
Toward precision medicine in glioblastoma: the promise
and the challenges

Michael D. Prados†, Sara A. Byron†, Nhan L. Tran, Joanna J. Phillips, Annette M. Molinaro, Keith L. Ligon,
Patrick Y. Wen, John G. Kuhn, Ingo K. Mellinghoff, John F. de Groot, Howard Colman, Timothy F. Cloughesy,
Susan M. Chang, Timothy C. Ryken, Waibhav D. Tembe, Jeffrey A. Kiefer, Michael E. Berens, David W. Craig,
John D. Carpten, and Jeffrey M. Trent

University of California San Francisco, San Francisco, California (M.D.P, J.J.P., A.M.M., S.M.C.); Translational Genomics Research Institute,
Phoenix, Arizona (S.A.B., N.L.T., W.D.T., J.A.K., M.E.B., D.W.C., J.D.C., J.M.T.); Dana-Farber/Brigham and Women’s Cancer Center, Boston,
Massachusetts (K.L.L., P.Y.W.); University of Texas Health Science Center, San Antonio, Texas (J.G.K.); Memorial Sloan-Kettering Cancer
Center, New York, New York (I.K.M.); The University of Texas M.D. Anderson Cancer Center, Houston, Texas (J.F.d.G.); University of Utah
Huntsman Cancer Institute, Salt Lake City, Utah (H.C.); University of California Los Angeles, Los Angeles, California (T.F.C.); Iowa Spine
and Brain Institute, Waterloo, Iowa (T.C.R.)

Corresponding Author: Michael D. Prados, MD, University of California San Francisco, Department of Neurological Surgery, 400 Parnassus, Room
A-808, San Francisco, CA 94143-0372 (pradosm@neurosurg.ucsf.edu)
†M.D.P. and S.A.B are co-first authors and contributed equally to manuscript preparation and content of the article.

Integrated sequencing strategies have provided a broader understanding of the genomic landscape and molecular classifications
of multiple cancer types and have identified various therapeutic opportunities across cancer subsets. Despite pivotal advances in
the characterization of genomic alterations in glioblastoma, targeted agents have shown minimal efficacy in clinical trials to date,
and patient survival remains poor. In this review, we highlight potential reasons why targeting single alterations has yielded lim-
ited clinical efficacy in glioblastoma, focusing on issues of tumor heterogeneity and pharmacokinetic failure. We outline strategies
to address these challenges in applying precision medicine to glioblastoma and the rationale for applying targeted combination
therapy approaches that match genomic alterations with compounds accessible to the central nervous system.
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Glioblastoma (GBM) is a molecularly heterogeneous mali-
gnancy that arises in the brain and is uniformly fatal. The
median survival is �15 months for patients who enroll in clini-
cal trials.1 Population-based survival statistics are much worse,
reflecting the majority of cases that are never referred or
cannot qualify for such studies.2 It is estimated that fewer
than 10% of patients are treated according to prospective
clinical trials.3 Perhaps the bias against referral derives from
the fact that despite decades of intense research into the
biology and treatment of GBM, overall survival remains stag-
nant, with very few approved chemotherapeutic or biologic
agents.

Surgical cure is not possible for GBM. Despite extensive sur-
gical removal of what appears to be all gross macroscopic dis-
ease, either at initial diagnosis or at the time of relapse, all
patients will continue to show tumor growth and progression
because of rapidly proliferating infiltrative disease remaining

after surgery. Based upon autopsy and historical surgical biopsy
series, infiltrating tumor cells can be found far distant from
even the gross imaging findings.4 It is this invasive, infiltrative
disease component that is the ultimate cause of recurrence, re-
sistance, and death. The current standard of care for newly di-
agnosed disease includes maximal safe resection, followed by
6 weeks of radiation and concurrent daily temozolomide (TMZ)
chemotherapy, followed by at least 6 months of adjuvant
TMZ.1,5,6 The addition of TMZ improves overall survival by
�2.5 months compared with radiation only.1,5 Despite at-
tempts to improve outcome for newly diagnosed disease, ef-
fective treatment for glioblastoma remains an unmet need.
Three large, placebo-controlled randomized phase III trials
aimed at targeting the angiogenic phenotype of this disease
were recently published. Two studies used bevacizumab, tar-
geting vascular endothelial growth factor (RTOG 0825 and
the AVAglio trial), and one used cilengitide, an integrin inhibitor
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(the CENTRIC trial).7 – 9 None of these trials showed an improve-
ment in overall survival compared with the current standard of
care. Recurrence of disease is uniformly rapid, typically occur-
ring within 6–9 months of initial diagnosis, and salvage thera-
pies, if effective at all, are only able to control disease growth
for another 4–6 months.10 The typical 6-month progression-
free survival using older cytotoxic agents and many single-
agent, molecularly targeted therapies is ,20% when treated
at the time of first or second relapse.11 Based upon several
uncontrolled phase II clinical trials showing a high pro-
gression-free response rate compared with historical controls,
the FDA granted accelerated approval for the use of bevacizu-
mab for malignant glioma at the time of first or second re-
lapse.12,13 At the time of this report, the only FDA approved
agents for glioblastoma are TMZ and the nitrosoureas, with ac-
celerated approval of bevacizumab. None of these therapies is
curative.4,5,7 – 9,11 – 15

Biomarker-driven strategies that incorporate potential “ac-
tionable molecular targets” have been employed over the last
several decades but, as mentioned above, have not yet proven
effective in the clinical setting. In addition to clinical factors
such as age, performance status, and extent of resection,
only one specific molecular alteration is prognostic and to
some degree predictive of treatment response: the presence
or absence of methylation of the promoter region of the DNA
repair enzyme methylguanine methyltransferase (MGMT).14

Approximately 30% of tumors have MGMT promoter methyla-
tion, and those patients respond better to treatment and live
longer than patients with unmethylated MGMT.16 Unfortunate-
ly, patients without MGMT methylation only have about a one-
month survival advantage when TMZ is given compared with
radiation only.16 Intensifying TMZ to potentially deplete MGMT
has not improved clinical outcome and produced only more
toxicity.15

Most molecularly informed clinical trials use a single “one
size fits all” targeted treatment approach and have not taken
into account the multitude of biologic differences found within
individual patients. Fortunately, more comprehensive, in-depth
molecular profiling of tumor tissue is increasingly available and
has become much less expensive in recent years. Patients have
accepted the notion and hope that individualized therapies
may be helpful, but the proof of this concept has yet to be dem-
onstrated in malignant glioma. The lack of precise tumor imag-
ing combined with significant tumor heterogeneity, biologic
complexity, and difficulty in drug delivery present unique chal-
lenges for the management of GBM.

Molecular Profiling of Glioblastoma
Molecular profiling has provided clinical benefit for patients
with various advanced cancers.17,18 However, aside from
MGMT promoter methylation and TMZ response, molecular bio-
markers associated with therapeutic response are lacking in
GBM. Over the last decade, glioblastoma has been character-
ized into several subtypes of disease using gene expression
profiling. The recent application of integrated sequencing strat-
egies has provided a broader understanding of the geno-
mic landscape and molecular classifications of GBM.19 – 21

Sequencing analysis of GBM led to the identification of

mutations in the isocitrate dehydrogenase 1 or 2 genes
(IDH1, IDH2), typically found in younger patients and shown
to independently confer a better prognosis.22 These cases are
likely secondary glioblastoma, arising over time from lower-
grade astrocytoma. The Cancer Genome Atlas (TCGA) analysis
of primary glioblastomas confirmed earlier findings, subclassi-
fying glioblastoma into at least 4 subtypes using an expression-
based analysis.19,23 The proneural subtype shows improved
survival and often harbors IDH mutations and other methyla-
tion abnormalities.24 The other 3 subtypes (mesenchymal,
classical, and neural) segregate according to distinct gene ex-
pression patterns, but there is little to no survival difference
among them. More extensive profiling has been completed
that includes methylation profiles, which may lend themselves
to better stratification factors and identify additional genetic
abnormalities and pathway alterations. The field is only now
starting to grasp the complicated and poorly understood epige-
netic drivers and modifiers of certain key regulatory functions
that define the more commonly altered pathways detected
by the analyses by TCGA.

Whole-exome sequencing analysis from TCGA identified
several significantly mutated genes, validating driver alter-
ations from previous studies (EGFR, PDGFRA, PIK3CA, PTEN,
NF1, RB1, TP53, etc) and identifying novel, significantly altered
genes and pathways, including frequent alterations in genes in-
volved in chromatin remodeling.20 The most frequent genomic
gains and losses involved EGFR/MET/CDK6 (chromosome 7),
CDK4/MDM2 (chromosome 12), PDGFRA (chromosome 4), and
CDKN2A/CDKN2B (chromosome 9). Sequencing efforts also un-
covered potentially targetable oncogenic RNA fusion events in
GBM, such as the in-frame fusions involving fibroblast growth
factor receptor/transforming acidic coiled-coil protein genes
(FGFR1-TACC1, FGFR3-TACC3) or epidermal growth factor recep-
tor/septin 14 (EGFR-SEPT14) that confer in vitro sensitivity to
FGFR or EGFR inhibitors, respectively.21,25 Though knowledge
of the genomic landscape of glioblastoma has increased,
these findings have yet to be translated into improved out-
comes for GBM patients.

From Target to Treatment: The Challenges

Identifying Actionable Alterations

Classifying and prioritizing variants identified through integrat-
ed genomic analysis is a major challenge in the application of
precision medicine. In cases where an alteration has been pre-
viously reported and characterized, prior knowledge from the
literature can be leveraged to map individual alterations and
associated drug response relationships. However, most alter-
ations identified by whole-genome or exome sequencing re-
main undefined in regard to the functional consequence and
associated therapeutic implications.

The subset of significantly mutated genes identified in the
glioblastoma dataset of TCGA20,25 includes several genes that
represent direct targets of an FDA-approved therapy (EGFR,
PDGFRA, BRAF) or that map to a pathway that is targeted by
an approved drug or investigational agent (PTEN, PIK3CA, NF1,
TP53) (Fig. 1A). However, these gene alterations range from
known gene variants with well-described clinical implications
to novel alterations with unknown functional and therapeutic
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relevance. Various strategies have been and are being devel-
oped to aid in variant annotation and prioritization (reviewed
by Dienstmann et al26). Computational tools and functional
predictive models can aid in mutation prioritization, incorporat-
ing evidence on mutation type (frameshift, nonsense, mis-
sense), mutation domain (kinase domain), mutant allele
fraction, corresponding mutant expression data from RNA se-
quencing, and whether the mutation has been previously re-
ported in a cancer database (TCGA, COSMIC [Catalogue of
Somatic Mutations in Cancer]). To identify clinically relevant, po-
tentially actionable alterations, these prioritized alterations can
be mapped to potential therapies using an evidence-driven
knowledge base that captures variant-drug associations from

the literature. As predictive markers are lacking in GBM, it will
be valuable to include drug –gene relationships from other
tumor types. These therapeutic associations can be further
characterized based on the strength of evidence surrounding
the alteration–drug relationship, including whether the variant
is an FDA-defined pharmacogenomic biomarker in GBM or an-
other tumor type and whether the alteration is associated with
drug response based on clinical or preclinical data.

As an example, we applied a basic strength of evidence
grading scale to classify the identified somatic variants from
the glioblastoma TCGA dataset based on therapeutic associa-
tion. In this example, the variant classification scheme ranges
from 0 to 5, as outlined in Table 1. Several alterations identified

Fig. 1. Potential therapeutic implications of significantly mutated genes identified in the primary glioblastoma TCGA dataset. (A) Pathway
representation of frequently altered pathways and selected potential therapeutic agents. (B) Table of frequently mutated genes from TCGA20

mapped to potential FDA-approved therapeutic agents. (Right) Bar chart of level of evidence for the association between an alteration and the
therapeutic implication using the levels of evidence defined in Table 1.
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in GBM have evidence for a therapeutic association in cancer
(Fig. 1B). BRAF V600E mutation, an FDA pharmacogenomic bio-
marker for vemurafenib, dabrafenib, and trametinib in BRAF
V600E mutant melanoma, is present in a subset of GBM and
represents the only level 1 alteration detected. Level 2 and 3
alterations, representing mutations that have been previously
characterized and linked to drug response in clinical and/or pre-
clinical studies, are also present, including the EGFR A289V mu-
tation, PIK3CA E545K and H1047R mutations, and nonsense
mutations in NF1 and PTEN.27 – 34 An additional subset of alter-
ations map to key functional domains or have been previously
identified in cancer, yet are currently functionally uncharacter-
ized and lack direct literature evidence for a drug–response re-
lationship. Refining methods to annotate these variants and
catalog drug–alteration relationships will be critical to applying
these integrative strategies to glioblastoma.

Tumor Heterogeneity

Even with the identification of potential therapeutic targets in
GBM, several unique challenges exist for translating these dis-
coveries into clinical practice, as exemplified by the disappoint-
ing efficacy of EGFR inhibitors in GBM clinical trials. EGFR is
altered in about half of GBM, resulting from gene mutation, am-
plification, and gene fusion.21,28 However, EGFR tyrosine kinase
inhibitors have thus far shown minimal clinical efficacy in GBM,
even within predefined glioblastomas positive for EGFR and
PTEN.35 The lack of efficacy with EGFR inhibitors illustrates sev-
eral of the challenges with implementing precision medicine in
GBM, including tumor heterogeneity and pharmacodynamic/
pharmacokinetic failure.

Intratumor heterogeneity is a critical influence in treatment
failure. There is spatial heterogeneity within the tumor: some
tumor regions are hypoxic and necrotic and others more nor-
moxic; some regions are more proliferative, with others very
quiescent; some regions are more vascularized, whereas

some are more infiltrative. These phenotypic features are ac-
companied by genotypic differences.36 Mosaic amplification,
where amplification of key oncogenes occurs in a mutually
exclusive pattern within neighboring subpopulations of tumor
cells, occurs in a subset of glioblastomas.37,38 In GBM cell
lines with mosaic amplification of EGFR and PDGFRA, simultane-
ous inhibition of both targets was required for pathway inhibi-
tion in the heterogeneous cell population.39 The complexity of
intratumor heterogeneity extends beyond the pattern of recep-
tor tyrosine kinase amplification in GBM subpopulations, as
demonstrated by the extensive tumor heterogeneity detected
by genome-wide copy number analysis in spatially distinct glio-
blastoma samples.36 Treatment for specific regional genotypic
differences is problematic, particularly when one cannot iden-
tify those differences by routine imaging, and because multiple
surgeries and/or biopsies are not done to confirm the changes
that exist or that arise over time.

In addition to the issue of intratumor heterogeneity, there is
clear evidence that treatment can drive clonal evolution,
through either generation of de novo subclonal driver events
or selection of preexisting subclones with genotypes associated
with a drug-resistant phenotype. Indeed, TMZ has been associat-
ed with a mutator phenotype that drives a TMZ-associated
glioma-to-glioblastoma evolutionary path through TMZ-driven mu-
tations in the retinoblastoma and Akt–mammalian target of
rapamycin (mTOR) pathways.40 Secondary mutations also con-
tribute to clinical resistance to various molecularly targeted
agents. For example, secondary mutations in EGFR, particularly
the presence of the EGFR T790M mutation, are associated with
resistance to EGFR inhibitors in non –small cell lung cancer.
These mutations have been detected at low frequency prior
to EGFR inhibitor treatment, suggesting that the T790M muta-
tion may drive subclonal expansion.41 In contrast, a recent
study in BRAF-mutant melanoma found that the resistant mu-
tations were not present in the pretreatment tumor, suggesting
that they were acquired de novo with BRAF/mitogen-activated

Table 1. Variant classification scheme

Classification
Level

Classification Description Examples

0 FDA pharmacogenomic biomarkers with established evidence for
an associated drug response in the same cancer type

BRAF V600E mutation and vemurafenib response in
melanoma

1 FDA pharmacogenomic biomarkers with established evidence for
an associated drug response in a different cancer type

BRAF V600E mutation and vemurafenib response in
glioblastoma

2 Alteration associated with drug response based on clinical or
preclinical data

PIK3CA H1047R mutation and everolimus response in
breast cancer patients

3 Novel mutations in genes where literature evidence supports a
strong pathway relationship to a therapeutic target

Random point mutations and insertion/deletion
mutations mostly seen among tumor suppressor genes
such as PTEN and CDKN2A

4 Alterations that impact the same amino acid or affect an important
protein domain (ie, kinase domain) as those with known clinical
implications but may not be validated for functional
consequence and relationship to therapeutic response

FGFR3 kinase domain mutation not previously linked to
drug response (ie, FGFR3 P671S)

5 Variant previously described as somatic in cancer but not directly
associated with therapeutic response

EGFR extracellular domain mutation previously reported in
cancer but not yet linked to therapeutic response (ie,
EGFR S229C)
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protein kinase kinase (MEK) inhibitor therapy.42 Thus, another
biopsy of the recurrent tumor will likely be required for ade-
quate target evaluation and genomic-guided therapeutic se-
lection at the time of tumor recurrence.

The pattern of intratumor heterogeneity and inherent mo-
lecular complexity of GBM will likely necessitate cotargeting
of multiple alterations using combination therapy. Using
single cell–based clonal analysis, Meyer and colleagues43 re-
cently identified preexistent TMZ-resistant subclones within
treatment-naı̈ve primary GBM tumors. The authors further
demonstrated the differences in genomic alterations and re-
sponse to a panel of chemotherapeutic agents within clones
isolated from the same primary tumor, illustrating the need
for multiple agents to target the diverse driver events within
clinically aggressive clones. Strategies to target parallel and/
or redundant kinase pathways, such as cotargeting of EGFR
and phosphatidylinositol-3 kinase (PI3K)/mTOR pathways,
have shown preclinical efficacy in GBM cell lines.44 – 46 However,
a phase I/II study combining the EGFR inhibitor erlotinib and
the mTOR inhibitor temsirolimus encountered dose-limiting
toxicity for this combination, and there were no responses re-
ported among glioblastoma patients.47 Pharmacological con-
siderations, including managing overlapping toxicities and
drug–drug interactions, remain critical determinants of combi-
nation therapy design and efficacy.

Due to the inherent therapeutic resistance of GBM, combina-
tions with chemosensitizing agents are of particular interest.
Autophagy inhibitors, such as chloroquine, have been shown
to increase the chemosensitivity to TMZ in xenograft models48

and have demonstrated clinical activity in combination with
TMZ and radiation in patients with GBM.49 However, the related
compound, hydroxychloroquine, was associated with dose-
limiting toxicity and inconsistent autophagy inhibition in a
phase I/II trial combining hydroxychloroquine with standard
of care radiation and TMZ in newly diagnosed GBM.50 While
this is a promising strategy, follow-up studies evaluating
novel autophagy inhibitors and further optimization of the
combination therapy regimen are needed. Immunotherapy
has also shown promising results in early clinical trials, and
multiple immunotherapeutic strategies are actively being eval-
uated in glioblastoma.51 – 57 Though the role of immunotherapy
in combination therapy remains to be delineated, evidence
suggests potential synergism with standard of care radiation
and chemotherapy (reviewed by Patel et al58).

Pharmacodynamic and Pharmacokinetic
Failures
Pharmacodynamic and pharmacokinetic parameters are key
influences on clinical efficacy. In contrast to other EGFR-driven
tumor types, EGFR mutations in glioblastoma are typically lo-
cated in the extracellular domain.28 The most frequent consti-
tutively active oncogenic variant, termed EGFRvIII, arises from
deletion of exons 2–7, resulting in an in-frame deletion of 267
amino acids in the extracellular domain. EGFRvIII is expressed
in �30% of glioblastomas, including about half of the glioblas-
tomas with EGFR gene amplification.59 However, EGFRvIII is rel-
atively resistant to erlotinib and gefitinib, EGFR tyrosine kinase
inhibitors that target the active kinase conformation.28 Neither

agent significantly inhibited EGFRvIII phosphorylation in BS153
cells, a GBM-derived cell line with EGFR amplification and EGFR-
vIII expression.60 Another EGFR inhibitor, lapatinib, has been
shown to inhibit EGFRvIII in vitro by preferentially binding the
inactive conformation of the kinase. However, lapatinib failed
to achieve sufficient intratumor concentrations in glioblastoma
patients.28 Clinical trials testing next-generation EGFR inhibitors
or EGFRvIII-targeted vaccines, such as rindopepimut, are under
way. Rindopepimut provided encouraging results in early-phase
clinical trials51,57 and is currently being evaluated in combina-
tion with bevacizumab in a phase II clinical trial for EGFRvIII+
relapsed glioblastoma (NCT01498328) and in combination with
TMZ in a phase III clinical trial for EGFRvIII+ newly diagnosed
glioblastoma (NCT01480479).61

Natural exclusion of agents due to the blood–brain barrier
(BBB) coupled with the poor distribution of therapies within
the brain and throughout the tumor region make adequate
drug delivery a critical challenge in advancing glioblastoma
treatment. The multiple published reports of in vivo animal
and human clinical studies evaluating drug levels or target in-
hibition in the brain provide an initial resource for evaluating po-
tential CNS activity of a compound. In addition, various in silico
predictive models have been developed to aid in predicting BBB
penetration.62,63 Combining predictive models with literature-
derived evidence for BBB penetration can assist in prioritizing
agents for therapeutic selection. Clinical trials that attempt to
address the issue of drug delivery will typically treat a patient
prior to surgery and then operate on the most surgically acces-
sible disease, usually the enhancing disease based upon con-
trast MRI. A small sample is acquired in one small region and
the drug concentration measured. The literature is fairly robust
in terms of such trials that document what should be sufficient
drug concentrations based upon preclinical testing in rodents,
yet these trials are routinely negative, almost certainly because
most of the disease remaining after surgery is nonenhancing
and infiltrative, likely with different genomic changes and a
more intact BBB. Together, these findings reinforce the need
to consider BBB penetration of the selected therapy as well
as genomic complexity of the disease during therapeutic plan-
ning. In addition, one must consider the tumor left behind, the
regions not biopsied or studied in terms of molecular profile,
and drug distribution and pharmacodynamic effects.

Therapeutic agents that are approved for non-oncology indi-
cations but which have known CNS activity and evidence for po-
tential activity in cancer may also be useful in treating CNS
malignancies. This strategy of drug repositioning capitalizes
on known safety information and BBB penetration for target
compounds and is being explored by various groups in multiple
cancer types, including the recently launched Coordinated Un-
dermining of Survival Paths (CUSP9) trial by the International
Initiative for Accelerated Improvement of Glioblastoma
Care.64,65 A prime example of this drug repositioning approach
is disulfiram, a drug used to manage chronic alcoholism. Disul-
firam has recently been found by several groups to have preclin-
ical activity in glioblastoma66 – 69 and is currently being
evaluated in clinical trials (NCT01907165, NCT01777919).

Various approaches for increasing drug delivery are also
being explored.70 One approach is to optimize local delivery of
a drug behind the BBB, such as was done with carmustine-
loaded polymer implants.71 Other local delivery strategies,
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including convection-enhanced delivery, have also been pur-
sued in an effort to more widely distribute therapeutic agents
in the target tissue.72 Strategies to improve drug delivery
through chemical or mechanical disruption of the BBB
have also experienced renewed interest, such as use of
microbubble-enhanced focused ultrasound to induce local
BBB disruption.73 Recent advances in nanoparticle systems
have provided new opportunities for drug-loaded nanoparticle
delivery to intracranial tumors through various modes of deliv-
ery, including convection-enhanced delivery,74 – 76 systemic ad-
ministration,77,78 and intranasal delivery.79 – 81 While these
advances hold promise for improving drug delivery and efficacy,
the challenge of selecting effective, molecularly informed
therapeutic options remains.

Selected Examples in Glioblastoma
Molecular Profiling
As a conceptual example to illustrate these principles, we ap-
plied whole-genome and -exome sequencing to 13 archival
recurrent glioblastoma samples and mapped the genomic
alterations identified to potential CNS-active therapeutics.
Several of the identified alterations overlapped those found in
primary GBM20 (Fig. 2). Applying the same strength of evidence
scale as we used in the primary GBM samples revealed several
potentially targetable alterations (Fig. 3).

Potentially actionable alterations and the candidate thera-
peutic agents for selected recurrent glioblastoma samples are
displayed in Table 2. In sample 2, the potentially actionable
level 2 alterations include EGFR amplification, EGFRvIII expres-
sion, and CDKN2A deletion. As mentioned above, EGFR is fre-
quently altered in GBM but has been challenging to effectively

target, with several of the EGFR inhibitors showing reduced ac-
tivity against variant III and/or poor CNS activity. Afatinib, a
dual EGFR/ERBB2 irreversible inhibitor, has shown preclinical ac-
tivity against EGFRvIII.27 While the activity of afatinib in glio-
blastoma remains to be demonstrated, activity against brain
metastases has been reported.82 Next-generation EGFR inhibi-
tors with anticipated improved BBB penetration, such as daco-
mitinib, are currently in clinical trials in GBM (NCT01112527).
Various repositioned therapies with potential activity against
activated EGFR can also be considered. Propranolol is a nonse-
lective beta-adrenergic receptor antagonist approved for hy-
pertension, angina pectoris, migraine prophylaxis, and,
recently, infantile hemangioma. Propranolol is known to cross
the BBB83 and has demonstrated anticancer activities in vari-
ous tumor types.84,85 Propranolol was recently shown to regu-
late EGFR trafficking, displaying activity in EGFR-mutant or
amplified cancer cell lines,86 though clinical efficacy remains
to be demonstrated. This sample also had CDKN2A deletion,
consistent with previous reports demonstrating a positive asso-
ciation between EGFR amplification and CDKN2A deletion in
glioblastoma.87,88 Loss of CDKN2A has been associated with
sensitivity to cyclin-dependent kinase (CDK)4/6 inhibitors such
as PD-0332991,89 currently in phase II clinical trials in glioblas-
toma (NCT01227434). Thus, a BBB-penetrant EGFR inhibitor
with activity against EGFRvIII combined with a CDK4/6 inhibitor
may constitute an initial potential therapeutic strategy for this
case.

For sample 11, a TSC2 deletion and BRAF V600E mutation
were detected, suggesting dual activation of PI3K/mTOR and
mitogen-activated protein kinase (MAPK) signaling pathways.
Loss of heterozygosity of TSC1 and TSC2, negative regulators
of mTOR complex 1 (C1) activity, occur at low frequency in
GBM.90 Recently, loss of TSC1 was shown to result in mTORC1

Fig. 2. Genomic alterations in recurrent glioblastoma tumors. (A) The spectrum of alterations identified within the cohort of recurrent GBM samples
was mapped against the subset of frequently altered genes previously identified in primary GBM.20 Red indicates copy number loss, green is copy
number gain, an asterisk (*) Indicates nonsynonymous mutation, where missense mutations are colored blue, nonsense mutations colored purple,
and frameshift mutations colored orange. Tan indicates a structural variant. Chromatin remodeling gene alterations are colored gray and include
missense, nonsense and splice site mutations. The most dominant molecular subtype for each sample, based on the gene expression
classifications of Verhaak et al,118 is shown. C, classical; M, mesenchymal; N, neural; P, proneural; ind, indeterminant. The bar chart indicates
frequency of genomic alteration for each gene within the TCGA primary GBM dataset20 (white bars) and the recurrent GBM samples presented
here (black bars).
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hyperactivation and to stimulate malignant gliomagenesis in
the presence of oncogenic signals.91 Lack of tuberous sclerosis
complex (TSC)1/TSC2 expression has been associated with
mTORC inhibitor sensitivity,92 suggesting potential efficacy of
an mTOR pathway inhibitor such as everolimus or temsirolimus
in this context. Both everolimus and temsirolimus have litera-
ture evidence supporting their brain distribution,93,94 though
studies of these agents have thus far shown minimal clinical
activity in GBM.47,95 – 100 The BRAF V600E mutation is a low-
frequency, hot spot mutation, occurring in ,2% of primary
adult GBM.20 Several targeted agents have gained FDA approval
for BRAF V600E-mutant melanoma, including vemurafenib,
dabrafenib, and trametinib. Though not yet tested in adult
GBM, mutant BRAF inhibitors have shown efficacy in a
V600E-positive pediatric brainstem ganglioglioma,101 an

experimental orthotopic V600E-positive malignant astrocytoma
model,102 and most recently, a clinical case of V600E-positive
pediatric relapsed GBM,103 suggesting potential efficacy for
these inhibitors in BRAF V600E-mutant brain tumors. Selection
of a compound with activity against BRAF V600E with anticipat-
ed CNS activity can be challenging. Literature evidence indicates
that both vemurafenib and dabrafenib are substrates for active
efflux by P-glycoprotein and breast cancer resistance pro-
tein,104,105 thus limiting their distribution to the brain. According
to the FDA approval documents, trametinib crosses the BBB,
achieving a concentration of �20% of that in plasma following
multiple doses.106 However, trametinib did not significantly in-
hibit extracellular signal-regulated kinase phosphorylation in
the mouse brain,107 raising questions as to whether the concen-
tration achieved is sufficient for antitumor activity. Mebendazole,

Fig. 3. Potential therapeutically actionable alterations identified in recurrent glioblastoma samples. The strength of evidence for therapeutic
association for each alteration is depicted as in Fig. 1B. An asterisk (*) Indicates nonsynonymous mutation. Drug classes mapping to each
alteration are shown on the right. Selection of investigational agents was limited to agents currently being tested in clinical trials for glioblastoma.

Table 2. Examples of potentially actionable alterations identified in selected recurrent glioblastoma samples

Sample Gene Alteration Candidate Therapeutic Agents

Sample 2 CDKN2A Gene deletion Palbociclib134

EGFR Amplification, EGFRvIII Afatinib, cetuximab, erlotinib, gefitinib, lapatinib, panitumumab, propranolol, vandetanib82,135–140

Sample 11 BRAF V600E Dabrafenib, mebendazole, trametinib, vemurafenib104 – 108

TSC2 Gene deletion Everolimus, sirolimus, temsirolimus93,94,141

FANCA Gene deletion Mitomycin, olaparib34,142

RECQL5 Gene deletion Irinotecan, topotecan143,144
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a microtubule-targeting, anti-helminthic agent with demon-
strated efficacy against parasitic infections of the CNS,108 has re-
cently been shown to have direct inhibitory activity against
several oncogenic kinases, including BRAF V600E.109 Systemic
mebendazole treatment significantly increased survival in 2
orthotopic mouse models of glioma,110 suggesting potential
for repositioning this therapy into GBM. A phase I study of
mebendazole in newly diagnosed high-grade glioma is currently
under way (NCT01729260). Thus, combination of an mTOR
inhibitor with a BRAF/MEK pathway inhibitor, with additional con-
siderations for CNS activity, may constitute a potential therapeu-
tic strategy for cases with dual MAPK/PI3K activation.

Together, these examples highlight the likely requirement
for combination therapy in this molecularly complex and het-
erogeneous tumor type, and the need to consider BBB penetra-
tion characteristics of potential therapeutic agents during
treatment selection.

Concluding Remarks and a Prospective
Trial Design
In a recent phase I trial, a patient with MET-amplified, recurrent
GBM showed a rapid and durable clinical response following
treatment with the MET inhibitor crizotinib.111 Though this
proof-of-principle case provides encouraging evidence for effi-
cacy of a selected targeted agent based on molecular profiling
in GBM, the challenge remains to successfully apply this ap-
proach within the larger context of GBM. The use of unselected
single agents in large patient clinical trials for GBM has proven
futile for all of the reasons described above. Given the clinical,
phenotypic, and genomic heterogeneity that we know exists, a
more rational selection of treatment for our patients is needed.
Indeed, the treating physician is increasingly receiving whole-
exome or other genomic molecular profiles obtained from a pa-
tient’s tumor, along with treatment suggestions based upon
those profiles. In many cases, multiple agents are suggested
within these reports. The challenge remains as to how to use
this information in a rational way, particularly outside of the
context of a prospective clinical trial.

The strategy we propose, and have now started (NCT02060890),
is to obtain multiple biopsies of patients at the time of surgery,
within both the enhancing as well as the more infiltrative, non-
enhancing regions of disease. Subsequently, we perform exten-
sive genome-wide profiling and select drugs that we anticipate
may modulate actionable targets within the remaining, diffuse
regions of the lesion. Drug selection is individualized, and mul-
tiple agents (up to 4) are allowed. “Rules” for drug selection are
implemented using the specialized drug pharmacopeia de-
signed for this trial, taking into account the potential number
of agents (dose, sequence, knowledge of overlapping toxicity,
CNS pharmacokinetics) and the safety of using combination
therapy. The drugs chosen are carefully considered with knowl-
edge about the patient’s past treatment history and concomi-
tant therapies, with the assistance of a multispecialty
molecular tumor board that drafts a report to the treating phy-
sician. Additional tumor samples are also collected for future in
vitro and in vivo xenograft testing, as well as blood samples ob-
tained over time to assess for circulating tumor DNA that may
help with noninvasive biomarker development in the future.

Whenever possible, paired samples from each patient at the
time of relapse will be taken in order to validate the strategy
and to assess potential mechanisms of resistance. We are cur-
rently testing the feasibility and safety of this strategy in a lim-
ited recurrent glioblastoma patient sample, in patients who are
otherwise felt to be surgical candidates. If safe and feasible,
additional clinical studies testing efficacy using multiple pre-
specified targeted agents would be possible, either alone or
with repositioned drugs from the US Pharmacopeia.

While we are just beginning the process of assessment of
the feasibility of this strategy, with the goal of prospective effi-
cacy trials, we recognize that much more research is needed.
For instance, far more precise noninvasive assessment of bio-
logic and metabolic changes within tumor, particularly within
the nonenhancing infiltrating tumor regions, with early time
points is clearly needed. Additional research is also needed to
optimize drug-to-tumor delivery strategies to ensure biologi-
cally adequate distribution and pharmacodynamic changes
within these regions. Small, informative, tissue-based clinical
trials that take into account the individual molecular features
of patients and provide early “go” or “no go” decisions are
needed and should be prioritized over unselected, large,
population-based strategies. Early signals of efficacy or proof
of concept need to be quickly validated, with the goal of final
proof of efficacy in controlled studies.
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