
Toward Predictable Performance

in Software Packet-Processing Platforms

Mihai Dobrescu

EPFL, Switzerland

Katerina Argyraki

EPFL, Switzerland

Sylvia Ratnasamy

UC Berkeley

Abstract

To become a credible alternative to specialized hardware,

general-purpose networking needs to offer not only flex-

ibility, but also predictable performance. Recent projects

have demonstrated that general-purpose multicore hard-

ware is capable of high-performance packet processing,

but under a crucial simplifying assumption of unifor-

mity: all processing cores see the same type/amount of

traffic and run identical code, while all packets incur

the same type of conventional processing (e.g., IP for-

warding). Instead, we present a general-purpose packet-

processing system that combines ease of programmabil-

ity with predictable performance, while running a diverse

set of applications and serving multiple clients with dif-

ferent needs. Offering predictability in this context is

considered a hard problem because software processes

contend for shared hardware resources—caches, mem-

ory controllers, buses—in unpredictable ways. Still, we

show that, in our system, (a) the way in which resource

contention affects performance is predictable and (b) the

overall performance depends little on how different pro-

cesses are scheduled on different cores. To the best of our

knowledge, our results constitute the first evidence that,

when designing software network equipment, flexibility

and predictability are not mutually exclusive goals.

1 Introduction

In recent years, both practitioners and researchers have

argued for building evolvable networks, whose function-

ality changes with the needs of its users and is not tied

to particular hardware vendors [4,6,17,22]. An inexpen-

sive way of building such networks is to run a network-

programming framework like Click [21] on top of com-

modity general-purpose hardware [6,17,22]. Sekar et al.

recently showed that, in such a network, operators can

reduce network provisioning costs by up to a factor of

2.5 by dynamically consolidating middlebox functional-

ity, i.e., assigning packet-processing tasks to the avail-

able general-purpose devices so as to minimize resource

consumption [26].

To become a credible alternative to specialized hard-

ware, general-purpose networking needs to offer not only

flexibility but also predictable performance: network op-

erators are unlikely to accept the risk that an unlucky

configuration could cause unpredictable drop in network

performance, potentially leading to customer dissatisfac-

tion and violations of service-level agreements. Several

projects have demonstrated that general-purpose multi-

core hardware can perform packet processing at line rates

of 10Gbps or more [16–18,22,23]. However, in all cases,

this was achieved under a crucial simplifying assump-

tion of uniformity: all processing cores see the same

type/amount of traffic and run identical code, while all

packets receive the same kind of conventional packet

processing (e.g., IP forwarding or some particular form

of encryption). This setup allowed for low-level tuning

of the entire system to one particular, simple, uniform

workload (e.g., manually setting buffer and batch sizes).

Building a general-purpose system that offers pre-

dictable performance is considered a hard problem, es-

pecially when this system needs to support an evolvable

set of applications that are potentially developed by vari-

ous third parties. Such a system may perform as expected

under certain conditions, but then a change in workload

or a software upgrade could cause unpredictable, poten-

tially significant, performance degradation.

One important reason for this lack of predictability is

the complicated way in which software processes run-

ning on the same hardware affect each other: false shar-

ing [8], unnecessarily shared data structures [9], and

contention for shared hardware resources (caches, mem-

ory controllers, buses) [30]. The last factor, in par-

ticular, has been the subject of extensive research for

more than two decades: researchers have been work-

ing on predicting the effects of resource contention since

the appearance of simultaneous multithreaded proces-

sors [5,10,12,28,29,31,32], yet, to the best of our knowl-

edge, none of the proposed models have found their way

into practice. And packet-processing workloads create

ample opportunity for resource contention, as they move

packets between network card, memory controller and

last-level cache, all of which are shared among multiple

cores in modern platforms.

We set out to design and build a packet-processing

system that combines ease of programmability with pre-

dictable performance, while supporting a diverse set of

applications and serving multiple clients, each of which

1

may require different types/combinations of packet pro-

cessing. To offer ease of programmability, we rely on

the Click network-programming framework [21]. We do

not introduce any additional programming constraints,

operating-system modifications, or low-level tuning for

particular workloads.

We present a Click-based packet-processing system,

built on top of a 12-core Intel Westmere platform, that

supports a diverse set of realistic packet-processing ap-

plications (Section 2). Given this setup, we first investi-

gate how resource contention affects packet processing:

does it cause significant performance drop? how does

the drop depend on specific properties of the involved

applications? (Section 3) Then we look at how to predict

these effects in a practical manner (Section 4). We also

explore whether it makes sense to use “contention-aware

scheduling” [34], a technique that reduces the effects of

resource contention by not scheduling together processes

that are likely to contend for hardware resources (Sec-

tion 5).

Our main contribution is to show that it is feasible to

build a software packet-processing system that achieves

predictable performance in the face of resource con-

tention. We also show that contention-aware scheduling

may not be worth the effort in the context of packet pro-

cessing. More specifically, using simple offline profiling

of each application running alone, we are able to pre-

dict the contention-induced performance drop suffered

by each of the applications sharing our system, with an

error smaller than 3%. Moreover, in our system, the max-

imum overall performance improvement achieved by us-

ing contention-aware scheduling is 2%—and that only in

one particular corner case. We provide intuition behind

these results, and we quantitatively argue that they are

not artifacts of the Intel architecture, rather they should

hold on any modern multicore platform.

We consider our results to be good news for all the on-

going efforts in general-purpose networking: To the best

of our knowledge, they constitute the first evidence that,

when designing software network equipment, flexibility

does not have to come at the cost of predictability.

2 System Setup

In this section, after introducing our hardware setup, we

describe the packet-processing applications that we use

to evaluate our work (§2.1) and the software configura-

tion of our platform (§2.2).

As a basis for our system, we use a 12-core general-

purpose server, illustrated in Figure 1, running SMP-

Click [11] version 1.7, on Linux kernel 2.6.24.7. Our

server is equipped with two Intel Xeon 5660 processors,

each with 6× 2.8GHz cores and an integrated memory

controller. The 6 cores of each processor share a 12MB

IOH

QPI

Shared
Cache

M
em

or
y

C
on

tro
lle

r

M
em

or
y

M
em

or
y

M
em

or
y

N
IC

IOH

QPI

Shared
Cache

M
em

ory
C

ontroller

M
em

or
y

M
em

or
y M

em
ory

QPI

QPI

N
IC

N
IC

X5660 X5660

Figure 1: Overview of our platform’s architecture.

L3 cache, while each core has private L2 (256KB) and

L1 (32KB for instructions and 32KB for data) caches.

The two processors are interconnected via a 6.4GT/sec

QuickPath interconnect (QPI). The server has 6 DDR3

memory modules (2GB each, 1333MHz) and 3 dual-port

10Gbps network interface cards (NICs) that use the Intel

82599 Niantic [2] chipset, resulting in 6×10Gbps ports.

2.1 Workloads

We designed our workloads to involve realistic forms of

packet processing but make the job of predicting their

performance as hard as possible. We implemented 5

forms of packet processing that are deployed in current

network devices and cover a wide range of memory and

CPU behavior. In our experiments, we craft the traffic

that is processed by the system so as to maximize re-

source contention. More specifically, we implemented

the following types of packet processing:

⊲ IP forwarding (IP). Each packet is subjected to full

IP forwarding, including longest-prefix-match lookup,

checksum computation, and time-to-live (TTL) update.

We use the RadixTrie lookup algorithm provided with

the Click distribution and a routing-table of 128000 en-

tries. As input, we generate packets with random desti-

nation addresses, because this maximizes IP’s sensitivity

to contention.

⊲ Monitoring (MON). In addition to full IP forward-

ing, each packet is further subjected to NetFlow [1], a

monitoring application. NetFlow collects statistics as

follows: it applies a hash function to the IP and transport-

layer header of each packet, uses the outcome to index a

hash table with per-TCP/UDP-flow entries, and updates

a few fields (a packet count and a timestamp) of the cor-

responding entry. As input, we generate packets with

random IP addresses, such that the NetFlow hash table

contains 100000 entries. MON is a representative form

of memory-intensive packet processing that benefits sig-

nificantly from the L3 cache (both the routing table and

the NetFlow hash table are cacheable data structures).

2

Flow cycles per L3 references L3 hits cycles L3 references L3 misses L2 hits

instruction per sec (millions) per sec (millions) per packet per packet per packet per packet

IP 1.33 25.85 20.21 1813 14.64 3.19 18.58

MON 1.43 27.26 21.32 2278 19.40 4.23 19.58

FW 1.63 2.71 2.13 23 907 20.22 4.29 56.10

RE 1.18 18.18 5.52 27 433 155.87 108.51 45.63

VPN 0.56 9.45 7.08 8679 25.63 6.41 30.71

Table 1: Characteristics of each type of packet processing during a solo run. Each number represents an average over

5 independent runs of the same experiment (the variance is negligible).

Also, it captures the nature of a wide range of packet-

processing applications (applying a hash function to a

portion of each packet and using the outcome to index

and update a data structure).

⊲ Small firewall (FW). In addition to full IP forward-

ing and NetFlow, each packet is further subjected to fil-

tering: each packet is sequentially checked against 1000

rules and, if it matches any, it is discarded. We use se-

quential search (as opposed to a more sophisticated algo-

rithm) because we consider a relatively small number of

rules that can fit in the L2 cache. As input, we generate

packets with random IP addresses that never match any

of the rules; as a result, each packet is checked against

all the rules, which maximizes FW’s sensitivity to con-

tention. This is a representative form of packet process-

ing that benefits significantly from all the levels of the

cache hierarchy.

⊲ Redundancy elimination (RE). In addition to full IP

forwarding and NetFlow, each packet is further subjected

to RE [27], an application that eliminates redundant traf-

fic. RE maintains a “packet store” (a cache of recently

observed content) and a “fingerprint table” (that maps

content fingerprints to packet-store entries). When a new

packet is received, RE first updates the packet store, then

uses the fingerprint table to check whether the packet

includes a significant fraction of content cached in the

packet store; if yes, instead of transmitting the packet as

is, RE transmits an encoded version that eliminates this

(recently observed) content. The assumption is that the

device located at the other end of the link maintains a

similar packet store and is able to recover the original

contents of the packet. We implemented a packet store

that can hold 1 second’s worth of traffic and a fingerprint

table with more than 4 million entries. This is a rep-

resentative form of memory-intensive packet processing

that does not significantly benefit from caching.

⊲ Virtual private network (VPN). Each packet is sub-

jected to full IP forwarding, NetFlow and AES-128 en-

cryption. This is a representative form of CPU-intensive

packet processing.

⊲ Synthetic processing (SYN). For each received

packet, we perform a configurable number of CPU oper-

ations (counter increments) and read a configurable num-

ber of random memory locations from a data structure

that has the size of the L3 cache. We use this for profil-

ing. We denote by SYN_MAX the most aggressive syn-

thetic application that we were able to run on our sys-

tem, which performs no other processing but consecutive

memory accesses at the highest possible rate.

Table 1 summarizes the characteristics of each of these

types of packet processing during a “solo” run (one core

runs the packet-processing type, while all the other cores

are idle). We use Oprofile [3] to count instructions, L2

hits, and L3 references and misses (we compute L3 hits

as the difference between references and misses).

2.2 Software Configuration

Packet-processing parallelization. An important ques-

tion is how packet processing should be parallelized

among multiple cores. One possibility is the “pipeline”

approach, where each packet is handled by multiple

cores: one core reads it from memory, then passes it to

another core for the first processing step, which passes

it to another core for the second processing step, and

so on. Another possibility is the “parallel” approach,

where each packet is handled by a single core that reads

the packet from memory and performs all the process-

ing steps. The most recent general-purpose network-

ing projects use the parallel approach, because it yields

higher performance [16, 17]. However, a common criti-

cism is that this is the case only for the simple, uniform

workloads considered by these projects.

At first glance, choosing between the two approaches

involves a trade-off (that we describe in detail in [14]).

On the one hand, the parallel approach avoids pass-

ing the packet between different cores, hence eliminat-

ing synchronization and introducing fewer compulsory

cache misses per packet. On the other hand, it requires

that each core perform all the processing steps for each

packet (hence accessing many different data structures),

which may introduce a higher number of avoidable cache

misses per packet due to cache contention. Hence, it

seems intuitive that each approach would be best suited

for different packet-processing applications.

3

After extensive experiments, we concluded that, in

practice, there is no real trade-off between the two ap-

proaches: the parallel one is always better. This is be-

cause pipelining introduces several kinds of overhead

that end up outweighing its potential benefit. For in-

stance, passing socket-buffer descriptors, packet headers,

and, potentially, payload between different cores results

in compulsory cache misses. A less obvious source of

overhead is memory management: Each core that han-

dles packet reception uses a pre-allocated memory pool

for storing packets. In a pipelined configuration, a packet

is received by one core and transmitted by another; the

transmitting core must recycle the buffer into the re-

ceiving core’s pool of free buffers, and this requires ex-

tra synchronization between the two cores when remov-

ing/placing buffers in the pool. In our system, pipelining

results in 10–15 extra cache misses per packet.

It is possible to craft a synthetic workload that per-

forms better under the pipeline approach: it has to be a

workload with enough processing steps and the right size

of cacheable data structures such that running it on a par-

allel configuration results in more than 15 extra avoidable

cache misses per packet than running it on a pipelined

one. We describe such a workload in [14]: each received

packet triggers more than 200 random memory accesses

to a data structure that is exactly double the size of an L3

cache; even a small deviation from these numbers causes

the advantage of the pipeline over the parallel approach

to disappear. However, none of the realistic workloads

that we looked at (including applications that involve

deep packet inspection or redundancy elimination [27])

comes even close to such behavior.

Our configuration. We adopt the parallel approach for

our system. Traffic arriving at each of our N network

ports is split into Q receive queues. We refer to all traf-

fic arriving at one receive queue as a flow; this is traffic

that corresponds to one set of clients of our networking

platform, all of which require the same type of packet

processing. Each flow is handled by one core, which

is responsible for reading the flow’s packets from their

receive queue, performing all the necessary processing,

and writing them to the right transmit queue. Each core

reads from its own receive queue(s) and writes to its own

transmit queue(s), which are not shared with other cores.

So, we have N ·Q flows, each one assigned to one core,

and each flow potentially involving a different type of

packet processing.

In this paper, we focus on the scenario where each

core processes one packet-processing flow: we use N = 6

ports and Q = 2 receive queues per port, so we have 12

different flows, each assigned to a separate core (we dis-

cuss this choice in Section 6). However, the Niantic cards

support up to Q = 128 receive queues, so our prototype

can, in principle, support hundreds of different flows.

NUMA memory allocation. We ensure that each flow

accesses its data “locally,” i.e., through the memory con-

troller that is directly connected to the processor handling

the flow. We do this for two reasons: First, it has been

shown (and we also verified experimentally) that access-

ing data remotely has a significant impact on memory-

access latency [7], which, in our context, results in sig-

nificant performance degradation. Second, to access data

remotely, a flow has to use the processor interconnect,

which can become a significant contention factor [7,34].

Theoretically, there are two scenarios where we might

not be able to ensure local memory access, and we ex-

plain next why these do not arise in our system:

(a) Consider two flows, f1 and f2, that run on differ-

ent processors and access the same data structure; one

of the two flows will have to access the data remotely.

This scenario does not arise in our system: If there are

multiple flows that need to access the same data struc-

ture, we run all of them on the same processor. If there

are more flows than per-processor cores that need to ac-

cess the same data structure, we replicate the data struc-

ture across memory domains. We acknowledge that, in

principle, such replication may break the semantics of

a packet-processing application, however, we have not

yet encountered any such (realistic) case. The closest we

came was the redundancy-elimination application (de-

scribed in §2.1), but, even there, it turned out that all the

relevant data structures could be replicated across mem-

ory domains.

(b) Consider a flow f running on a core of processor

P1, accessing its data locally; due to contention-aware

scheduling [7, 34], we decide to move this flow to a core

of processor P2; as a result, f must now access its data

remotely. This scenario does not arise in our system ei-

ther: we will argue that, in our context, it does not make

sense to perform contention-aware scheduling—one of

the resulting benefits is that we do not have to deal with

remote memory accesses.

Avoidable contention in the software stack. Before

setting out to study resource contention between appli-

cations running on different cores, we sought to elimi-

nate any form of “underlying” resource contention from

our system, i.e., contention introduced not by the appli-

cations themselves but by the design of the underlying

software stack: NIC driver, operating system, Click. We

identified (a) false sharing and (b) unnecessary data shar-

ing among multiple cores (e.g., the book-keeping data

structures in the Niantic driver and the random seed of

the Click random number generator were shared among

multiple cores) as sources of such contention. We elim-

inated the former by padding data structures appropri-

ately and the latter by replicating per-core data structures.

Similar problems and fixes were recently presented in a

scalability analysis of the Linux kernel [9].

4

IP MON FW RE VPN

0

5

10

15

20

25

30
P
e
rf
o
rm

a
n
ce

 D
ro
p

 (%
)

5 IP co‐runners
5 MON co‐runners
5 FW co‐runners
5 RE co‐runners
5 VPN co‐runners

(a) Performance drop suffered by each flow type in each sce-

nario. For example, when a MON flow co-runs with 5 RE com-

petitors, it suffers a drop of 27%.

18.81

20.86

4.65
6.34

9.84

IP MON FW RE VPN

0

5

10

15

20

25

P
e
rf
o
rm

a
n
ce

 D
ro
p

 (%
)

(b) Average performance drop suffered by each flow type across

all 5 scenarios that involve a target flow of that type. For

example, the average performance drop suffered by the MON

flow across all 5 scenarios (that involve a target MON flow) is

20.86%.

Figure 2: The effect of resource contention. For each pair

of realistic flow types X and Y , we run an experiment in

which a flow of type X co-runs with 5 flows of type Y .

We measure the performance drop suffered by the flow

of type X .

3 Understanding Contention

In this section, we identify which resources packet-

processing flows mostly contend for (Section 3.1) and

which flow properties determine the level of contention

(Section 3.2), and we provide intuition behind our obser-

vations (Section 3.3).

We observe that the contention-induced performance

drop suffered by a packet-processing flow is mostly de-

termined by the number of last-level cache references

per second performed by other flows sharing the same

cache—not so much by the particular types of packet

processing performed by these flows. As we will see,

this observation is what enables us to do simple yet ac-

curate performance prediction (Section 4).

In terms of terminology and notation, when we use the

term “cache,” we refer to the last-level cache shared by

all cores of the same processor unless otherwise spec-

ified. We use “cache refs/sec” as an abbreviation for

“cache references per second.” We say that a flow co-

runs with other flows when they all run on different cores

of the same processor; we refer to all these flows as co-

runners. In each experiment, we typically co-run 6 flows

and study the performance drop suffered by one of these

flows due to contention; we denote this flow by T (for

“target”) and each of its co-runners by C (for “competi-

tor”). With respect to a flow T , we use the term com-

peting references to refer to all the last-level cache refer-

ences performed by this flow’s co-runners.

In all our experiments, we compute the performance

drop suffered by a flow T due to contention with a set

of competing flows as follows: First, we measure the

throughput τs achieved by flow T during a solo run. Then

we measure the throughput τc achieved by flow T when it

co-runs with the set of competing flows. The contention-

induced performance drop suffered by flow T is τs−τc
τs

.

Each data point in our graphs represents the average over

5 independent runs of the same experiment (the variance

is negligible).

We start by measuring the contention-induced perfor-

mance drop suffered by realistic flow types in different

scenarios (Figure 2). MON is the most sensitive type,

suffering a performance drop of up to 27% (highest bar

in Figure 2(a)), while FW suffers less than 6% in all ex-

periments. RE is the most aggressive flow type, causing a

performance drop of up to 27%, while FW causes a per-

formance drop of less than 10% in all experiments. To

draw meaningful conclusions from these numbers, we

need to understand what are the properties of a packet-

processing flow that make it sensitive and/or aggressive

with respect to contention.

3.1 Contended Resources

We first identify which resources are responsible for con-

tention. There are two candidates: the cache and the

memory controller. We can rule out the processor in-

terconnect, because our configuration ensures that each

flow accesses its data locally, hence does not use this in-

terconnect (Section 2.2).

To assess the level of contention for the two candi-

date resources, we use the three system configurations

illustrated in Figure 3. Each configuration allocates pro-

cessing cores and memory to the co-running flows, so

as to expose contention for different resources [7]: the

first configuration creates contention only for the cache,

the second one only for the memory controller, and the

third one for both. In each configuration, we measure

the contention-induced performance drop suffered by re-

5

C

Shared
Cache

C C

T C C

M
em

or
y

C
on

tro
lle

r

Lo
ca

l M
em

or
y

Shared
Cache

M
em

ory C
ontroller

R
em

ote M
em

ory

QPI

M
(C

)

M
(T

)

(a) T contends with Cs only for the L3 cache. Cs’ data is remote, hence

accessed through a different memory controller.

Shared
Cache

T

M
em

or
y

C
on

tro
lle

r

Lo
ca

l M
em

or
y

C

Shared
Cache

C C

C C

M
em

ory C
ontroller

R
em

ote M
em

ory

QPI

M
(C

)
M

(T
)

(b) T contends with Cs only for the memory controller. Cs run on a

different processor, hence use a different L3 cache.

C

Shared
Cache

C C

T C C

M
em

or
y

C
on

tro
lle

r

Lo
ca

l M
em

or
y

Shared
Cache

M
em

ory C
ontroller

R
em

ote M
em

ory

QPI

M
(C

)
M

(T
)

(c) T contends with Cs for both the memory controller and the L3

cache.

Figure 3: Configurations that expose contention for dif-

ferent resources. The resource that is contended in each

configuration is highlighted. T denotes the target flow

(whose performance drop we are measuring) and M(T)
denotes flow T ’s data structures. C denotes a compet-

ing flow and M(C) denotes the corresponding data struc-

tures.

alistic flow types when they encounter different levels of

competition. Figure 4 shows the drop suffered by each

flow type when it co-runs with SYN flows, as a function

of the cache refs/sec performed by the SYN flows.

These numbers show that the dominant contention fac-

tor is the cache. The most sensitive flow type (MON) suf-

fers up to 32% when competing for the cache only (the

curve with square data points in Figure 4(a)) and up to

6% when competing for the memory controller only (the

curve with square data points in Figure 4(b)).

Our conclusion relates to prior work as follows: It

differs from the conclusion drawn by running SPEC

benchmarks on multicore platforms—in that case, the

dominant contention factors were found to be the mem-

ory controller and the processor interconnect [7, 34].

The difference may come from the fact that packet-

processing workloads benefit from the cache more than

SPEC benchmarks and/or the fact that, in our context,

overloading the interconnect is unnecessary. Our conclu-

sion is consistent with recent results on software routers:

in a software router running on an Intel Nehalem plat-

form, as long as we have sufficient network I/O capac-

ity, the bottleneck lies with the CPU and/or memory la-

tency [16].

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300

P
e
rf
o
rm

a
n
ce

 D
ro
p

 (%
)

Competing L3 refs/sec (millions)

IP

MON

FW

RE

VPN

(a) Contention for the L3 cache. Performance drop suffered by

each flow type in the configuration of Figure 3(a).

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

P
e
rf
o
rm

a
n
ce

 D
ro
p

 (%
)

Competing L3 refs/sec (millions)

IP

MON

FW

RE

VPN

(b) Contention for the memory controller. Performance drop

suffered by each flow type in the configuration of Figure 3(b).

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350

P
e
rf
o
rm

a
n
ce

 D
ro
p

 (%
)

Competing L3 refs/sec (millions)

IP

MON

FW

RE

VPN

(c) Contention for both resources. Performance drop suffered

by each flow type in the configuration of Figure 3(c).

Figure 4: The effect of contention for different resources.

For each realistic flow type X , we co-run a flow of type X

with 5 flows of type SYN multiple times, ramping up the

number of cache refs/sec performed by the SYN flows.

We measure the performance drop suffered by the flow

of type X as a function of the competing cache refs/sec.

3.2 Sensitivity and Aggressiveness

We now look at which properties of a packet-processing

flow determine its sensitivity and aggressiveness, i.e., the

amount of damage that it suffers from its co-runners and

the amount of damage that it causes to them.

6

First, we observe a positive correlation between a

flow’s sensitivity to contention and the number of cache

hits per second that it achieves during a solo run. Fig-

ure 2(b) shows that the higher the number of hits per sec-

ond achieved by a flow type during a solo run (Table 1),

the higher the average performance drop suffered by the

flow. This makes sense: sharing a cache with co-runners

causes memory references that would result in cache hits

(if the flow ran alone) to become cache misses; the more

hits per second a flow achieves during a solo run, the

more opportunity there exists for these hits to become

misses, leading to higher performance drop.

Second, we observe that the amount of damage suf-

fered by a given flow is mostly determined by the number

of competing cache refs/sec, not so much by the types

of the competitors. Said differently, two flows, C1 and

C2, that perform the same number of cache refs/sec will

cause roughly the same performance drop to a given co-

runner, regardless of whether C1 and C2 involve the same

or different types of packet processing. This can be seen

in Figure 5, which shows the performance drop suffered

by different flows when they co-run with SYN as well

as realistic competitors. For instance, a MON flow suf-

fers a 27% drop when competing with 5 RE flows that

generate 80 million cache refs/sec, and it suffers a 24%

drop when competing with 5 SYN flows that generate

the same number of cache refs/sec. So, RE flows cause

about the same damage with SYN flows that generate the

same rate of cache references, even though RE involves

redundancy elimination, whereas SYN involves random

memory accesses.

We found this observation partly intuitive and partly

surprising: The intuitive part is that more competing

cache references result in more damage, because they re-

duce the effective cache space of the target flow. The

surprising part is that the particular memory access pat-

tern of the competitors is not significant, and instead the

rate of competing cache references mostly determines

the amount of damage suffered by flows. It is worth not-

ing that most of the complexity of existing mathematical

models that predict contention effects comes from their

effort to characterize the memory access patterns of the

co-runners and their interaction.

Third, we observe that a sensitive flow’s performance

at first drops sharply with the number of competing cache

refs/sec, however, beyond some point, the drop slows

down significantly. For instance, as we see in Figure 5, a

MON flow’s performance drops by 20% when competi-

tion goes from 0 to 50 million cache refs/sec, but only an

extra 5% when competition goes from 50 to 100 million

cache refs/sec. As a result, a MON flow’s performance

drops roughly the same, whether it is co-running with IP,

MON, or RE competitors, since all these flows contribute

at least 50 million cache refs/sec.

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

P
e
rf
o
rm

a
n
ce

 D
ro
p

 (%
)

Competing L3 refs/sec (millions)

IP(S) IP(R)

MON(S) MON(R)

FW(S) FW(R)

RE(S) RE(R)

VPN(S) VPN(R)

Figure 5: A merge of Figures 2(a) and 4(c). It shows the

performance drop suffered by each flow type when it co-

runs with SYN flows (curves) as well as realistic flows

(individual points). For example, the curve MON(S)

shows the performance drop suffered by a MON flow

when it co-runs with SYN flows, while the individual

squares MON(R) show the performance drop suffered by

a MON flow when it co-runs with various realistic flow

types. Each MON(R) square corresponds to a different

realistic competitor type.

Summary. We made three observations: (a) A flow’s

sensitivity to resource contention depends on the number

of hits/sec that the flow achieves during a solo run. (b)

The specific amount of damage that a flow suffers due to

contention is mostly determined by the number of cache

refs/sec performed by its competitors, and not by the ex-

act type of packet processing that they perform. (c) The

performance of a sensitive flow at first drops sharply as

the number of competing cache refs/sec increases; how-

ever, once a “turning point” is reached, the performance

drop suffered by each sensitive flow stays within a rela-

tively small range, no matter what type of co-runners it

is competing with.

3.3 Explanation of our Observations

Before we use these observations, we provide intuition

and potential explanations for them. Since the dominant

contention factor is the cache, we concentrate on cache

contention.

Sensitivity depends on cache hits/sec. We can express

the performance drop suffered by a flow due to cache

contention as follows:

• Suppose the flow achieves h cache hits/sec and pro-

cesses n packets/sec during a solo run.

• Suppose that, due to contention, the flow suffers hit-

to-miss conversion rate κ , i.e., each memory refer-

ence that was a hit during a solo run turns into a

miss with probability κ .

7

• Without contention, processing n packets takes 1

second. With contention, processing n packets re-

sults in κ ·h extra cache misses and takes 1+δ ·κ ·h
seconds, where δ is the extra time needed to com-

plete a memory reference that is a cache miss in-

stead of a cache hit.

• Hence, the performance drop suffered by the flow

in terms of packets/sec will be

n− n
1+δκh

n
=

1

1+ 1
δκh

. (1)

Performance drop increases with competition (for the

cache), primarily because the hit-to-miss conversion rate

increases with competition. The value of δ provided by

our platform’s specs is 43.75 nanoseconds—although, in

practice, its exact value depends on the nature of memory

accesses and also slowly increases with competition.

In the worst case, the hit-to-miss conversion rate is

κ = 1, i.e., all of the cache hits achieved by the target

flow during a solo run turn into misses due to contention.

Figure 6 shows this worst-case performance drop as a

function of the number of cache hits/sec achieved by the

flow during a solo run, for different values of δ . E.g.,

assuming δ = 43.75 nanoseconds, if a packet-processing

flow achieves fewer than 20 million cache hits/sec during

a solo run, even if all the hits turn into misses, the flow’s

performance cannot drop by more than 47%.

As a side note, according to Equation 1, a flow’s worst-

case performance drop depends only on the hits/sec

achieved by the flow during a solo run, not by other char-

acteristics of the flow (such as cycles spent on computa-

tion or total memory references per second); this is what

makes hits/sec a good metric for a flow’s worst-case sen-

sitivity to contention.

Aggressiveness is determined by cache refs/sec. We

observed that, in our setup, the aggressiveness of a set of

flows is mostly determined by their cache refs/sec: a set

of realistic flows and a set of SYN flows that perform the

same number of cache refs/sec cause roughly the same

damage to a given target flow T .

We explain this as follows: Each of our realis-

tic packet-processing flows accesses at least a few

megabytes of data. When several of these flows co-run,

they access a total amount of data that is significantly

larger than the cache size, which causes them to access

the cache close to uniformly. As a result, from the point

of view of a target flow T that shares the cache with these

flows, they behave similarly to a set of SYN flows (that

access the cache uniformly by construction).

In Section 6, we briefly discuss the scenario where the

working-set sizes of the competing flows are relatively

small (such that the cache is not saturated) and explain

why we do not address that scenario in this paper.

47 48

9

19
24

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

P
e
rf
o
rm

a
n
ce

 D
ro
p

 (%
)

Cache hits/sec (millions)

δ = 60ns
δ = 43.75ns
δ = 30ns
IP

MON

FW

RE

VPN

Figure 6: Estimated maximum performance drop suf-

fered by a flow as a function of the cache hits/sec it

achieves during a solo run. The estimates are based on

Equation 1, for κ = 1 and different values of δ . The

graph also shows the data points that correspond to our

realistic packet-processing flows, assuming δ = 43.75

nanoseconds. For example, the maximum performance

drop that could be suffered by an IP flow is 47%.

Shape of the performance drop. To understand how

performance drop changes with competition, we look at

how the hit-to-miss conversion rate changes with com-

petition. Figure 7 shows the conversion rate suffered by

a MON flow as a function of cache competition, as we

measure it on our platform (using the configuration of

Figure 3(a)) and as we analytically estimate it using a

simple model. We will use the model to provide intuition

(not accurate prediction), then discuss how it matches the

measured data.

We describe the model in our technical report [15] and

summarize here the gist: We have a target flow T that

shares a cache with a set of competitors.

• Consider a sequence of cache references,

〈t,c1,c2, . . . ,cZ , t
′〉, where: t and t ′ are two

consecutive references performed by flow T to the

same cache line, t ′ was a hit during a solo run, and

ci, i = 1..Z, are the competing references that occur

between t and t ′.

• Suppose that each competing reference ci evicts the

content cached by t with probability pev, indepen-

dently from any other competing reference. t ′ is

a hit if none of the Z competing references evict

this content, i.e., P(hit|Z) = (1− pev)
Z . The target

flow’s hit-to-miss conversion rate is 1−P(hit).

• Suppose that each reference that occurs after t is: ei-

ther a competing reference, with probability pc, or

t ′, with probability pt = 1− pc. Hence, Z is a ran-

dom variable of geometric distribution with success

probability pt , i.e., P(Z = z) = (1− pt)
z pt .

8

To compute P(hit) as a function of competition, we need

to know how pev and pt change with competition. The

following assumptions allow us to approximate them: (a)

the competitors access the cache uniformly, (b) the tar-

get flow accesses its data uniformly, and (c) the target

flow and the competitors have similar sensitivity to con-

tention, i.e., suffer approximately the same hit-to-miss

conversion rate.

Figure 7 shows that the shape of a flow’s conversion

rate as a function of competition can be explained as

the result of basic cache sharing: The model-derived

curve has a shape similar to the empirically derived curve

(sharp rise at first, significant slow-down beyond some

point), even though the model provides basic probabilis-

tic analysis of cache sharing without considering any

special feature of our platform. Note that, if we plug the

model-derived conversion-rate values from Figure 7 into

Equation 1 (for the value of h that corresponds to a MON

flow), we get an analytical estimate of a MON flow’s per-

formance drop as a function of competition, which also

has a shape similar to the corresponding empirically de-

rived curve.

Our model captures the shape, but overestimates the

value of the conversion rate. This is because the model

assumes that the target flow accesses its data uniformly,

which is usually not the case. In Figure 7, we see

that different MON functions are affected differently

by contention: (a) “flow_statistics” suffers a conversion

rate that is well captured by the model, which makes

sense because the flow table is accessed uniformly. (b)

“check_ip_header” and “skb_recycle” suffer insignifi-

cant conversion rates. Our explanation is that these func-

tions reference the same few cacheable data with every

received packet (e.g., book-keeping structures), so, their

cacheable data is almost never evicted by their competi-

tors. (c) “radix_ip_lookup” is somewhere in the middle.

We think this is because the root of the radix trie and its

children are “hot spots,” i.e., they are accessed frequently

enough to remain in the cache, whereas the rest of the trie

does not have any such hot spots. However, for all func-

tions, most of the hits that are susceptible to conversion

are converted by the time competition reaches 50 million

cache refs/sec—and our model does capture that effect.

As a side note, mathematical models that try to pre-

dict the effects of resource contention are complex be-

cause they try to analytically compute pev and pt as a

function of competition, and this is a hard task. Sup-

pose the target flow performs rt cache refs/sec during a

solo run. The competitors cause it to suffer extra misses

that “slow it down,” i.e., cause it to perform fewer than

rt cache refs/sec; how much fewer depends on the com-

petitors’ cache refs/sec. At the same time, the target flow

slows down the competitors by a degree that depends on

the target flow’s cache refs/sec. In the end, the relative

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

C
o
n
v
e
rs
io
n

 R
a
te

 (%
)

Competing L3 refs/sec (millions)

MON (measured) MON (estimated)

radix_ip_lookup flow_statistics

check_ip_header skb_recycle

Figure 7: Measured and estimated hit-to-miss conversion

rate suffered by a MON flow that shares the cache with

SYN competitors, as a function of the competing cache

refs/sec. The graph also shows the measured conversion

rate suffered by separate functions of the MON flow.

“flow_statistics” performs all the NetFlow-specific pro-

cessing. “radix_ip_lookup” performs IP-table lookups.

“check_ip_header” checks whether each packet has a

valid IP header. “skb_recycle” performs memory man-

agement.

frequency of target and competitor memory references

(which directly affects pt) is the result of a complex inter-

action among the co-runners’ particular access patterns.

We were able to side-step this complexity (and crudely

approximate pev and pt) because our goal was not to pre-

dict but merely to explain why increasing competition

beyond some point does not significantly increase the re-

sulting performance drop.

Summary. Our observations can be explained as the

result of multiple processes sharing a last-level cache.

This is not particular to our platform, but a universal ar-

tifact of modern server architectures.

4 Predicting Contention

In this section, we show how to accurately predict the

overall and per-flow performance of our platform using

simple profiling of each packet-processing flow running

alone. Our prediction is based on the observation that

a workload’s aggressiveness is determined by the num-

ber of cache refs/sec that it performs, while it does not

depend significantly on other workload properties.

Suppose we plan to co-run a flow T with |C| compet-

ing flows C1,C2, ...C|C|. We predict flow T ’s performance

as follows:

1. We measure the number of last-level cache refs/sec

ri performed by each flow Ci during a solo run.

2. We co-run flow T with different SYN flows, ramp-

ing up the number of cache refs/sec performed by

9

the SYN flows. We plot flow T ’s performance drop

as a function of the number of competing cache

refs/sec.

3. We predict that flow T ’s performance drop will be

equal to the value of the plot (derived at step #2) that

corresponds to ∑
|C|
i=1 ri competing cache refs/sec.

We rely on two assumptions. First, we assume that

the competing flows will affect the flow T as much as a

set of SYN flows that perform the same number of cache

refs/sec (this is well supported by the numbers in Fig-

ure 5). Second, we assume that each competing flow Ci

will perform as many cache refs/sec as it does during a

solo run.

Our second assumption introduces a prediction error

of a few percentage points: In reality, a competing flow

Ci that belongs to a sensitive type (e.g., IP or MON) will

also suffer due to contention, hence its processing will

slow down, resulting in fewer cache refs/sec than it per-

forms during a solo run. By assuming that each compet-

ing flow Ci will perform as many cache refs/sec as it does

during a solo run, we overestimate the competition that

flow T will encounter, hence underestimate its perfor-

mance. However, the resulting prediction error is small,

because of the shape of the performance drop that we

observed in Section 3: Once the number of competing

cache refs/sec exceeds 50 millions or so, small changes

in the number of competing cache refs/sec do not sig-

nificantly change the damage to a sensitive flow. And

sensitive flows like IP or MON (the ones whose number

of cache refs/sec we overestimate) are also aggressive

flows, i.e., they push the number of competing refs/sec

beyond the 50 million turning point.

To validate our prediction method, we first reuse the

workloads introduced in the beginning of Section 3: for

each possible pair of realistic flow types X and Y , we co-

run a flow of type X with 5 flows of type Y . We have

already seen the performance drop suffered by each flow

type in each of these scenarios (Figure 2); we will now

look at how well we can predict these performance drops

and how much of our error is due to each assumption.

Figure 8(a) shows our prediction error, i.e., the difference

between predicted and actual performance drop suffered

by each flow type in each scenario. Figure 8(b) shows

what the error would be, if we knew the exact number

of competing cache refs/sec (we refer to this scenario as

“prediction assuming perfect knowledge of the compe-

tition”). Figure 8(c) shows the absolute difference be-

tween predicted and actual performance drop suffered by

each flow type, averaged across all scenarios.

The average prediction error for each of the realistic

flow types is less than 2% (tallest bars in Figure 8(c)).

Our worst prediction errors are below 3%, and they cor-

respond to the 2 leftmost bars in each group in Fig-

IP MON FW RE VPN

‐3

‐2

‐1

0

1

2

3

4

E
rr
o
r i
n

 P
re
d
ic
ti
n
g

 P
e
rf
o
rm

a
n
ce

 D
ro
p

5 IP co‐runners
5 MON co‐runners
5 FW co‐runners
5 RE co‐runners
5 VPN co‐runners

(a) Our prediction error. Difference between predicted and ac-

tual performance drop suffered by each flow type in each sce-

nario.

IP MON FW RE VPN

‐4

‐3

‐2

‐1

0

1

2

3

E
rr
o
r i
n

 P
re
d
ic
ti
n
g

 P
e
rf
o
rm

a
n
ce

 D
ro
p

5 IP co‐runners
5 MON co‐runners
5 FW co‐runners
5 RE co‐runners
5 VPN co‐runners

(b) Prediction error assuming perfect knowledge of the com-

petition. Difference between predicted and actual performance

drop suffered by each flow type in each scenario, when we have

perfect knowledge of the competing cache refs/sec.

1.96 1.92

0.44

1.97

1.00

1.39 1.41

0.35

1.44

0.69

IP MON FW RE VPN

0.0

0.5

1.0

1.5

2.0

2.5

A
v
e
ra
g
e

 E
rr
o
r i
n

 P
re
d
ic
ti
n
g

P
e
rf
o
rm

a
n
ce

 D
ro
p

our prediction

prediction assuming perfect knowledge

(c) Average prediction error. Absolute difference between pre-

dicted and actual performance drop suffered by each flow type,

averaged across all 5 scenarios that involve a target flow of that

type. For example, we predict the performance drop suffered

by a MON flow with an average error of 1.92% across all 5

scenarios (that involve a target MON flow).

Figure 8: Prediction errors for workloads with 2 flow

types. For each pair of realistic flow types X and Y , we

run an experiment in which a flow of type X co-runs with

5 flows of type Y . We measure/predict the performance

drop suffered by the flow of type X .

10

0.52 0.83 0.63 0.63 0.34
1.26

0.58 0.53 0.88 0.61 0.27 0.56

0

5

10

15

20

25

P
e
rf
o
rm

a
n
ce

 D
ro
p

 (%
)

measured drop

predicted drop

absolute error

Figure 9: Prediction errors for a mixed workload. Pre-

dicted and actual performance drop suffered by each flow

(and the absolute difference between the two).

ure 8(a): realistic flows that co-run with 5 IP or 5 MON

competitors, respectively. In these scenarios, we overes-

timate the performance drop suffered by the target flow,

partly because we assume that its co-runners will per-

form as many cache refs/sec as in the solo run. Actu-

ally, IP and MON are sensitive flow types that do suffer

because of contention and perform fewer cache refs/sec

compared to the solo run. The difference between the

corresponding bars in Figure 8(a) and Figure 8(b) rep-

resents the error introduced by our second assumption.

The rest of the error is due to our first assumption that

the co-runners cause as much damage as a set of SYN

flows that perform the same number of cache refs/sec.

We also validate our prediction method using a mixed

workload: 2 MON, 2 VPN, 1 FW, and 1 RE flow per

processor. Figure 9 shows the actual and predicted per-

formance drop suffered by each flow, as well as the dif-

ference between the two. This time, we predict the per-

formance drop suffered by each flow in the mix with a

maximum error of 1.26%.

Containing hidden aggressiveness. Our prediction

relies on offline profiling, i.e., running each packet-

processing flow alone and measuring certain properties.

However, it is possible that a flow (accidentally or on pur-

pose) exhibits different behavior during offline profiling

than during the actual run—a contrived example would

be a flow that normally performs FW processing (i.e., is

not aggressive), but, once it receives a specially crafted

packet (potentially from an attacker), it switches mode

and performs SYN_MAX processing (i.e., becomes very

aggressive). Such a flow could mislead the system ad-

ministrator into expecting significantly higher perfor-

mance from her system and under-provisioning the sys-

tem accordingly.

Nevertheless, a practical implication of our results

is that an administrator can control the aggressiveness

of each packet-processing flow simply by throttling the

flow’s rate of memory accesses. To verify this, we add

to the beginning of each flow a “control element,” which

performs a configurable number of simple CPU opera-

tions, with the purpose of “slowing down” the flow and

controlling the rate at which it performs memory ac-

cesses. At the same time, we monitor the rate at which

each flow performs memory accesses using hardware

performance counters and, if a flow exceeds the rate ex-

hibited during its offline profiling, we configure its con-

trol element to slow it down accordingly.

We tested this simple technique on our system and

found that it ensures that each packet-processing flow

performs no more than the profiled number of cache

refs/sec. Thus, it is practical for an administrator to con-

tain undue aggressiveness and achieve predictable per-

formance.

5 Minimizing Contention via Scheduling

In this section, we explore the potential benefit of

contention-aware scheduling [34] for packet-processing

platforms. This is a family of techniques that solve the

following problem: given J processing jobs and a multi-

core platform with J cores, how should we assign jobs

to cores to minimize resource contention between the

jobs and maximize the platform’s overall performance?

The basic idea at the core of the proposed solutions is to

profile (offline or real-time) each process and avoid co-

running aggressive with sensitive processing jobs.

To quantify the potential benefit of contention-aware

scheduling for our system, we consider different combi-

nations of 12 packet-processing flows. For each combi-

nation, we measure the contention-induced performance

drop (averaged across all flows) under the worst and

best flow-to-core placement (Figure 10(a)). The differ-

ence between these two numbers expresses the maxi-

mum we can gain in overall system performance through

contention-aware scheduling.

For realistic-flow combinations, the maximum we can

gain in overall system performance is 2% (Figure 10(a)).

The flow combination for which we gain this maximum

benefit is 6 MON and 6 FW flows. Figure 10(b) shows

the per-flow performance drop for this combination, un-

der the worst and best placement. The worst placement

assigns the 6 MON flows to one processor and the 6 FW

flows to the other, such that all the 6 MON flows (which

are both aggressive and sensitive) have to compete with

each other for the L3 cache; this causes a performance

drop of 27% to each MON flow and an overall system

performance drop of 15%. The best placement is the one

that assigns 3 MON and 3 FW flows to each processor,

such that each MON flow has to compete with only 2

other MON flows for the L3 cache; this causes a perfor-

mance drop of 21% to each MON flow and an overall

11

0

5

10

15

20

25

30

35

40

45
A
v
e
ra
g
e

 P
e
rf
o
rm

a
n
ce

 D
ro
p

 (%
) best flow placement

worst flow placement

(a) Average per-flow performance drop suffered under the worst

and best placement, for different flow combinations.

0

5

10

15

20

25

30

P
e
rf
o
rm

a
n
ce

 D
ro
p

 (%
)

best flow placement

worst flow placement

(b) Per-flow performance drop suffered under the worst and best

placement, for the 6-MON/6-FW combination.

Figure 10: Benefit of contention-aware scheduling. Per-

formance drop suffered under the worst and best flow-to-

core placement.

system performance drop of 13%. Hence, the extra dam-

age introduced by the worst versus the best placement is

6% for each MON flow and 2% for the overall system.

Of all the possible realistic-flow combinations (given

the flows that we implemented), this particular combi-

nation (6 MON and 6 FW flows) allows for the biggest

overall improvement, because it is an equal mix of the

most and least sensitive/aggressive flow types. One may

think, at first, that a combination of more aggressive

and/or sensitive flows (e.g., replacing the FW flows with

IP or RE flows) would allow for a bigger improvement,

but that is not the case: To create as big a difference as

possible between the worst and best placement, we need

a mix of sensitive, aggressive, and non-aggressive flows,

such that in the worst placement sensitive flows co-run

with the aggressive ones, whereas in the best placement

sensitive flows co-run with the non-aggressive ones. In-

deed, any other realistic-flow combination that we tried

yielded an even smaller difference between worst and

best placement.

This lack of (significant) difference between the worst

and best placement makes sense, if we consider the ob-

servations in Section 3.2: once the competing cache

refs/sec reach 50 millions or so, the performance drop

suffered by a sensitive flow stays within a relatively

small range, no matter which particular flows it co-runs

with. Consider the 6-MON/6-FW combination: under

the worst placement, each MON flow competes with

5 other MON flows, which generate about 100 million

competing refs/sec, which causes the MON flow to suf-

fer a performance drop of 27%; under the best placement,

each MON flow competes with 2 other MON flows plus 3

FW flows, which generate about 60 million refs/second,

which causes the MON flow to suffer a performance drop

of 21%. In the end, as long as a placement generates

more than a few tens of millions of cache refs/sec, it

causes more or less the same performance drop to each

sensitive flow.

If we consider non-realistic flows, the maximum

we can gain in overall performance is 6%, for the

6 SYN_MAX, 6 FW combination (Figure 10(a)).

SYN_MAX is the most aggressive and at the same time

the most sensitive flow that we were able to craft (re-

call that it performs no processing other than memory

accesses at the highest rate possible). So, even in the

scenario where we have an equal mix of flows manifest-

ing the most aggressive/sensitive behavior that we were

able to generate in our system (SYN_MAX) and non-

aggressive/non-sensitive flows (FW), the maximum ben-

efit of contention-aware scheduling with respect to over-

all performance is 6%. Any other combination that we

tried yielded an even smaller benefit.

6 Discussion

All the scenarios we considered have two common char-

acteristics: each core runs a single packet-processing

flow (Section 2.2) and the aggregate working-set size of

the competing flows far exceeds the size of the cache

(Section 3.3). If each core runs multiple flows, these

compete for the L1 and L2 caches, so considering only

the L3 accesses may not be sufficient to predict perfor-

mance drop. If the working-set sizes of the flows are

close to their fair share of the cache, then considering

only the competing cache refs/sec may not be sufficient

to characterize a workload’s aggressiveness. These con-

ditions may occur, for instance, in an active-networking

setting, where large numbers of end users instantiate

many small packet-processing flows on intermediate net-

work elements.

We focused on one-flow-per-core, saturated-cache

scenarios because we think that these are most likely to

occur in the near future: State-of-the-art general-purpose

platforms already offer tens of cores, and we consider

12

it unlikely that a network operator would need to sup-

port more than a few tens of different packet-processing

types. Moreover, the point of building programmable

packet-processing platforms is to make it easy to de-

ploy new, interesting types of packet processing. All

the emerging types of packet processing that we are

aware of (e.g., redundancy elimination, deep packet in-

spection, application acceleration) would require several

megabytes of frequently accessed data in a realistic net-

work setting (e.g., a network interface that handles a few

gigabits per second, located on the border of an Inter-

net Service Provider). In state-of-the-art platforms, the

size of the shared last-level cache is less than 3MB per

core (and this will not increase in the near future, if

the current architecture trends persist). Hence, we ex-

pect that running any combination of interesting packet-

processing applications on a state-of-the-art multicore

platform would saturate the shared caches.

7 Related Work

In recent years, we have seen a renewed interest in

general-purpose networking, both by the industry [4] and

the research community. Several research prototypes

have demonstrated that general-purpose hardware is ca-

pable of high-performance packet processing (line rates

of 10 Gbps or more), assuming simple, uniform work-

loads, where all the packets are subjected to one particu-

lar type of packet processing: IP forwarding [16], GPU-

aided IP forwarding [17], multi-dimensional packet clas-

sification [23], or cryptographic operations [18]. Like all

this work, our ultimate goal is to build high-performance

software packet-processing systems. However, our fo-

cus here is to show that such a system can achieve

predictable performance while running a wide range

of packet-processing applications and serving multiple

clients with different needs.

Researchers have been working for more than two

decades on mathematical models for predicting the ef-

fects of resource contention. In the eighties and nineties,

this was pursued in the context of general-purpose sys-

tems with simultaneous multithreading [5, 28, 31]. In

the last decade, the focus has shifted to general-purpose

multicore systems with shared caches [10, 12, 29, 32].

Zhang et al. recently questioned the need for prediction,

with the argument that cache contention does not signif-

icantly affect the performance of modern parallel appli-

cations (in particular, PARSEC benchmarks) [33]. We

show that, in the context of packet processing, resource

contention can cause significant performance drop (up to

27%), however, we can accurately predict that without

mathematical modeling. We should note that modeling

does not remove the need for application profiling: all

proposed models require as input at least the stack dis-

tance profile [24] of each application, which requires ei-

ther instruction-set simulation of the application, or bi-

nary instrumentation and program analysis of the appli-

cation, or co-running the application with a set of syn-

thetic benchmarks [32].

A complementary topic to contention prediction is

contention-aware scheduling: how to assign processes to

cores so as to maximize overall system performance [7,

13,19,20,25,34]. We show that, in the context of packet

processing, contention-aware scheduling does not signif-

icantly improve overall performance.

Finally, our work falls under the broader effort of ex-

ploring how software systems should be architected to

exploit multicore architectures. That work has typically

focused on redesigning software to expose parallelism—

most recently by eliminating serial execution bottle-

necks [9]. In contrast, we focus on packet-processing

workloads, which are already amenable to parallel ex-

ecution. Given a seemingly perfectly parallel system

like a software packet-processing platform, we analyze

what are the challenges involved in running such a sys-

tem and—as a first step—what we can do to make its

performance predictable.

8 Conclusion

We presented a software packet-processing system that

combines ease of programmability with predictable per-

formance, while supporting a diverse set of packet-

processing flows. We showed that, in our system, we can

accurately predict the contention-induced performance

drop suffered by each flow (with an error smaller than

3%) thanks to two key observations: First, the perfor-

mance drop suffered by a given flow is mostly deter-

mined by the number of cache references per second per-

formed by its competitors, and not by the exact type of

packet processing that they perform. Second, as long as

the number of competing cache references per second ex-

ceeds a certain threshold, the performance drop suffered

by a sensitive flow stays within a relatively small range,

no matter what type of co-runners it is competing with.

We also showed that, in our system, overall performance

depends little on how different flows are scheduled on

different cores, hence, contention-aware scheduling may

not be worth the effort. We quantitatively argued that our

results are not artifacts of a particular hardware architec-

ture, rather they should hold on any modern multicore

platform.

Acknowledgments. We would like to thank Aditya

Akella, Ashok Anand, Michele Catasta, Jiaqing Du,

Nikola Knezevic, Ovidiu Mara, Alexandra Olteanu, Si-

mon Schubert, Vyas Sekar, our shepherd Srinivasan Se-

shan, and the anonymous reviewers for their help and

constructive feedback.

13

References

[1] Cisco IOS NetFlow. http://www.cisco.com/web/go/

netflow.

[2] Intel 82599 10 GbE Controller Datasheet. http:

//download.intel.com/design/network/

datashts/82599_datasheet.pdf.

[3] OProfile. http://oprofile.sourceforge.net.

[4] Why Use Vyatta? http://www.vyatta.org/

getting-started/why-use.

[5] A. Agarwal, M. Horowitz, and J. Hennesy. An Analytical Cache

Model. Transactions on Computer Systems (TOCS), 7:184–215,

1989.

[6] K. Argyraki, S. Baset, B.-G. Chun, K. Fall, G. Iannaccone,

A. Knies, E. Kohler, M. Manesh, S. Nedevschi, and S. Rat-

nasamy. Can Software Routers Scale? In Proceedings of the

ACM SIGCOMM Workshop on Programmable Routers for Ex-

tensible Services of TOmorrow (PRESTO), 2008.

[7] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A Case

for NUMA-Aware Contention Management on Multicore Proces-

sors. In Proceedings of the USENIX Annual Technical Confer-

ence, 2011.

[8] W. J. Bolosky and M. L. Scott. False Sharing and its Effect on

Shared Memory Performance. In Proceedings of the USENIX

Symposium on Experiences with Distributed and Multiprocessor

Systems, 1993.

[9] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.

Kaashoek, R. Morris, and N. Zeldovich. An Analysis of Linux

Scalability to Many Cores. In Proceedings of the Symposium on

Operating Systems Design and Implementation (OSDI), 2010.

[10] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-

Thread Cache Contention on a Chip Multi-Processor Architec-

ture. In Proceedings of the International Symposium on High-

Performance Computer Architecture (HPCA), 2005.

[11] B. Chen and R. Morris. Flexible Control of Parallelism in a Mul-

tiprocesor PC Router. In Proceedings of the USENIX Annual

Technical Conference, 2001.

[12] X. E. Chen and T. M. Aamodt. A First-Order Fine-Grained Multi-

threaded Throughput Model. In Proceedings of the IEEE Interna-

tional Symposium on High-Performance Computer Architecture

(HPCA), 2009.

[13] G. Dhiman, G. Marchetti, and T. Rosing. vGreen: a System

for Energy-Efficient Computing in Virtualized Environments. In

Proceedings of the International Symposium on Low Power Elec-

tronics and Design (ISLPED), 2009.

[14] M. Dobrescu, K. Argyraki, M. Manesh, G. Iannaccone, and

S. Ratnasamy. Controlling Parallelism in Multi-core Software

Routers. In Proceedings of the ACM SIGCOMM Workshop

on Programmable Routers for Extensible Services of TOmorrow

(PRESTO), 2010.

[15] M. Dobrescu, K. Argyraki, and S. Ratnasamy. Toward Pre-

dictable Performance in Software Packet-Processing Platforms.

Technical report, Ecole Polytechnique Fédérale de Lausanne

(EPFL), Switzerland, 2012.

[16] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Ian-

naccone, A. Knies, M. Manesh, and S. Ratnasamy. RouteBricks:

Exploiting Parallelism to Scale Software Routers. In Proceedings

of the ACM Symposium on Operating Systems Principles (SOSP),

2009.

[17] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A GPU-

accelerated Software Router. In Proceedings of the ACM SIG-

COMM Conference, 2010.

[18] K. Jang, S. Han, S. Han, S. Moon, and K. Park. SSLShader:

Cheap SSL Acceleration with Commodity Processors. In Pro-

ceedings of the USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI), 2011.

[19] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and Approx-

imation of Optimal Co-Scheduling on Chip Multiprocessors. In

Proceedings of the International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT), 2008.

[20] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using

OS Observations to Improve Performance in Multicore Systems.

IEEE Micro, 28:54–66, 2008.

[21] E. Kohler, R. Morris, B. Chen, J. Jannoti, and M. F. Kaashoek.

The Click Modular Router. ACM Transactions on Computer Sys-

tems (TOCS), 18(3):263–297, 2000.

[22] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao,

and Y. Zhang. ServerSwitch: A Programmable and High Perfor-

mance Platform for Data Center Networks. In Proceedings of the

USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI), 2011.

[23] Y. Ma, S. Banerjee, S. Lu, and C. Estan. Leveraging Parallelism

for Multi-dimensional Packet Classification on Software Routers.

In Proceedings of the ACM SIGMETRICS Conference, 2010.

[24] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation

Techniques for Storage Hierarchies. IBM Systems Journal, 9:78–

17, 1970.

[25] A. Merkel, J. Stoess, and F. Bellosa. Resource-Conscious

Scheduling for Energy Efficiency on Multicore Processors. In

Proceedings of the EuroSys Conference, 2010.

[26] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design

and Implementation of a Consolidated Middlebox Architecture.

In Proceedings of the USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2012.

[27] N. T. Spring and D. Wetherall. A Protocol Independent Technique

for Eliminating Redundant Network Traffic. In Proceedings of

the ACM SIGCOMM Conference, 2000.

[28] G. E. Suh, S. Devadas, and L. Rudolph. Analytical Cache Models

with Applications to Cache Partitioning. In Proceedings of the

International Conference on Supercomputing (ICS), 2005.

[29] D. Tam, R. Azimi, L. B. Soares, and M. Stumm. Rapidmrc: Ap-

proximating L2 Miss Rate Curves on Commodity Systems for

Online Optimizations. In Proceedings of the International Con-

ference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2009.

[30] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa.

The Impact of Memory Subsystem Resource Sharing on Data-

center Applications. In Proceedings of the Annual International

Symposium on Computer Architecture (ISCA), 2011.

[31] D. Thiebaud and H. S. Stone. Footprints in the Cache. Transac-

tions on Computer Systems (TOCS), 5:305–329, 1987.

[32] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao. Cache Contention

and Application Performance Prediction for Multi-Core Systems.

In Proceedings of the IEEE International Symposium on Perfor-

mance Analysis of Systems & Software (ISPASS), 2010.

[33] E. Z. Zhang, Y. Jiang, and X. Shen. Does Cache Sharing on

Modern CMP Matter to the Performance of Comtemporary Mul-

tithreaded Programs? In Proceedings of the ACM Symposium on

the Principles and Practice of Parallel Programming (PPoPP),

2010.

[34] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Address-

ing Shared Resource Contention in Multicore Processors via

Scheduling. In Proceedings of the International Conference on

Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS), 2010.

14

