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Abstract 1 Introduction

Much of the research in inductive learning concen-
trates on problems with relatively small amounts
of data. With the coming age of very large net-

work computing, it is likely that orders of mag-
nitude more data in databases will be available for
various learning problems of real world irnponance.
Learning techniques are central to knowledge dis-

covery and the approach proposed in this paper may
substantially increase the amount of data a knowl-

edge discovery system can handle effectively. Meta-
learning is proposed as a general technique to inte-

grating a number of distinct learning processes. This

paper details several meta-leaming strategies for in-
tegrating independently learned classifiers by the

same leamer in a parallel and distributed computing
environment. Our strategies are particularly suited
for massive amounts of data that main-memory-

based learning algorithms cannot efficiently han-
dle. The strategies are also independent of the par-

ticular learning algorithm used and the underlying
parallel and distributed platform. Preliminary ex-

periments using different data sets and algorithms
demonstrate encouraging results: parallel learning

by meta-learning can achieve comparable predic-
tion accuracy in less space and time than purely
serial learning.

Keywords: machine learning, inductive learn-
ing, meta-leaming, parallel and distributed process-

hag, and large databases.

Much of the research in inductive learning concen-

trates on problems with relatively small amounts
of data. With the coming age of very large network
computing, it is likely that orders of magnitude more

data in databases will be available for various learn-
ing problems of real world importance. The Grand
Challenges of HPCC [20] are perhaps the best exam-

pies. Learning techniques are central to knowledge

discovery [ 11 ] and the approach proposed here may
substantially increase the amount of data a Knowl-

edge Discovery system can handle effectively.

Quinlan [14] approached the problem of effi-

cientiy applying learning systems to data that are
substantially larger than available main memory

with a windowing technique. A learning algorithm
is applied to a small subset of training data, called

a window, and the learned concept is tested on the
remaining training data. This is repeated on a new

window of the same size with some of the incor-
rectly classified data replacing some of the data in

the old window until all the data are correctly classi-
fied. Wirth and Catlett [21] show that the window-
ing technique does not significantly improve speed

on reliable data. On the contrary, for noisy data,
windowing considerably slows down the computa-

tion. Catlett [3] demonstrates that larger amounts
of data improves accuracy, but he projects that 1133

[15] on modem machines will take several months
to learn from a million records in the flight data set

obtained from NASA. He proposes some improve-

ments to the ID3 algorithm particularly for handling
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attributes with real numbers, but the processing time
is still prohibitive due to the algorithm’s complex-

ity. In addition, typical leaming systems like ID3
are not designed to handle data that exceed the size

of a monolithic memory on a single processor. Al-
though most modem operating systems support vir-

tual memory, the application of complex algorithms
like ID3 to the large amount of disk-resident data we
realistically assume can result in intolerable amount

of I/O or even thrashing of external disk storage.
Clearly, parallel and distributed processing provides
the best hope of dealing with such large amounts of

data.

One approach to this problem is to parallelize the
learning algorithms and apply the parallelized al-

gorithm to the entire data set (presumably utilizing
multiple I/O channels to handle the I/O bottleneck).
Zhang et al.’s work [23] on parallelizing the back-

propagation algorithm on a Connection Machine is
one example. This approach requires optimizing

the code for a particular algorithm on a specific ar-
chitecture. Another approach which we propose in
this paper is to run the serial code on a number of

data subsets in parallel and combine the results in
an intelligent fashion thus reducing and limiting the
amount of data inspected by any one learning pro-

cess. This approach has the advantage of using the

same serial code without the time-consuming pro-
tess of parallelizing it. Since the framework for
combining the results of learned concepts is inde-

pendent of the learning algorithms, it can be used
with different learners. In addition, this approach is
independent of the computing platform used. How-

ever, this approach cannot guarantee the accuracy

of the learned concepts to be the same as the serial
version since clearly a considerable amount of in-

formation is not accessible to each of the learning

processes. Furthermore, because of the prolifer-

ation of networks of workstations and distributed
databases, our approach of not relying on specific
parallel and distributed environment is particularly

attractive.
In this paper we introduce the concept of meta-

learning and its use in combining results from a set

of parallel or distributed learning processes. Sec-
tion 2 discusses meta-learning and how it facilitates
parallel and distributed learning. Section 3 details

our strategies for parallel learning by meta-learning.

Section 4 discusses our preliminary experiments and
Section 5 presents the results. Section 6 discusses

our findings and work in progress. Section 7 con-
cludes with a summary of this study.

2 Meta-learning

Meta-learning can be loosely defined as learning
from information generated by a learner(s). It can
also be viewed as the learning ofmeta-knowledge on

the learned information. In our work we concentrate

on learning from the output of inductive learning (or
learning-from-examples) systems. Meta-leaming,

in this case, means learning from the classifiers pro-

duced by the learners and the predictions of these
classifiers on training data. A classifier (or con-

cept) is the output of an inductive learning system
and a prediction (or classification) is the predicted
class generated by a classifier when an instance is

supplied. That is, we are interested in the output of

the learners, not the learners themselves. Moreover,
the training data presented to the learners initially
are also available to the meta-learner if warranted.

Meta-leaming is a general technique to coalesce

the results ofmultiplelearners. In this paper we con-
centrate on using meta-leaming to combine parallel
learning processes for higher speed and to maintain

the prediction accuracy that would be achieved by

the sequential version. This involves applying the
same algorithm on different subsets of the data in
parallel and the use of meta-leaming to combine the
partial results. We are not aware of any work in the

literature on this approach beyond what was first re-
ported in [18] in the domain of speech recognition.

Work on using meta-learning for combining differ-

ent learning systems is reported elsewhere [4, 6] and
is further discussed at the end of this paper. In the

next section we will discuss our approach on the
how to use meta-leaming for parallel learning using

only one learning algorithm.

3 Parallel Learning

The objective here is to speed up the learning process

by divide-and.conquer. The data set is partitioned
into subsets and the same leaming algorithm is ap-

plied on each of these subsets. Several issues arise
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First, how many subsets should be generated?

This largely depends on the number of processors
available and the size of the training set. The num-

ber of processors puts an upper bound on the number
of subsets. Another consideration is the desired ac-
curacy we wish to achieve. As we will see in our

experiments, there may be a tradeoff between the
number of subsets and the final accuracy. More-

over, the size of each subset cannot be too small
because sufficient data must be available for each

learning process to produce an effective classifier.
We varied the number of subsets from 2 to 64 in our
experiments.

Second, what is the distribution of training ex-
amples in the subsets? The subsets can be disjoint

or overlap. The class distribution can be random,
or follow some deterministic scheme. We experi-

mented with disjoint equal-size subsets with random
distributions of classes. Disjoint subsets implies no

data is shared between learning processes and thus
no communication overhead is paid during training
in a parallel execution environment.

Third, what is the strategy to coalesce the partial
results generated by the learning processes? This is

the more important question. The simplest approach

is to allow the separate learners to vote and use the

prediction with the most votes as the classification.
Our approach is meta-learning arbiters in a bottom-

up binary-tree fashion. (The choice of a binary tree
is discussed later.)

An arbiter, together with an arbitration rule, de-

cide a final classification outcome based upon a
number of candidate predictions. An arbiter is

learned from the output of a pair of learning pro-

cesses and recursively, an arbiter is learned from
the output of two arbiters. A binary tree of arbiters

(called an arbiter tree) is generated with the initially
learned classifiers at the leaves. (The arbiters them-
selves are essentially classifiers.) For s subsets and

s classifiers, there are log2(s) levels in the gener-
ated arbiter tree. The manner in which arbiters are
computed and used is the subject of the following

sections.

3.1 Classifying using an arbiter tree

When an instance is classified by the arbiter tree,

predictions flow from the leaves to the root. First,

each of the leaf classifiers produces an initial predic-
tion; i.e., a classification of the test instance. From
a pair of predictions and the parent arbiter’s predic-

tion, a combined prediction is produced by some
arbitration rule. These arbitration rules are depen-
dent upon the manner in which the arbiter is learned

as detailed below. This process is applied at each

level until a final prediction is produced at the root
of the tree. Since at each level, the leaf classifiers
and arbiters are independent, predictions are gener-
ated in parallel. Before we discuss the arbitration
process in detail, we first describe how arbiters are

learned.

3.2 Meta-learning an arbiter tree

We experimented with several schemes to meta-
learn a binary tree of arbiters. The training examples

for an arbiter are selected from the original training
examples used in its two subtrees.

In all these schemes the leaf classifiers are first

learned from randomly chosen disjoint data subsets
and the classifiers are grouped in pairs. (The strategy

for pairing classifiers is discussed later.) For each
pair of classifiers, the union of the data subsets on

which the classifiers are trained is generated. This
union set is then classified by the two classifiers.

A selection rule compares the predictions from the

two classifiers and selects instances from the union
set to form the training set for the arbiter of the pair

of classifiers. Thus, the role acts as a data filter to
produce a training set with a particular distribution
of the examples. The arbiter is learned from this
set with the same learning algorithm. In essence,

we seek to compute a training set of data for the
arbiter that the classifiers together do a poor job of

classifying. The process of forming the union of

data subsets, classifying it using a pair of arbiter
trees, comparing the predictions, forming a training
set, and training the arbiter is recursively performed
until the root arbiter is formed.

For example, suppose there are initially four train-
ing data subsets (Tl - T4). First, four classifiers

(C! - C’4) are getwavaled in parallel from Tl - T4.
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Arbiters

Classifiers

Training data subsets

Figure 1: Sample arbiter tree

The union of subsets Tl and T2, Ul2, is then clas-
sifted by Cl and (72, which generates two sets of
predictions (Pl and P2). Based on predictions 

and/’2, and the subset U12, a selection rule gener-
ates a training set (Tl2) for the arbiter. The arbiter

(Al2) is then trained from the set Tin using the same
learning algorithm used to learn the initial classi-
tiers. Similarly, arbiter A34 is generated in the same
fashion starting from 7"3 and 7"4, in parallel with

Al2, and hence all the first-level arbiters are pro-
duced. Then Ut4 is formed by the union of subset

TI through T4 and is classified by the arbiter trees
rooted with Al2 and A34. Similarly, Tl4 and Al4
(root arbiter) are generated and the arbiter tree 

completed (see Figure 1).

3.3 Detailed strategies

We experimented with three strategies for the se-

lection rule, which generates training examples for

the arbiters. Based on the predictions from two ar-

biter subtrees AT1 and AT2 (or two leaf classifiers)
rooted at two sibling arbiters, and a set of training
examples, E, the strategy generates a set of arbiter
training examples, T. ATI(x) denotes the predic-

tion of training example x by arbiter subtree ATI.

class(x) denotes the given classification of example

x. The three versions of this selection rule imple-
mented and reported here are as follows:

.
Return instances with predictions that disagree,

i.e., T = Td = {x E ElATe(x) # AT2(x)}.

Thus, the arbiter will be used to decide between
conflicting classifications. Note, however, it

cannot distinguish classifications that agree but

which are incorrect. (For further reference, this

scheme is denoted as recta-different.)

.
Return instances with predictions that disagree,
Td, as in the first case, but also predictions
that agree but are incorrect; i.e, T = Td U Ti,

where 7"/ = {x C E I (aTe(z) AT2(z))^

(class(x) # ATl(x))}. Note that we lump to-
gether both cases of data that are incorrectly

classified or are in disagreement. (Henceforth,

denoted as meta-different-incorrect).

,
Retum a set of three training sets: Td and

Ti, as defined above, and Tc with examples
that have the same correct predictions; i.e.,
T = {Ta, Ti, Tc}, where Tc = {x 6 E I

(ATI(x) = AT2(x))A(class(x)= 

Here we attempt to separate the data into three
cases and distinguish each case by learning a
separate "subarbiter." Ta, Ti, and Tc generate

Aa, Ai, and Ao respectively. The first ar-
biter is like the one computed in the first case
to arbitrate disagreements. The second and

third arbiters attempt to distinguish the cases
when the two predictions agree but are either

incorrect or correct. (Henceforth, denoted as

meta-different-incorrect-correct).

Sample training sets generated by the three schemes
are depicted in Figure 2.

The learned arbiters are trained on the particular
distinguished distributions of training data and are

used in generating predictions. (Note that the ar-
biters are trained by the same learner used to train

the leaf classifiers.) Recall, however, at each ar-

biter we have two predictions, Pl and P2, from two
lower level arbiter subtrees (or leaf classifiers) and

the arbiter’s, A, own prediction to arbitrate between.
Ai(x) is denoted as the prediction of training exam-
ple x by arbiter Ai. Two versions of the arbitration

rule have been implemented. The first version cor-
responds to the first two selection strategies, while

the second version corresponds to the third strat-

egy. We denote by instance the test instance to be
classified.

l&2. Return the majority vote of Pl, /72, and

A( instance), with preference given m the

arbiter’s choice; i.e., if Pt ~ P2 return

A(instance) else realm Pl.
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Class

class(z) v °rll IIB °c’ Prxattrvec(z)

a attrvecl Xl a a

b attrvec2 X2 a b
C attrvec3 Z3 b b
b attrvec4 X4 b b

Training set from [
the meta.different arbiter scheme I

Training set from
the meta-di fferent-incorrect arbiter scheme

Instance Class Attribute vector
1 b attrvec2

2 C attrvec3

Training set from
the meta.different-incorrect-correct arbiter scheme

Set Instance Class Attribute vector
Different (Td) 1 b attrvec2

Incorrect (Ti) 1 C attrvec3

Correct (T~) 1 a attrveel
2 b attrvee4

Figure 2: Sample training sets generated by the three arbiter strategies

3. if pt ~ I~ return Aa(instance)
else if pt = Ae(instanee)

return At(instance)
else return Ai(instanee),

where A = {Ad, At, Ac}.

To achieve significant speed-up, the training set
size for an arbiter, in these three schemes, is re-
stricted to be no larger than the training set size for
a classifier. That is, the amount of computation in
training an arbiter is bounded by the time to train
a leaf classifier. In a parallel computation model
each level of arbiters can be learned as efficiently
as the leaf classifiers. (In the third scheme the three
subarbiters are produced in parallel.) With this re-
striction, substantial speed-up of the learning phase
can be predicted. Assume the number of data sub-
sets of the initial distribution is s. Let t = N/s be
the size of each data subset, where N is the total
number of training examples. Furthermore, assume
the learning algorithm takes O(n2) time in the se-
quential case. In the parallel case, if we have s pro-

cessors, there are log(s) interations in building the
arbiter tree and each takes O ( t 2) time. The total time
is therefore O(t2 log(s)), which implies a potential
O( s2 / log( s ) fold speed-up. Similarly, O(nv~)
algorithms yield O(vrg/lo#(s)) fold speed-up and
O(n) yield O(s/tog(s)). This rough analysis also
assumes that each data subset fits in the main mem-
ory. In addition, the estimates do not take into ac-
count the burden of communication overhead and
speed gained by multiple I/O channels in the paral-
lel case (which will be addressed in future papers).
Furthermore, we assume that the processors have
relatively the same speed; load balancing and other
issues in a heterogeneous environment are beyond
the scope of this paper. We also note that once an
arbiter tree is computed, its application in a parallel
environment can be done efficiently according to the
scheme proposed in [18].
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4 Experiments

Four inductive learning algorithms were used in our

experiments. ID3 [15] and CART [1] were ob-

tained from NASA Ames Research Center in the
IND package [2]. They are both decision tree learn-
ing algorithms. WPEBLS is the weighted version of
PEBLS [8], which is a memory-based learning al-

gorithm. BAYES is a simple Bayesian learner based

on conditional probabilities, which is described in
[7]. The latter two algorithms were reimplemented

inC.

Two data sets, obtained from the UCI Machine
Learning Database, were used in our studies. The

secondary protein structure data set (SS) [13], cour-
tesy of Qian and Sejnowski, contains sequences of
amino acids and the secondary structures at the cor-
responding positions. There are three structures

(three classes) and 20 amino acids (21 attributes
because of a spacer) in the data. The amino acid se-
quences were split into shorter sequences of length

13 according to a windowing technique used in [13].

The sequences were then divided into a training and
test set, which are disjoint, according to the dis-
tribution described in [13]. The training set has

18105 instances and the test set has 3520. The DNA

splice junction data set (SJ) [19], courtesy of Tow-

ell, Shavlik and Noordewier, contains sequences of
nucleotides and the type of splice junction, if any,
(three classes) at the center of each sequence. Each

sequence has 60 nucleotides with 8 different values
each (four base ones plus four combinations). Some

2552 sequences were randomly picked as the train-
hag set and the rest, 638 sequences, became the test

set. Although these are not very large data sets, they
give us an idea on how our strategies perform.

As mentioned above, we varied the number of
subsets from 2 to 64 and the equal-size subsets

are disjoint with random distribution of classes.
The prediction accuracy on the test set is our pri-
mary comparison measure. The three meta-leaming

strategies for arbiters were run on the two data sets
with the four learning algorithms. In addition, we
applied a simple voting scheme on the leaf clas-

sifters. The results are plotted ha Figure 3. The

accuracy for the serial case is plotted as "one sub-

set."

If we relax the restriction on the size of the data set

for training an arbiter, we might expect an improve-
ment ha accuracy, but a decline in execution speed.

To test this hypothesis, a number of experiments
were performed varying the maximum training set

size for the arbiters. The different sizes are constant
multiples of the size of a data subset. The results
plotted in Hgure 4 were obtained from using the
meta-different-incorrect strategy on the SJ data.

5 Results

In Figure 3, for the three arbiter strategies, we ob-

serve that the accuracy stayed roughly the same for

the SS data and slightly decreased for the SJ data
when the number of subsets increased. With 64 sub-
sets, most of the learners exhibited approximately a

10% drop in accuracy, with the exception of BAYES
and one case in CART. The sudden drop in accuracy
in those cases was likely due to the lack of informa-

tion ha the training data subsets. In the SJ data there
are only ~ 40 training examples ha each of the 64

subsets. If we look at the case with 32 subsets (,,, 80
examples each), all the learners sustained a drop in

accuracy of at most 10%. As we observe, the big
drops did not happen in the SS data. This shows that

the data subset size cannot be too small. The voting
scheme performed poorly for the SJ data, but was
better than most schemes in the SS data. Basically,

the accuracy was roughly the same percentage of
the most frequent class in the data and in the SS data

case, simple voting performed relatively better. The
behavior on the training set was similar to the test set

and those results are not presented here due to space
limitations. Furthermore, the three strategies had

comparable performance and since the first strategy
produces fewer examples in the arbiter training sets,

it is the preferred strategy.

As we expected, by increasing the maximum ar-
biter training set size, higher accuracy can be ob-
tained (see Figure 4, only the results on the SJ data

are presented). When the maximum size was just

two times the size of the original subsets, the largest
accuracy drop was less than 5% accuracy, cutting
half of the 10% drop occurred when the maximum

size was the same as the subset size as mentioned

above. Furthermore, when the maximum size was
unlimited (i.e., at most the size of the entire training
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set), the accuracy was roughly the same as in the

serial case.

Since our experiments are still preliminary, the

system is not implemented on a parallel/distributed
platform and we do not have relevant timing re-

suits. However, according to the theoretical analy-
sis, significant speed-up can be obtained when the
maximum arbiter training set size is fixed to the sub-

set size (see Section 3.3; ID3 and CART is O(nl)

[15], where l is the number of leaves, and assum-
ing I is proportional to v/n, the complexity becomes

WI, EaLS is O(n2); BAYES is O(n)).
When the maximum arbiter training set size is

unlimited, we calculate the speed-ups based on the

largest training set size at each level (which takes

the longest to finish). In this case, since we assume
we do not have a parallelized version of the learn-
ers available, the computing resource being utilized

is reduced in half at each level. That is, at the
root level, only one processor will be in use. The
following discussion is based on theoretical calcu-

lations using recorded arbiter training set sizes ob-

tained from the SJ data. Again, the effects of corn-

munication and multiple I/O channels on speed are

not taken into account. For WPEBLS (O(n2)), 
speed-up steadily increased as the number of sub-
sets increased and leveled off after eight subsets to
a factor of six (see Figure 5). (This case is closest 

a linear speed-up.) For ID3 and CART (O(nv/’~)),

the speed-up slowly increased and leveled off after
eight subsets to a factor of three. BAYES did not ex-
hibit parallel speed-up due to its linear complexity.

The leveling-off was mainly due to the bottleneck

at the root level, which had the largest training set.

Next, we investigate the size and location of the
largest training set in the entire arbiter tree. This
gives us a notion of the memory requirement at

any processing site and the location of the main
bottleneck. Our empirical results indicates that the

largest training set size was always around 30% of

the total training set and always happened at the
root level, independent of the number of subsets

that was larger than two. (Note when the number
of subsets was two, the training set size was 50% of

the original set at the leaves and became the largest

in the tree.), This implies that the bottleneck was in
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Figure 5: Results on unlimited maximum arbiter training set size

processing armmd 30% of the entire training data set

at the root level. This also implies that this parallel
meta-learning strategy required only around 30% of

the memory used by the serial case at any single
processing site. Strategies for reducing the largest
training set size is discussed in the next section.

Recall that the accuracy level of this parallel strategy

is roughly the same as the serial case. Thus, the

parallel rests-learning strategy (with no limit on the
arbiter training set size) can perform the same job as
the serial case with less time and memory without

parallelizing the learning algorithms.

6 Discussion

The two data sets chosen in our experiments repre-
sent two different kinds of data sets: one is difficult
to learn (SS with 50+% accuracy) and the other 

easy to learn (SJ with 90+% accuracy). Our arbiter
schemes maintained the low accuracy in the first

case and mildly degraded the high accuracy in the

second case with a restriction on the arbiter train-

ing set size. When the restriction on the size of the

training set for an arbiter was lifted, the same level

of aconacy could be achieved with less time and
memory for the second case. Since we assert that

this approach is scalable due to the independence of
each learning process, this indicates the robustness

of our strategies and hence their effectiveness on
massive amounts of data.

Largest arbiter training set size As mentioned in

the previous section, we discovered that our scheme
required at most 30% of the entire training set at any

moment to maintain the same prediction accuracy

as in the serial case for the SJ data. However, the
percentage is dependent on several factors: the pre-

diction accuracy of the algorithm on the given data

set, the distribution of the data in the subsets, and
the pairing of learned classifiers and arbiters at each
level.

If the prediction accuracy is high, the arbiter train-
hag sets will be small because the predictions will

usually be correct and few disagreements will oc-
cur. In our experiments, the distribution of data in

the mbsets was random and later we discovered that
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half of the final arbiter tree was trained on examples

with only two of the three classes. That is, half of
the tree was not aware of the third class appearing in

the entire training data. We postulate that if the class
distribution in the subsets is uniform, the leaf clas-

sifters and arbiters in the arbiter tree will be more
accurate and hence the training sets for the arbiter

will be smaller. Indeed, results from our additional
experiments on different class distributions (using
the meta-different-incorrect strategy on the SJ data

set), shown in Figure 6, indicate that uniform class
distributions can achieve higher accuracy than ran-

dom distributions.

And lastly, the "neighboring" leaf classifiers and

arbiters were paired in our experiments. One might
use more sophisticated schemes for pairing to reduce
the size of the arbiter training sets. One scheme is

to pair classifiers and arbiters that agree most of-
ten with each other and produce smaller training

sets (called min-size). Another scheme is to pair

those that disagree the most and produce larger train-
ing sets (called max-size). At first glance the first

scheme would seem to be more attractive. However,

since disagreements are present, if they do not get
resolved at the bottom of the tree, they will all sur-

face near the root of the tree, which is also when the
choice of pairings is limited or nonexistent (there are
only two arbiters one level below the root). Hence,

it might be more beneficial to resolve conflicts near
the leaves leaving fewer disagreements near the mot

These sophisticated pairing schemes might de-
crease the arbiter training set size, but they might

also increase the communication overhead. When

pairing is performed at every level, the overhead is
incurred at every level. The schemes also create
synchronization points at each level, instead of at

each node when no special pairings are performed.

A compromise strategy might be to perform pairing
only at the leaf level. This indirectly affects the
subsequent training sets at each level, but synchro-
nization occurs only at each node and not at each

level.

Some experiments were performed on the two

pairing strategies applied only at the leaf level and

the results are shown in Figure 7. All these ex-

periments were conducted on the SJ data set and

Page 236 Knowledge Discovery in Databases Workshop 1993 AAAI-93



11)1 (gJ)

\ l~ndom diet.
\ R~nd~a diet. 2 "+’-
\ P~ndom diet. 2, max-eize Pairing .e-..
\ Random diet. 2, Imin-mize pairing ~--

....... __.
l 4 J i i

2 4 8 16 32 64
Number of subeetn

o
vlOOi

80

6o

4O

to

CA~T {S3)

P~ nd~m diet.
\ @~ndk2m diet. 2 "÷’--
\ P~m diet. 2, max-size pairing .e ....
\ Raxx~a diet. 2, lain-0ize pairing ~--

Uniform dist. .6..

=--~=~=~-~-~.~:
....... ~’~" .....-~-..~.Z ....

i m i I a

2 ¯ 8 1G 32 64
Number of eubset~

w
100,

¯ ,~ 60

~ 40

i
~ o

¯ ¯ ¯ , ,
Random diet. -e--

Rand~ dist. 2, JL3Xm|J. ZO Pairing .e ....

, I/A\\

2 4 8 16 32 ~4
br Of euJ:~get.I

40

20

0
2

BAYES (SJ)
¯ 0 , , ,

~ dist. -*--
\ Ra~l~ diet. 2 ~-
\ I~mdkxm diet. 2, max-size Pairing .e-,.
\ R~rKI~S diet. 2~ mln-e/ze pa£r£ng -~--

Unifon~ diet. -6.-

, i i i i

4 8 li 32 64
Mmd~r of subaets

Figure 7: Arbiter training set size with different class distributions and pairing strategies

used the meta.different.incorrect strategy for meta-
learning arbiters. In addition to the initial random

class distribution, a uniform class distribution and a
second random class distribution (Random dist. 2)

was used. The second random distribution does not
have the property that half of the learned arbiter

tree was not aware of one of the classes, as in the
initial random distribution. Different pairing strate-

gies were used on the uniform distribution and the
second random distribution. As shown in Figure 7,

the uniform distribution achieved smaller training
sets than the other two random distributions. The
largest training set size was around 10% of the origi-
nal data when the number of subsets was larger than

eight, except for BAYES with 64 subsets (BAYES
seemed to be not able to gather enough statistics

on small subsets, which can also be observed from
results presented earlier). (Note that when the num-

ber of subsets is eight or fewer, the training sets
for the leaf classifiers are larger than 10% of the

original data set and become the largest in the ar-

biter tree.) The two pairing strategies did not affect

the sizes for the uniform distribution and are not

shown in the figure. One possible explanation is
that the uniform distribution produced the smallest
training sets possible and the pairing strategies did

not matter. However, the max-size pairing strategy
did generally reduce the sizes for the second ran-

dom distribution. The men-size pairing strategy, on

the other hand, did not affect, or sometimes even
increased, the sizes. In summary, uniform class dis-

tribution tends to produce the smallest training sets
and the max-size pairing strategy can reduce the set
sizes in random class distributions.

In our discussion so far, we have assumed that
the arbiter training set is unbounded in order to de-
termine how the pairing strategies may behave in

the case where the training set size is bounded. The
max-size strategy aims at resolving conflicts near the

leaves where the maximum possible arbiter training

set size is small (the union of the two subtrees) leav-
ing fewer conflicts near the root. If the training set
size is bounded at each node, a random sample (with

the bounded size) of a relatively small set near the
root would be representative of the set chosen when

the size is unbounded.

AAAI-93 Knowledge Discovery in Databases Workshop 1993 Page 237



Order of the arbiter tree A binary arbiter tree

configuration was chosen for experimental pur-
poses. There is no apparent reason why the arbiter
tree cannot be n-ary. However, the different strate-

gies proposed above are designed for n to be equal

to two. When n is greater than two, a majority clas-
sification from the n predictions might be sufficient
as an arbitration rule. The examples that do notre-

ceive a majority classification constitute the training
set for an arbiter. It might be worthwhile to have a
large value of n since the final tree will be shallow,

and thus training may he faster. However, more
disagreements and higher communication overhead
will appear at each level in the tree due to the arbitra-

tion of many more predictions at a single arbitration

site.

Alternate approach An anonymous reviewer of
another paper proposed an "optimal" formula based
on Bayes Theorem to combine the results of clas-
sifters, namely, P(a:) = ~c P(c) P(xlc), where

z is a prediction and c is a classifier. P(c) is the

prior which represents how likely classifier c is the
true model and P(zJe) represents the probability
classifier e guesses z. Therefore, P(z) represents

the combined probability of prediction z to be the
correct answer. Unfortunately, to be optimal, Bayes
Theorem requires the priors P(e)’s to be known,

which are usually not, and it also requires the sum-
marion to be over all possible classifiers, which is

almost impossible to achieve. However, an approx-
imate P(z) can still be calculated by approximat-

ing the priors using various established techniques

on the training data and using only the classifiers
available. This technique is essentially a "weighted
voting scheme" and can be used as an aitemative

to generating arbiters. This and the aforementioned
strategies and issues are the subject matter of ongo-

ing experimentation.

Schapire’s hypothesis boosting Our ideas are re-
lated to using meta-leaming to improve accuracy.

The most notable work in this area is due to Schapire
[16], which he refers to as hypothesis boosting.

Based on an initial learned hypothesis for some con-
cept derived from a random distribution of training

data, Schapire’s scheme iteratively generates two

additional distributions of examples. The first newly

derived distribution includes randomly chosen train-
ing examples that are equally likely to be correctly

or incorrectly classified by the first learned classifier.

A new classifier is formed from this distribution. Fi-
nally, a third distribution is formed from the training
examples on which both of the first two classifiers

disagree. A third classifier (in effect, an arbiter) 

computed for this distribution. The predictions of

the three learned classifiers are combined using a
simple arbitration rule similar to the one of the rules
we presented above. Schapire rigorously proves that

the overall accuracy is higher than the one achieved
by simply applying the learning algorithm to the ini-
tial distribution under the PAC learning model. In

fact, he shows that arbitrarily high accuracy can be
achieved by recursively applying the same proce-

dure. However, his approach is limited to the PAC
model of learning, and furthermore, the manner in
which the distributions are generated does not lend
itself to parallelism. Since the second distribution

depends on the first and the third depends on the sec-

ond, the distributions are not available at the same
time and their respective learning processes cannot
be run concurrently. We use three distribution as

well, but the first two are independent and are avail-
able simultaneously. The third distribution, for the
arbiter, however, depends on the first two. Fre-

und [9] has a similar approach, but with potentially
many more distributions. Again, the distributions

can only be generated iteratively.

Work in progress In addition to applying meta-
learning to combining results from a set of paral-

lel or distributed learning processes, meta-learning

can also be used to coalesce the results from mul-
tiple different inductive learning algorithms applied

to the same set of data to improve accuracy [5].
The premise is that different algorithms have differ-

ent representations and search heuristics, different
search spaces are being explored and hence poten-
tially diversed results can be obtained from differ-

ent algorithms. Mitchell [12] refers to this phe-
nomenon as inductive bias. We postulate that by

combining the different results intelligently through
meta-leaming, higher accuracy can be obtained. We

call this approach multistrategy hypothesis boosting.
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Preliminary results reported in [4] are encouraging.

Zhang et al.’s [24] and Wolpert’s [22] work is in this

direction. Silver et al.’s [17] and Holder’s [10] work
also employs multiple learners, but no learning is in-

volved at the meta level. Since the ultimate goal of
this work is to improve both the accuracy and effi-

ciency of machine leaming, we have been working
on combining ideas in parallel learning, described
in this paper, with those in multistrategy hypothe-

sis boosting. We call this approach multistrategy

parallel learning. Preliminary results reported in
[6] are encouraging. To our knowledge, not much
work in this direction has been attempted by others.

7 Concluding Remarks

Several meta-learning schemes for parallel learning

are presented in this paper. In particular, schemes

for building arbiter trees are detailed. Preliminary
empirical results from bounded arbiter training sets

indicate that the presented strategies are viable in
speeding up learning algorithms with small degrada-

tion in prediction accuracy. When the arbiter train-
hag sets are unbounded, the strategies can preserve
prediction accuracy with less training time and re-

quired memory than the serial version.

The schemes presented here is a step toward the
multistrategy parallel learning approach and the

preliminary results obtained are encouraging. More
experiments are being performed to ensure that the

results we have achieved to date are indeed statis-
tically significant, and to study how meta-leaming

scales with much larger data sets. We intend to fur-
ther explore the diversity and possible "symbiotic"

effects of multiple learners to improve our meta-
learning schemes in a parallel environment.
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