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Abstract—The differential ionospheric path delay is a major
error source in L-band interferograms. It is superimposed to
topography and ground deformation signals, hindering the mea-
surement of geophysical processes. In this paper, we proceed
toward the realization of an operational processor to compensate
the ionospheric effects in interferograms. The processor should be
robust and accurate to meet the scientific requirements for the
measurement of geophysical processes, and it should be applica-
ble on a global scale. An implementation of the split-spectrum
method, which will be one element of the processor, is presented
in detail, and its performance is analyzed. The method is based
on the dispersive nature of the ionosphere and separates the
ionospheric component of the interferometric phase from the
nondispersive component related to topography, ground motion,
and tropospheric path delay. We tested the method using various
Advanced Land Observing Satellite Phased-Array type L-band
synthetic aperture radar interferometric pairs with different char-
acteristics: high to low coherence, moving and nonmoving ter-
rains, with and without topography, and different ionosphere
states. Ionospheric errors of almost 1 m have been corrected to
a centimeter or a millimeter level. The results show how the
method is able to systematically compensate the ionospheric phase
in interferograms, with the expected accuracy, and can therefore
be a valid element of the operational processor.

Index Terms—Interferometric synthetic aperture radar(InSAR),
ionosphere estimation, split spectrum, synthetic aperture radar
(SAR) ionospheric effects.

I. INTRODUCTION

IONOSPHERIC propagation delay is one of the most rel-

evant error sources in low-frequency spaceborne synthetic

aperture radar (SAR) interferograms. SAR interferometry is

a successful technique used to measure the Earth’s topogra-

phy and to study geophysical processes such as earthquakes,
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volcanoes, landslides, and glacier movements. Unfortunately,

the accuracy of these measurements is limited by distortions

that the ionosphere causes in the propagation of microwaves.

In SAR interferograms, topography and ground deformation

signals are mixed with ionospheric disturbances [1]. In order to

avoid that the ionospheric propagation delay is confused with

ground signals, it has to be estimated and removed [2]. The

ionospheric distortions on the propagation of microwaves cause

an additional group delay and a phase advance on SAR images,

whose magnitude is inversely proportional to the frequency

of the system. For this reason, L-band SAR systems such as

the Advanced Land Observing Satellite (ALOS) Phased-Array

type L-band SAR (PALSAR), its follow-up, i.e., ALOS-2, or

the future Tandem-L, due to the lower frequency, experience

more severe ionospheric distortions compared with C-band or

X-band systems.

The magnitude of ionospheric effects depends on the slant

total electron content (TEC), which is the total number of

electrons integrated between the satellite and the target, along

a tube of 1 m2 cross section. If the correct TEC at the time

of the two acquisitions is known, the TEC difference can be

converted to a phase and removed from the interferogram.

Global Navigation Satellite Systems (GNSS) dual-frequency

systems can be used to estimate the TEC between the GNSS

satellite and the ground and produce global or local vertical

TEC maps [3]. These measures are unfortunately not detailed

enough to be directly used to correct the ionospheric delay in

L-band SAR interferograms [2].

Several methods to estimate the ionospheric differential TEC

from SAR data, with higher precision compared with the

GNSS-based measurements, have been proposed in the past

years [4] and are briefly summarized in the following. The

range split-spectrum method exploits the dispersive propaga-

tion of the ionosphere to separate the ionospheric-related phase

term from the nondispersive phase term of an interferogram [5],

[6]. The range phase–group delay difference method estimates

the ionosphere, taking advantage of the fact that the ionospheric

phase and group delays have opposite signs, unlike ground-

related phase and group delays, which have the same sign [5],

[7]. The azimuth shift method exploits the proportional relation

between differential azimuth shift and the azimuth derivative of

the differential ionosphere [7]–[9]. Multiple aperture interfer-

ometry is sometimes used to estimate the azimuth shifts and can

be considered an equivalent method [10]. These two methods

cannot recover the ionospheric range variations, being sensitive
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just along the azimuth direction. The Faraday rotation method

requires quad-polarized measurements to estimate the Faraday

rotation angle and TEC from the individual images [11]–[13].

By differencing the derived TEC information, differential TEC

maps can be produced and converted to ionospheric phase

screens. However, the Faraday rotation depends on the geom-

etry between the radar acquisition and the Earth magnetic field.

For this reason, the method’s sensitivity is strongly reduced in

an area of several hundred kilometers along the magnetic equa-

tor. Therefore, in addition to requiring full-pol data sets, this

approach has the disadvantage of not being globally applicable.

These techniques have been proven to work, but an evalu-

ation of their performances and suitability for an operational

environment on a global scale is still missing. In this pa-

per, we demonstrate how the range split-spectrum method is

capable of estimating the differential ionospheric path delay,

increasing the performance of interferometric SAR (InSAR)

techniques and, hence, improving the measurement accuracy

of geophysical processes. To improve the method’s robustness,

its weaknesses are analyzed together with possible sources

of systematic biases; solutions to mitigate these problems are

proposed. Finally, to show its wide applicability, the improved

method has been tested with a variety of different L-band

ALOS PALSAR images. The data include different coherence

levels, different environmental conditions such as nonmoving

and moving terrains, with and without topography, and differ-

ent ionospheric conditions. Images with particular ionosphere

phenomena such as aurora borealis are also used. The results

show that the method is effectively able to compensate the

ionospheric effects in interferograms, that the obtained accu-

racy is comparable with the expected one, and that the method

can be easily applied to new test cases almost without tuning

and can therefore be included in an operational processor.

In Section II of this paper, the ionospheric effects on the

propagation of microwaves are summarized. Their estimation

using the range split-spectrum method is presented along with

its accuracy. In Section III, an overall scheme of the imple-

mentation of the method is presented, and its critical points

are analyzed in detail. The method is applied to L-band ALOS

PALSAR images; Section IV presents the tests results. In

Section V, the findings are summarized, and future work is

proposed.

II. THEORETICAL BACKGROUND

A. Ionospheric Effects on Interferograms

The ionosphere is the portion of the Earth’s upper at-

mosphere where ions and electrons are present with sufficient

density to significantly affect the propagation of radio waves.

Charged particles are created by the incoming solar radiation

that ionizes atmospheric gases. Their concentration in the

ionosphere varies with the altitude but normally has a peak

between 300 and 400 km. The 3-D structure of the ionosphere

is often approximated by an idealized thin layer, which is

positioned at the barycenter of the electron density. Two effects

of the ionosphere on a traversing microwave can be derived

from the Appelton–Hartree equation [14], which relates the

refractive index of the plasma to its ionization. The first effect is

Fig. 1. Geometry of the system. The ionospheric resolution is limited by the
SAR range resolution and by the synthetic aperture length.

a phase advance of the carrier. This is calculated by integrating

the density of free electrons ne along the two-way wave path,

i.e.,

φiono(f) = 2 · 2πK
cf

∫

ne(z) dz =
4πK

cf
TEC. (1)

In the latter, f is the carrier frequency, c is the speed of light in

vacuum, and K = 40.28 m3/s2. The slant TEC =
∫

ne(z) dz
is the TEC experienced by the radio wave; it can be converted

to a vertical TEC using a mapping function [15].

As the ionosphere is dispersive, different frequencies are

differently advanced according to (1). The second effect is a

rotation of the polarization angle, a phenomenon known as

Faraday rotation. Since its contribution to the interferometric

phase is minimal, it will be neglected in the following.

The interferometric phase is the sum of different compo-

nents, i.e.,

∆φ =
4πf0
c

(∆rtopo +∆rmov +∆rtropo)−
4πK

cf0
∆TEC (2)

where f0 is the carrier frequency; and ∆rtopo, ∆rmov, and

∆rtropo are the topographic path delay, which includes the

flat-earth phase and the topography-related phase, the differ-

ential path delay associated with a ground movement between

acquisitions, and the differential tropospheric path delay, re-

spectively. We group the nondispersive contributions to the

interferometric phase in

∆φnon−disp =
4πf0
c

(∆rtopo +∆rmov +∆rtropo) (3)

to distinguish them from the dispersive ionospheric contribution

∆φiono = −4πK

cf0
∆TEC (4)

where ∆TEC is the differential TEC, i.e., the TEC difference

between the two acquisitions. The negative sign of (2) and (4)

indicates that the ionospheric contribution is a phase advance.

The ionospheric azimuth resolution is limited by the syn-

thetic aperture length projected at the height of the ionosphere

layer, as illustrated in Fig. 1. The ionospheric phase screen,
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observed in the interferogram, is therefore a low-pass version

of the real, possibly turbulent, ionosphere. Variations of the

ionospheric path delay within the ionospheric azimuth resolu-

tion produce a nonnominal phase history which causes azimuth

effects such as shift and blurring. These effects reduce the in-

terferometric coherence. The magnitude and correlation length

of the variations, with respect to the azimuth resolution in the

ionosphere, determine the type and intensity of the effects. A

linear trend of the ionospheric TEC along the flight path of the

satellite causes an azimuth shift, whereas any deviation from a

linear trend defocuses the image. Azimuth shifts are corrected

by the coregistration and resampling steps, whereas a correction

of the defocusing would require additional processing. Sub-

apertures or a semifocusing processing can be used to increase

the resolution [16], [17] and improve those situations where

the azimuth variations are so strong that they cause defocusing

and loss of interferometric coherence. For all other cases, the

coregistration and resampling are normally enough to recover

the coherence. To produce an ionosphere-free interferogram, it

is sufficient to estimate and remove the low-pass ionosphere

which is superimposed to the interferogram (the ionospheric

phase). In this sense, if the ionospheric variations, with respect

to the aperture length, are moderate enough that they do not

cause relevant azimuth defocusing or coherence losses after

coregistration, the ionosphere can be considered smooth, and

there is no need to increase the ionospheric resolution using

subapertures or semifocusing.

The dispersive ionospheric contribution ∆φiono is inversely

proportional to the frequency, whereas the nondispersive

ground and troposphere contribution ∆φnon−disp is directly

proportional to the frequency. This characteristic can be ex-

ploited to separate these two phase components: to establish

the maximum possible separation accuracy, we calculate the

Cramér–Rao bound (CRB).

B. CRB for Ionospheric Path Delay Estimation

We use the CRB to calculate the maximum achievable accu-

racy of estimating the ionospheric path delay, considering the

information [which originates from the effect in (1)] that can be

obtained from range signals. To derive the CRB estimate, we

assume that the SAR acquisitions are dominated by distributed

scatterers, such that the observed SAR signals can be repre-

sented by partially correlated complex Gaussian signals. The

acquisitions can be modeled without loss of generality in the

frequency domain, i.e.,

S1(f) =
√
γA(f) +

√

1− γW1(f)

S2(f) =
√
γA(f) exp

(

−j∆φnon−disp

f

f0
− j∆φiono

f0
f

)

+
√

1− γW2(f) (5)

where A(f), W1(f), and W2(f) are uncorrelated complex

Gaussian signals, with zero mean, unitary variance, and a white

spectrum of bandwidth B and central frequency f0. A repre-

sents the coherent scattering, whereas W1 and W2 represent the

decorrelation noise; γ is the magnitude of the interferometric

coherence. The interferometric phase is assigned to the second

acquisition.

For each frequency, the two observations are collected in

the vector y(f) = [S1(f), S2(f)]. The elements of the Fisher

information matrix, calculated using the covariance C(f) =
E[y(f)yH(f)], are given by [18]

[FIM(f)]n,k = tr

{

C−1(f)
δC(f)

δθn
C−1(f)

δC(f)

δθk

}

(6)

where n, k = {1, 2}; and θ1 and θ2 are the two unknown

parameters ∆φnon−disp and ∆φiono, respectively. The result is

FIM(f) =
2γ2

1− γ2

[

f2

f2

0

1

1
f2

0

f2

]

. (7)

The final Fisher information matrix can be obtained by integrat-

ing across the signal spectrum and multiplying by the number

of independent samples N [19], [20], i.e.,

FIM =
N

B

f0+B/2
∫

f0−B/2

FIM(f)df. (8)

The CRB for the two parameters ∆φnon−disp and ∆φiono is the

inverse of the Fisher information matrix, i.e.,

CRB=
f2
0

B2

3

2N

1−γ2

γ2

⎡

⎣

1 B2

4f2

0

− 1

B2

4f2

0

−1
(

1− B2

4f2

0

)(

1+ B2

12f2

0

)

⎤

⎦. (9)

From the latter, we obtain the standard deviation of the iono-

spheric phase estimate

σ∆TEC ≥ cf0
4πK

· [CRB]2,2 ≈ cf2
0

4πKB

√

3

2N

√

1− γ2

γ
. (10)

Expressing this accuracy in meters, we obtain the precision with

which the error component of the ground motion estimation,

related to the ionospheric noise, can be estimated, i.e.,

σ∆rmov
≥ c

4πf0
· [CRB]1,1 =

c

4πB

√

3

2N

√

1− γ2

γ
. (11)

It is interesting to note that the latter is equal to the group

delay estimation accuracy [21], divided by two. The additional

0.5 factor is due to the fact that the ionosphere contributes both

to the phase and group delays, but with opposite signs. The

precision limit, in estimating the ionosphere, is then set by the

estimation accuracy of the group delay.

The estimated ionospheric phase and its accuracy are relative

to the resolution cell in the ionosphere. This is limited in range

by the SAR image resolution and by the multilooking factor

and in azimuth by the aperture length projected at the height of

the ionosphere. Ionospheric variations with a finer spatial scale

than the resolution are neither measured by the interferogram

nor can they be estimated (unless using other techniques, such

as subapertures or semifocusing).
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C. Range Split-Spectrum Method

The range split-spectrum method [5], [6] suggests to exploit

the different frequency behavior of the two components of (2)

to separate them. The procedure consists in the generation of

two range subbands (indices L for the lower subband and H for

the higher subband) with center frequencies fL and fH . The

interferograms computed from each subband yield the phases

∆φL and ∆φH . Rewriting (2) for the two interferograms in

terms of nondispersive and dispersive effects, we have

∆φL =∆φnon−disp

fL
f0

+∆φiono

f0
fL

∆φH =∆φnon−disp

fH
f0

+∆φiono

f0
fH

. (12)

Inverting these equations, the dispersive ∆φiono and nondisper-

sive ∆φnon−disp components of the delay can be estimated, i.e.,

∆φ̂iono =
fLfH

f0 (f2
H − f2

L)
(∆φLfH −∆φHfL)

∆φ̂non−disp =
f0

(f2
H − f2

L)
(∆φHfH −∆φLfL). (13)

This simple mathematical operation requires some care in the

practical implementation. The method can in fact be realized in

different ways, possibly reaching the correct estimation of the

ionospheric phase. However, there are some critical steps which

could lead to a poor result if not carefully implemented. The

interferometric coregistration, for instance, should be able to

estimate strong ionospheric azimuth shifts, in order to correct

them and recover the coherence. Another issue arises from

phase unwrapping: given that the lower and upper interfero-

grams have to be unwrapped prior to the scaling, eventual errors

lead to a bias in the estimation. Finally, the interferometric

phase noise, which is strongly amplified by the upscaling, has

to be reduced. The resulting estimation accuracy will depend

on the bandwidth, coherence, multilooking, and noise filtering.

In Section III, we propose an implementation, and we focus on

some critical steps which were carefully analyzed to improve

the final result.

D. Split-Spectrum Method Accuracy

In [5], it is shown that the accuracy of the ionospheric phase

estimate is maximized when the bandwidth of each subband

is one third of the total bandwidth. For high coherence and

large N , the accuracy is approximated using the interferometric

phase variance of the subbands [22], i.e.,

σ2
∆φH,L

=
1

2Nsb

1− γ2

γ2
=

3

2N

1− γ2

γ2
(14)

where γ is the interferometric coherence. The number of inde-

pendent samples used in each interferogram Nsb is one third

of the total N , since only one third of the bandwidth is used.

Given that the two interferograms are uncorrelated, from (13)

we can write

σ2

∆φ̂iono

=

(

fLfH
f0 (f2

H − f2
L)

)2
(

f2
Hσ2

∆φL
+ f2

Lσ
2
∆φH

)

. (15)

Fig. 2. Standard deviation of the ground movement (left axis) and ionospheric
phase (right axis) estimation, for a ground area of 1 km2, as a function of the
interferometric coherence. Different range bandwidths of (solid line) 14 MHz,
(dashed line) 28 MHz, and (dash–dot line) 85 MHz are used. Carrier frequency
is 1.27 GHz.

Supposing that the coherences of both interferograms are equal,

the ionospheric phase accuracy, from (14) and (15), is

σ
∆φ̂iono

=

(

fLfH
f0 (f2

H − f2
L)

)

√

f2
L + f2

H · σ∆φH,L

≈ 3f0
4B

√

3

N

√

1− γ2

γ
(16)

which, when converted to TECs, becomes

σ∆TEC =
3cf2

0

16πKB

√

3

N

√

1− γ2

γ
. (17)

In reality, the coherences of the interferograms can differ; the

exact accuracy is then just a bit more complex than (16). It

includes both coherences, as well as the range and azimuth

oversampling factors. To simplify the discussion, in the follow-

ing, we will use the shorter (16). As it can be seen, comparing

(17) and (10), the split-band method accuracy is only 1.06 times

worse than the CRB. The estimation accuracy converted in

meters is

σ∆rmov
=

3c

16πB

√

3

N

√

1− γ2

γ
. (18)

Equations (17) and (18) are represented in Fig. 2. The number

of independent samples is calculated for a ground area size of

1 km2; 1.27-GHz carrier frequency; 14-, 28-, and 85-MHz

range bandwidths; 5-m azimuth resolution; and 30◦ incidence

angle. For example, a coherence of 0.6 allows an accuracy of

about 1 cm when performing the multilooking on an area of

1 km2 using images with 28-MHz bandwidth. One centimeter

seems already an acceptable accuracy because it is comparable

with a typical residual tropospheric influence after compensa-

tion. However, the accuracy can be increased by further filter-

ing: a discussion about multilooking and filtering can be found

in Section III.
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Fig. 3. Implementation of the split-spectrum method.

III. IMPLEMENTATION AND SYSTEMATIC ERRORS

Here follows a description of the proposed implementation of

the split-spectrum method. In Fig. 3, a schematic representation

is reported.

First, the images have to be carefully coregistered; to im-

prove robustness, in our implementation, we use a mixture

of coherent patch-based cross correlation for high-coherence

areas and incoherent cross correlation for low-coherence areas.

In order to ensure that, in case of strong ionospheric azimuth

variations and/or ground movements, the high-frequency com-

ponents of the motion field are preserved, no polynomial fitting

of the shifts is performed.

Considering the wavenumber shift [23], in the second step,

common range band filtering is performed; this increases

the coherence for pairs with nonzero normal baseline. In

Section III-E, wavenumber-shift-related aspects are further

discussed. Two subbands of one third of the total common

bandwidth are then generated by bandpass filtering. The slave

images are resampled using the shifts which have been esti-

mated during the coregistration step. Azimuth shifts generated

by ionospheric variations are thus corrected and the coherence

recovered.

After resampling, an interferogram is calculated from each

subband; orbit information and a digital elevation model (DEM)

are used to compensate the topographic phase. The amount of

multilooking is discussed in Section III-A. Interferograms still

contain the differential phase due to ground movements be-

tween acquisitions, the atmospheric phase, and the ionospheric

phase. Both interferograms are unwrapped using a minimum

cost flow algorithm. The effect of possible phase unwrapping

errors is discussed in Section III-C. The dispersive and nondis-

persive components are separated by using (13). Differential

phase unwrapping errors are then corrected as presented in

Section III-C.

An outlier detection step is necessary to eliminate those pix-

els that do not follow a Gaussian distribution. This is performed

using a robust median moving filter and the theoretical standard

deviation (16), calculated using the interferograms coherences.

The ionospheric phase estimates are then filtered, to reach, if

possible, the desired accuracy. The filtering step is described in

Section III-B. Finally, the ionospheric phase screen is removed

from the full-band interferogram obtaining an ionosphere-

compensated interferogram.

A. Multilooking

In this implementation, there are two filtering (averaging)

steps: the first one is the multilooking performed during the in-

terferogram generation on the complex data, and the second one

is the filtering of the estimated ionospheric phase. The amount

of multilooking and final filtering can be partly interchanged.

However, a minimum initial multilooking has to be done to

reach the efficient and asymptotic estimation of the phase [24].

Moreover, it has, as usual, to be realized such that the number

of looks is small enough to obtain high resolution and no

coherence losses due to rapid fringes but also big enough such

that phase unwrapping is possible. The multilooking factor is

then constrained by these requisites. Thereafter, one can decide

how to perform the final filtering.

B. Filtering

Since the ionosphere is usually relatively smooth, the esti-

mates are often spatially correlated. This suggests that a filter-

ing step, which removes the high-frequency noise components,

could help to increase the accuracy. It is then more convenient to

filter the ionosphere estimate rather than the ground component

estimate, because the former is usually spatially smoother than

the latter. The filtered phase screen is then subtracted from the

full-band interferogram to obtain an ionosphere-compensated

interferogram. The final precision is related to the phase screen

accuracy. The amount of filtering depends on the desired final

precision with respect to the variance of the initial estimate and

needs to be decided after some careful considerations.

In our implementation, a 2-D Gaussian weighted filter is used

to smooth the ionospheric phase. The filter is the normalized

product of two identical 1-D Gaussian functions with variance

M2/4π in range and azimuth. It reduces the phase variance
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by a factor equal to the effective number of looks, which is

approximately M2. The precise effective number of looks Neff

can be obtained by numerical integration. The parameter M ,

which is needed to reach a desired accuracy σ∆rmov
, can be

calculated with respect to the initial accuracy. From (18), we

obtain the relationship

M =
3c

16πB

√

3

N

√

1− γ2

γ

1

σ2
∆rmov

(19)

where N is, as before, the multilooking factor.

Apart from the Gaussian window, the optimum approach

to filter the ionosphere estimates is based on the maximum-

likelihood principle [18]. We use a weighted mean, where the

weights are the inverse of the expected variance, calculated

from the interferograms coherence. Outliers, which have been

detected in the previous step, are not used by giving them a

weight equal to zero. The coefficients of the weighted mean,

which are used to calculate the filtered ionosphere∆φiono(i, k),
combine the Gaussian filter g (having its peak at {i, k}) and the

expected variance

w(i, k) = K
g(i, k)

σ2

∆φ̂iono

(i, k)
(20)

where K is a normalization factor such that
∑

w(i, k) = 1. The

variance of the result can be calculated as

σ2

∆φiono

(i, k) =
∑

w2
i (i, k)σ

2

∆φ̂iono

(i, k)

=K2
∑ g2(i, k)

σ2

∆φ̂iono

(i, k)
. (21)

In practice, the filtering can be realized with convolutions

(indicated by ∗), i.e.,

∆φiono =
∆φiono/σ

2

∆φ̂iono

∗ g
1/σ2

∆φ̂iono

∗ g (22)

σ2

∆φiono

=
1/σ2

∆φ̂iono

∗ g2
(

1/σ2

∆φ̂iono

∗ g
)2

. (23)

Ionospheric variations with a spatial scale smaller than the

smoothing window are smoothed out and not recovered. Then

a tradeoff exists between reducing the estimation noise and

reducing the bias due to excessive smoothing, and it could

be difficult to decide the size of the filter window, i.e., the

parameter M . Anisotropic filters or adaptive filters could help

to increase the accuracy without introducing biases. The com-

bination of different ionosphere estimation methods is also a

possibility that is being studied [4], [9].

C. Phase Unwrapping Errors

Here, we analyze the effect of phase unwrapping errors on

the estimation of the ionospheric phase. In particular, if the

coherence is low, phase unwrapping errors can occur and in-

troduce biases in the ionosphere estimation. Phase unwrapping

is performed separately on each subband, and phase unwrap-

ping errors can therefore be different. Let us define phase

unwrapping errors in the lower and upper subbands with 2πm
and 2π(m+ d), respectively. This way, m is a common phase

unwrapping error, and d is a differential one. Both terms are

integers and not necessarily constant within the interferogram.

Equation (12) becomes

∆φL =∆φnon−disp

fL
f0

+∆φiono

f0
fL

+ 2πm

∆φH =∆φnon−disp

fH
f0

+∆φiono

f0
fH

+ 2π(m+ d). (24)

The estimated ionospheric phase thus yields

∆φ̂iono ≈ ∆φiono + πm+
π

2
d− 3πf0

2B
d. (25)

The latter shows the different behavior of common phase un-

wrapping errors and differential ones.

1) Differential Phase Unwrapping Error: The term d is

scaled by the factor f0/B, generating a significant bias that

should be removed. Taking the difference between the two

interferograms, one has

∆φL −∆φH ≈ − 2B

3f0
∆φnon−disp +

2B

3f0
∆φiono − 2πd (26)

whereas their sum yields

∆φL +∆φH ≈ 2∆φnon−disp + 2∆φiono + 4πc+ 2πd. (27)

The term d can be then estimated from the phase difference

(26), i.e.,

d̂ =

⌊

1

2π

(

∆φH−∆φL−
2B

3f0
∆φnon−disp+

2B

3f0
∆φiono

)⌉

(28)

where ⌊·⌉ indicates the rounding to the nearest integer. Even if

∆φnon−disp and ∆φiono are not known with high accuracy, they

do not lead to large biases in the measure of d since they are

reduced by the scaling term 2B/(3f0). If needed, an iterative

procedure can be implemented to reach the correct values.

An example of the results obtained by applying this correc-

tion is reported in Section IV-C2.

2) Common Phase Unwrapping Error: The recovery of the

common term m is more delicate; using the phase sum (27),

one has

m̂=

⌊

1

4π
(∆φL+∆φH−2∆φnon−disp−2∆φiono)−

d

2

⌉

. (29)

Inaccurate ∆φnon−disp and ∆φiono are misinterpreted as phase

unwrapping errors, leading to an even more inaccurate estimate

of ∆φnon−disp and ∆φiono. Larger filtering windows can im-

prove the accuracy of ∆φnon−disp and ∆φiono but also lower

the resolution. This can be unacceptable, particularly for the

ground-related phase, which is more likely to be spatially

variable. The success of this method depends on the scene char-

acteristics (high coherence or smooth signals) and is therefore

not robust enough. A common phase unwrapping error, on the
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other hand, has a small impact, compared with a differential

one. Moreover, it can be considered negligible if its magnitude

is smaller than the accuracy (17), as it usually happens for small

error areas.

Wide areas with ambiguous phase unwrapping, e.g., when a

river cut an image in two parts, can neither be recovered nor

simply ignored. This is a general problem for interferometry;

radargrammetry or GPS measurements could be normally used

to solve it. Unfortunately, the presence of the ionosphere makes

the radargrammetry method inapplicable, as discussed in the

next session.

D. Unambiguous Ionospheric Phase

The estimated differential ionospheric phase can be only

known to within a constant offset, since both interferograms are

not absolute phases. The split-spectrum estimate is then only a

relative differential phase, not an absolute differential phase.

Radargrammetry is also subject to the ionospheric influence; in

fact, the group delay ∆τ is increased by the presence of the

ionosphere, i.e.,

2f0∆τ=
4πf0
c

(∆τtopo +∆τmov +∆τtropo)+
4πK

cf0
∆TEC.

(30)

With respect to (2), the ionospheric term has, in the latter,

the opposite sign. This property is used in the phase–group

delay difference method [5], [7] to estimate the ionospheric

contribution by subtracting the unwrapped phase from the

radargrammetry. The difference contains both the ionosphere

and the absolute phase offset, which cannot be separated.

It is possible to estimate the unambiguous phase by applying

the same principle of the split-spectrum method to the radar-

grammetric shifts of the subbands. Unfortunately, the resulting

accuracy is very low, i.e.,

σ
∆φ̂iono

≈ 9f2
0

2B2

√

1

N

√

1− γ2

γ
(31)

making this procedure unlikely applicable.

E. Wavenumber Shift

The wavenumber shift effect [23] has to be considered, while

generating the subbands, to only take the common band and

thus increase the coherence. However, since different parts of

the ground reflectivity spectrum are linked to different signal

frequencies, the matching of differently shifted ground spectra

(between two images) aligns bands with different central fre-

quencies. In [25], it is suggested that, due to this effect, each

image has a different carrier frequency and therefore experi-

ences a different ionospheric phase advance. Let us reformulate

(4) as follows:

∆φiono =
4πK

c

(

TEC1

f0 −∆f/2
− TEC2

f0 +∆f/2

)

(32)

where TEC1 and TEC2 are the TEC levels during the first and

second acquisitions, respectively; and ∆f is the spectral shift

[23]. Considering that ∆f ≪ f0, the latter can be reduced to

∆φiono ≈ 4πK

cf0
∆TEC +

4πK

cf0

∆f

2f0
ΣTEC (33)

where ∆TEC is, as in (4), the differential TEC between acqui-

sitions, and ΣTEC = TEC1 + TEC2, i.e., the sum of the two

TEC levels. We rewrite (12) to take into account also the last

term of (33), i.e.,

∆φL =∆φnon−disp

fL
f0

+∆φ∆iono

f0
fL

+∆φΣiono

f0
fL

∆f

2fL

∆φH =∆φnon−disp

fH
f0

+∆φ∆iono

f0
fH

+∆φΣiono

f0
fH

∆f

2fH
(34)

where ∆φ∆iono = (4πK/cf0)∆TEC, and ∆φΣiono = (4πK/
cf0)ΣTEC. The estimated ionospheric phase becomes thus

∆φ̂iono ≈ ∆φ∆iono +
3∆f

4f0
∆φΣiono (35)

this shows that the absolute ionosphere biases the differ-

ential ionosphere estimate. A compensation of the absolute

ionosphere bias could be done using data from different

sources, such as GNSS-based TEC maps. On the other hand,

an estimation of the absolute ionosphere could be possible if

the spectral shift varies within the same ionospheric level.

Relative variations of the terms of (35) generate biases in the

estimated phase. To get an idea of the order of magnitude of the

possible biases, we analyze two examples.

Consider an ionospheric spatial gradient in midlatitude re-

gions; a long acquisition spanning some hundreds of kilometers

could encounter a relative spatial change of ΣTEC on the order

of some tens of TECU, and, supposing similar ionospheric

conditions in different days, a relative spatial change of ∆TEC

on the order of some TECU [26]. A spectral shift of 200 kHz,

corresponding to a baseline of 100 m and an incidence angle of

35◦, is used. The relative spatial change of ∆φ∆iono is on the

order of some cycles, whereas for ∆φΣiono, it is on the order

of some hundreds of cycle. A terrain slope of 30◦ corresponds

to a spectral shift of 1.7 MHz, which yields a phase difference

between flat and oblique surfaces of one tenth of cycle. In this

case, the second term of (35) can be then mostly ignored.

As second scenario, we consider a small acquisition in a

low-latitude region; ΣTEC = 80 TECU is constant within the

image, and ∆TEC = 0 TECU. The baseline is 1 km, and the

incidence angle is 35◦. A terrain slope of 30◦ generates a bias

of almost two cycles with respect to flat zones. In this case, the

final effect on ionosphere estimation after filtering should be

considered, and countermeasures could be needed.
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F. Asymmetric Split-Spectrum Mode

Here, a special split-spectrum mode for SAR systems with

larger bandwidth, such as the Tandem-L, ALOS-2, or NASA-

ISRO SAR (NISAR) missions, is evaluated. This mode opti-

mizes the compromise between data rate and accuracy. While

wider bandwidths increase the accuracy of ionosphere esti-

mation, the satellite onboard storage and downlink of a great

amount of data is not always feasible. The optimum solution to

still obtain a high accuracy with a smaller data volume would be

to use two subbands of one third each of the allowed bandwidth,

separated by one third. However, if the total used bandwidth is

further reduced, to decrease the data amount, the ionosphere

estimation noise grows. The new precision in estimating the

ground movement using two subbands of bandwidth BL and

BH , from (18), is

σ′′
∆rmov

=
c

4πf2
0

fLfH
f2
H − f2

L

√

f2
H

2NL
+

f2
L

2NH

√

1− γ2

γ
(36)

where NL = N · BL/B and NH = N ·BH/B are the num-

bers of independent samples of each subband. The ratio

between this accuracy and the one obtained using the full

bandwidth B is

σ′′
∆rmov

σ∆rmov

≈ 2f0B

9

√

6B
BH +BL

BHBL

1

f0(2B −BH −BL)

· 1

B(BL −BH)/2 + (B2
H −B2

L) /4
. (37)

For example, if we suppose to use one subband of 20 MHz and

one of 5 MHz, separated by the greatest possible distance inside

the 85-MHz allowed L-band spectrum, the accuracy of the split-

spectrum method would be then 1.45 times worse than that

obtained using an image with the full spectrum. This is anyway

much better than only using 20 MHz; in that case, the accuracy

would be eight times worse. In conclusion, even if the total used

bandwidth is reduced due to data constraints, a small second

subband, separated by the greatest possible distance inside the

allowed spectrum, permits to obtain almost the same accuracy

in estimating the ionosphere as when using the full spectrum.

This mode is tested in Section IV-D using high-resolution

85-MHz ALOS-2 data to simulate a 20 + 5 MHz acquisition.

In [27], it was shown that a custom chirp signal that con-

centrates all energy into the subbands increases the SNR with

respect to a nominal chirp where a bandpass filter discards

part of the energy to create the subbands. A special mode,

which uses a modified chirp to increase the SNR, improving

the accuracy (36), could be investigated in future work.

IV. APPLICATION EXAMPLES

The split-spectrum method has been applied to four different

ALOS PALSAR data sets to test its robustness and applicability.

The first example is an interferogram of the 2008 Kyrgyzstan

earthquake; it presents high coherence and smooth ionospheric

variations. The excellent results show the correct separation

between ground motion and ionospheric delay. The second

TABLE I
SCENES ACQUISITION INFORMATION

Fig. 4. Ground coverage of the PALSAR acquisitions for the Kyrgyzstan
data set.

example is a measure of the aurora in northern Alaska. Due

to the narrow 14-MHz bandwidth, the accuracy is low, and a

big smoothing window is required. Consequently, small-scale

variations of the ionosphere cannot be successfully recovered.

A more challenging scenario, in the third example, is based on

the 2008 Wenchuan earthquake. This data set is composed of

72 interferograms featuring low and high coherence levels.

Phase unwrapping errors and low coherence are the main limi-

tations; the separation between ionospheric and ground phases

has been, however, achieved, and phase jumps between adjacent

tracks have been reduced. All acquisitions were made during

ascending passes; Table I reports detailed information about

each scene.

A. Kyrgyzstan 2008 Earthquake

1) Data Set: On October 5, 2008, an earthquake struck the

Nura region, in southern Kyrgyzstan [28]. We use SAR data

to measure the coseismic surface displacements. The ALOS

PALSAR images ground coverage is illustrated in the map in

Fig. 4. With five pairs of ALOS PALSAR images, we generate

an L-band interferogram, which is displayed in Fig. 5(a). The

topographic phase was removed from the interferogram using

a DEM. Apart from the earthquake, which is assumed to be lo-

calized only in the top part of the image, at least five fringes due

to ionospheric variations can be seen in the bottom part of the

interferogram. It is difficult to assess the real earthquake motion

field since it is superimposed to the ionospheric phase screen.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GOMBA et al.: TOWARD OPERATIONAL COMPENSATION OF IONOSPHERIC EFFECTS IN SAR INTERFEROGRAMS 9

Fig. 5. (a) Kyrgyzstan 2008 earthquake of October 5 can be recognized in the top part of the interferogram. Five fringes in the bottom part of (a) are supposed to
be due to ionosphere changes. (b) The ionospheric TEC map, estimated using the split-spectrum method, converted to a (c) phase screen, is used to produce the
(d) ionosphere-compensated interferogram. (e) Expected accuracy of the ionosphere estimation. Azimuth length is 283 km; range length is 68 km.

The split-spectrum method was applied to the data set. Al-

though the accuracy is limited by the narrow range bandwidth

of 14 MHz, the mean coherence is 0.43, and phase unwrapping

was performed without problems. The ionosphere is relatively

smooth; the point of fastest variation is in the middle of the

image where five fringes are visible; this indicates a change

of almost 3 TECU in about 45 ground km. The images are

oversampled by a factor 2 in both directions. The resulting

oversampling is then 2.29 in range and 2.83 in azimuth. The

applied multilooking is 23 pixels in range and 95 in azimuth;

the resulting mean expected accuracy of the raw ionospheric

estimates, which is calculated using (18), is 25 cm. A Gaussian

filtering with an M parameter of 100 was used to increase the

accuracy to about 2.5 mm, as shown in Fig. 5(e). The output of

the split-spectrum method [see Fig. 5(b)], converted to a phase

screen [see Fig. 5(c)], is used to compensate the initial inter-

ferogram. The result [see Fig. 5(d)] shows how the ionospheric

contribution was successfully removed. The earthquake pattern

can be easily recognized in the top part of the image, whereas

no motion is observed in the bottom part; the 60-cm error that

was introduced by five ionospheric fringes is now reduced to

a millimeter level. Tropospheric delay is now more visible; in

particular, a strong correlation of the phase with the topography

indicates the presence of stratified tropospheric delay.

2) Performance Assessment: To check the performances of

the method, the standard deviation of the raw ionosphere esti-

mate has been calculated after the outlier rejection step. Results

are shown in Fig. 6. The solid line represents the theoretical ac-

curacy obtained from (18) considering the multilooking factor

23 × 95 and the oversampling. The asterisks and the circles

represent the standard deviation of ionosphere estimates and are

calculated in two different ways. For the asterisks, we used a

moving window and the median absolute deviation, which is

a robust estimator of the standard deviation. For the circles, we

used the smooth ionosphere, which we suppose to be equal to the

real ionospheric screen, to remove the mean value. We then take

the squared error and average within different coherence inter-

vals. The square root of the results is then displayed with their

error bars. The good agreement between theoretical and mea-

sured accuracies confirm that the method performs as expected.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 6. Accuracy of the ionosphere estimate before filtering, Kyrgyzstan test
case. The line is the theoretical accuracy, and the symbols are the measured
standard deviation. Asterisks are calculated using a moving window and the
median absolute deviation. Circles are calculated using the smooth ionosphere
to remove the mean value and then the sample standard deviation.

Fig. 7. In northern Alaska, the ground coverage of the PALSAR acquisition
for the aurora data set; in eastern Alaska, the ALOS-2 acquisition.

B. Aurora Borealis

1) Data Set: The aurora borealis is caused by interactions

between the solar wind and the Earth’s atmosphere. Charged

particles, which are carried by the solar wind and accelerated

by the interconnections between the magnetic field of the Earth

and that of the Sun, are conducted downward toward the mag-

netic poles where they collide with the atmosphere, ionizing

oxygen and nitrogen atoms. A solar wind stream hit the Earth

on March 31, 2006, causing visible auroras all around the north

polar region for almost three days. L-band ALOS PALSAR

images were acquired above Alaska during April 1, capturing

the change of electron density in the ionosphere. The shape of

the acquisition’s ground coverage is represented in the map in

Fig. 7. With a second acquisition in May 17, we produce an in-

terferogram; the topographic phase was removed using a DEM.

The auroral activity generated strong and turbulent fluctua-

tions in the ionospheric phase, as shown in the interferogram

in Fig. 8. Coregistration is used to correct the azimuth shifts,

which are caused by variations of the ionosphere along the

flight path, recovering most of the coherence losses. In the left

top corner, there is still a residual effect due to uncorrected

Fig. 8. Aurora activity generates rapid spatial variations in the ionospheric
TEC; these variations are mapped in the (a) interferogram as phase changes.
The (b) coherence shows almost no losses correlated with the ionosphere
variations. Azimuth length is 66 km; range length is 28 km.

shift and/or blurring. The coherence features visible in the

bottom half of the image are most probably related to changes

in the ground backscatter. The along-track azimuth scale of

these features is much smaller than the ionospheric azimuth

resolution, which is some kilometers long. For this reason, we

can exclude an ionospheric effect.

With a mean coherence of 0.5, phase unwrapping is per-

formed without problems. The size of this image is 66 km in

azimuth and 28 km in range. In one half of the image, six

fringes are visible; this means that the differential ionosphere

varies of almost 3 TECU in about 33 ground km. The total

variation is similar to that of the previous example, but this

time, it is less regular, and rapid undulations are present. Due

to the relatively fine scale spatial variations of the phase screen,

a small smoothing window would be preferred in order not to

bias the output of the method. Unfortunately, the bandwidth is

only 14 MHz, and the estimated phase is quite noisy.

2) Performance Assessment: To test this aspect, we calcu-

late the root-mean-square deviation for increasing smoothing

windows. The error is calculated between the output of the filter

and the real ionospheric phase screen. Supposing no significant

tropospheric contribution, the interferogram is used as real

ionospheric phase screen. It is shown in Fig. 9 that the measured

errors diverge from the theoretical ones when the filter size

increases. The theoretical curve is the expected accuracy calcu-

lated with (18) considering the increasing effective number of

looks Neff . The measured error is composed of the estimation

noise, which reduces for increasing filter sizes, and of the bias

(the uncompensated high-frequency components), which, on

the contrary, grows.
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Fig. 9. Accuracy of filtered ionosphere estimate, aurora test case. Larger
smoothing windows should theoretically give (solid line) lower errors; on
the contrary, since small-scale ionospheric variations are not recovered, the
(diamonds) measured error increases for larger smoothing windows.

Fig. 10 shows two examples of the filtered ionospheric

phase screen and the respective compensated interferogram.

Fig. 10(a) is produced using the filter size correspondent to the

circle in Fig. 9. The result is very similar to the interferogram

in Fig. 8, but a lot of irregularities, which can be also seen in

the compensated interferogram in Fig. 10(b), are still present.

They derive from the estimation noise, being unlikely due to

atmospheric delay. A larger filtering window, correspondent

to the square in Fig. 9, is used to produce Fig. 10(c). This

ensures a smoother result, but the compensated interferogram

still show residuals, which are the cause of the higher error,

with respect to the expected, in Fig. 9. The residuals can be

attributed to a bias between the real and estimated ionospheric

phase screens. There is a tradeoff between the increase of the

accuracy obtained with more smoothing and the biases that

too much smoothing can originate. An adaptive filter, which

should reduce the noise variance but also respect the high-

frequency components of the phase screen, could be used to

improve the result. Another possibility, to make the phase

screen more precise, is the combination of more ionosphere

estimation methods. Anyway, despite this issue, the method was

able to reduce the error from approximately 60 cm to some

centimeters.

C. Wenchuan 2008 Earthquake

1) Data Set: On May 12, 2008, an earthquake struck the

Wenchuan region in central China. The set of images shown in

Fig. 11 is what is typically selected by researchers for studying

coseismic deformation patterns [29].

This is because the acquisition dates of these images re-

duce the influence of postseismic deformation on the interfer-

ograms. Unfortunately, this image set is heavily influenced by

ionospheric distortions and needs to be corrected to enable thor-

ough geophysical modeling. The ionospheric disturbances are

superimposed on the ground motion signal and are clearly visi-

ble in the set of interferograms in Fig. 12(a). To cover the whole

earthquake, many adjacent tracks have to be joined. Since each

track was acquired on a different day, each one experienced

Fig. 10. (a) and (c) Estimated ionospheric phase screens. (b) and (d) Compen-
sated interferograms. The larger smoothing window in (c), with respect to (a),
ensures smoother but biased results. The color bar goes from −π to π for all
images.

a different ionosphere. A discrepancy between adjacent tracks

can be expected due to aftershocks motion, different looking an-

gles, and tropospheric delay. However, the strong phase jumps

present in the interferogram in Fig. 12(a), particularly far away

from the earthquake, are an indication of ionospheric activity.

Moreover, strong residuals between the range deformation pre-

dicted by the geophysical model and the InSAR deformation

[29] are a further indication of the ionosphere presence.
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Fig. 11. Ground coverage of the PALSAR acquisitions for the Wenchuan data
set. The azimuth length of nine consequent images is 510 km; the range length
of six adjacent tracks is 480 km.

This data set is composed of 72 interferograms, and the co-

herence spans from low to high. The bandwidth is 28 MHz for

all tracks, except one (475). The differential phase unwrapping

errors in the areas of low coherence were corrected as presented

in Section III-C. An example of this correction is presented

in the next paragraph. The split-spectrum method output is

subtracted from the interferogram, and the result is shown in

Fig. 12(b). Ionospheric-induced errors in the ground motion

estimation, of about 50 centimeters, have been thus removed.

The size of the filtering window has been adapted to the mean

coherence of each track to obtain an almost homogeneous

accuracy of about 3 mm. It can be seen how the motion is now

only localized around the fault and how phase jumps between

different tracks are greatly reduced. Remaining discrepancies

can be attributed to tropospheric delay and aftershock motion.

The linear trend in the first track from the right could be caused

by an orbit error.

2) Phase Unwrapping Errors Correction: Here, we show

the effects of the unwrapping errors correction. In Fig. 13(a),

the original interferogram used for this example is displayed.

It is one frame of the first track from the left, just beneath

the earthquake rupture. Fig. 13(d) and (e) shows the raw

ionospheric phase estimates before and after the correction.

Biases, which are due to differential phase unwrapping error,

are present in the uncorrected estimates and are successfully

eliminated in the corrected one. Fig. 13(f) and (g) shows the

relative filtered phase screens, whereas Fig. 13(b) and (c) shows

the ionosphere-compensated interferograms.

D. Asymmetric Split-Spectrum Mode

To validate the theoretical performance for 20 + 5 MHz SAR

acquisitions that was developed in Section III-F, here, we

analyze two 85-MHz ALOS-2 acquisitions over Alaska. The

ground coverage is displayed in Fig. 7; the size of the images

is 57 km range and 69 km azimuth. This mode is intended to

reduce the amount of data but still preserve the ionosphere esti-

mation accuracy. Two subbands of 20 and 5 MHz are produced,

at the two ends of the full available spectrum, with bandpass

filtering.

Fig. 12. (a) Original 2008 Wenchuan Earthquake interferogram. (b) After
ionosphere compensation.

The split-spectrum method is then applied to the 85-MHz

and 20 + 5 MHz acquisitions. The theoretical and measured

standard deviations of the raw ionospheric phase estimate for

both implementations are reported in Fig. 14. The curves of the

expected accuracy are calculated from (18) and (36), consider-

ing the multilooking factor 11 × 16. The ionosphere estimation

accuracy obtained using asymmetrical subbands is close to that

obtained with the complete bandwidth. The advantage of using
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Fig. 13. Effect of the phase unwrapping errors correction. (a) Original interferogram. (b) and (c) Corrected interferograms without and with correction.
(d) and (e) Raw ionosphere estimates without and with correction. (f) and (g) Respective filtered phase screens.

a small second subband at the other end of the available spec-

trum is demonstrated; it allows a reduction of the bandwidth

to save downlink and memory capacity without sacrificing the

compensation of ionospheric disturbances. The good agreement

between expected and measured accuracies proves again the

precision of the assumptions.

The full bandwidth interferogram and the compensated one

are presented in Fig. 15.

V. CONCLUSION

The split-spectrum method is an important element toward

the realization of an operational processor for compensation

of ionospheric effects in SAR interferograms. In this paper,

we presented and tested an implementation of the method,

which estimates the ionospheric phase. The final estimation

accuracy depends on the carrier frequency and bandwidth of the

images, on the interferometric coherence, and on the correlation

length of the differential ionosphere. For example, using typical

L-band images with 28-MHz bandwidth and coherence 0.6, it is

necessary to average over a ground area of about 1 km2 to reach

the accuracy of 1 cm. To increase the accuracy up to 1 mm, it is

necessary to use a ground area of about 100 km2.

We applied the method to four data sets of ALOS and ALOS-2

images, each with different characteristics. The Kyrgyzstan

earthquake example (see Section IV-A) shows the correct sepa-

ration between the ground movements and troposphere and the

ionospheric phase. Despite the narrow 14-MHz bandwidth, it

was possible to reach millimeter accuracy. The aurora borealis

example (see Section IV-B), on the other hand, shows how

small-scale ionospheric variations limit the amount of allow-

able filtering and, hence, the estimation and correction perfor-

mance that can be achieved by the algorithm. The Wenchuan

earthquake example (see Section IV-C) demonstrates the
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Fig. 14. Expected accuracy of the 85-MHz acquisition is represented by the
black line, whereas the circles are the measured standard deviation. The dashed
line is the expected accuracy for the 20+5 MHz acquisition; diamonds are the
measured standard deviation.

robustness of the method, being applied to 72 interferograms

with different characteristics. In these examples, an ionospheric

error of almost 1 m has been reduced to millimeter or centime-

ter level. The asymmetric split-spectrum mode, tested using

ALOS-2 images in Section IV-D, shows how it is possible to

reduce the bandwidth and thus the data amount but still estimate

the ionospheric phase with almost the same accuracy as when

using full-band images.

It is conceivable to extend this work in various directions;

possible future works are discussed in the following paragraphs.

The combination of precise differential ionosphere variations,

which are obtained from SAR images, and absolute measure-

ments can lead to the development of an ionospheric mapping

system with high spatial resolution and accuracy. Absolute TEC

values can be obtained from GNSS measurements or from the

SAR images, e.g., by exploiting the quadratic behavior of the

ionospheric phase or the wavenumber shift effect reported in

Section III-E. These methods have been already proposed, but

they still have to be developed and demonstrated.

SAR systems working with different frequencies other than

L-band can benefit from the split-spectrum correction method,

too. Spatial phase undulations generated by ionospheric vari-

ations are often attributed to troposphere or orbit errors and

removed with polynomial fitting of uncertain accuracy. The

split-spectrum processing can be now used to precisely correct

the ionospheric contribution. More testing is required to prove

the importance of ionospheric effects in C-band or X-band

images.

An extension of the split-spectrum method to point scatterers

and stacks of images is a topic worthy of further investigations.

Regarding the improvement of the processor, we know that

ionospheric variations with smaller spatial scales than the fil-

tering window are not recovered and bias the result, lowering

the accuracy of the final estimate. Adaptive filtering of the

raw ionosphere estimate can improve the final phase screen.

Alternatively, we propose to use the azimuth shifts, which are

estimated by cross correlation or spectral diversity, to increase

Fig. 15. ALOS-2 85-MHz interferogram over Alaska. (a) Original.
(b) Ionosphere-compensated version. Azimuth length is 69 km; range length
is 57 km.

the accuracy of the ionospheric phase estimate. Subapertures

will be used to separate the ionosphere-induced azimuth shifts

from the ground movements. Being sensitive to local azimuth

variations of the ionosphere, the azimuth shifts can estimate the

high-frequency components of the ionosphere spectrum but are

prone to an increasing error in the long distance and are insen-

sitive to range variations. The split-spectrum method ensures

accurate estimation over long wavelengths and can recover

range variations. The two techniques will therefore complement

each other in the realization of an operational processor.
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