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Abstract. A framework for nodule feature-based extraction is presented to clas-
sify lung nodules in low-dose CT slices (LDCT) into four categories: juxta, 
well-circumscribed, vascularized and pleural-tail, based on the extracted infor-
mation. The Scale Invariant Feature Transform (SIFT) and an adaptation to 
Daugman’s Iris Recognition algorithm are used for analysis. The SIFT descrip-
tor results are projected to lower-dimensional subspaces using PCA and LDA. 
Complex Gabor wavelet nodule response obtained from an adopted Daugman 
Iris Recognition algorithm revealed improvements from the original Daugman 
binary iris code. This showed that binarized nodule responses (codes) are in-
adequate for classification since nodules lack texture concentration as seen in 
the iris, while the SIFT algorithm projected using PCA showed robustness and 
precision in classification. 
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1   Introduction 

Texture has been a subject of major investigation by researchers, especially dealing 
with imaging applications such as aerial, satellite, medical images, etc., since the 
texture can be defined as a function of the spatial variation in pixel gray levels [1].  In 
medical applications image analysis techniques have played a major role for such 
tasks like feature extraction, classification of normal and abnormal lung tissue, regis-
tration and segmentation.  There are numerous methods within the scope of texture 
recognition such as parametric statistical model-based techniques, structural tech-
niques and transform-based techniques [2]. In texture classification the main goal is to 
produce a map which enables classification of the input image(s) to the desired 
classes, object type classification in correlation to other images, etc.   

There are various approaches for classification using texture, but all of the ap-
proaches fall-under linearly based or non-linearly-based approaches [2].  In this paper 
we investigate two approaches to extract texture information from lung nodules to 
automatically classify each nodule into one of four predefined categories identified in 
[3]. The first is an adoption of the linear-based algorithm known as the Daugman Iris 
Recognition Algorithm [4] and the second is the non-linear approach known as the 
Scale Invariant Feature Transform. These approaches and how they are used for lung 
nodule texture-based feature extraction will be described in details in the coming 
section. 
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The literature is rich with information on feature extraction whether it is domain 
specific; human face and fingerprinting, or general; color, texture and shape. The 
usage of texture approaches on lung nodules of low-dose CT (LDCT) slices, to the 
best of authors’ knowledge, is not as common.  The closest related works we found to 
our application are the following: Hara et al. [6] used 2nd order autocorrelation fea-
tures to detect lung nodules in 3D chest images, there were no results pertaining to 
once the nodules were detected how to classify the nodules or if the 2nd order autocor-
relation could provide information  for further analysis. In [7] local texture analysis 
was used for identifying and classifying lung abnormalities such as tuberculosis. The 
k-nearest neighbor approach was implemented to extract the feature vector from the 
training set and leave out the feature vector that will be classified.  

A nodule is defined as a small mass or lump of irregular or rounded shape, yet this 
definition is ambiguous when it comes to applying it in the fields of computer vision 
and machine learning, for example.  Samala et al. [8] defined nine feature descriptors 
that describe the nodule characteristics that were used in assessments by radiologists. 
These descriptors are: 1. subtlety; 2. internal structure; 3. calcification; 4. sphericity; 
5. margin; 6. lobulation; 7. speculation; 8. texture and 9. malignancy.  

The assignment of the various nodule types can be formulated by allowing I x  to 
represent a CT slice, where x x, y : 1 x N , 1 y N  is a finite spatial 
grid supporting the slice and x x , y  be the centroid of a detected nodule region. 
The main objective of our framework is to assign a nodule type c to a given nodule 
region using texture-based descriptor x , where c , , ,  which corres-
ponds to juxta, well-circumscribed, vascular and pleural-trail  respectively.  This 
involves two main stages: first, detecting potential nodules for the given CT slice(s); 
second, building the nodule descriptor for each nodule type assignment/classification. 
In this paper we are concerned with the second stage. It is crucial that the local fea-
tures extracted from the detected nodules are robust to various deformations due to 
scale, noise, acquisition artifacts, contrast and local geometric distortion[1].  

This paper is organized as follows: section 2 describes the feature descriptor algo-
rithms used in the classification analysis, section 3 discusses performance evaluation; 
and section 4 concludes the paper. 

2   Feature Descriptors 

Distinct object matching and description is an important goal for many medical imag-
ing and computer vision applications. The success of the object description necessitate 
on two main conditions: invariance and distinction. The object description methodolo-
gy must be robust to accommodate for various variations in imaging conditions and in 
the mean time producing a distinctive characterization of the desired object. 

In this paper we use two algorithm designs for feature based description, Daugman 
Iris Recognition algorithm and the Scale Invariant Feature Transform (SIFT),  on the 
nodule classification of Kostis et al. [3], which groups nodules into four main catego-
ries: (1) Well-circumscribed where the nodule is located centrally in the lung without 
being connected to vasculature; (2) Vascularized where the nodule has significant 
connection(s) to the neighboring vessels while located centrally in the lung; (3) Juxta-
pleural where a significant portion of the nodule is connected to the pleural surface; 
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in which the real complex values from the Gabor response are obtained, thus bypass-
ing binarization in nodule feature encoding step. 
 ,

, , / /       1  

 

Where h ,  can be regarded as a complex-valued bit as either 1 or 0 depending on 
the sign of the 2D integral representing the real and imaginary parts; I ρ,  is the raw 
nodule image in a dimensionless polar coordinate system that is translation and size 
invariant, α and β are the multi-scale 2D wavelet size parameters; ω is the wavelet 
frequency, spanning 3 octaves in inverse proportion to β; r ρ   represents the 
polar coordinated of each region of the nodule for which the phasor coordinates h ,  are computed.    In the first technique the fractional Hamming Distance (HD) 
is computed, as conducted by Daugman. This distance is used as the dissimilarity 
measure between any 2 nodules, where 0 would represent a perfect match.  

                                2  
 

Where the XOR, , operator detects disagreement between any corresponding pair of 
bits while the AND, , operator ensures that the compared bits are both deemed to 
have been uncorrupted by the lung nodule surroundings.  Since the second technique 
is unbinarized, the Hamming Distance cannot be used thus the Euclidean Distance 
(ED) was computed, which examines the root of square difference between any 2 

nodules. Given two descriptors , , … ,  and , , … , , 
ED can be defined as follows; 
 

                                             3  

2.2   Scale Invariant Feature Transform (SIFT) 

As detailed in [6], SIFT consists of four main steps: (1) Scale-space peak selection; 
(2) Key-point localization; (3) Orientation assignment and (4) Key-point descriptor. 
In the first step, potential interest points are detected using a scale-space continuous 
function , , it can be constructed by convolving the image  with a cylin-
drical Gaussian kernel ,  which can be viewed as a stack of 2D Gaussians one 
for each band. According to Lowe [5], the scale is discretized as  where 2 ⁄  and 1,0,1,2, … , ⁄ . Scale-space extrema detection searches over 

all scales  and image locations ,  to identify potential interest points 
which are invariant to scale and orientation; this can be efficiently implemented using 
Difference-of-Gaussians ,  which takes the difference between consecutive 
scales, i.e. ,  , , , a point  is selected to be a candidate 
interest point if it is larger or smaller than its 3 3 neighborhood system defined on 
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, , , , , , where  is marked to be the scale of the point . 
This process leads to too many points some of which are unstable (sensitive to noise); 
hence removal of points with low contrast and points that are localized along edges is 
accomplished. In our framework, we assume that nodules have been already detected 
which correspond to interest/key points in Lowe’s algorithm, hence this step can be 
bypassed. In order to obtain a nodule SIFT descriptor which is invariant to orienta-
tion, a consistent orientation should be assigned to the detected nodule which is 
represented by its centroid . This orientation is based on the gradient of the no-
dule’s local image patch. Considering a small window surrounding , the gradient 
magnitude and orientation can be computed using finite differences. Local image 
patch orientation is then weighted by the corresponding magnitude and Gaussian 
window. Eventually the orientation is selected to be the peak of the weighted orienta-
tion histogram. Building a nodule SIFT descriptor is similar to orientation assignment, 
for example a 16x16 image window surrounding the nodule centroid point  is di-
vided into sixteen 4x4 sub-windows, then an 8-bin weighted orientation histogram is 
computed for each sub-window, hence, we obtain 16x8 = 128 descriptors for each 
nodule. Thus, each detected nodule can now be defined at location ( , ), specific 
scale , explicit orientation  and descriptor vector , , , , . Thus the 
SIFT operator : I x  X  can be viewed as mapping a CT slice I x  to the nodule 
space with n-nodules, X  detected from I x , where x , y , σ , θ , d . 
Principle component analysis (PCA) [9] and linear discriminant analysis (LDA) [10] 
are used to project the extracted SIFT descriptors to a low-dimensional subspace 
where noise is filtered out.   

3   Experimental Results 

This work is based on the Early Lung Cancer Action Program (ELCAP) public database 
[11], which contains 50 sets of low-dose CT lung scans taken at a single breath-hold 
with slice thickness 1.25 mm. The locations of the 397 nodules are provided by the 
radiologists, where 39.12% are juxta-pleural nodules, 13.95% are vascularized nodules, 
31.29% are well-circumscribed nodules and 15.65% are pleural-tail nodules. In this 
paper we created a subset database containing 294 nodules of the original 397. The 
ELCAP database is of resolution 0.5x0.5mm [11]. Since we assume that the nodule 
region has been already detected, we use the groundtruth marked nodules by the radiol-
ogists to avoid sources of errors due to automated detection.  Given a nodule’s centroid, 
we extract texture descriptor information using two main techniques: Daugman coding 
and the SIFT descriptor. Tables 1 and 2 visualize the intermediate steps performed to 
generate a nodule code for the four nodule types while table 3 represents the SIFT de-
scriptors of the nodule ensembles given in Tables 1 and 2.  

Training was performed using two randomly drawn approaches; the bootstrapping 
resampling technique [12] and a one-time random sampling approach. The results using 
both methods were comparable, thus only the one time random sampling results are 
shown in this paper. 

Classification was performed using the nearest-neighbor classifier with Euclidean 
distance as the similarity measure. To quantify nodule type classification performance, 
we measure true positives rates. A classification result is considered a true positive if a 
sample from class  is classified as belonging to the same class. 
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Table 1. Visualization of Daugman Recognition process for the same Juxta and Well-Circumscribed 
Nodules in Fig. 1 

 

Table 2. Visualization of Daugman Recognition process for the same Pleural-Tail and Vascularized 
Nodules in Fig. 1 

 
 
Table 4 shows the classification results for nodule codes for different percentages 

of training data (x% is the amount of ground-truth nodules taken into consideration in 
the training phase). It can be inferred that binarizing Gabor wavelet complex res-
ponses makes the nodule region lose discriminatory texture which assists in nodule 
type classification; this is not the case for iris recognition where it is known that the 
iris region is rich in texture. Gabor-based descriptor provides higher discrimination 
for juxta and well-circumscribed nodule types when compared to vascular and pleural 
tail. In general 50% training data can be used to provide overall excellent classifica-
tion results. 

Table 5 shows the classification results for nodule SIFT descriptor for different 
percentages of training data. We also use the projection of SIFT descriptor on a PCA-
based and LDA-based subspaces trained by the descriptors of each nodule type. It can 
be observed that using the raw SIFT descriptor without statistical modeling provides 
the worst classification performance when compared to their PCA and LDA projec-
tion, yet, it provides similar performance to complex-valued nodule codes. LDA pro-
jection provides the greatest classification results when 100% nodule training is con-
ducted, yet, in reality the model will not be re-trained each time new nodules are ex-
tracted to then classify them again (i.e. Input everything desired, output the same as 
input). As training percentage decreases, PCA projection results surpass those from 
the raw SIFT, LDA SIFT and Daugman nodule codes, this emphasizes the ability of 
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Iris Recognition algorithm and the SIFT descriptor with lower-dimensional subspaces 
projections using PCA and LDA. The results from the descriptors were used to classi-
fy the nodules into their corresponding classes as defined by [3]. The results revealed 
the PCA SIFT method was more robust for lesser nodule training data. The Gabor 
wavelet unbinarized nodule responses provided better results than the binarized origi-
nal framework of Daugman due to the lack of concentrated texture information in the 
lung nodules, yet these results were inferior to the overall SIFT performance. Future 
directions are geared toward generating a larger nodule database from other clinical 
data to expand our work. Further experimentations with this approach in terms of 
training and testing data will be conducted. We are also aiming to examine other fea-
ture descriptor approaches to compare with the results obtained in this paper. 
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