
Toward Optimizing Latency Under Throughput

Constraints for Application Workflows on Clusters⋆

Nagavijayalakshmi Vydyanathan1, Umit V. Catalyurek2, Tahsin M. Kurc2,

Ponnuswamy Sadayappan1, and Joel H. Saltz2

1 Dept. of Computer Science and Engineering

{vydyanat,saday}@cse.ohio-state.edu
2 Dept. of Biomedical Informatics

{umit,kurc,saltz}@bmi.osu.edu
The Ohio State University

Abstract. In many application domains, it is desirable to meet some user-defined

performance requirement while minimizing resource usage and optimizing

additional performance parameters. For example, application workflows with

real-time constraints may have strict throughput requirements and desire a low

latency or response-time. The structure of these workflows can be represented

as directed acyclic graphs of coarse-grained application tasks with data depen-

dences. In this paper, we develop a novel mapping and scheduling algorithm that

minimizes the latency of workflows that act on a stream of input data, while sat-

isfying throughput requirements. The algorithm employs pipelined parallelism

and intelligent clustering and replication of tasks to meet throughput require-

ments. Latency is minimized by exploiting task parallelism and reducing commu-

nication overheads. Evaluation using synthetic benchmarks and application task

graphs shows that our algorithm 1) consistently meets throughput requirements

even when other existing schemes fail, 2) produces lower-latency schedules, and

3) results in lesser resource usage.

1 Introduction

Complex application workflows can often be modeled as directed acyclic graphs

(DAGs) of coarse-grained application components with data dependences. The quality

of execution of these workflows is often gauged by two metrics: latency and through-

put. Latency is the time to process an individual data item through the workflow, while

throughput is a measure of the aggregate rate of processing of data. It is often desir-

able or necessary to meet a user-defined requirement in one metric, while achieving

higher performance value in the other metric and minimizing resource usage. Work-

flows with real-time constraints, for example, can have strict throughput requirements,

while interactive query processing may have strict latency constraints. To be able to

meet requirements and minimize resource usage is also important in settings such as

Supercomputer centers, where resources (e.g., a compute cluster) have an associated

cost and are contended for by multiple clients.

⋆ This research was supported in part by the National Science Foundation under Grants

#CCF-0342615 and #CNS-0403342.

A.-M. Kermarrec, L. Bougé, and T. Priol (Eds.): Euro-Par 2007, LNCS 4641, pp. 173–183, 2007.

c© Springer-Verlag Berlin Heidelberg 2007

174 N. Vydyanathan et al.

Workflows in domains such as image processing, computer vision, signal process-

ing, parallel query processing, and scientific computing often act on a stream of input

data [1,2]. Each task in the workflow repeatedly receives input data items from its pre-

decessor tasks, computes on them, and writes the output to its successors. Multiple data

items can be processed in a parallel or pipelined manner and independent tasks can

be executed concurrently. In this paper, we present a novel approach for the schedul-

ing of such workflows on clusters of homogeneous processors. Our algorithm employs

pipelined, task and data parallelism in an integrated manner to meet strict throughput

constraints and minimize latency. Pipelined parallelism is the concurrent execution of

dependent tasks in the workflow on different instances of the input data stream, data

parallelism is the concurrent processing of multiple data items by replicas of a task,

and task parallelism is the concurrent execution of independent tasks on the same in-

stance of the data stream.

We compare our approach against two existing schemes: Filter Copy Pipeline (FCP)

[3] and EXPERT (EXploiting Pipeline Execution undeR Time constraints) [2]. Eval-

uations are done using synthetic benchmarks and application task graphs in the do-

mains of Image Analysis, Video Processing and Computer Vision [1,2,4]. We show that

our algorithm is able to 1) consistently meet throughput requirements even when the

other schemes fail, 2) generate schedules with lower latency, and 3) reduce resource

usage.

2 Related Work

Several researchers have addressed the problem of minimizing the parallel completion

time (latency) of applications modeled as DAGs. As this problem is NP-complete [5],

heuristics have been proposed and a survey of these can be found in [6]. Researchers

have also proposed the use of pipelined scheduling for maximizing the throughput of

applications. Hary and Ozguner [7] discussed heuristics for maximizing the throughput

of application DAGs, while Yang [8] presented an approach for resource optimization

under throughput constraints. Benoit and Robert [9] have addressed the problem of

maximizing the throughput of pipeline skeletons of linear chains of tasks on heteroge-

neous systems. These techniques, however, do not consider replication of tasks.

Though many papers focus on optimizing latency or throughput in isolation, very

few address both. Subhlok and Vondran [10] have proposed a dynamic programming

solution for optimizing latency under throughput constraints for applications composed

of a chain of data-parallel tasks. Benoit and Robert [11] study the theoretical complex-

ity of latency and throughput optimization of pipeline and fork graphs with replication

and data-parallelism under the assumptions of linear clustering and round-robin pro-

cessing of input data items. In [3], Spencer et al. presented the Filter Copy Pipeline

(FCP) scheduling algorithm for optimizing latency and throughput of data analysis ap-

plication DAGs on heterogeneous resources. FCP computes the number of copies of

each task that is necessary to meet the aggregate production rate of its predecessors and

maps the copies to processors that yield their least completion time. Another closely

related work is [2], where Guirado et al. have proposed a task mapping algorithm called

Toward Optimizing Latency Under Throughput Constraints 175

EXPERT (EXploiting Pipeline Execution undeR Time constraints) that minimizes la-

tency of streaming applications, while satisfying a given throughput constraint. EX-

PERT identifies maximal clusters of tasks that can form synchronous stages that meet

the throughput constraint and maps tasks in each cluster to the same processor so as to

reduce communication overheads and minimize latency.

3 Task Graph and Execution Model

A workflow can be modeled as a connected, weighted DAG G = (V, E), where V , the

set of vertices, represents non-homogeneous sequential tasks and E, the set of edges,

represents data dependences. The task graph G acts on a stream of data, where each

task repeatedly receives input data items from its predecessors, computes on them, and

writes the output to its successors. The weight of a vertex (task) ti ∈ V , is its execution

time to process a single data item, et(ti). The weight of an edge ei,j ∈ E, wt(ei,j), is

the communication cost measured as the time taken to transfer a single data item of size

di,j between ti and tj . The length of a path in G is the sum of the weights of the tasks

and edges along that path. The critical path of G, denoted by CP (G), is the longest

path in G. The bottom level of a task t in G, bottomL(t), is defined as the length of the

longest path from t to the exit task, including the weight of t.

In this paper, we target homogeneous compute clusters for execution of the task

graph G. Our algorithm assumes that the execution behavior of the tasks in G is not

strongly dependent on the properties of the input data items and that profiling G on

several representative data sets gives a reasonable measure of the task execution times.

The system model assumes overlap of computation and communication.

The latency of a schedule of task graph G on P processors is the time taken to pro-

cess a single data item through G. G′, the DAG that represents the dependences in the

schedule, can be constructed from G by adding zero-weight pseudo-edges between con-

current tasks in G that are mapped to the same processor. These pseudo-edges denote

induced dependences. The latency is defined to be the critical path length of G′.

Let a task-cluster denote the group of all tasks that are mapped to the same processor.

The time taken by a task-cluster Ci to process a single data item is given by the sum of

the execution times of its constituent tasks, i.e et(Ci) =
∑

∀t∈Ci
et(t). If the workflow

is assumed to act on a stream of independent data items (i.e processing of each data item

is independent of the processing of other data items), replicas of a task/task-cluster can

be executed concurrently. If nr(Ci) denotes the number of replicas of task-cluster Ci,

the aggregate processing rate of Ci, pr(Ci) is given by
nr(Ci)
et(Ci)

data items per unit time.

Each replica of a task-cluster is assumed to be executed on a separate processor. For

example, assume that tasks t1 and t2 are mapped to task-cluster C and bottomL(t1) >

bottomL(t2) in G′. Let nr(C) be 2, the replicas be mapped to processors P1 and P2,

et(t1) = 10, and et(t2) = 20. Then, on each of these processors, t1 processes a data

item followed by t2. The processing rate of C is 2
(10+20) .

The data transfer rate of an edge ei,j , dr(ei,j), is 1
di,j

bwi,j

data items per unit time,

where bwi,j = min(nr(ti), nr(tj)) × bandwidth. Here, bandwidth corresponds to the

176 N. Vydyanathan et al.

minimum of disk or memory bandwidth of the system depending on the location of

data and the network bandwidth. nr(ti) denotes the number of replicas of task ti. As

we assume that computation and communication can overlap, the overall processing

rate or throughput of the workflow is determined by the slowest task-cluster or edge,

and is given by min(min∀Ci
pr(Ci), min∀ei,j

dr(ei,j)).

4 Workflow Mapping and Scheduling Heuristic

Given a workflow-DAG G, P homogeneous processors and a throughput constraint

T , our workflow mapping and scheduling heuristic (WMSH) generates a mapping and

schedule of G on P that minimizes the latency while satisfying T . The algorithm con-

sists of three main heuristics, which are executed in sequence: the Satisfy Throughput

Heuristic (STH) to meet the user-defined throughput requirements, the Processor Re-

duction Heuristic (PRH) to ensure that the resulting schedule does not require more

processors than available, and the Latency Minimization Heuristic (LMH) to minimize

the workflow latency. In this section, we describe each of these heuristics. Details on

the proofs for theorems can be found in the technical report [12].

Theorem 1. Given a workflow-DAG G = (V, E) that acts on a stream of independent

data items, the maximum achievable throughput Tmax, on P homogeneous processors

is given by P∑
t∈V

(et(t)) , where et(t) is the time taken by t to process a single data item.

Tmax can be achieved by mapping all tasks in G to a single task-cluster and making

P replicas, each mapped to a unique processor. However, this mapping suffers from a

large latency as it fails to exploit parallelism between concurrent tasks in G. For the sake

of presentation, the rest of this section assumes that G acts on a stream of independent

data items and hence all tasks can be replicated. However, the heuristics described here

can be applied when processing of a data item is dependent on the processing of certain

other data items (i.e replication of tasks is not allowed), by enforcing the weight of

every task-cluster to be ≤ 1
T

, for a given throughput constraint T ≤ Tmax. Tmax in this

case, is the reciprocal of the weight of the largest task in G.

Given a throughput constraint T ≤ Tmax, STH verifies whether a non-pipelined low

latency schedule, generated by priority-based list-scheduling [6], meets the throughput

requirement. The tasks in G are prioritized in the decreasing order of their bottom-

levels and scheduled in priority order to processors that yield their least completion

time. If the throughput of this schedule (which is the reciprocal of the latency) is ≥ T ,

STH returns this schedule. Otherwise, the following steps are executed to obtain a low-

latency pipelined schedule that satisfies T . To generate a pipelined schedule, each task

ti ∈ V is mapped to a separate task-cluster Ci. Let M denote the set of all the task-

clusters. The number of replicas of Ci, nr(Ci), required to satisfy T is computed as

nr(Ci) = T × et(Ci). When there is no throughput constraint, nr(Ci) = 1. For all

edges ei,j ∈ E, whose data transfer rate is < T , STH avoids the communication over-

head by merging the task-clusters containing the incident tasks. When two task-clusters

are merged, the DAG G′ representing the dependences in the schedule is constructed

from G by adding zero weight pseudo-edges between concurrent tasks in G that are

mapped to the same task-cluster. The pseudo-edges originate from the task with the

Toward Optimizing Latency Under Throughput Constraints 177

Algorithm 1. PRH: Processor Reduction Heuristic

1: function PRH(G′ , M) ⊲ G′ ← schedule DAG returned by STH, M ← set of task-clusters returned by STH

2: P ′ =
∑

Ci∈M
(⌈nr(Ci)⌉)

3: repeat

4: C′ ← {(Ci, Cj) | Ci ∈ M ∧ Cj ∈ M ∧ ⌈nr(Ci) + nr(Cj)⌉ < (⌈nr(Ci)⌉ + ⌈nr(Cj)⌉)}

5: while C′ not empty ∧(P ′ > P) do

6: Pick the task-cluster pair (Ci, Cj) from C′ that yields the largest decrease in latency when merged.

Preference is given to task-clusters that are connected, not concurrent and which produce the

largest resource wastage when merged.

7: For all task-pairs (ta, tb) ∈ Ci×Cj | ta concurrent to tb in G, add a pseudo-edge in G′ originating

from the task with the larger bottom-level.

8: For all edges ea,b ∈ G | (ta, tb) ∈ Ci × Cj , wt(ea,b) ← 0 in G′

9: Merge Ci and Cj and update M

10: P ′ ← P ′ − 1
11: Update C′

12: if P ′ > P then

13: Pick the task-cluster pair (Ci, Cj) that yields the maximum value of ⌈(nr(Ci) + nr(Cj))⌉ −
(nr(Ci) + nr(Cj)) and the largest decrease in latency when Ci and Cj are merged.

14: For all task-pairs (ta, tb) ∈ Ci×Cj | ta concurrent to tb in G, add a pseudo-edge in G′ originating

from the task with the larger bottom-level.

15: For all edges ea,b ∈ G | (ta, tb) ∈ Ci × Cj , wt(ea,b) ← 0 in G′

16: Merge Ci and Cj and update M

17: until P ′ ≤ P

18: return < G′, M >

larger bottom-level. Edges between tasks mapped to the same task-cluster have zero

weight in G′. An example to illustrate this is given in the technical report [12].

Following STH, PRH is executed. The total number of processors required to ex-

ecute nr(Ci) copies of each task-cluster Ci, where each copy is mapped to a unique

processor, is P ′ =
∑

Ci∈M ⌈nr(Ci)⌉. If P ′ > P , PRH merges certain task-clusters

and obtains a schedule that uses ≤ P processors. Once a feasible schedule is obtained,

LMH is called to optimize the latency. PRH and LMH output a set of task-clusters and

the pipelined schedule is obtained by mapping each replica of a task-cluster to a unique

processor. Tasks within a task-cluster are run in the decreasing order of their bottom-

levels and iterate over the instances of the data stream. We now present PRH and LMH

in greater detail.

4.1 Processor Reduction Heuristic (PRH)

PRH recursively merges pairs of task-clusters based on some metric until we get a

mapping that uses ≤ P processors.

Theorem 2. If task-clusters Ci and Cj are merged and Pi and Pj are the number of

processors required to run the replicas of Ci and Cj respectively, i.e Pi = ⌈nr(Ci)⌉
and Pj = ⌈nr(Cj)⌉, the number of processors required to run the replicas of the new

task-cluster formed that meets the throughput constraint is either Pi+Pj or Pi+Pj −1.

The pseudo code of PRH is illustrated in Algorithm 1. Step 4 of the algorithm considers

all pairs of task-clusters that when merged would reduce the number of processors used

by 1. Among these, PRH picks the task-cluster pair that yields the largest decrease in

latency when merged. To break ties, preference is given to task-clusters that are con-

nected, not concurrent, and which produce the largest resource wastage, in that order

178 N. Vydyanathan et al.

(step 6). Task-clusters Ci and Cj are “connected” if there exists some task ta in Ci and

some task tb in Cj such that ea,b is an edge in G. Task-clusters Ci and Cj are “not

concurrent” if for all pairs of tasks (ta, tb), ta ∈ Ci and tb ∈ Cj , ta is not concurrent to

tb in G. Resource wastage of a task-cluster C is defined as ⌈nr(C)⌉ − nr(C). Giving

preference to task-cluster pairs that yield a larger resource wastage reduces the possi-

bility of fragmentation. Steps 5-11 are repeated as long as there are task-cluster pairs

that reduce the processor count and P ′ > P . After all possible task clusterings, if the

resource usage is still greater than P at step 12, defragmentation is done in steps 13-

16 where the task-clusters that produce the largest resource wastage are merged. To

break ties, the one that causes the largest decrease in latency is chosen. The outer-loop

(steps 3-17) are repeated until the resource usage is lesser than or equal to P . At the end

of the processor reduction phase, a mapping M and schedule G′ is obtained that meets

the throughput constraint and uses ≤ P processors.

4.2 Latency Minimization Heuristic (LMH)

LMH is called to refine the mapping obtained by PRH to further optimize the latency

by reducing communication overheads. The task-clusters in M are considered by LMH

as indivisible macro-tasks. A macro-task therefore, may contain one or more tasks.

The incoming and outgoing edges of a macro-task is the union of the incoming and

outgoing edges, respectively, of the tasks that it contains, without considering edges

between tasks belonging to the macro-task. Hence, the term task in Theorem 3 is the

same as macro-task in the case where multiple tasks are mapped to same task-cluster

by PRH.

Theorem 3. Let G′ and M denote a schedule and mapping of G that meets the through-

put constraint and uses ≤ P processors. Let ei,j be an edge in G′ from task/macro-task

ti to tj such that the in-degree(ti) = in-degree(tj) = 1 and the out-degree(ti) = out-

degree(tj) = 1 (i.e. ti and tj are connected along a linear chain in that order). Let

tk be the parent of ti and tl be the child of tj . If wt(ei,j) > wt(ek,i) + wt(ej,l), it

is optimal to merge ti and tj to a single task-cluster, assuming that all tasks can be

replicated. If replication is not allowed, ti and tj can be merged to a single task-cluster

only if et(ti) + et(tj) ≤ 1
T

and ei,j satisfies the above condition.

This theorem can be extended to the case where the tasks/macro-tasks are not connected

in a linear chain. Details of this can be found in the technical report [12].

Algorithm 2 describes LMH. LMH identifies the set E∗ of edges where it is optimal

to merge the incident tasks (theorem 3 and its extensions) (step 2) and merges the task-

clusters of the incident tasks (steps 6-8). After merging, E∗ is updated (step 9). Steps 4-

9 are repeated until E∗ is empty. In steps 10-14, among the edges along CP (G′) that

do not cause an increase in latency when zeroed-in, LMH zeroes-in the edge with the

largest maximum possible decrease in latency. To break ties, the edge ei,j with the

minimum value of the sum of number of critical edges to ti and number of critical

edges to tj is chosen. The outer-loop of steps 3-15 is repeated until all edges in CP (G′)
cause an increase in latency when zeroed-in. Details regarding the order of complexity

of WMSH can be found in [12].

Toward Optimizing Latency Under Throughput Constraints 179

Algorithm 2. LMH: Latency Minimization Heuristic

1: function LMH(G′, M) ⊲ G′ ← schedule DAG returned by PRH, M ← mapping returned by PRH.

2: E∗ ← set of all edges in G′ where it is optimal to merge the incident tasks (theorem 3)

3: repeat

4: while E∗ not empty do

5: ei,j is an edge in E∗

6: For all task-pairs (ta, tb) ∈ clusterOf(ti)×clusterOf(tj) | ta concurrent to tb in G, add a

pseudo-edge in G′ originating from the task with the larger bottom-level. ⊲ clusterOf(ti) is

the task-cluster that contains task ti.

7: For all edges ea,b ∈ G | (ta, tb) ∈ clusterOf(ti)×clusterOf(tj), wt(ea,b) ← 0 in G′

8: Merge clusterOf(ti) and clusterOf(tj), update M

9: Update E∗

10: Pick edge ei,j in CP (G′) that does not increase the latency when clusterOf(ti) and clusterOf(tj)

are merged and has maximum value of min (wt(ei,j), CPL(G′) − LBL(G)) and minimum

value of (|critical-edges(ti)| + |critical-edges(tj)|) ⊲ CPL(G′) ← Critical Path Length of G′,

LBL(G) ← Lower Bound on Latency of G

11: For all task-pairs (ta, tb) ∈ clusterOf(ti)× clusterOf(tj) | ta concurrent to tb in G, add a

pseudo-edge in G′ originating from the task with the larger bottom-level.

12: For all edges ea,b ∈ G | (ta, tb) ∈ clusterOf(ti)×clusterOf(tj), wt(ea,b) ← 0 in G′

13: Merge clusterOf(ti) and clusterOf(tj) and update M

14: Update E∗

15: until For all edges ei,j in CP (G′), latency increases when clusterOf(ti) and clusterOf(tj) are merged

16: return < G′, M >

5 Performance Analysis

This section evaluates the performance of WMSH against previously proposed

schemes: Filter Copy Pipeline (FCP) [3] and EXPERT (EXploiting Pipeline Execution

undeR Time constraints) [2], and FCP-e and EXPERT-e, their modified versions. When

FCP fails to utilize all processors and does not meet the throughput requirement T ,

FCP-e recursively calls FCP on the remaining processors until T is satisfied or all pro-

cessors are used. EXPERT-e replicates the task-clusters by dividing the remaining pro-

cessors among them in the ratio of their weights. The performance of these algorithms

is evaluated using both synthetic task graphs and those derived from applications, using

simulations.

5.1 Synthetic Task Graphs

Two sets of synthetic benchmarks were used in the evaluations: 1) Benchmark-I: ran-

domly generated task graphs with communication delays [13], and 2) Benchmark-II:

synthetic graphs generated using the DAG generation tool in [14]. More details on the

benchmarks can be found in the technical report [12]. Figure 1 plots the performance on

benchmark-I on 32 and 64 processors. The x-axis is the throughput constraint, which is

decreased from the maximum achievable throughput (Tmax) in steps of 0.25. The sym-

bol ≈ 0 denotes the case when there is no throughput constraint (or negligibly small).

The y-axis is the average latency ratio. Latency ratio is the ratio of the latency of the

schedule generated by an algorithm to that of WMSH. The results show that WMSH

consistently generates schedules that meet the throughput constraint, while FCP and

EXPERT fail at large throughput requirements ((Tmax and 0.75*Tmax). Though FCP

replicates tasks, it computes the number of replicas independent of the number of pro-

cessors and fails to refine the number of replicas when it maps multiple tasks to the

180 N. Vydyanathan et al.

(a) (b)

Fig. 1. Performance on Benchmark-I on (a) 32 processors, (b) 64 processors. (The missing bars

indicate that the corresponding algorithm could not meet the throughput requirement).

Table 1. Performance on Benchmark-I on 64 processors (a) Average Throughput Ratio, (b) Aver-

age Utilization Ratio. (The missing values in (b) indicate that the corresponding algorithm could

not meet the throughput requirement).

T WMSH FCP FCP-e EXPERT EXPERT-e

Tmax 1.00 0.31 0.35 0.40 0.68

0.75*Tmax 1.00 0.41 0.55 0.53 1.00

0.50*Tmax 1.00 0.59 1.00 0.80 1.00

T WMSH FCP FCP-e EXPERT EXPERT-e

Tmax 1.00 - - - -

0.75*Tmax 0.91 - - - 0.94

0.50*Tmax 0.73 - 1.00 - 0.94

(a) (b)

same processor. EXPERT does not replicate tasks. The modified versions are designed

to overcome some of these limitations and hence, meet the constraint in some of the

cases where FCP or EXPERT fail.

With respect to latencies, we find that WMSH generates lower latency schedules.

On 32 processors, FCP generates 27%-29% longer latencies than WMSH, while EX-

PERT generates 20%-30% longer latencies when throughput constraint is relaxed upto

0.25*Tmax. As EXPERT creates maximal task-clusters with weights ≤ 1
T

, for negligi-

ble throughput constraint, it groups all tasks to a single task-cluster resulting in large

latencies. For FCP-e, we used the smallest of the latencies of all the workflow instances

it creates and hence it is similar to that of FCP. Latency in EXPERT-e is similar to EX-

PERT, since EXPERT-e only replicates tasks; this improves the throughput but does not

alter the latency. As P is increased, Tmax increases, and hence, there are more instances

where FCP and EXPERT do not satisfy T .

Table 1(a) shows the average throughput ratio for the schemes for Benchmark-I on 64

processors. The throughput ratio is the ratio of the throughput achieved by an algorithm

to the throughput constraint. If the achieved throughput is greater than the constraint,

the ratio is taken to be 1. Beyond 0.5*Tmax, all schemes meet the constraint. When FCP

and EXPERT fail, they generate schedules with throughput atleast 40% and 20% less

than the constraint, respectively. Table 1(b) shows the average utilization ratio for the

schemes. The utilization ratio is given by the ratio of the number of processors used by

an algorithm to the total number of available processors. Among schemes that satisfy T ,

WMSH produces lower-latency schedules while using fewer processors. For example,

when T is 0.5*Tmax, utilization of WMSH is 27% lower than that of FCP-e and 19%

Toward Optimizing Latency Under Throughput Constraints 181

(a) (b)

Fig. 2. (a) Relative Performance of WMSH, WMSH with replication disabled and EXPERT when

throughput constraint is 1
maxt∈V (et(t))

, (b) Performance on Benchmark-II on 32 processors and

CCR=10. (The missing bars in (b) indicate that the corresponding algorithm could not meet the

throughput requirement).

lower than EXPERT-e, and it produces latencies 15% and 19% shorter than FCP-e and

EXPERT-e respectively.

As EXPERT does not replicate tasks, we compared its performance with that of

WMSH with replication disabled (Fig. 2(a)). Even with no replication, WMSH pro-

duces lower latencies than EXPERT. WMSH with replication shows the least latency as

tasks connected by edges with heavy communication cost can be mapped to the same

task-cluster and replicated to meet the throughput constraint. Thus replication not only

helps in improving throughput but also minimizing the latency.

To study the impact of communication costs, we evaluated the schemes using Bench-

mark-II by varying the communication to computation ratio (CCR) as 0.1, 1 and 10.

Figure 2(b) shows the performance when CCR=10. Due to space constraints, we have

not included results for CCR=0.1,1. These can be found in the technical report [12].

For larger CCR values, we find more instances where FCP, EXPERT and their modified

versions do not meet the throughput constraint, while WMSH always does. WMSH in-

telligently zeroes-in heavy edges by mapping the incident tasks to the same task-cluster

and replicating this cluster to meet the throughput constraint. Though FCP minimizes

communication costs in some capacity by mapping replicas to processors that yield their

least completion time, it still incurs the cost when the processor to which the parent task

is mapped is heavily loaded (as mapping the task to this processor would cause a larger

completion time). EXPERT does not replicate and hence cannot cluster heavy tasks

that also have a huge communication cost. The modified versions of the schemes do

not completely avoid the communication overheads as they only replicate tasks. As for

Benchmark-I, WMSH generates the lowest latency schedules that use lesser resources.

5.2 Application Task Graphs

Evaluations were done using task graphs from computer vision, multimedia and

imaging domains. Due to space limitations, we present results for only two applica-

tions; detailed evaluation can be found in the technical report [12]. Table 2 shows the

182 N. Vydyanathan et al.

Table 2. Performance of Darpa Vision Benchmark on 32 processors (a) Latency Ratio, (b) Uti-

lization Ratio. (The missing values indicate that the corresponding algorithm could not meet the

throughput requirement).

T WMSH FCP FCP-e EXPERT EXPERT-e

Tmax 1.00 - - - -

0.75*Tmax 1.00 - - - -

0.50*Tmax 1.00 - - - -

0.25*Tmax 1.00 - 1.04 - -

≈0 1.00 1.04 1.04 1.15 1.15

T WMSH FCP FCP-e EXPERT EXPERT-e

Tmax 1.00 - - - -

0.75*Tmax 0.75 - - - -

0.50*Tmax 0.53 - - - -

0.25*Tmax 0.31 - 1.00 - -

≈0 0.25 0.47 0.47 0.03 1.00

(a) (b)

Table 3. Performance of MPEG video compression on 32 processors (a) Latency Ratio, (b) Uti-

lization Ratio. (The missing values indicate that the corresponding algorithm could not meet the

throughput requirement).

Segments WMSH FCP EXPERT

2 1.00 1.00 1.21

4 1.00 1.00 1.36

8 1.00 1.00 1.41

16 1.00 1.00 1.24

Segments WMSH FCP EXPERT

2 0.13 0.13 0.09

4 0.25 0.41 0.22

8 0.50 0.78 0.47

16 1.00 1.00 1.00

(a) (b)

performance for the Darpa Vision Benchmark (DVB) [4], which performs model-based

object recognition of a hypothetical object. We find that FCP, EXPERT and their mod-

ified versions do not meet the throughput requirement T , in many instances. In cases

where they satisfy T , WMSH produces schedules with shorter latencies and lower re-

source utilization than FCP. When T is negligible, the schedule generated by WMSH

uses 22% fewer processors than that of FCP and has 4% lower latency. WMSH also

produces latencies 15% lower than that of EXPERT.

Table 3 shows results for an MPEG video compression application [2]. Due to frame

encoding dependences, MPEG frames have to be processed in-order and hence task

replication is not allowed. However, the input frames can be divided into N segments,

which can be processed in parallel. We assumed Tmax to be the reciprocal of the weight

of the largest task and varied N from 2 to 16. We find that FCP and WMSH generate

schedules with similar latencies, but WMSH has upto 28% lower utilization. Though

EXPERT shows lower utilization, it generates schedules with 21%-41% longer latencies

than WMSH or FCP. The scheduling times in these experiments were less than a second

suggesting that scheduling is not a time critical operation for these applications.

6 Conclusion

This paper presents a mapping and scheduling heuristic that minimizes the latency of

workflows that operate on a stream of data, while satisfying strict throughput require-

ments. Our algorithm meets the throughput constraints through pipelined parallelism

and replication of tasks. Latency is minimized by exploiting task parallelism and reduc-

ing communication overheads. Evaluation using synthetic and application task graphs

indicate that our heuristic is always guaranteed to meet the throughput requirement and

hence can be deployed for scheduling workflows with real-time constraints. Further, it

produces lower latency schedules and utilizes lesser resources.

Toward Optimizing Latency Under Throughput Constraints 183

Acknowledgments. We would like to thank Dr. Yves Robert and Dr. Anne Benoit for

their valuable discussions and constructive reviews on the paper.

References

1. Kumar, V.S., Rutt, B., Kurc, T., Catalyurek, U., Saltz, J., Chow, S., Lamont, S., Martone, M.:

Large image correction and warping in a cluster environment. In: Supercomputing Conf. p.

79 (2006)

2. Guirado, F., Ripoll, A., Roig, C., Luque, E.: Optimizing latency under throughput require-

ments for streaming applications on cluster execution. In: Cluster Computing Conf. (2005)

3. Spencer, M., Ferreira, R., Beynon, M., Kurc, T., Catalyurek, U., Sussman, A., Saltz, J.: Exe-

cuting multiple pipelined data analysis operations in the grid. In: Supercomputing Conf. pp.

1–18 (2002)

4. Shukla, S.B., Agrawal, D.P.: Scheduling pipelined communication in distributed memory

multiprocessors for real-time applications. SIGARCH Comput. Archit. News 19(3) (1991)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co, New York, USA (1990)

6. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to

multiprocessors. ACM Comput. Surv. 31(4), 406–471 (1999)

7. Hary, S.L., Ozguner, F.: Precedence-constrained task allocation onto point-to-point networks

for pipelined execution. IEEE Trans. Par. Distrib. Syst. 10(8), 838–851 (1999)

8. Yang, M.T., Kasturi, R., Sivasubramaniam, A.: A pipeline-based approach for scheduling

video processing algorithms on now. IEEE Trans. Par. Distrib. Syst. 14(2), 119–130 (2003)

9. Benoit, A., Robert, Y.: Mapping pipeline skeletons onto heterogeneous platforms. Technical

Report LIP RR-2006-40 (2006)

10. Subhlok, J., Vondran, G.: Optimal latency-throughput tradeoffs for data parallel pipelines. In:

8th ACM Symp. on Parallel Algorithms and Arch, pp. 62–71. ACM Press, New York (1996)

11. Benoit, A., Robert, Y.: Complexity results for throughput and latency optimization of repli-

cated and data-parallel workflows. Technical Report LIP RR-2007-12 (2007)

12. Vydyanathan, N., Catalyurek, U., Kurc, T., Sadayappan, P., Saltz, J.: An approach for opti-

mizing latency under throughput constraints for application workflows on clusters. Technical

Report OSU-CISRC-1/07-TR03, The Ohio State University (2007)

13. Davidovic, T., Crainic, T.G.: Benchmark-problem instances for static scheduling of task

graphs with communication delays on homogeneous multiprocessor systems. Computers &

OR 33(8), 2155–2177 (2006)

14. Vallerio, K.: Task graphs for free, http://ziyang.ece.northwestern.edu/

tgff/maindoc.pdf

http://ziyang.ece.northwestern.edu/tgff/maindoc.pdf
http://ziyang.ece.northwestern.edu/tgff/maindoc.pdf

	Toward Optimizing Latency Under Throughput Constraints for Application Workflows on Clusters
	Introduction
	Related Work
	Task Graph and Execution Model
	Workflow Mapping and Scheduling Heuristic
	Processor Reduction Heuristic (PRH)
	Latency Minimization Heuristic (LMH)

	Performance Analysis
	Synthetic Task Graphs
	Application Task Graphs

	Conclusion
	References

