that

depends on the parameters of the change detection model

and the amount of noise in the maps (which is a function of

map resolution and alignment error). If a segment is added

to multiple models, those models are merged (and resized if

necessary). The merge operation relies on the form of the

volumetric maps: each voxel stores a signed distance and a

weight that is essentially the number of times the voxel has

been viewed. Merging two volumetric maps thus consists of

adding the weights at each voxel (with one map represented

by interpolated samples, since maps’ axes aren’t in general

aligned) and performing a weighted sum of the two signed

distances and colors at each voxel.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. three models of a blue cup made by processing the same
scenes with different modeling options. Each column shows all
models from approximately the same viewpoint. First row: 1-cm
map resolution. Second row: 3-mm map resolution. Third row:
3-mm map resolution and improved per-pixel color confidence
weighting when adding frames to the map.

Fig. 1 gives an example of the results of processing two

scenes in this fashion. We start with an empty map, run the

scene of fig. 1(a) through the above procedure to get a new

“background” map containing exactly the contents of this

scene, then run the scene of fig. 1(d) through this procedure

to end up with the background map shown in fig. 1(f). The

two scenes are represented here by the first frame of each

video; each scene is hundreds of frames. The areas behind the

object in each scene appear in the background map. While

processing the second scene, we also find and model the

object of fig. 1(e), which is in the first scene but not the

second, and that of fig. 1(g), which is in the second scene

but not the first. These are in fact the same object in different

positions.

This system does not yet include object discovery, the

clustering of views of objects in different scenes into groups

corresponding to physical objects. However, we have worked

on object discovery and intend to integrate that component

with this system. Since our object discovery relies on high-

accuracy models, we want to model all objects in as much

detail as possible. For any algorithm that maintains a large

number of maps, memory is a bottleneck. Since we have

approximate segmentation information for objects, we can

restrict the sizes of the maps we use to represent them.

Because these maps are so much smaller than that of the full

scene, we can afford to make them much higher-resolution

than the scene map.

We show the result of processing many scenes in fig. 4.

Each of six scenes was run through our system in order.

The resulting background map is shown in the middle, along

with some of the object models. We have used these results

for a comparison with the batch object segmentation method

of [14]. There are 36 unique object views in these six

scenes. The batch method finds each of the 36 and creates an

additional 45 non-object models, for a precision of 40%. The

method of this paper creates models for 24 of the 25 views

that it should find (an object that doesn’t move until scene

4 of 6 can’t also be segmented in scenes 1 and 2 with an

online method); it also creates 12 duplicate models and 38

non-object models, giving a precision of 32% if duplicates

are considered false positives or 49% if they’re considered

true positives. Images of the models are online; see sec. VIII.

We can control the visual quality of object models in a

variety of ways. The first two rows of fig. 3 show the effect

of changing the resolution of object models. The third row

demonstrates a weighting scheme for adding information

to the map in which the colors of pixels in the frame

are downweighted according to their distance from depth

discontinuities in the frame when being added to the map.

This downweighting alleviates problems caused by depth and

color image misalignment in the input RGB-D frames, which

occurs even when the camera is stationary due to sensor noise

and imperfect calibration. The tradeoff we observe is that the

more accurate the model color, the less accurate the shape.

The models in fig. 3 were generated from two videos, one

of an empty surface and one of the surface with the cup

on it, in which the camera viewed the object from almost all

viewpoints, demonstrating that even using a SLAM algorithm

without loop closure, we can make a complete and accurate

object model. (The Patch Volumes framework includes loop

closure, but it optimizes constraints between volumes rather

than between frames, as our use case would require.)

As mentioned before, we have the option of using an

empty map as the initial background map when processing

a scene. One interesting effect of using this option is that

we can process non-static scenes. If an object in the scene

disappears while the camera is pointing elsewhere, then when

the object’s previous location is once again in the field

of view we can detect it as moved and build a model of

it; similarly if an object appears while the camera points

elsewhere we can model it once we see it. An example

(a) (b) (c)

(d)

(e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u) (v)

Fig. 4. (a) - (c) three of six scenes of an office environment encountered in sequence (the rest can be found on our website; see sec. VIII);
(d) the background map obtained by processing all six scenes; (e) - (v) some of the object models created. For space reasons we show
only the 18 models that represent actual objects; there are an additional 16 that duplicate objects shown here (in the same scene; we show
each object once per scene we segment it from) and 38 models of non-object regions caused by noise. Here we see five views of a large
textureless box, four of a textured box, four of a cup, one of a phone, one of a lunchbox, one of a clearly visible shoe and two of the
shadowed shoe from those scenes where it is under the desk (lower right corner of scene).

is given in the accompanying video. In this mode, rather

than differencing against a map created only from previous

scenes, we difference against the current background map.

Because it takes many frames for surface locations to change

in volumetric maps, an object that appears or disappears must

be viewed in many frames for enough evidence to accumulate

in the map for previously present surfaces to be overwritten.

VI. SEGMENTATION DISAMBIGUATION

Change detection has some undesirable characteristics for

the purpose of object segmentation. Because there is no data

association step in change detection, two objects that move

between two scenes but that are physically close in one scene

can’t be segmented separately in that scene, even if they’re

separate in the other. Also, as mentioned before, if we see an

area of space that we didn’t see in a previous visit, we can’t

get change detection information for it. Both these issues

affect the assignment of points to object models. If objects

are close in 3-D and both are marked as changed, we will

assign all points from both to a single object model. In the

case of viewing a previously occluded area, we currently

choose to add all previously occluded points to all nearby

object models. In addition to these risks of obtaining an

undersegmentation, we are also prone to oversegmentation.

This happens when some points in between changed points

have no change detection information due to an invalid depth

in either the background or the current scene. If we could

model all areas of the map in high resolution, we could assure

undersegmentation by adding all points to a single model, to

be split later once we have more information, but as it is,

whatever heuristic we use to assign points to object models,

we cannot guarantee that our models will represent either an

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 5. (a) - (d) frames from the beginning, middle and end of a segmentation demonstration; (e) - (h) the result of differencing these
frames against the demonstration background map at each time; (i) the background map at the end of the demonstration; (j), (k) the result
of differencing the first and last frames of the demonstration against this background map. The object is nicely segmented.

over- or an undersegmentation of the actual set of objects.

As an example of how to acquire object segmentation

information from sources other than change detection in

static scenes, we here show how to use a human demon-

stration of object boundaries (hereafter “demonstration”) to

provide the 3-D extent of a single object in the scene, as

well as that of the empty space between the object and the

background. The only user interaction required is picking

up an object and putting it back down. In order to achieve

this level of autonomy, we must place some restrictions on

the interaction. The user should move one object out of

the space it previously occupied, then replace it close to its

original location (with a parameterized maximum distance).

There can be camera motion during the demonstration.

To ensure that demonstrations always provide unambiguous

segmentations, we require that the object be put down in

front of all possible occluders from the point of view of the

camera during that demonstration (which does not preclude

other objects from moving in front of that object’s location

either before or afterward). If the system were running on

a robot, the robot could alternatively attempt to grasp and

move objects itself to learn their shape. However, this would

entail potentially many failures to move the objects properly

and would make the associated vision problems harder.

We determine the start of a demonstration to be a frame in

which we see a large spatially connected segment of pixels

that have moved with respect to a recent frame (e.g. three

frames prior) and whose motion cannot be explained by the

background motion computed by map alignment, and we

designate an end to the demonstration when the number of

changed pixels with respect to the pre-demonstration map

ceases to change. At each demonstration frame, we identify

changed points with respect to the current background map,

and add all other points to the background map. This means

that we add both pixels that agree very well with the map

and those that were previously occluded or unviewed. We

also find that we need to decrease the confidence in the

TSDF each frame before adding to the map, or the map

changes extremely slowly. (This is a particular problem

during demonstrations.)

Once we have determined that the demonstration has

ended, we segment out the object in the first and last frames

of the demonstration. Assuming that at some point the object

moves entirely out of the space it previously occupied and

that no part of the user is visible at the start or end of the

demonstration, this can be accomplished simply by detecting

change in these two frames with respect to the background

map, which no longer contains the object. We reoptimize

the relative pose between the first frame and the background

map at this point to correct for drift during mapping, which

occurs both due to the lack of loop closure in our volumetric

mapping and because we are abusing a static SLAM system

to build a map of a changing environment, in that the

modified frames we add to the map during a demonstration

do not all contain the same surfaces.

Finally, using these segmentations we estimate the rigid

motion of the object during the demonstration. We accom-

plish this with a RANSAC algorithm, repeatedly sampling

triples of point correspondences between frames just before

and just after demonstration, when we know the human is not

present in the scene. We use scene flow to enumerate possible

point correspondences, requiring only tens of RANSAC

iterations. Due to the limitations of the image-based spatial

regularization used in recent scene flow techniques, this

algorithm requires a limit on how far the object can move

during the demonstration.

At the end of the demonstration we create a volumetric

map from the segment of the object in the final demonstra-

tion frame. (We assume the object being demonstrated was

unknown to us before and so is not already modeled.) It

would be possible to also add the object as seen in the first

demonstration frame, since we have the rigid transformation

between the two. It would not be possible to incorporate

intermediate frames into the model due to the difficulty of

segmenting the object apart from the human. If this demon-

stration component were integrated fully with our mapping

system, object models resulting from demonstrations would

be used in the same way as models acquired otherwise.

Fig. 5 visualizes a demonstration. The first two rows

show some frames from a demonstration video and the

change detection results for these frames with respect to

the background map (fig. 5(i)), which changes significantly

as the object being demonstrated moves. Initially (fig. 5(a))

the object, a mostly textureless cup, does not show up as

changed. As it is moved, more and more of it is distin-

guishable from the background, and once it is set back down

close to its original location, the background map no longer

contains the object and it shows up as changed (fig. 5(d)).

Figs. 5(j) and 5(k) show our final segmentations of the object

in the first and last frames of the demonstration.

VII. EFFICIENCY

Our system is intended for interactive use, so efficiency is

a concern. Runtime depends on the number of object models

that must be processed at each frame. Currently, when the

number of models is under twenty, processing a frame takes

.7 to 2 seconds. More than half of this is in change detection,

the only major component of the system that does not run

on the GPU. Change detection can be made to work on the

GPU, and has not to date due mainly to time constraints.

Our scene flow, which we use in analyzing segmentation

demonstrations, runs on the GPU. It takes one to five seconds

per frame pair, depending on scene content: the less visual

texture the scene has, the more iterations of smoothing are

required.

VIII. CONCLUSIONS

We have shown fast and accurate reconstruction of

multiple rigid objects online during scene reconstruction.

This allows us to represent a scene with one 3-D model

of the static background as well as a model of each

object we ever observe to have moved. We intend to

integrate information about segmentation from the sources

discussed here with other sources such as 1) detection

of previously learned partial or full object models, using

techniques similar to those of [16] but with our high-

accuracy sensor model, and 2) active exploration by a

robot. Additional images can be found at http://

www.cs.washington.edu/research-projects/

robotics/rgbd-segmentation-online/.

Robust online segmentation and object modeling is a pre-

requisite for tracking previously unknown objects, allowing

object-level understanding of, for example, egocentric video

[17] involving textureless objects. For tracking partially built

object models through such video we might use dense align-

ment methods based on those we use in this work, change-

detection-based methods similar to [16], or modifications

of depth-only methods involving point matching between

frames (e.g. [18]).

REFERENCES

[1] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion:
Real-time dense surface mapping and tracking,” in International

Symposium on Mixed and Augmented Reality (ISMAR), 2011.
[2] P. Henry, D. Fox, A. Bhowmik, and R. Mongia, “Patch volumes:

Segmentation-based consistent mapping with rgb-d cameras,” in In-

ternational Conference on 3-D Vision (3DV), 2013.
[3] T. Whelan, M. Kaess, J. Leonard, and J. McDonald, “Deformation-

based loop closure for large scale dense rgb-d slam,” in International

Conference on Intelligent Robots and Systems (IROS), 2013.
[4] E. Herbst, P. Henry, X. Ren, and D. Fox, “Toward object discovery

and modeling via 3-d scene comparison,” in IEEE International

Conference on Robotics & Automation (ICRA), 2011.
[5] P. Fitzpatrick, “First Contact: an Active Vision Approach to Segmen-

tation”, in IEEE International Conference on Intelligent Robots and

Systems (IROS), 2003.
[6] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun, “Towards object

mapping in dynamic environments with mobile robots,” in Interna-

tional Conference on Intelligent Robots and Systems (IROS), 2002.
[7] D. Haehnel, R. Triebel, W. Burgard, and S. Thrun, “Map building

with mobile robots in dynamic environments,” in IEEE International

Conference on Robotics & Automation (ICRA), 2003.
[8] R. Finman, T. Whelan, M. Kaess, and J. Leonard, “Toward life-long

object segmentation from change detection in dense rgb-d maps,” in
European Conference on Mobile Robots, 2013.

[9] R. Salas-Moreno, R. Newcombe, H. Strasdat, P. Kelly, and A. Davi-
son, “Slam++: Simultaneous localisation and mapping at the level
of objects”, in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2013.
[10] P. Alimi, D. Meger, and J. Little, “Object persistence in 3-d for home

robots,” in ICRA Workshop on Semantic Perception, Mapping and

Exploration, 2012.
[11] K. Wurm, D. Hennes, D. Holz, R. Rusu, C. Stachniss, K. Konolige,

and W. Burgard, “Hierarchies of octrees for efficient 3-d mapping,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2011.
[12] S. Pundlik and S. Birchfield, “Motion segmentation at any speed,” in

British Machine Vision Conference (BMVC), 2006.
[13] A. Roussos, C. Russell, R. Garg, and L. Agapito, “Dense multibody

motion estimation and reconstruction from a handheld camera,” in
International Symposium on Mixed and Augmented Reality, 2012.

[14] E. Herbst, X. Ren, and D. Fox, “Rgb-d object discovery via multi-
scene analysis,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2011.
[15] B. Curless and M. Levoy, “A volumetric method for building complex

models from range images,” in ACM SIGGRAPH, 1996.
[16] M. Krainin, K. Konolige, and D. Fox, “Exploiting segmentation for

robust 3-d object matching,” in IEEE International Conference on

Robotics & Automation (ICRA), 2012.
[17] Second IEEE workshop on egocentric vision at CVPR 2012. http:

//egovision12.cc.gatech.edu/.
[18] J. Schulman, A. Lee, J. Ho, and P. Abbeel, “Tracking deformable

objects with point clouds,” in IEEE International Conference on

Robotics & Automation (ICRA), 2013.

