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Toward Open-World Electroencephalogram
Decoding Via Deep Learning: A Comprehensive

Survey
Xun Chen, Chang Li, Aiping Liu, Martin J. McKeown, Ruobing Qian, Z. Jane Wang

Electroencephalogram (EEG) decoding aims to identify the
perceptual, semantic, and cognitive content of neural process-
ing based on non-invasively measured brain activity. Tradi-
tional EEG decoding methods have achieved moderate success
when applied to data acquired in static, well-controlled lab
environments. However, an open-world environment is a more
realistic setting, where situations affecting EEG recordings can
emerge unexpectedly, significantly weakening the robustness
of existing methods. In recent years, deep learning (DL)
has emerged as a potential solution for such problems due
to its superior capacity in feature extraction. It overcomes
the limitations of defining ‘handcrafted’ features or features
extracted using shallow architectures, but typically requires
large amounts of costly, expertly-labelled data – something
not always obtainable. Combining DL with domain-specific
knowledge may allow for development of robust approaches
to decode brain activity even with small-sample data. Although
various DL methods have been proposed to tackle some of the
challenges in EEG decoding, a systematic tutorial overview,
particularly for open-world applications, is currently lacking.
This article therefore provides a comprehensive survey of
DL methods for open-world EEG decoding, and identifies
promising research directions to inspire future studies for EEG
decoding in real-world applications.

I. INTRODUCTION

Identifying and predicting mental processes from observed
patterns of neural activities have long been explored in cog-
nitive neuroscience and brain computer interfaces [1]. Non-
invasive techniques, such as electroencephelography (EEG),
magnetoencephelography (MEG), near infrared spectroscopy
(NIRS), and functional magnetic resonance imaging (fMRI)
provide accessible ways to broadly examine brain activity
without surgical intervention. In particular, the EEG is popular
for brain decoding in practical applications, as it is relatively
inexpensive and has advantages of safety, high temporal res-
olution, wide accessibility, and potential portability [2], [3].
EEG signals can be obtained by placing electrodes on the
surface of the scalp, providing measurements of post-synaptic
potentials – an indirect measure of neuronal activity [4]. This
allows for, after digitization and suitable analyses, decoding
of brain states and communication between our brain and the
outside world [5].

EEG decoding methods have made great progress in recent
decades. However, most existing EEG decoding methods were

designed using data collected in static or well-controlled lab
environments that utilized rigorous experimental protocols
and strict laboratory conditions, which are unrealistic in an
open-world environment. Open-world EEG decoding refers
to identifying the perceptual, semantic, and cognitive content
of measured brain activity in an open-world environment [6].
With the emergence of new open-world applications in various
fields, such as in entertainment, industry, and medicine, there
is an urgent need to develop efficient EEG decoding methods
for real-world scenarios. Additionally, such open-world appli-
cations typically adopt few-electrode portable, wearable, and
wireless systems to take advantage of technological advances
in hardware [7]. These recordings from complex environments
tend to be heavily contaminated with artifact, making brain
decoding even more challenging.

The steps involved in EEG decoding typically include
preprocessing, feature extraction, and classification, and suc-
cessful open-world EEG decoding requires specific consider-
ations at each step. Even under the most stringent recording
conditions, EEG signals are easily corrupted by various arti-
facts (e.g., eye blinks, muscle artifacts, cardiac interference,
and electromagnetic interference) [7]. EEGs in open-world
environments are also contaminated by outdoor open-world
artifacts caused by extensive movement (such as muscle
and mechanical artifacts) and electromagnetic factors [7].
Historically EEG features have been extracted from time-
domain (such as mean, variance, and kurtosis), frequency-
domain (such as power spectral density and fast Fourier
transform), and time-frequency domains (such as discrete
wavelet transform). In addition, traditionally–defined features
strongly depend on human expertise in a specific domain, and
manual feature extraction is time-consuming. Classification
of the extracted features include such techniques such as
decision tree (DT), support vector machine (SVM), and linear
discriminant analysis (LDA). EEG signals are temporally
non-stationary, with their statistics varying over time which
can make generalization of a classifier challenging based on
limited amounts of data.

During feature extraction, most EEG decoding methods as-
sume that the training and test data are identically distributed.
However, high inter-subject variability, electrode shifts, and
physiological state changes will inevitably lead to mismatch
between training and test distributions in an open-world sit-
uation [8]. Even a small mismatch in distributions can cause
significant performance degradation.

To overcome the above challenges, deep learning (DL)
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TABLE I: Challenges and solutions for three typical steps of open-world EEG decoding via DL.

Challenges Solutions

Preprocessing How to remove various EEG artifacts automatically with good generalization ability

CNN

Autoencoder

LSTM

GAN

Feature extraction

How to solve the distribution mismatch between the source and the target EEG data Transfer learning

How to exploit complementary information of EEG from multiple tasks and modalities
Multi-task learning

Multi-modal learning

How to make the EEG models robust for adversarial attacks Adversarial training

Classification

How to design EEG models with desirable performance under small sample size
Few-shot learning

Semi-supervised learning

How to recognize both the known and the unknown categories of EEG Zero-shot learning

How to exploit the structure of unlabeled EEG data to provide supervision Self-supervised learning

How to train robust EEG models in the presence of noisy label Noisy label classification

methods, which are an automatic end-to-end learning frame-
work, consisting of preprocessing, feature extraction, and clas-
sification, have achieved state-of-the-art performance in the
field of EEG decoding [9], with better generalization abilities
and more flexible applicability. DL approaches avoid time-
consuming preprocessing and feature extraction by working
on raw EEG signals directly to learn useful information,
which can capture both discriminative high-level features and
underlying dependencies.

Despite their successes, DL approaches have their own
challenges. Supervised DL implicitly assumes that there exists
a large number of labelled EEG training samples for DL
to achieve good generalization performance [9]. However,
EEG classification performance deteriorates as the number of
available training samples diminishes, emphasizing the need
for robust DL models under more typical small sample size
scenarios [10]. Transfer learning [8], multi-task learning [11]
and multi-modal learning [12] have been recently proposed to
address small-sample data concerns. DL models have usually
assumed that the categories of the test EEG signals have been
seen during training. However, there may be test EEG signals
that do not belong to any category of the training set. Zero-
shot learning [13] may be a potential solution to recognize
both known and unknown categories of EEG signals. Another
challenge with DL approaches is that the labels are likely not
perfectly assigned in the training set [14], resulting in overfit-
ting of the incorrect labels and reducing ultimate classification
accuracy when applied to unseen data. Unlabeled EEG data
can be analyzed via self-supervised [15] and semi-supervised
learning methods [16] to obtain important latent information,
which we will expand on later. Finally, DL models can be
easily fooled with adversarial examples, which are modified
normal examples with small deliberate perturbations [17], so
care must be given to prevent this possibility.

Although there are several review articles on EEG decoding,
to the best of our knowledge, most of them focus on EEG
decoding in static or well-controlled lab environments. In this
article, we review open-world EEG decoding via DL, which
has the capacity to develop robust EEG decoding for real

open-world applications. Our objectives are as follows: (1)
present the problems and challenges faced by open-world EEG
decoding, (2) provide a taxonomy of DL solutions for open-
world EEG decoding, and (3) discuss potential ways to obtain
more robust DL models for open-world EEG decoding.

II. OPEN-WORLD EEG DECODING VIA DL
In this section, we introduce new problems and methods

to deal with open-world EEG decoding via DL on each step
of EEG decoding, i.e., preprocessing, feature extraction, and
classification. The structure of open-world EEG decoding via
DL is schematically illustrated in Table I.

A. Preprocessing
The performance of EEG decoding depends heavily on the

quality of the EEG signals. Unfortunately, the recorded signals
are usually contaminated by various artifacts, which can be
magnified in open-world applications within complex envi-
ronments [7]. Therefore, it is of both theoretical and practical
significance to remove complex artifacts from contaminated
EEG signals in the open-world.

Filtering and regression are traditional artifact removal
methods. Filtering methods assume that artifacts and EEG
signals reside in distinct frequency bands [18]. However,
artifacts and EEG signals usually overlap in the frequency
domain, and there is a risk that portions of the EEG signals
may be eliminated during this artifact removal process. Re-
gression methods usually assume that each EEG channel can
be modeled as a linear or nonlinear superposition of clean
brain activity and artifact signals that can be obtained from
reference channels or artifact templates. However, regression
methods only work when suitable reference channels that are
available (e.g., channels for measuring eye movement).

Another popular approach for EEG denoising during the
preprocessing stage is blind source separation (BSS) [19],
which assumes that the clean EEG and artifacts are statistically
independent in the time domain, so they will be isolated into
different components. This allows for removal of artifact-
related components during the reconstruction process. BSS
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methods typically require human intervention to identify the
artifact-related components, which is subjective and time-
consuming. These methods generally require that the number
of channels must be larger than or equal to the number of
underlying sources [18], so they are less attractive when only
a few channels are available, as is typical in mobile scenarios.

Empirical mode decomposition (EMD) [20] and the wavelet
transform (WT) [21] are two representative methods for de-
noising when only a limited number of EEG channels are
available. EMD decomposes an input signal into multiple
empirical modes according to the intrinsic mode function
(IMF). IMFs are a set of the band-limited functions that satisfy
two basic conditions: (1) the number of extreme points and the
number of zero crossings must either equal or differ at most by
one, and (2) at every point, the mean value of the envelopes
defined by local maxima and local minima should be zero.
EMD’s data-driven approach capable of dealing with non-
stationary stochastic processes makes it suitable for removing
artifacts from contaminated EEG signals. However, EMD is
time-consuming and is not suitable for online applications in
the open-world. Similar to EMD, the WT first decomposes
the contaminated EEG signal into different sub-bands. Then,
a threshold function is used to update the coefficients related to
the sub-bands that are assumed to be artifact-related. Finally,
the EEG signals are reconstructed using the updated coeffi-
cients. However, selection of an incorrect threshold setting
could lead to the degradation of the reconstructed EEG signals
[7]. A traditional neural network with shallow layers can
be used to replace the threshold function in the wavelet
analysis, which has the advantage of approximating smooth
nonlinear functions. Nevertheless, the approximation ability of
a traditional, shallow layer neural network tends to be inferior
to that of DL.

DL-based methods can be used to automatically filter out
artifacts from contaminated EEG signals. One typical method
is to learn a mapping between noisy EEG signals and their
cleaned versions [22]. The performance of DL-based artifact
removal methods relies fundamentally on the size of the
training datasets. For example, Zhang et al. established a
benchmark EEG dataset for the training and testing of DL-
based artifact removal methods [22]. The EEG epochs were
acquired from a motor imaginary EEG dataset, with a band-
pass filter between 1 and 80 Hz applied, followed by re-
sampling to 256 Hz. Then, the ICLabel method [23] was
used to attenuate the artifacts. Finally, the EEG signals were
segmented into epochs of 2-s. The ocular artifact epochs
were acquired from open-access EEG data, band-pass filtered
between 0.3 and 10 Hz, followed by re-sampling to 256
Hz, then segmented into 2-s epochs. The myogenic artifact
epochs were acquired from a facial surface electromyography
(EMG) dataset, band-pass filtered between 1 and 120 Hz, re-
sampling to 512 Hz, then segmented into 2-s epochs. For all
the categories, the epochs were standardized by subtracting
their mean and dividing by their standard deviation, and
then were visually checked by an expert. Finally, 4514 clean
EEG epochs, 3400 ocular artifact epochs, and 5598 muscular
artifact epochs were acquired. Simulated noisy signals can be
generated by linearly mixing the clean EEG epochs with EOG

or EMG epochs, the SNRs for EEG epochs contaminated by
ocular artifacts range from -7dB to 2dB, and the SNRs for
those contaminated by myogenic artifacts range from -7dB to
4dB. In this way, the clean EEG epochs can be considered as
ground truth, and the mixed epochs as contaminated EEG. This
allowed the adoption of a large number of noisy EEG epochs
with ground truth (clean EEG epochs) for model training and
testing. Mathematically, simulated noisy EEG signals can be
formulated as

Y = X + λ ·N, (1)

where Y denotes the contaminated EEG signal with artifacts,
X denotes the clean EEG signal, N denotes the artifacts, and
λ denotes the relative contribution of the artifacts.

The goal of DL-based artifact removal is to learn an end-
to-end nonlinear function f to map a noisy EEG signal to
approximate a clean EEG signal as follows

X̂ = f(Y, θ), (2)

where X̂ denotes the approximated clean EEG signal, and θ
denotes the parameters to be learned. The learning process can
be realized by minimizing the objective function as follows

θ̂ = arg min
θ

1

N

N∑
i=1

‖Xi − f(Yi, θ)‖2F , (3)

where N represents the number of training samples, and Yi

and Xi represent the ith contaminated EEG signal and clean
EEG signal, respectively. After obtaining the optimized trained
parameters θ̂, denoised EEG signals can be obtained for the
EEG test dataset.

Autoencoder, one of the major branches of DL, has also
been used in artifact removal [24]. Autoencoder consists of
three layers, i.e., input, hidden and output layers. An autoen-
coder maps an input x to an output z. It takes an input x
and maps it to a hidden representation y through a mapping
(encoder) as follows

y = s(WTx+ b), (4)

where s denotes the non-linear function such as sigmoid, W
and b denote the weight and bias vector from input to hidden
layer, respectively. The hidden representation is then mapped
back (decoder) again to the output z of the same size as input
x as follows

z = s(W ′T y + b′), (5)

where W ′ and b′ denote the weight and bias vectors from
hidden layer to the output layer, respectively. The training of
the network can be accomplished by measuring the reconstruc-
tion error, which can be measured with the traditional mean
squared error (MSE). For example, Ghosh et al. proposed an
automated eye blink artefact removal from EEG using SVM
and autoencoder [24]. A sliding window of 0.45-s is applied
to the EEG data, and each window is processed as follows:
(1) Identification of artifacts: The signal within the window
is input to the SVM classifier, SVM classifies whether the
signal is an artifact or clean EEG. If it classifies the signal
as an artifact, it is input to the autoencoder for correction.
On the other hand, if the signal is classified as non-artifact,
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then the window is slid forward. (2) Cleaning the artifacts:
Signal window marked as artifact is then input to the pre-
trained autoencoder. The autoencoder removes the artifact of
contaminated EEG window and outputs the clean EEG signal.
However, the encoder and decoder in [24] are the simplest
case of the autoencoder, which use only one linear layer and
nonlinear layer to represent both the encoder and decoder.
The encoder and decoder for EEG preprocessing can have
multiple layers. For example, a reversible GAN was used for
the removal of BCG artifacts [25]. An autoencoder is used as
a subnetwork in the single shot reversible GAN. The encoder
contains multiple convolutional layers, and the decoder con-
tains multiple transposed convolutional layers (deconvolutional
layers).

Long short-term memory (LSTM) models, a popular variant
of recurrent neural network (RNN), which solve the vanishing
and exploding gradient problem of RNN by adding extra
parameters to the RNN model [26], can also be used for EEG
artifact reduction. An LSTM is composed of four different
gates, which checks the input of the cell state and determines
the influence of the cell state on the output. The four gates
are termed as input gate, forget gate, output gate and block
input gate. The input gate and the block input gate control
the new information flow to the memory cell. Sigmoid and
Tanh are used as activation functions for the input gate and
block input gate, respectively. The forget gate controls which
previous information should be retained into memory cell.
The output gate determines what is to send as output from
LSTM unit. A sigmoid activation function is used for both the
forget gate and the output gate. Manjunath et al. proposed a
low complexity LSTM for detecting various artifacts in multi-
channel brain EEG signals [27]. It consists of one average
pooling layer of size 64, one LSTM layer having 12 units, one
dense layer having 50 neurons and one output layer for binary
classification. The experimental results indicate that the LSTM
based FPGA hardware outperforms the CNN based FPGA
hardware by 1.88× in terms of dynamic power consumption
per classification.

Although the deep network-based methods described above
have achieved desirable performance, an end-to-end network
typically uses the MSE between the network output and
ground truth as the loss function, leading to over-smoothing
and loss of detail [28]. To overcome these problems, a gen-
erative adversarial network (GAN) can be used to remove
artifacts, where a generative network is trained to map a
noisy EEG signal to a clean EEG signal, and a discriminator
network is trained to discriminate between real and gener-
ated EEG signals. An example where this is useful is in
simultaneous EEG and functional magnetic resonance imaging
(fMRI) recordings which can measure brain activity with both
high temporal and spatial resolution. A ballistocardiogram
(BCG) artifact exists due to cardiac activity and blood flow
inside the static magnetic field of the MRI scanner [25].
However, BCG artifact removal remains challenging using DL,
since it is difficult to obtain clean EEG signals and BCG-
contaminated EEG signals at the same time. A paired signal-
to-signal problem refers to the mapping between input data and
output data using paired training data. However, it is hard to

obtain BCG-contaminated EEG signals and clean EEG signals
in the same state simultaneously, so BCG artifact removal can
be considered an ‘unpaired signal-to-signal problem’. A cycle-
consistent generative adversarial network (CycleGAN) [29] is
a technique to solve the unpaired image-to-image translation,
and it can be widely used in many applications, such as
unpaired image denoising, unpaired image super-resolution,
and unpaired image dehazing. Since the SNR of the EEG
signal is low, the direct use of CycleGAN, which performs
well on the unpaired problem, still cannot easily remove the
BCG artifacts in simultaneous EEG-fMRI. Lin et al. proposed
a novel single-shot reversible GAN for the removal of BCG
artifacts [25]. Being capable of bidirectional input and output,
the forward model can map contaminated EEG signals to
clean EEG signals, and the reverse model can achieve data
conversion from clean EEG signals to contaminated EEG
signals.

B. Feature extraction
1) Transfer learning for addressing the distribution mis-

match issues: Recently, EEG recognition methods have proven
successful in many applications, particularly when the training
and test EEG data are drawn from the same distribution. How-
ever, this is not the case in many real open-world problems,
where there is notable high inter-subject variability, electrode
shift, and physiological state changes, all of which affect the
generalization ability of models [8]. The performance of a
classifier trained in the source domain will almost certainly
drop when tested on the target domain due to the distribution
mismatch between the source and target domains, limiting its
practical use.

Transfer learning aims to improve the performance of
learners in the target domain by fusing knowledge from one
or more related, but differently–distributed source domains.
For example, it may be desired to augment small-sample
EEG from one institution with large data sets collected
from other institutions. Domain adaptation is a special case
of transfer learning that uses labeled data in one or more
source domains to improve the learning performance in a
target domain. Traditional domain adaptation methods in EEG
signal analysis include distribution and subspace adaptation
[8]. Distribution adaptation can be generally classified into
marginal and conditional distribution adaptation. The objective
of marginal distribution adaptation is to transfer knowledge
when the marginal distributions of the source domain (XS) and
target domain (XT ) are different, i.e., P (XS) 6= P (XT ). The
objective of conditional distribution adaptation is to transfer
knowledge when the conditional distributions of the source and
target domains are different, i.e., P (YS |XS) 6= P (YT |XT ).
Measures of marginal distribution difference and conditional
distribution difference include maximum mean discrepancy
[30], Kullback–Leibler divergence [31], and Jensen–Shannon
divergence [32]. Subspace adaptation transforms data in both
the source and target domains into a common latent subspace
in which their distributions are similar [33]. Linear subspace
adaptation usually utilizes linear subspace learning algorithms
for domain adaptation in EEG signal analysis, such as prin-
cipal component analysis and linear discriminant analysis.
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Manifold learning methods map the original high-dimensional
EEG data in the source and target domains into a common low-
dimensional manifold structure [8]. Statistical feature align-
ment aims to map the EEG data into a subspace to align
the statistical features in the source and target domains [34],
such as variance and median absolute deviation. However,
traditional domain adaptation methods align the distribution
in the source and target domains or learn shared common
subspaces with shallow representations.

Recently, several studies have demonstrated that deep net-
works can learn more transferable representations [35]. The
deep features eventually transition from general to specific,
and the transferability sharply decreases in higher layers that
are near to the output [36]. The most commonly–used method
in EEG signal analysis is to fine-tune a pre-trained DL model
[37], i.e., train a base network and then copy its first n layers
to those of a target network. A pre-trained model can leverage
the knowledge gained from a large dataset to solve a different
but similar task with a small dataset more effectively. The
remaining layers of the target network are randomly initialized
and trained towards the target task. One can either fine-tune the
entire deep network, or freeze the first n layers. This depends
on the size of the target dataset and the number of parameters
in the first n layers. If the size of the target dataset is large
or the number of parameters is small, it can be fine-tuned
to the target domain to improve performance. If the size of
the target dataset is small and the number of parameters is
large, overfitting will likely occur, and hence the first n layers
are often frozen. For example, Raghu et al. extracted features
using pretrained network and used SVM for classifying the
seizure type [37], and it outperformed conventional feature
and clustering based approaches.
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Fig. 1: Cross-subject recognition method based on CNN and DDC (Figure
adapted from [38]).

Although fine-tuning is easy to implement and understand,
it is less effective when there is substantial mismatch between
the distributions of source and target domains. To solve this
problem, Zhang et al. proposed a cross-subject recognition
method based on a convolutional neural network (CNN) and

deep domain confusion (DDC) [38], as shown in Fig. 1.
They trained the CNN using the source and target EEG data
jointly to minimize the loss of classification accuracy. The
DDC method can narrow the difference in feature distribution
between the source and target domains by minimizing the
distance between the two domains (maximizing the domain
confusion). Hence, a classifier trained in the source domain
can be applied to the target domain to reduce the loss of clas-
sification accuracy. The maximum mean discrepancy (MMD)
for maximizing domain confusion is defined as follows

MMD(XS , XT ) =

∥∥∥∥ 1

|XS |
∑

xs∈XS

Φ(xs)−
1

|XT |
∑

xt∈XT

Φ(xt)

∥∥∥∥2
H
,

(6)
where xs and xt denote the deep features of the source and
target domains in the adaptation layer, respectively. |XS | and
|XT | denote the numbers of samples in the source and target
domains, respectively. Φ denotes the kernel function that maps
the deep feature to a reproducing kernel Hilbert space (RKHS).
The total loss is defined as follows

L = LC(XL, YL) + αMMD(XS , XT ), (7)

where LC(XL, YL) denotes the classification loss in the tagged
source domain EEG data XL and the corresponding ground
truth labels YL, and α denotes the regularization parameter.

…

...… …

Source domain XS Source generator Mapping feature X’S

...… …

Target domain XT Target generator Mapping feature X’T ... ……

D
iscrim

inator

C
lassifier

Fig. 2: Generative adversarial network domain adaptation framework (Figure
adapted from [39]).

An alternative approach is to adopt generative adversarial
domain adaptation [39], which is closely related to GANs.
GANs have the advantage of generative ability and can be for-
mulated as a minimax problem. The distribution of generated
data is approximate to that of real data when the two-player
game achieves equilibrium. Thus, as shown in Fig. 2, the
generative adversarial domain adaptation [39] framework has
been widely used to solve the distribution mismatch problem
in computer vision as well as in EEG decoding. The source and
target generators aim to map the source and target domains to a
common feature space, respectively. The discriminator aims to
distinguish the source and target distributions in the common
feature space, and the classifier is used to recognize the EEG
state.

Deep domain adaptation methods improve the model per-
formance in the target domain by eliminating the domain shift
between the source and target domains. However, most domain
adaptation methods require the source domain to have the same
feature space and label space as the target domain, which may
not always be the case in open-world EEG-based applications.
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Source domain
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Fig. 3: Different domain adaptation scenarios [40].

In fact, the source and target domains may have different
label spaces. Figure 3 shows different domain adaptation
scenarios. In closed set domain adaptation, the source and
target domains are assumed to have the same label space.
In partial domain adaptation [41], the classes of the target
domain contain only a subset of the source domain, and in
open set domain adaptation, it is assumed that the source and
target domains have several common classes but also several
classes that are different and unknown. In open set domain
adaptation considered on the left [42] of the second row in
Fig. 3, the source and target domains contain some common
classes, but each also contains an “unknown” class. In open
set domain adaptation considered on the right [43] of the
second row in Fig. 3, the source domain only contains a subset
of the target domain classes. In universal domain adaptation
[44], the target domain may contain several common classes
with the source domain. However, it may also contain several
unknown classes. In different set domain adaptation, the target
domain contains partially or completely different classes from
the source domain.

Domain adaptation methods require acquaintance with the
target-domain data to measure the discrepancy between the
source and target domains in the training stage. However, they
require data collection and model training for each target do-
main (subject) that are high in cost and low in efficiency [45].
Domain generalization aims to learn a model using data from a
single or multiply-related but different source domains so that
the model can generalize well to any target domain [45]. For
open-world EEG-based applications, domain generalization
can extract domain-invariant features by exploiting domain
differences among source subjects without access to the target
subjects. Thus, domain generalization can be more robust in
open-world applications when applied to unseen domains. For
example, Ma et al. proposed a domain generalization method
by applying deep adversarial networks to reduce the influence
of subject variability without requiring any information from

unseen subjects, their method could generalize well to mul-
tiple test subjects compared with existing domain adaptation
methods [45].

2) Multi-task and multi-modal learning for exploring the
joint and complementary information: Some recent techniques
are based on the observation that humans can learn multiple
tasks simultaneously. They can use the knowledge learned in
one task to help with learning of another, related task. The
large numbers of annotated EEG samples typically required by
DL methods for adequate recognition performance are almost
impossible to obtain due to the high cost of data acquisition
and accurate annotation. Multi-task learning is an approach
that aims to improve the generalization performance of all
tasks by leveraging useful information contained in multiple,
related tasks [46]. It is assumed that all tasks, or at least a
subset of them, are related to each other. Learning multiple
tasks jointly has theoretically and empirically been found to
achieve better performance than learning them independently
[46]. Multi-task learning can allow access to more data overall,
resulting in more robust and universal representations, and
lower risk of overfitting for each task. Multi-task learning is
related to transfer learning but has certain differences. In multi-
task learning, all tasks are equal, and the aim is to improve
the performance of all tasks [47]. However, transfer learning
aims to improve the performance of a target task with the help
of source tasks. Thus, the target task attracts more attention
than the source tasks.

Multi-task DL, where each task is solved by its own deep
network, can improve performance over single-task DL if the
associated tasks share complementary information or act as
regularizers for one another [47]. In addition, the inherent
layer-sharing representation can reduce the memory footprint
and avoid calculating features repeatedly in the shared layers.
Thus, it can yield fast learning speed and increase data
efficiency for related or downstream tasks. For example,
Song et al. proposed an EEG classification method based on
multi-task DL [11], as shown in Fig. 4. It consists of three
modules, one for each of representation, classification, and re-
construction. The representation module learns shared features
from EEG signals which are then sent to the classification
module for prediction and then the reconstruction module
to reconstruct the original EEG signal. The shared features
work as a bridge to unite the classification and reconstruction
tasks, and the two tasks are jointly optimized in an end-to-
end manner. Through the interaction of the two tasks, the
shared features maintain both classification and reconstruction
abilities. Therefore, it can enhance the generalization ability
of the deep model and improve classification performance
with limited EEG data. Abdon et al. presented a multi-
task cascaded deep neural network for joint prediction of
people’s affective factors using EEG signals recorded from
people while watching affective videos in either individual
or group configuration [48]. The proposed network consists
of two levels of prediction. The first level, affect network, is
designed to predict the participant’s affective levels of valence
and arousal expressed by the participants during single video
segments. The second level, personal factors network, uses the
prediction of affective levels of consecutive video segments
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to perform multi-task prediction of personal factors. Liu et
al. proposed a multiscale space-time-frequency feature-guided
multi-task learning convolutional neural network architecture
for EEG classification [49], which can fuse the complementary
characteristics of different models. This method consists of
four modules, i.e., the space-time feature-based representation
module, time-frequency feature-based representation module,
multi-modal fused feature-guided generation module, and clas-
sification module. The four modules are trained using three
tasks simultaneously and jointly optimized. Due to the interac-
tion of the three tasks, it can improve the generalization ability
and accuracy of subject-dependent and subject-independent
methods with limited annotated data.

…

…

Representation
module

…

Spatial deconv

Upsampling

Softmax

Fully conv

Shared 
features

Predicted label Reconstructed input

Original input

Task Ⅰ
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Fig. 4: EEG classification via multi-task DL (Figure adapted from [11]).

Multi-modal learning aims to utilize complementary or sup-
plementary information from different modalities to complete
a shared task or multiple related tasks [50]. The underlying
motivation for using multi-modal data is that complementary
or supplementary information can be extracted from different
modalities for the shared task or multiple related tasks. It
can obtain richer representation to achieve better performance
than using only a single modality. Traditional multi-modal
learning methods are shallow models that cannot learn the in-
trinsic representation of data. Thus, they cannot capture inter-
modality representations and cross-modality complementary
correlations of multi-modal data properly. However, DL mod-
els can learn a hierarchical representation of the data across
hidden layers, and the learned representations of different
modalities can be fused at various levels of abstraction.

Interestingly, multi-modal DL approaches appear to have
some relevance for the visual pathway in the brain [51].
Palazzo et al. proposed a multi-modal DL method to learn a
neural representation by classifying brain responses to natural
images [51], and it can learn a joint brain-visual embedding
and find similarities between brain representations and visual
features. This embedding can be used to perform image
classification, saliency detection, and visual scene analysis.
The motivation is to learn reliable joint representations and

find correspondences between visual and brain features that
can decode brain representations. In turn, these representations
can also be used to build better DL models. Jia et al. proposed
a multi-modal DL method for sleep stage classification by
fusing EEG, EOG, and EMG signals [12]. Separate data
representations were designed for each signal type. These
representations were then input into a deep model to extract
features from EEG, EOG, and EMG signals, respectively.
Finally, a feature fusion module was used to fuse all extracted
features for sleep stage classification. Cai et al. proposed
a feature-level fusion method based on multi-modal EEG
data for depression recognition [52]. The multi-modal EEG
data were acquired under neutral, negative and positive audio
stimulation to discriminate between depressed patients and
normal controls. Then, a feature-level fusion method was used
to fuse the EEG data of different modalities to construct a
depression recognition model.

3) Adversarial training for augmenting the training set with
adversarial examples: Although DL models have achieved
outstanding performance in EEG feature extraction, they are
vulnerable to adversarial attacks, where normal EEG samples
are corrupted with small, seemingly innocuous perturbations
[17]. DL models have been found to be easily fooled by
adversarial examples, which are normal EEG examples with
small perturbations. Figure 5 shows a normal EEG epoch and
a corresponding adversarial example. The perturbations are
usually too small for the human eyes to perceive. However,
despite the slight changes, adversarial EEG samples can lead
to a dramatic performance degradation with possible serious
consequences. For example, adversarial attacks could lead
to misdiagnosis of disorders of consciousness in patients in
clinical applications. Adversarial perturbations can mislead the
P300 and steady-state visual evoked potential brain–computer
interface (BCI) spellers to spell anything the attacker wants
[53]. Modern EEG monitoring systems designed to detect
epileptic seizures could be vulnerable to an adversarial attach
whereby an ictal (seizure) sample would be classified as inter-
ictal (non-seizure) in an emergency situations, with possible
dire implications [53].

Original EEG epoch

+  0.1

Adversarial example

Class A Class B

Adversarial perturbation

Fig. 5: A normal EEG epoch and its adversarial example.

Adversarial attacks can be classified according to the degree
of access the attacker has to the target model [54], i.e.,
white-box attacks, black-box attacks, and gray-box attacks.
White-box attacks [55] assume that the attacker can obtain all
information of both the classifier and the defense mechanism.
Black-box attacks assume that the attacker does not know the
architecture or parameters of the target model. However, they
can obtain the response to the input. Gray-box attacks assume
that the attacker can obtain some information of the target
model. Adversarial attack can also be classified according to
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the stage that the attack is performed, including poisoning
attacks and evasion attacks [53]. A poisoning attack takes
place during the training time of the machine learning model
[56]. An adversary tries to poison the training data by inject-
ing carefully-designed samples to eventually compromise the
whole learning process. An evasion attack, the most common
type, tries to evade the system by adjusting malicious samples
during the testing phase [56]. This setting does not assume
any influence on the training data. According to the outcome,
there are two types of adversarial attacks [53], namely, targeted
attacks and non-targeted (indiscriminate) attacks. Targeted
attacks force a model to classify either a particular subset of
data samples or a particular region of feature space to a chosen
(usually wrong) class. Non-targeted attacks force a model to
misclassify certain data samples or regions of feature space,
but do not specify which class they should be misclassified
into.

In an open-world environment, obtained EEG signals are
sent to a computer, a smart phone, or the cloud for further
analysis. Goodfellow et al. proposed the fast gradient sign
method (FGSM) [57], and soon it became a benchmark
attack approach. Let g be the deep learning model, θ be its
parameters, and J be the loss function for training g. The main
idea of FGSM is to find an optimal perturbation η constrained
by ε to maximize J . The perturbation can be calculated as
follows

η = ε · sign(5xi
J(θ, xi, yi)), (8)

where xi and yi represent the ith EEG trial and the correspond-
ing label, respectively. It is not enough to know the architecture
and parameters θ of the target model g, since it needs to know
the true label yi of xi to generate the adversarial perturbation.
Liu et al. propose an unsupervised FGSM (UFGSM) to deal
with this problem [17]. UFGSM replaces the label yi by
y′i = g(xi) , i.e., the estimated label from the deep model.
The perturbation in UFGSM can be rewritten as follows

η = ε · sign(5xiJ(θ, xi, y
′
i)). (9)

All EEG trials are needed to determine an adversarial per-
turbation for each trial. Here, EEG trial means the EEG
signal corresponding to a trial. For example, during each trial
in motor imagery (MI), the subject is required to perform
either of the two (right hand and right foot) MI tasks for
3.5-s. However, it is inconvenient to compute the adversarial
perturbation for each EEG trial. In addition, it requires all
the EEG trials in advance to compute the adversarial pertur-
bation [54]. It is impossible to attack as soon as an EEG
trial starts. To address these issues, Liu et al. introduced
a universal adversarial perturbation [58] method that could
obtain the universal perturbation template offline and hence
attack open-world EEG-based systems in real time. Therefore,
it is critically important to pay attention to security concerns
of open-world EEG-based systems. Meng et al. performed
poisoning attack of EEG-based BCIs [59], and they proposed
a practically realizable backdoor key, which can be inserted
into original EEG signals during data acquisition.

To deal with adversarial attacks in EEG-based systems,
many adversarial defense methods have been proposed [53].

The most representative method is to augment DL models with
adversarial training [57]. Hussein et al. proposed a method
to augment DL models with adversarial training for robust
prediction of epilepsy seizures [60]. First, a DL classifier is
constructed from available limited amount of labeled EEG
data, and adversarial examples are obtained by performing
white-box on the classifier. Then, the training set is augmented
with adversarial examples. Finally, DL models are retrained
with the augmented training set, which can improve the
robustness of DL models in open-world EEG-based systems.

C. Classification
1) Few-shot, zero-shot and semi-supervised learning for

small sample size: A variety of DL methods have shown
superior performance compared to traditional methods in EEG
classification [9]. For example, Tabar et al. proposed CNN and
stacked autoencoders (SAE) to classify EEG MI signals [61],
which can obtain better classification performance compared
with other traditional methods. However, with inadequate
training samples, DL models are prone to overfitting, which
leads to a decrease in classification accuracy. Although each
trial can be over-sampled to obtain a larger number of samples,
these samples are highly dependent on each other, so that a
larger number of EEG trials are still preferable to achieve reli-
able performance. BCI feedback applications typically require
a tedious calibration process that can be challenging in some
patient populations [62]. Clearly designing robust DL models
for small sample sizes is important in EEG classification [63]
[64].

To learn from a limited number of EEG training examples
with supervised information, Cheng et al. proposed a deep
forest model named multi-Grained Cascade Forest (gcForest)
for multi-channel EEG-based emotion recognition task [66].
This method is insensitive to hyper-parameter setting, and
greatly reduces the complexity of EEG emotion recognition.
The model complexity of gcForest can be determined automat-
ically for different size of training data, making it suitable for
small-scale training data. In addition, a new machine learning
paradigm called few-shot learning has been proposed [63]. The
goal of few-shot learning is to classify unseen data instances
(query data) into a set of classes, given just a small number of
labeled instances (support examples) in each class. Typically,
there are between 1 and 10 labeled support examples per class
in the support set.

The EEG recording during MI (used to aid rehabilitation
as well as autonomous driving) is a good scenario where
these issues arise and has driven the development in this
area. MI also allows users to generate the suppression of
oscillatory neural activity in specific frequency bands over
the motor cortex region without external stimuli [67]. The
neurophysiological patterns of MI originate from changing
brain areas’ activations in the sensorimotor cortices similar
to limb movements. Furthermore, a recent study has demon-
strated MI-based BCI as an assistive tool in post-stroke motor
rehabilitation. However, due to the scarcity of unseen subject
data, complex dynamics of MI signals, inter-subject variability,
and low signal-to-noise ratio, it is still challenging to improve
the performance of MI-based classification tasks.
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To solve the above mentioned problems, An et al. for-
mulated an EEG-based MI classification task as a few-shot
learning problem [65] (Fig. 6), and it could classify unseen
subject data with a small number of MI EEG data. They
also proposed a novel few-shot relation network consisting of
a feature embedding module, attention module, and relation
module in an end-to-end framework. The embedding module
is used to extract semantic features from the support and
query data. Given the extracted semantic features, the attention
module is used to obtain the attention score for each support
sample using both support and query features. Then, the
representative vector for each class can be obtained using a
weighted average of k support features with attention scores.
Finally, the relation module is used to obtain the relation scores
based on the distance metric between class-representative
vectors and the query features. During training, the few-shot
relation network is trained using pairs of support set and query
data among different subjects in the training data. During
testing, the label of a query datum can be taken as the class
with the largest predicted relation score by using the k labeled
support signals from an unseen subject. Therefore, the few-
shot relation network enables good generalization ability to
classify the query data of an unseen subject, even with a small
amount of MI EEG data.

Embedding
module
F(∙)

Embedding
module
F(∙)

Attention
module
A(∙)

Relation
module
R(∙)

Relation
score

{Left or Right}

Support data
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Weight
share

Class representation vector
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average

…
…

Fig. 6: Few-shot relation network (Figure adapted from [65]).

MI usually has only a few mental tasks that can be trans-
lated to corresponding commands (e.g., imagine left-hand or
right-hand movements). In a real-time BCI environment, a
calibration procedure is particularly necessary for each user
and each session. The aim of the calibration is to derive
individualized parameterization of EEG signals. In fact, to
construct the classifier, a separate parameterization is sought
for discriminating each intentional control (IC) state, related
to different MI, from the noncontrol (NC) state, and for
discriminating among various IC states. The signal process-
ing procedures of calibration include obtaining individualized
parameters for classification, updating these parameters after
the subsequent user training, and online signal processing and
classification for BCI operation. The calibration consumes a
significant amount of time that hinders the application of a BCI
system in a real open-world scenario [62]. For example, the
MI system requires a considerable amount of time to record
sufficient EEG data for robust classifiers’ training. Owing to
these inevitable BCI environments, the MI-BCI system has
considered the brain dynamics, reflecting each individual’s
EEG characteristics. In addition, the subjects tend toward a

state of inattention state in real-time experiments due to the
long calibration times for offline experiments [68]. Despite
the improved performance over the conventional methods, the
deep learning methods often fail when training samples per
subject are limited. Thus, a huge number of training samples
need to be obtained from each target subject to train the
robust model [65]. Moreover, the MI-based BCI system is
often limited by the types of MI [13]. Usually, only a few
mental tasks, such as the movements of left-hand, right-hand,
and foot, can be recognized and translated to corresponding
commands. Thus, it is important to simultaneously reduce the
calibration time and increase the number of commands.

The learned classifier in supervised classification can only
recognize the categories of target EEG signals that have been
seen during training. However, it cannot deal with previously
unseen classes. Seen or known classes refer to classes that
are covered by the training dataset, while unseen or unknown
classes refer to those that were not seen in the training
dataset. Zero-shot learning, a powerful and promising learning
paradigm [69], can recognize unknown categories of EEG
signals [13], and has the potential to substantially reduce the
calibration time. In zero-shot learning, there are some labeled
training instances in the feature space. The classes covered by
these training instances are referred to the known classes or
seen classes. There are also some testing instances that do not
belong to any known classes. These classes are referred to as
the unknown classes or unseen classes. It is assumed that the
classes covered by the training dataset and the classes of the
testing dataset are disjoint.

However, the assumptions of zero-shot learning are so
restrictive that it can only predict unknown classes. Thus,
generalized zero-shot learning has been proposed to recognize
both known and unknown categories of EEG signals. Duan et
al. proposed a generalized zero-shot learning method for EEG
classification in a MI-based BCI system [13], as shown in Fig.
7. It could recognize unknown task samples (e.g., imagine
left and right hands move simultaneously). The first step is
to extract features from EEG signals using a common spatial
pattern, and it aims to obtain discriminative spatial patterns
by maximizing the variance ratios of filtered EEG signals
for two classes. Then, the obtained EEG feature vectors are
projected onto the target semantic space, which can help to
recognize unknown task samples. The mean vector of each
class is taken as semantic information, which can capture the
distribution of different classes. Two fully connected layers
with a tanh activation function are used to map all the samples
in each class to the corresponding mean vector. In this manner,
testing samples of the known classes are clustered around the
training samples from two classes (left-hand and right-hand
MI). However, the unknown task samples are far away from
the known classes. An outlier detection method is used to
determine whether a mapped EEG feature belongs to known
classes. If the mapped feature belongs to a known class, a
classifier can be used to determine the class. Otherwise, it
is assigned to a class based on the likelihood of being an
unknown class. Therefore, the generalized zero-shot learning
method can recognize not only unknown classes but also
known classes. Hwang et al. proposed a new framework for
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zero-shot EEG signal classification [70], which has three parts.
The first part is an EEG encoder network that generates EEG
features. The second part is a GAN that can recognize the
unknown EEG labels with a knowledge base. The third part
is a simple classification network to learn unseen EEG signals
from the fake EEG features that are generated from the learned
generator.
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Fig. 7: Zero-shot learning for EEG based MI classification (Figure adapted
from [13]).

To solve the small sample size problem in EEG classifi-
cation, semi-supervised learning adopts a small number of
labeled EEG data and a large amount of unlabeled EEG
data simultaneously, which can be seen as a combination
of supervised and unsupervised learning [71]. Since a large
amount of unlabeled EEG data can help to capture the under-
lying distribution of data, semi-supervised learning methods
can improve the performance of supervised learning by using
unlabeled EEG data to learn more robust representations and
hence alleviate the need for large amounts of labeled EEG
data. For example, Jia et al. proposed a novel, semi-supervised
DL framework for EEG emotion recognition [16]. They used
label information in feature extraction and integrated the
unlabeled information to regularize the supervised training.
Specifically, they determined a sample’s potential contribution
to the model training based on the uncertainty of the trained
model over each unlabeled EEG sample. After the training
stage, it can quickly predict the label for a test sample. With
careful scrutinization, it is observed that the result is some-
times unreliable, that is, the value of conditional probability
P (y|X) for a test sample X with different label y can be very
close. On the contrary, if the probability value for certain label
y dominates the others, the model is quite confident with its
decision. In this way, it can conclude that the sample in the
former case contains more uncertainty [16], and it can result in
a faster advance to the more accurate decision boundary. Thus,
both supervised and unsupervised information can be jointly
utilized in the entire training process to reduce model variance.
Panwar et al. proposed a semi-supervised Wasserstein GAN
with gradient penalty to classify driving fatigue from EEG
signals [72]. This method is an extension of the Wasserstein
GAN to include a classifier that predicts the class labels of
the data, which enables the augmentation of limited training
samples with generated EEG samples during training, and
hence leads to improved classification performance.

2) Self-supervised learning for discovering structure in un-
labeled EEG data: Most EEG-based DL models utilize super-
vised learning methods. However, supervised learning methods
have several limitations. It is well known that DL requires
a large amount of labeled EEG data to achieve satisfactory
performance. However, most EEG studies are conducted under
small labeled data regimes, and a few hundred subjects are
often considered as big data. Large-scale EEG-based super-
vised learning is much rarer. Thus, it is difficult to achieve
a desirable performance for most EEG-based DL models. In
addition, supervised DL models must be trained from scratch
for each task, and they require a large amount of computational
resources and time. The learned representations are often very
task-specific and are not expected to generalize well to other
tasks. Furthermore, it is challenging to know exactly what the
participants are thinking or doing in cognitive neuroscience
experiments, and hence, it is difficult to obtain accurate labels
[15]. Finally, supervised EEG-based DL models are prone to
adversarial attacks.

Self-supervised learning, an unsupervised learning
paradigm, can learn the underlying features from large-scale
unlabeled data without using any labeled data, thereby
avoiding the extensive cost of collecting and annotating large-
scale datasets. Self-supervised learning usually reformulates
the unsupervised learning problem as a supervised learning
problem and is composed of a pretext task and downstream
task [15]. Pretext tasks are pre-designed tasks that are helpful
for downstream tasks. The supervision signal is generated
from the data itself by leveraging the structure, instead of
manual annotation, and the features can be learned by training
the objective function of pretext tasks. After training the
pretext task, the features learned by the pretext task can be
transferred to the downstream task. By training the model
to solve well-designed pretext tasks, self-supervised learning
can help the model to learn more generalized representations
from unlabeled data. Thus, it can achieve better performance
and generalization on downstream tasks. In general, annotated
labels are required to solve downstream tasks. However, in
several applications, the downstream task can be the same as
the pretext task without using any annotated labels.

Self-supervised learning has several advantages over super-
vised learning for EEGs. For example, self-supervised learning
can exploit the structure of unlabeled data to provide supervi-
sion. The learned representations are often more general than
task-specific supervised learning, and more robust to inter-
class variation and intra-class variation. Thus, it can be reused
for different tasks and save computation time compared to
training a model from scratch for each task. In addition, self-
supervised learning can make full use of large amounts of
unlabeled data, which in turn can help to train much deeper
and more sophisticated networks. Self-supervised learning
can also improve the performance of DL when there are
limited or no labeled data. Banville et al. investigated self-
supervised learning to determine the structure in unlabeled
data to learn useful representations of EEG signals [15]. Three
pretext tasks were designed for EEG, i.e., relative positioning,
temporal shuffling, and contrastive predictive coding. Relative
positioning aims to discriminate pairs of EEG samples based
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on their relative positions. This is based on the assumption
that an appropriate representation of the data should evolve
slowly over time and EEG samples close in time should
share the same label. Pairs of windows are sampled from
time series S (EEG recording) so that the two windows of
a pair are either close in time (‘positive pairs’) or farther
away (‘negative pairs’), and an end-to-end feature extractor
hΘ is trained to predict whether a pair is positive or negative.
For temporal shuffling, triplets of windows are sampled from
S, and a triplet is given a positive label if its windows are
ordered or a negative label if they are shuffled. For contrastive
predictive coding, sequences of Nc+Np consecutive windows
are sampled from S along with random distractor windows
(‘negative samples’). Given the first Nc windows of a sequence
(‘context’), a neural network is trained to identify which
window out of a set of distractor windows actually follows the
context. Downstream tasks were performed on two EEG-based
clinical applications, sleep staging and pathology detection.
Experiments demonstrated that linear classifiers trained on
self-supervised learned features can outperform supervised
deep models under small labeled data regimes [15] and achieve
competitive performance when all labels are available. In addi-
tion, the learned representation can reveal the latent structures
related to physiological and clinical phenomena. Furthermore,
all self-supervised learning tasks systematically outperformed
or matched the compared methods in low-to-medium labeled
data regimes, and remained competitive in a high labeled data
regime.

Recently, contrastive learning has been successful in com-
puter vision for representation learning. Chen et al. introduced
a simple framework for contrastive learning of visual repre-
sentations (SimCLR) [73], which can learn representations that
are invariant under a set of augmentations through a contrastive
loss. To learn EEG representations, Mohsenvand et al. modify
the SimCLR framework to work with time-series EEG data
[74]. The core idea of contrastive self-supervised learning is to
train the networks while maximizing similarity for augmented
instances of the same data point and minimizing the similarity
between different data points. In contrast to images where
the set of augmentations are intuitive and easily verifiable by
the human eye, it is not clear what augmentations could be
beneficial for EEG. They trained a channel-wise feature extrac-
tor by extending the contrastive learning framework to time-
series data and introduced a set of augmentations for EEG.
Mohsenvand et al. consulted four neurologists and two post-
doctoral researchers at anonymized hospital research group
specializing in clinical interpretation of EEG to identify a set
of augmentations that do not change the interpretation of EEG
data [74]. They chose the transformations that were easy to
randomize programmatically, and ran preliminary experiments
to choose a minimal effective set. Experiments demonstrated
that the learned features can improve the accuracy of EEG
classification and significantly reduce the amount of labeled
data required for three EEG tasks, i.e., emotion recognition,
normal/abnormal EEG classification, and sleep-stage scoring.

3) Robust EEG classification in the presence of noisy label:
In EEG experiments, each trial is associated with a stimulus
and response, i.e., the stimulus to the participant and the

behavioral response of the participant to it. The behavioral
response can be a label, and it is assumed to be in accordance
with the stimulus [14]. However, it requires a large amount
of well-labeled EEG data for deep supervised learning to
achieve desirable performance, and this may not always be
available for real open-world applications. It is difficult to
interpret and annotate EEG signals due to noise in the data
and the complexity of brain processes, which can lead to
high inter-rater variability, i.e., label noise [15]. In addition,
poisoning attacks can poison the training data by modifying
their labels [75]. Label noise: the sample is valid but the label
is wrong due to mislabeling. Data noise: the data is noisy but
the label is valid, for example, samples caused by corruption,
occlusion, distortion, and so on. Also, it is challenging to know
exactly what the participants are thinking or doing in cognitive
neuroscience experiments. In imagery tasks, for instance, the
subjects might not be following instructions or the process
under study might be difficult to quantify objectively (e.g.
meditation, emotions). For example, participants may not al-
ways generate the intended emotions when watching emotion-
eliciting stimuli [76]. Moreover, if participants become sleepy,
bored, or distracted [14], it would lead to a significant increase
in mislabeled trials. DL models would overfit to noisy labels
due to the capability of learning any complex function, and
the parameters obtained after training would deviate from the
true optimal value, leading to a decline in the classification
accuracy during testing. Therefore, it is necessary to consider
noisy labels in real open-world applications. For example, in
the field of EEG-based emotion recognition, humans have
natural bias and inconsistencies in their judgments, which
creates noise in their ratings. It is generally acknowledged that
emotions are subjective, and studies have indicated that hu-
mans understand and perceive emotions varyingly. Moreover,
participants may not always generate the intended emotion
when watching emotion-eliciting stimuli, and the emotion
label may be noisy and inconsistent with the actual elicited
emotions. Zhong et al. proposed a regularized graph neu-
ral network for EEG emotion recognition using node-wise
domain adversarial training and emotion-aware distribution
learning to deal with noisy labels [76]. Instead of learning
the traditional single-label classification, the emotion-aware
distribution learning method learns a distribution of labels of
the training data and thus acts as a regularizer to improve
the robustness of our model against noisy labels. Up to now,
few works have been proposed for EEG classification in the
presence of noisy label. A number of methods have been
proposed for image classification with DL in the presence
of noisy labels [77], which can provide inspiration for noisy
label EEG classification. For example, Patrini et al. proposed
a loss correction method to make deep neural networks robust
to label noise [78], and the minimizer of the corrected loss
under the noisy distribution was the same as the minimizer
of the original loss under the clean distribution. Huang et al.
proposed a simple but effective noisy label detection method
for deep neural networks without human annotations [79],
and it only required adjusting the hyper-parameters of the
deep neural network to make it transfer from overfitting to
underfitting cyclically. Ren et al. proposed a novel method
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that learns to assign weights to training examples based on
their gradient directions [80], and it adopted a meta gradient
descent step on the current mini-batch example weights to
minimize the loss on a clean unbiased validation set.

III. CONCLUSION AND FUTURE DIRECTIONS

EEG decoding has made significant progress in the past
few decades. In this article, we comprehensively surveyed
existing EEG decoding methods using DL in the open-world
setting. The challenges facing open-world EEG decoding were
described for each step involved, i.e., preprocessing, feature
extraction and classification. In addition, approaches for solv-
ing open-world EEG decoding using DL were briefly intro-
duced and summarized according to the core concepts, theory,
progress, and examples. Despite the considerable progress that
has been achieved in open-world EEG decoding using DL,
there are several problems to be solved in future work, as
illustrated in Table II.

The data noise in real applications is much more complex
and with a different distribution than simulated EEG data
noise. The characteristics of real-world data noise can differ
with regard to different EEG collection settings and conditions.
Thus, the problem of domain shift between real-world noise
and simulated data noise should be considered in open-world
EEG artifact removal. Traditional DL-based artifact removal
methods aim to learn an end-to-end nonlinear function to
map a noisy EEG signal to a clean EEG signal with known
statistics. However, they tend to lack flexibility for blind and
real open-world data noise. For example, a traditional deep
network is trained under a specific level of SNR, and the
trained network would fail for an unseen noise level. Thus,
a more universal network should be trained with the entire
expected range of SNR for blind denoising of contaminated
EEG signals. The denoising performance of most CNN-based
methods largely relies on supervised learning with a large
amount of paired clean-noisy EEG signals. However, it would
be difficult to collect true clean EEG signals for several open-
world EEG decoding applications, and new DL-based artifact
removal methods should be designed without access to clean
EEG training examples or to paired clean-noisy EEG training
examples. Unpaired DL methods can be used to solve this
problem. In addition, it is important to train DL-based artifact
removal methods using only noisy EEG signals. In sum, EEG
artifact removal in open-world EEG decoding is a highly
challenging task. Data noise can be natural or added by an
adversarial attack. Similarly, label noise can be natural, or
added by a poisoning attack. When there are both nature noise
and adversarial noise for data and label, this is the worst-case
for data noise and label noise in open-world EEG decoding,
which needs to delve deep research in future work.

Most traditional domain adaptation methods in EEG signal
analysis are assumed to have access to the source data during
training. In several open-world EEG decoding applications, the
requirements for accessing source domain data are restrictive.
Sharing data can be a concern due to privacy and security
issues. In addition, it is difficult to store, transmit, and process
a large amount of source EEG data. Thus, it is necessary to

conduct source-free unsupervised domain adaptation, where
the pre-trained model of the source domain is expected to
adapt to unlabeled target data. Moreover, unsupervised domain
adaptation models are usually applied to a single source
domain and a single target domain, while multi-source and
multi-target domain adaptation are typically encountered in
open-world EEG decoding. Thus, single-domain adaptation
may be suboptimal as it ignores the knowledge shared across
multiple domains. Furthermore, when applying the classifier
trained on one dataset to other datasets, the performance will
be degraded significantly, and it is important to improve both
cross-subject and cross-dataset classification performance.

In terms of other solutions for solving open-world EEG
decoding using DL, only a few studies have started to fo-
cus on few-shot learning, zero-shot learning, semi-supervised
learning, self-supervised learning, and noisy labels for EEG
analysis. Thus, there is considerable scope for conducting in-
depth studies on the above-mentioned approaches. Moreover,
class imbalance occurs when the minority classes contain
significantly fewer EEG samples than the majority classes.
When a class imbalance exists in the training data, the learned
classifier overclassifies the majority classes owing to their
increased prior probability. Thus, the samples belonging to
minority classes are more prone to misclassification than those
belonging to the majority classes. The class imbalance problem
is common in several EEG applications, such as EEG seizure
detection tasks. The duration of seizure events is typically
much shorter than that of non-seizure periods in long-term
continuous EEG data. Thus, the classifiers will be biased
toward non-seizure EEG signals if the class imbalance problem
is not considered. Methods for addressing class imbalance
problem based on deep learning can be divided into two main
categories [81]. The first category is data level methods that
operate on training set and change its class distribution [81].
They aim to alter dataset in order to make standard training
algorithms work. For example, random minority oversampling
simply replicates randomly selected samples from minority
classes. However, as opposed to oversampling, undersampling
removes randomly from majority classes until all classes have
the same number of examples. The other category covers
classifier (algorithmic) level methods. These methods keep the
training dataset unchanged and adjust training or inference
algorithms [81]. For example, threshold moving adjusts the
decision threshold of a classifier. It is applied in the test phase
and involves changing the output class probabilities.

There are also some new problems to be solved for open-
world EEG decoding. Hybrid problems are a combination of
existing problems. To solve multiple issues simultaneously,
several new problems will arise in open-world EEG decoding,
such as few-shot transfer learning, transfer learning in the
presence of noisy labels, multi-task and multi-modal transfer
learning, adversarial transfer learning, adversarial training with
noisy labels, self-supervised transfer learning, and multi-task
zero-shot learning.

Most DL-based classification methods in EEG analysis are
offline learning algorithms. However, the classifier must be
retrained using all training data together with newly-arriving
EEG samples, making these methods inefficient and unscalable
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TABLE II: Challenges and future directions.

Challenges Possible solutions

Preprocessing How to solve the domain shift between real-world EEG noise and simulated data noise Designing a more universal deep network
How to design deep models without access to paired clean-noisy EEG samples Unpaired deep models via GAN

Feature extraction How to perform domain adaptation without access to the source EEG data Source-free unsupervised domain adaptation
How to exploit multiple source and target EEG data in transfer learning Multiple source and target domain adaptation

Classification

How to solve the class imbalance problem in EEG signal analysis Imbalanced learning
How to train a deep model incrementally from a stream of EEG samples Online learning

How to design the architecture of a deep network automatically for EEG recognition Neural architecture search
How to deploy deep models on portable EEG devices with limited resources Model compression

How to achieve a higher level of automation in solving diverse EEG-based tasks Automatic machine learning
How to exploit the interpretability of deep models for EEG analysis Interpretable DL

How to design EEG models that are comparable or superior to human intelligence Strong artificial intelligence methods

for real-time EEG data stream analysis. Online learning can
train a deep prediction model incrementally from a stream
of EEG samples without requiring re-analysis of previous
data, and hence it has high efficiency, strong adaptability, and
excellent scalability to dynamical environments. Therefore,
it is necessary to apply online learning to open-world EEG
decoding, which can learn new knowledge from incoming
EEG samples incrementally.

DL methods have been widely used in EEG signal analysis.
The network architecture design has a significant impact on the
final EEG decoding performance. Various network architec-
tures have been designed to achieve good performance. How-
ever, network architecture design relies heavily on prior knowl-
edge and experience. Therefore, neural architecture search [82]
aims to design the architecture of a network automatically
to reduce human intervention as much as possible. Neural
architecture search methods can be categorized according
to three dimensions [82]: search space, search strategy, and
performance estimation strategy. The search space defines
which architectures can be represented in principle. The search
strategy details how to explore the search space, which is often
exponentially large or even unbounded. The objective of neural
architecture search is to find architectures that achieve high
performance on unseen data. Performance estimation refers
to the process of estimating the performance, the simplest
way is to perform a standard training and validation of the
architecture on data. For example, Li et al. proposed a novel
neural architecture search framework based on reinforcement
learning for EEG-based emotion recognition [83], which can
automatically design network architectures.

The good performance of deep models for EEG decoding
is at the cost of huge memory consumption and high compu-
tational complexity. There are growing interests in deploying
deep models on edge devices (e.g., wearable device, mobile
phone, medical equipment, etc.) that have a stringent budget
on the resource and energy, and expect real-time processing.
As a result, reducing the cost of memory and computational
complexity in deep models, that is, model compression [84]
of deep models without significantly decreasing the model
performance for EEG analysis becomes an urgent and promis-
ing topic. For example, Wang et al. adopted the knowledge
distillation to extract the distribution of training data from
the complex network (teacher network) to a simple network
(student network) for EEG emotion recognition [85].

Current artificial intelligence for EEG decoding mainly
focuses on bridging the performance gap between machines

and human beings. However, general artificial intelligence
replaces task-specific models with general artificial intelli-
gence algorithmic systems, which can achieve a higher level
of automation in solving diverse tasks. Automatic machine
learning is a general artificial intelligence algorithm approach
that can be applied to a wide range of tasks, including
vastly different ones. The hyper-parameter settings of DL
models have a significant impact on the final EEG decoding
performance in the open world. Manual testing is a traditional
and prevalent approach for tuning hyper-parameters, and it
requires a deep understanding of the DL algorithms and their
hyper-parameter value settings. However, manual tuning is
ineffective for several problems in open-world EEG decoding.
This has inspired studies on the automatic optimization of
hyper-parameters. Hyper-parameter optimization aims to au-
tomate the hyper-parameter tuning process [86], which makes
it possible for users to apply DL models to open-world
EEG decoding problems effectively. In addition, when facing
complex decision-making tasks in open-world EEG decoding,
it is necessary to design automatic machine learning methods
to solve complex tasks adaptively. Reinforcement learning is
a branch of machine learning in which an agent can learn
from interacting with an environment. Reinforcement learning
does not require extensive engineering and heuristic design.
In addition, reinforcement learning updates the parameters
through trial and error, does not require the expected reward
to be differentiable, and can deal with the search problem in a
discrete space directly. Thus, deep reinforcement learning can
combine the advantages of DL and reinforcement learning for
open-world EEG decoding and hence can enable the agent to
solve complex decision-making tasks.

Most deep models for EEG decoding are over-parameterized
black-box models, and they can obtain high classification accu-
racy without interpretable knowledge representations. There-
fore, it is often difficult to understand the prediction logic of
deep models hidden inside the network. Thus, it is important
to exploit the interpretability of deep models [87] for EEG
decoding in both theory and practice.

Most current EEG decoding methods are not comparable
with human intelligence, especially in changing, dynamic,
and complex open-world environments. Strong artificial in-
telligence aims to design algorithms that are comparable or
superior to human intelligence. Therefore, it is important to
develop strong artificial intelligence methods to solve the chal-
lenging problems associated with open-world EEG decoding.
For example, deep models usually require a large amount of
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training data to achieve good performance. However, their
ability to quickly learn new concepts is relatively limited.
Meta-learning is known as “learning to learn models” [88].
It treats tasks as training examples and aims to train a model
to adapt to all such training tasks. Thus, meta-learning can
improve the ability of model generalization for open-world
EEG decoding, and it can potentially design general methods
applicable to both in-distribution and out-of-distribution tasks.
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