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B Abstract Progress in experimental and theoretical biology is likely to provide
us with the opportunity to assemble detailed predictive models of mammalian cells.
Using a functional format to describe the organization of mammalian cells, we describe
current approaches for developing qualitative and quantitative models using data from
a variety of experimental sources. Recent developments and applications of graph
theory to biological networks are reviewed. The use of these qualitative models to
identify the topology of regulatory motifs and functional modules is discussed. Cellular
homeostasis and plasticity are interpreted within the framework of balance between
regulatory motifs and interactions between modules. From this analysis we identify the
need for detailed quantitative models on the basis of the representation of the chemistry
underlying the cellular process. The use of deterministic, stochastic, and hybrid models
to represent cellular processes is reviewed, and an initial integrated approach for the
development of large-scale predictive models of a mammalian cell is presented.
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INTRODUCTION

Over the past four decades, the progress in biochemistry and molecular biology in
assembling lists of cellular components and their interactions, and in cell biology
and physiology in understanding the functions of various components of the cell,
have allowed us to start thinking about how these components and interactions
come together to form the basic unit of life, a cell. Understanding how a functioning
cell is configured from its parts cannot be achieved by experiments alone, but also
requires substantial theoretical analyses and tight integration between the two. This
integration should lead to the development of predictive models of a cell, so that by
specifying the initial conditions, we can predict responses to a variety of external
and internal stimuli. The development of predictive models poses considerable
challenges at both theoretical and experimental levels. Nevertheless, in the past
five years there has been steady progress on various fronts. The sequencing and
characterization of many genomes (2, 15, 64, 76, 82, 111, 118), the development
of technologies that allow for large-scale profiling of cellular components (20,
37, 53, 94) and their interactions (49, 97, 108), the development of a variety
of modeling approaches using both chemical kinetics (75, 110, 101, 112) and
graph theory (4, 9, 79, 80), and the reduction in cost of large-scale computation
have allowed us to begin developing integrated approaches for understanding the
principles underlying the organization and function of a cell. Here we describe
current approaches and discuss how they may be integrated to obtain predictive
models of mammalian cells.

WHAT IS A MAMMALIAN CELL?

The cell as the basic unit of life has been long accepted as a central tenet of biology.
The nature of the cell in different species has a core set of common characteristics,
but there are also considerable differences. Bacterial cells, and unicellular eukary-
otes such as yeast, share similarities with cells from higher organisms in a variety
of functions and have served as useful model systems. Much of the early under-
standing of the cell cycle and its regulation has come from genetic manipulation of
yeast (46), and many findings in yeast have been confirmed universally. Similarly,
metabolism and chemotaxis in bacteria have served as useful model systems to
understand these functions in cells of higher organisms. Nevertheless, mammalian
cells have distinct attributes and functions that need to be dealt with directly. Most
mammalian cells belong to tissues and organs and thus have a substantial level
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of internal spatial complexity. Intracellular components are distributed anisotrop-
ically, and cellular activity results in a continuous redistribution of intracellular
components. This spatial feature is compounded by the increased complexity of
the genome, in which the regulatory proteins have more isoforms in higher organ-
isms. For many proteins that are a part of cellular signaling pathways, the human
genome has more isoforms than the genome of the fly or yeast (111).

Isoforms raise several issues with regard to modeling. Isoforms are often dis-
tributed in different locations within the cell and have partially overlapping connec-
tivity and hence often need to be dealt with as individual entities. For these reasons
we think it is useful to focus directly on mammalian cells, as suggested by recent
models of mammalian circadian rhythms (34). The physiology of mammalian
cells, tissues, and organs are well studied and provide a wealth of information that
can be used to constrain, train, and refine small- and medium-scale models and
thus greatly facilitate the development of large-scale models. None of these rea-
sons should be viewed as deterrents to studies on model organisms. Rather studies
on mammalian systems and model organisms are most often complementary and
mutually beneficial.

The concept of a typical mammalian cell is a myth. In an adult organism, a
neuron is quite different from a hematopoetic cell such as a T- or B-cell, which in
turn is different from a pancreatic S-cell that secretes insulin. Such reasoning can
be extended to other cell types such as muscle cells, fibroblasts, and epithelial cells.
How then can we develop a general approach that would be applicable to building
models of all these cell types? We have proposed that all cells have a central sig-
naling network that can sense signals from both internal and external stimuli and
process them through a network of interacting signaling pathways to regulate mul-
tiple cellular machines (57). Each cell type has its own specific receptors that define
the types of input signals the cell can sense. Thus, neurons have neurotransmitter
receptors that are both ionotropic and metabotropic. The ionotropic receptors are
ion channels, and their activity is responsible for rapid synaptic signaling. The
metabotropic receptors couple to G proteins and activate intracellular regulatory
pathways. The T cell receptors interact with antigen-presenting cells to recognize
specific antigens and then activate an intracellular signaling network to produce
and secrete cytokines. The pancreatic B-cells have receptors to sense glucose and
then, through the intracellular signaling network, regulate the secretion of insulin.

In each case, the extracellular signals are processed through a central regulatory
network of interacting signaling pathways to regulate various cellular machines,
i.e., the electrical response system, the secretion apparatus, transcriptional and
translational machinery, and the motility machinery. Thus, all cells can be thought
of as having a common functional configuration: a central signaling network that
regulates a cell type—specific combination of cellular machines to evoke the ob-
served phenotypic behaviors. This is similar to considering the different cells as
chemical plants with a central regulatory system that controls a number of inter-
connected reactors to allow for the generation of specified products. This rationale
is depicted in Figure 1.
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Figure 1 A common regulatory architecture for different mammalian cell types. Three
mammalian cells, (@) neuron, (b) T-cell, and (c¢) pancreatic B-cell, are stimulated by different
ligands and exhibit different phenotypic behavior, although the overall organization and
mechanisms used for discriminating, processing, and responding to signals are conserved.
The phenotypic responses involve differing sets of cellular machines for different cell types.
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OBTAINING AN OVERVIEW

The sequencing of various genomes allowed us to begin developing estimates of
the numbers of components in a cell. If the mammalian genome is thought to have
approximately 30,000 genes, and if we assume that each gene may have on average
at least two alternatively spliced transcripts, then there would be approximately
60,000 transcripts in total. If about half of these are expressed in any given cell type,
then we would expect about 30,000 different proteins and mRNA species in one
cell. If one assumes a similar number of other components such as lipids, sugars,
ions, and nucleotides, an upper estimate of the different types of components that
comprise a mammalian cell would be about 100,000. Each component interacts on
average with 4 other components leading to a system of about 200,000 interactions.
How can we understand such a system? Studying one component or an organized
group of components such as a signaling pathway is unlikely to provide insight
into the logic underlying the overall organization of a cell. Here an initial top-
down view could be useful. Such a view could provide insight into how individual
components are organized to form higher order units and what types of behaviors
these units may be capable of accomplishing. The assembly of such units to form
an integrated functional system could be the highest level of organization. To
assemble such a system, the currently known components and their interactions
(discovered experimentally through biochemical, genetic, or cell physiological
experiments) can be combined to form an in silico network. Such a network can be
visualized and computationally analyzed by a variety of mathematical approaches.
The understanding that biological systems can be represented as networks has led
to a surge of interest in applying graph theory approaches to analyze the topology
of these networks. Before such analysis can be performed, the networks need to be
assembled. This can be done experimentally by large-scale data gathering or by in
silico assembly of interactions based on binary relationships between components
and known pathways.

Assembling Networks

Several approaches have been used for building cellular signaling and regulatory
networks in a format that can be computationally analyzed. The most common
approach uses a top-down format, in which a large set of interactions are simulta-
neously determined on the basis of genomic specifications. At the mRNA level this
approach uses data obtained from mRINA profiling experiments using microarrays
(36, 58, 104). At the protein level, interactions are determined by large-scale, yeast
two-hybrid screens (40, 51, 59, 68, 120) or by copurification experiments coupled
to mass spectrometry (49). Such data yield large-scale networks, but the tech-
nologies used, although promising, currently provide limited information. These
techniques do not specify key biological properties, including the directionality
of the connections and the relationship between components, such as activation
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or inhibition. Thus, these datasets yield “undirected graphs” that provide limited
representations of the system.

Another approach is the construction of networks based on the biochemistry,
cell biology, and cell physiology literature. From the experimental studies of in-
dividual binary interactions and small groups of interactions, we can assemble
larger networks. This can be done in several ways. The use of natural language
processing (NLP), a subfield of artificial intelligence, has led to text-mining pro-
grams that search the published literature to extract data from published papers
(35, 71, 84). Whether such efforts will yield error-free, large-scale maps is not
known. However, such approaches are surely needed if we are to capitalize on the
currently available, vast functional data that define components and their inter-
actions in different mammalian cell types. The computer-based automatic search
efforts are complemented by bottom-up approaches, in which interactions are iden-
tified from data manually extracted from primary publications (39, 88). Science’s
STKE (42) and the Alliance for Cell Signaling (67) use this approach, which has
been most fruitful to date. STKE has published more than 50 pathways for a variety
of cell types and organisms. The networks in STKE are relatively small with 10
to 50 components. The bottom-up approach contains a lower incidence of false
positives (113) but a higher incidence of false negatives. False positives are inter-
actions that are not relevant in the biological context but exist within the datasets.
False negatives are interactions that are relevant and exist in the biological systems
but are unknown or otherwise not included in the datasets. Currently, there are no
large-scale (1000 or more components) mammalian cellular signaling regulatory
network maps ready for computational analysis. The construction of these datasets
is still in its infancy, in contrast with metabolic networks (60). However, several
databases do exist (Table 1).

Cellular interactions may be represented graphically as networks. On the basis
of their level of abstraction, four types of graphs may be drawn: undirected (Type I),
directed (Type II), directed and weighted (Type III), and directed/weighted with
spatial specifications (Type IV). For any set of components (Figure 2a, see color
insert), most protein-protein interaction networks publicly available today are
undirected graphs and describe only binding interactions (40, 51) (Figure 2b).
To achieve biologically relevant insights from simulations of these networks, the
representation needs to include the direction of the interactions. In Type II graphs
the directionality of information flow, as well as the activating or inhibitory ef-
fect of a source component on its target component, is specified (Figure 2c).
These are called directed graphs. For further accuracy, the different states of
each component can be specified. Consequently, the connections can be state
specific and weighted to indicate the strength of the connections (Figure 2d). If
spatial information is available, the different components can be assigned to dif-
ferent compartments, thus exhibiting spatially restricted connectivity (Figure 2e).
Such representations will yield an ensemble of networks for the same set of
components.
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Figure 3 Schematics of clustering and grid coefficients. (@) The central node has
four neighbors. The neighbors are connected with two connections of possible six. The
clustering coefficient for the central node is 2/6 = 0.33. The two triangles used in the
calculation are highlighted. Computing the average clustering coefficient of all nodes
in a network measures the network’s local connectivity and can define the existence of
modularity within networks when compared with random networks (115). (b) The grid
coefficient considers the rectangles as well as the triangles when calculating the level
of clustered interactions (22). The two rectangles and two triangles used to compute
the grid coefficient for the black node are highlighted.

Network Analysis by Graph Theory

Understanding the topology of the network is useful for determining the range of
behaviors that can be produced. For this, the network can be probed by statistical
approaches. Such analyses have been useful in understanding computer networks
and social networks. Several properties of the networks can be identified, such as
characteristic path length, clustering, and presence and organization of regulatory
motifs. These properties are discussed in detail below. From these properties an
overview of the capabilities of a complex system can be obtained.

These analyses generally assume the network connectivity to be static (66),
i.e., the connectivity within the network is maintained at all times. Although this
is true for some networks such as computer networks, such constant connectivity
is not true in cellular regulatory networks. Here connections are made and broken
depending on the state of the components; hence, the system is quite dynamic.
The dynamics of regulatory networks may be simulated by Boolean models (63).
A recent simulation of the gene regulatory network of segment polarity genes in
Drosophila using a Boolean model (5) provides a reasonable description of the
functioning of the network comparable to that obtained when the network was
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described by a system of differential equations (112). Another approach to un-
derstanding the dynamics of the regulatory topology is through artificial network
models. Artificial networks can be created by applying network growth algorithms.
These algorithms generate networks with properties similar to real biological net-
works (9, 62, 85, 92). This approach provides initial insight into the evolutionary
processes that generated the biological networks. Several graph theory—related ap-
proaches applied to characterize biological cellular networks are described below.

Clustering Coefficient: Measuring Local Connectivity

Watts & Strogatz (115) defined two important network properties: clustering coef-
ficient and characteristic path length. Clustering coefficient, a local property, mea-
sures the density of connectivity within the network. A high clustering coefficient
of a network, compared with random networks with similar connectivity distribu-
tion, may be indicative of modularity within the network. As shown in Figure 3a,
the clustering coefficient captures the abundance of triangles in the network. The
nodes in this motif are often localized in physical proximity and thus clustering
coefficient becomes a measure of colocalized components that interact with one
another. Caldarelli et al. (24) have pointed out that clustering coefficient does not
capture the abundance of rectangles, another elemental measure of interacting
nodes (Figure 3b). They formulated a method to measure local interactions by
considering rectangles in the calculation to obtain a “grid-coefficient.” Both clus-
tering and grid coefficients are useful in defining modularity in cellular networks
owing to the abundance of scaffolds and anchoring proteins in mammalian cells
(87). Such proteins often bring together groups of cellular components that interact
with one another in a spatially restricted manner to yield functional responses.

Characteristic Path Length and Small-World Networks

Characteristic path length, also called the degree of separation, is a measure of how
sparsely the nodes are connected within the network. This is a global property. The
shortest path between any two pairs of nodes is calculated for all possible pairs of
nodes. The concept originated in the field of human psychology. Stanley Milgram
(77) found that any person in the United States was separated from any other person
by only six links. This has recently been verified by using chains of emails (31).
The characteristic path length indicates the average of the minimum number of
steps required to reach any other component within the network when one starts at
one component. The clustering coefficient and the characteristic path length often
have a predictable relationship for real networks (115). A relatively high clustering
and a similar path length compared with randomized or shuffled networks are used
to characterize real networks as small world. Such a characterization implies the
presence of many shortcuts for connectivity and information propagation within
the network (115).
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Scale-Free Networks

Barabasi and coworkers have found that real-world networks follow a connectivity
distribution that follows a power law (56, 92). For such systems, when counts of
nodes are plotted against their connectivity (also called degree) on a log-log plot, a
straight line with a slope between -2 and -3 is obtained. They termed this topology
scale free. Such a designation indicates a predictable relationship between the
number of nodes and a certain number of links; it follows a defined power-law
function irrespective of the size of the network. Barabasi and coworkers analyzed
43 metabolic networks inferred from genomic sequences for anumber of organisms
(56) and showed that they all have similar clustering coefficients, regardless of the
network size, and that these networks are scale free. The metabolic networks are
organized as modules within modules to form a hierarchical network (92). By
building modular hierarchical artificial networks, the authors showed that these
networks display the same properties as the metabolic networks that have both
high clustering coefficients and highly connected hubs (92).

If biological networks are both small world and scale free, these networks
may share some basic properties such as enhanced information propagation speed
owing to the presence of shortcut links, synchronization ability, robustness or
error tolerance (4), and computational power (6, 55, 106). Implicit in the defini-
tion of scale-free networks is the assumption that these networks grow through
the “rich nodes get richer” hypothesis (9), which states that highly connected
nodes are more likely to increase their connectivity than less connected nodes
as the size of the network increases. A study that examined the connectivity
of proteins through evolution by comparing connectivity of the same proteins
in Escherichia coli and yeast found that “oldest” proteins in both E. coli and
yeast had on average 6.2 links per protein, whereas “newest” proteins found
only in yeast had 0.5 links per protein. These observations have been inter-
preted to support the “rich nodes get richer” hypothesis (33). Further analyses of
more biological networks are needed to determine if this hypothesis is generally
valid.

Scale-free networks commonly have a cutoff property as defined by Stanley and
coworkers (6). In such networks, a scale-free connectivity distribution might be
followed by a tail that has a Gaussian or exponential pattern, thereby limiting the
number of highly connected nodes. This cutoff is thought to occur for two reasons:
aging and limited physical growth capacity of nodes for additional links. Old nodes
may stop acquiring new links after they reach a certain evolutionary age, indicating
that each node has a time limit for active growth, during which it can acquire
additional links. Alternatively, the physical capacity for connectivity for individual
nodes can be limited, implying that once a node reaches its maximal possible
physical connectivity capacity it stops growing. Understanding how the networks
are configured with respect to their scalability should be useful in determining
their regulatory capabilities.
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Identifying Regulatory Motifs: Information Processing
Within Networks

A different approach in characterizing networks is the identification of motifs.
Motifs are sets of interactions involving 2 to 10 nodes. These organized sets of
interactions are capable of higher order functions such as switching, information
storage, and amplification, and hence represent the functional capabilities within
the network. The configurations of links between sets of components constitute
different types of network motifs. Milo and coworkers (79, 80, 99) defined com-
binations for interconnectivity of three- and four-component motifs and searched
for their prevalence in biological-directed graphs such as worm and yeast gene
regulatory networks. They identified a signature pattern of motifs that may char-
acterize these networks. The motifs can be useful indicators of signal integration,
sorting, and information processing within cellular networks. For instance, the
prevalence of three-component triangular motifs and the clustering coefficient to-
gether indicate local modularity and information-processing capability within the
modules.

The search for network motifs may also be used to predict unknown interactions
or validate interactions. Albert & Albert (3) used a combination of motif search
algorithms with the SUGGEST machine learning algorithm (121) to predict and
provide an additional line of support for interactions in the yeast protein-protein
interactions dataset (71). Algorithms such as SUGGEST are typically used to pre-
dict the products a customer is likely to buy on the basis of previous purchases and
grouping of products. Motif classification can also be used to predict function. Bu
et al. (23) used the yeast protein-protein interactions data and graph theory to pre-
dict the functions of proteins on the basis of motif characteristics and interactions
with proteins of known function. The general validity and overall usefulness of
these approaches remain to be determined.

Motif searches are potentially valuable because they provide initial insight into
the regulatory capabilities of the networks. Although there is some debate about the
validity of the null networks used as controls to identify the evolutionary-favored
motifs (8, 78), the ability to define various types of motifs can be useful. For
instance, both feedback and feed-forward motifs have substantial information pro-
cessing capability. A positive feedback loop in the growth factor receptor-MAPK
pathway is shown in Figure 4a. This motif can function as a bistable switch (12).
A positive feed-forward motif from cAMP to its transcriptional regulator CREB is
shown in Figure 4b. Both types of motif allow for persistence of signals within the
intracellular network after the extracellular signal has dissipated. This is important
for network function because both the amplitude and duration of activation of key
intracellular components determine if biochemical signaling events are converted
to physiological responses.

Negative feedback loop and negative feed-forward loop motifs also exist.
Negative feedback loops are commonly used to desensitize signaling pathways
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Figure 4 Regulatory motifs in signaling networks. (a) Positive feedback loop that
functions as a bistable switch. (b) Positive feed-forward loop. (¢) Negative feedback
loop. (d) Negative feed-forward loop. See Reference 11 for details. Abbreviations:
PKC, protein kinase C; MAPK, mitogen-activated protein kinase; cPLA?2, phospholi-
pase A2; MEK, mitogen-activated protein kinase kinase; AA, arachidonic acid; cAMP,
cyclic 3,5 adenosine monophosphate; PKA, protein kinase A; CREB, cAMP response
element binding protein; S2AR, f2-adrenergic receptor; Gass, stimulatory G protein;
AC2, adenylyl cyclase 2; CaM, calmodulin; CaN, calcenurin; PP1, protein phosphatase-
1; CaMKII, Ca?t/calmodulin stimulated kinase II.

PP1

to limit the deleterious effects of repeated signals within short time periods. A pro-
totypic negative feedback loop in the B-adrenergic receptor pathway is shown
in Figure 4c. Negative feed-forward loop motifs are also observed in signal-
ing networks. A feed-forward loop from calmodulin that participates in the in-
duction of long-term potentiation (LTP) in hippocampal neurons is shown in
Figure 4d. We had referred to the negative feed-forward loop motif as a gate
17, 18).
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ORGANIZING PRINCIPLES FOR FUNCTION

Statistical analyses of networks provide a bird’s eye view of the regulatory capabil-
ities of the system. An understanding of the various motifs that are present and how
they are juxtaposed with respect to one another describes the overall regulatory
topology of the cellular network. Such representation may be used to describe the
cell as a whole and its regulatory and functional capabilities.

Although signal transduction pathways are commonly depicted as connec-
tions maps, all cellular entities, including cellular machines such as the actin-
and myosin-based motility machinery, transcription and translation machinery,
can be represented as networks of interacting components. Because the signaling
pathways regulate the components of cellular machines to affect overall func-
tion, all the components of the cell can be considered a part of a large network
of interacting components. Such a hypothesis raises important issues. If all the
components are connected, does the activity of any one component affect all other
components? How are the well-defined biological effects that are regulated by a
single signaling pathway obtained? The answers to questions such as these may
lie in understanding the intrinsic modularity that exists within cellular networks.

Modularity

Hartwell et al. (45) had suggested that cell biology is moving from molecular to
modular biology. Modularity has been a recurring theme of regulatory biology.
Modules are often made of the regulatory motifs and thus have information-
processing capability. Broadly, a module can be defined as a group of components
that interact in an ordered fashion to evoke an effect in response to a stimu-
lus. Growth factor stimulation of MAPK to trigger the transcription of immediate
early genes such as fos can be considered a functional module. But such definitions
are both conditional and contextual. Soon after the receptor tyrosine kinase—Ras—
MAPK pathway had been recognized as a distinct module involved in prolifera-
tion and growth (32), it was discovered that this pathway is regulated by another
well-known pathway, the cAMP pathway (29, 119), resulting in regulation of Ras-
induced oncogenic transformation (26). This and other interactions involving the
cAMP pathway led to the notion of gates, whereby one pathway regulates informa-
tion flow through another pathway (18, 52). Although such regulation implicitly
described a modular arrangement, it was only until later, when we explicitly mod-
eled a signaling network (12), that the functional basis for modularity became
apparent. We were able to describe a small synaptic signaling network in neurons
as a set of interconnected modules that we termed timer switch, coincidence-
detector, gate, and output response units (13). These modules contain regulatory
motifs such as positive feedback and negative feed-forward loops. Such organiza-
tional and functional descriptions serve as one of the criteria for the definitions of
modules. There are other criteria for identifying modules such as spatial separation
within the cell. Often spatial separation is achieved by localization of a component
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within an organelle. One well-studied example is the mitochondria. This organelle
contains the enzymes for ATP synthesis and key components for triggering cell
death or apoptosis. Similarly, the role of the plasma membrane in defining the
electrical properties of the cell is well understood. Spatial and functional criteria
for modularity are not mutually exclusive and often each contributes to certain fea-
tures of the overall modularity. Signaling pathway modules can be defined in both
spatial and functional terms. The initial signal is received at the cell membrane and
transduced to a downstream component that is either a small molecule or a pro-
tein kinase. The signal then travels to the appropriate cellular organelle to obtain
functional effects. IP; stimulation of Ca>* release from the endoplasmic reticulum
internal stores and MAPK1-2 stimulation of early gene expression in the nucleus
have the same design logic. Here, integration of function occurs across organelles,
so if each pathway is thought of as a module, the definition is functional. The
boundaries between functional modules are also not fixed. They can vary depend-
ing on the regulatory interactions and on the basis of the functional outcome. How
the boundaries between modules are defined is crucial for our understanding of the
dynamics of various modules, as well as the system as a whole. Functional modules
have also been recognized in metabolic networks in which their boundaries are
better defined by the identity of the metabolite involved. Mathematical approaches
(22) have been proposed to reduce the complexity in defining interactions between
functional modules.

Balance Between Modules: Plasticity and Homeostasis

If the concept that cellular networks consist of an ensemble of interconnected mod-
ules is accepted, then the ability of the cell to function as an integrated unit may
arise from the balance of activities between the modules. This may be a core design
principle for mammalian cells. Such balance between modules allows the cell to
exhibit the seemingly opposing capabilities of homeostasis and plasticity while
exhibiting overall robustness. To understand the basis for such balance between
modules, and the definitions of the contours defining a module, it is necessary
to develop quantitative descriptions of interactions in terms of the concentrations
of the components, and the kinetic rates or the probabilities of their interactions.
Before we delve into quantitative chemistry-based approaches, it is useful to ana-
lyze the reasons why understanding the balance between modules (and implicitly
motifs) requires quantitative reasoning.

When a cell receives few external stimuli, many of the nodes in the network
are unconnected and most of the modules are isolated, exhibiting only local con-
nectivity. In contrast, when there is a multitude of external stimuli, such that most
of the connections are operational, the network is highly connected to yield a
small-world topology. A series of intermediate states are possible depending on
the number, intensity, and duration of the extracellular signals. In response to ex-
tracellular stimulation of sufficient intensity and duration, connections are made or
eliminated in a transient manner. This dynamic nature of the components and their
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interactions would result in a series of configurations engaging several modules.
Such dynamic behavior is prominent in neurons, for which the changing nature of
synaptic communication is well documented.

LTP is a use-dependent increase in synaptic efficiency (16) that can last for
hours in vitro and for months in the intact animal (1). LTP is considered a family
of phenomena because different types of synaptic stimulation activate different in-
tracellular components to induce multiple phases of potentiation (83). The different
forms of LTP can be viewed as physiological outcomes of interactions between
different network modules. Less connected states with greater numbers of au-
tonomous modules might yield relatively transient physiological changes. Stimuli
that produce early LTP, which persists for 1 to 3 h and reflects posttranslational
mechanisms, typically involve Ca?* entry through postsynaptic NMDA-type glu-
tamate receptors and the activation of calcium/calmodulin-dependent kinase II
(CaMKII), leading to the potentiation of synaptic currents carried by AMPA-type
glutamate receptor channels. This is achieved through phosphorylation of the chan-
nels in the membrane (93, 98) and by the insertion of new channels into the synapse
(48, 65). This process can be considered the less connected network, in which few
signaling pathways and a single cellular machine, the postsynaptic electrical re-
sponse machine, are involved. When only a few modules are functional, the overall
change to the cell is both spatially restricted and short-lived. On the other hand,
when multiple stimuli such as NMDA receptor-mediated Ca’* entry are coupled
to the activation of the B-adrenergic receptors coupled to cAMP production (18,
41), much of the central regulatory network is engaged to activate most of the key
protein kinases in the neuron: protein kinase A (PKA), protein kinase C (PKC),
MAPKI1-2, and CaMKII. These kinases become active for an extended period
and engage the translational, transcriptional, and postsynaptic electrical response
machines, and perhaps the motility machineries, to produce stable changes in the
postsynaptic electrical response machinery. This is predicted to be the highly con-
nected small-world state in which many modules are involved and interact with
one another. The maintenance of LTP depends on the transcription of plasticity-
related genes, which is accomplished by PKA and MAPK -2 phosphorylation, thus
transferring the extracellular information to transcription factors such as CREB. A
similar format involving the sequential induction of transcription factors is thought
to participate in lineage commitment in B-cells (43). Depending on the type of
cell, the results are persistent physiological or structural changes and often new
phenotypes. Thus, regulated modular interactions can result in plasticity.

The balance between plasticity and homeostasis may be achieved by recon-
figuring components and connections within a selected module in response to
appropriate extrinsic stimulation. Because the network that is operative at a given
time constitutes only a subset of the possible connections, the dynamics of module
reconfiguration protect the cell against global changes in connectivity by restricting
altered activity within specified modules. The dynamic reconfigurations that result
in changing the contours of the modules can play a compensatory role, resulting in
overall homeostasis. Such protection can occur even as long-term modifications,
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involving altered gene expression, are happening. In the neuron and other dif-
ferentiated cells that are capable of long-term functional changes, the signaling
network enables plasticity while protecting the phenotype of the cell by restricting
persistent changes to selected modules, which prevents the perturbation of other
modules. Although the signals for LTP change the activity of both transcriptional
and translational machineries, as well as the cell motility apparatus, the overall
long-term changes are restricted to the functional structure and composition of den-
dritic spines and the neurotransmitter secretion and synaptic electrical response
machineries.

Plasticity-related signaling components often represent highly connected nodes
within the cellular network and thus are considered important interfaces between
modules. However, these nodes serve other functions independent of plasticity.
For example, some forms of LTP in hippocampal neurons require PKA, which
has many direct effectors. To avoid disturbing diverse PKA-regulated functions
(including metabolic processes) during the establishment of LTP, the activation
of PKA is restricted to modules within the network that support plasticity. This
type of local state change makes it necessary to consider the cellular network a
system in which nodes have multiple states and the different states may allow
different connectivities (Figure 2d,e). Two strategies enforce this functional segre-
gation, the posttranslational modification of components, often through phospho-
rylation/dephosphorylation reactions, and the spatial translocation of components.
These mechanisms are not mutually exclusive, as translocation often occurs after
changes in phosphorylation states of components. Translocation can be local, act-
ing at short distances such as stimulus-dependent binding of protein kinase to
scaffold proteins leading to local reconfigurations (28), or they may be long-range,
such as the movement of MAPK1-2 to the nucleus (86).

The boundaries between modules, and consequently the balance between inter-
acting modules, are determined by basic biochemical mechanisms. The basis for
regulated connectivity between modules is a change in concentration of the com-
ponents and/or their activity within the module. Thus, the essential definition for
connection and balance between modules is quantitative. Local reconfiguration can
produce an increase in concentration and/or activity, resulting in increased connec-
tivity in a restricted region. The result could be the formation of a modular highly
connected local network. Such a highly internally connected module can trap a
signal until it can be transferred to the next module. Extensive internal connectivity
can bring together separate pathways that have been stimulated to subthreshold
levels to form coincident detectors (positive feed-forward loops), enabling appro-
priate signals to propagate through the system while reducing the likelihood of
false extracellular cues. Such dramatic increases in connectivity within modules
are expected to be transient owing to the activation of negative feedback loops
by phosphorylation/dephosphorylation reactions, sequestration, or the regulated
degradation of components. This mechanism can also support another function
of local highly connected modules: to hold the signal until it is safely dissipated
locally, thus protecting against the inappropriate engagement of cellular machines.
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Increasing MAPK phosphatase activity allows MAPK1-2 activity to be local and
transient. MAPK1-2, in this case, stimulates the synthesis of autocrine factors
through phospholipase A2 at the membrane but does not trigger proliferation (14).
Modularity ensures that signals within the cells are sufficiently dispersed, enabling
autonomous behavior by the various modules. This feature is also used to route
extracellular stimuli to regulate individual cellular machines and thus achieve the
observed physiological effects in which one pathway evokes one physiological
response while the rest of the cell is unperturbed.

Network Consciousness

When evoking long-term changes, the activity of each component within a module
is constrained by the limits of its own intrinsic activity. This includes the coupled
deactivation reactions, the limits of activity of the immediate upstream compo-
nents, the activity of other components within the module, and the activity of
components that connect modules. Such intra- and intermodule balance results
from changes in the effective concentration of components owing to the regu-
lated synthesis and degradation or changes in activity of the components. Thus,
the biochemical basis for homeostasis is likely to be in the balance in coupling
between components during information transfer. Within each module there are
self-monitoring reactions that define the basal state and the limits of perturbation
that the module can tolerate. This collection of coupled self-monitoring reactions
defines the capability of modules to maintain their individual identity while inter-
acting with other modules. This concept can give rise to a property we call network
consciousness. While acknowledging the semantic implications of this term, we
suggest that it expresses the capability of a cellular network as a whole “to know”
the existence of the various parts of the network, as well as to recognize external
stimuli, by virtue of interactions between modules. Network consciousness allows
external stimuli to be routed appropriately to different parts of the network to evoke
the appropriate physiological responses. A common analogy would be the constant
communication between mobile telephones and the central system, such that the
network knows how to route calls even when the locations of phones change.

In the neuronal intracellular network the interactions between the cAMP path-
way and the CaMKII pathway by the gating mechanism (17) provide a biochemical
example for understanding network consciousness. Here the cAMP pathway and
the CaMKII pathways may be considered different modules that interact with each
other owing to the substrate selectivity of the protein kinases and phosphatases.
Because the extent and duration of the CaMKII signal are regulated by the protein
phosphatase 1 (PP1), which in turn is inhibited by cAMP levels through PKA, the
identity of adenylyl cyclases that produce cAMP determines whether the CaMKII
pathway is conscious of the presence of a gate. At low fractional occupancy of
the B-adrenergic receptors, if the functional adenylyl cyclases are the isoforms
(ACS5, AC6) with low basal activities (27, 89, 102), then the effect of inhibiting
PP1 might be minimal. As a result, the high PP1 activity limits the duration and
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extent of the CaMKII activity and holds the gate shut. In contrast, in the presence
of adenylyl cyclases with high basal activity (AC1, AC2, or AC8), PP1 activity
is low, basal CaMKII activity is high, and hence even low fractional occupancy
of the B-adrenergic receptor might allow subthreshold activation of CaMKII to
induce LTP. The balance of basal activities between the cAMP and CaMKII path-
ways can determine connectivity and the probability of a physiological response.
The ability of the various modules to define their intrinsic activity, or self-identity,
arises from the identity of the isoforms of the components present in the mod-
ule. In the example given above, the differences in basal activity of the different
adenylyl cyclases give rise to different biochemical capabilities for the same mod-
ule and thus can change its ability to interact with the second module containing
CaMKII when signals from external stimulus, the B-adrenergic receptor, are
received.

Signaling gates (i.e., negative feed-forward motifs) provide balance between
modules. These gates are operative not only at the level of upstream signaling
components but also at the level of gene expression, in which both cAMP and
MAPKI1-2 (86) pathways are involved in gating that regulates neuronal plasticity.
In neurons it appears that open-gate configuration favors plasticity. In contrast,
in proliferating cells the closed-gate configuration is essential for regulating cell
proliferation and homeostasis. Here, cAMP-dependent inhibition of signaling from
RastoRaf (119) regulates signal flow to MAPK1-2 and, as aresult, the proliferation
response. In addition, controls at the level of transcription regulation, through key
inhibitors such as p53 or the cAMP-regulated p27, reduce network connectivity
and are essential for maintaining homeostasis. Thus, the ability of the network to
be conscious of coupled or uncoupled modules is likely an essential feature for the
overall integrity and function of the cell. The coupling between modules is defined
by the regulatory motifs within the modules as well as motifs that may bridge
modules. Hence, to define the modules and understand how they can function in a
coordinated manner, it is essential to understand the topology of regulatory motifs
within the network.

Substantial perturbations in network consciousness may cause cell death or
disease. The signals that trigger cell death are integrated into the mitochondria,
leading to a tight coupling between cellular energy production and control of cell
death. The origins of cancer reside in the lack of control of signaling networks,
leading to uncontrolled proliferation. The homeostatic mechanisms that allow the
cell to adjust to increased proliferation perpetuate this perturbation, leading to a
pathophysiological state. The ability to define the coupled reactions that give rise to
cellular network consciousness may help us understand how multicellular systems
such as tissues and organs are assembled and maintained, or explain the origins
of many cellular diseases. Currently, it is not possible to estimate how many of
these reactions and relationships between modules need to be defined to specify
where the limits of cellular homeostasis and plasticity reside. However, it is cer-
tain that qualitative analysis is not likely to produce complete answers to these
questions.
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QUANTITATIVE REPRESENTATION
OF CELLULAR NETWORKS

Quantitative representation of cellular networks involves the description of cellular
processes in chemical or physiochemical terms. Indeed, all cellular interactions
can be described in terms of chemical reactions. If we are to build detailed pre-
dictive models of mammalian cells, we need to understand how the large-scale
qualitative networks used for statistical analysis can be represented in quantita-
tive biochemical terms. All the chemical reactions in a cell can be described as
either noncovalent binding or enzymatic reactions. These two classes of reactions
represent the basic chemistry underlying all cellular functions including electrical
responses and force generation. At a formal level, cellular networks will have to
be understood on the basis of thermodynamic considerations. Biological systems
including cellular networks are never at a steady state but rather on a trajectory ap-
proaching steady state (90), and formal mathematical treatments for such systems
were developed in the 1960s (61). Here we do not discuss these systems in such a
formal way but rather focus on utilitarian approaches that facilitate the matching
of appropriate mathematical representations to the specified set of biochemical
reactions underlying the process of interest and indicate the type of experimental
data that need to be obtained.

Chemical Representation: Deterministic, Stochastic,
and Hybrid Systems

Cellular reactions can be characterized as either deterministic or stochastic. For
deterministic reactions we consider bulk concentrations, not individual molecules.
Because a large proportion of these reactions occur in an aqueous milieu, the most
common representation of chemical reactions uses standard solution chemistry, in
which the trajectory of a reaction is defined by the initial concentrations of the
reactants and the reaction rates. The underlying assumption is that the system is
a well-stirred reactor in which all the reactants have equal access to each other.
The reactions are governed by the laws of mass action. This is the most common
type of representation used to model cell signaling pathways (14, 47, 72, 95) as
well as metabolic pathways (73, 96). This assumption is often applied to many
processes that occur in cellular networks and can be used to simplify numeri-
cal simulations. Deterministic reactions can be spatially specified by considering
multiple compartments with specified fluxes between compartments. Such models
have been developed most notably for Ca>*-regulated signaling processes (114)
and for the movement of the small GTPase Ran between the cytoplasm and the
nucleus (103).

Howeyver, other reactions occur between reactants that are few in number and/or
present in arestricted location. These reactions are not governed by the laws of mass
action. Rather, each molecule behaves in a nondeterministic fashion on the basis
of its location and thermal motion, and thus the reactants interact with one another
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in a probabilistic fashion. Such reactions are termed stochastic reactions. Many
important biological processes are governed by stochastic reactions. The regulation
of gene expression, in which transcriptional regulators bind to specific sites at or
near the initiation site for transcription, is a stochastic phenomenon. Such systems
have been successfully modeled using a stochastic kinetic approach (7, 74, 117).
Recently, a detailed analysis of signaling networks under small-volume conditions
by Bhalla (10, 11) showed that some properties observed in deterministic models
may not be observed in stochastic modules when few molecules in small spaces are
considered. Such analyses are just beginning and substantial research is required
to define the conditions under which purely deterministic or stochastic processes
operate.

It is simplistic to categorize cellular components as participating exclusively
in either deterministic or stochastic reactions. More likely, components may be-
have deterministically under some conditions and stochastically in other situations.
Thus, hybrid models that consider a continuum of deterministic and stochastic re-
actions are likely to yield biologically realistic representations. Few hybrid models
exist. Greenstein & Winslow (44) have developed an integrative model of local
control Ca?* release on the basis of the balance of the activities of L-type Ca>*
channels and ryanodine receptors in the sarcoplasmic reticulum in myocytes. They
analyzed the system within the context of global properties using both stochastic
and deterministic reactions. This approach yielded a scalable model that could
account for both local and global behaviors of the system.

Mathematical Representation and Numerical Computation

Deterministic reactions are commonly represented by ordinary differential equa-
tions. If flux of molecules and multiple compartments are involved, a system of
partial differential equations may be used. These equations are solved to obtain
concentrations of reactants or products as a function of time. Although analyti-
cal solutions can sometimes be obtained, typically systems of ordinary differen-
tial equations that describe regulatory modules such as feedback or feed-forward
loops are sufficiently nonlinear, making analytical solutions difficult, if not im-
possible, to obtain. Most often the equations are solved numerically, and the
values obtained for sets of reactions can be matched to input-output relation-
ships that have been experimentally observed (12). Several freely available pro-
grams such as Kinetikit/Genesis (http://www.ncbs.res.in/~bhalla/kkit/download.
html), Jarnac(http://www.cds.caltech.edu/~hsauro/Jarnac.htm), or JSim(http://nsr.
bioeng.washington.edu/PLN/Software) can be used for the numerical computation
of systems of ordinary differential equations. When flux of cellular components
and spatial representations are involved, it becomes necessary to use partial dif-
ferential equations to represent biological processes. Such systems of equations
are more difficult to assemble and solve. Currently, Virtual Cell (69, 101), a soft-
ware suite that enables researchers to develop spatially explicit models, is one of
the few programs available for biologists attempting to model systems that require
the use of partial differential equations.
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For stochastic processes, Monte Carlo—style algorithms are typically used. The
most common approach to model stochastic reactions uses the algorithm originally
described by Gillespie (38). Several solvers for stochastic processes are available.
M-Cell is a stochastic simulator used for spatially realistic simulations. It has been
used to describe the binding of the neurotransmitter acetylcholine to its nicotinic
receptor channel and the activation states of the receptor at the synapse (105).
Another stochastic simulator that is freely available is Stochsim (100). Recently,
Kinetikit/Genesis, a program suitable for the development of large-scale deter-
ministic models, has been adapted for numerical computation of hybrid models
(109). Although each of these programs represents a valuable contribution, the
development of stochastic programs is still in its infancy. Substantial development
is needed to make these programs user-friendly for the biologist.

To go from qualitative network representations suitable for statistical analy-
sis to detailed numerical models based on chemical reactions and the appropriate
mathematical representations, it would be advantageous to reduce the complexity
of the system in terms of numbers of components and interactions. One practical
approach may be to compute smaller sets of reactions representing regulatory mo-
tifs of the types described in the qualitative network analysis and determine the
input-output relationships for these motifs. Subsequently, the individually com-
puted motifs may be assembled as modules to construct a large-scale network.
Assembling modules containing regulatory motifs will lead to a new level of non-
linear relationships that will have to be solved.

Spatial Specifications

A unique feature of all eukaryotic cells, including mammalian cells, is the uti-
lization of spatial separation of components and interactions to achieve selective
regulation of function. For proteins, the molecular basis of such spatial separation
resides in the signal sequence that specifies the appropriate location within the
cell (19). However, for many cellular components the localization is not fixed. It
changes in an activity-dependent manner. The translocation results in changes in
connectivity and, in some cases, kinetics. To build realistic models of a cell from
its parts, we must account for both of these properties. If we are to use the quali-
tative descriptions of networks and quantitative analysis in an integrated manner,
we need to develop representations that include spatial specifications at both lev-
els. A sustained collaborative effort among a community of scientists is needed to
develop a generally acceptable format of representation that includes spatial spec-
ifications. Such representation must capture the dynamics of the systems so that
various forms of transport of components, from thermal diffusion to ATP-utilizing
mechanisms involving specific molecular motors, are represented. One approach
for such representation is to account for diffusion coefficients and then specify
modification factors to this constant on the basis of the mechanism involved in
the movement of the component of interest. This requires experimental measure-
ments of movement rates. Few such measurements currently exist. However, the
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rapid development of fluorescent imaging techniques in live cells indicates that
gathering this type of data is now technologically feasible.

Current Datasets: Experimental Approaches
and Quantitative Databases

Much of the functional data that currently exist can be found in the biochemistry,
cell biology, and cell physiology literature. These sources can be best thought of
as data that deal with the components and interactions that make up the various
signaling pathway modules and cellular machine modules. The advantages in
considering data from these sources include the directionality of the interactions
and, in many cases for which quantitative measurements have been performed, the
kinetic data specifying input-output relationships that are useful in constraining
quantitative models. The major disadvantage in obtaining data from these sources
is that the data typically represent the minimal number of components required for a
certain effect or function. Such minimal definitions do not indicate how many other
components are associated with the module being studied. Hence, it is necessary
that these function-based biochemical and cell physiological studies be coupled
with proteomic approaches that provide a broad overview of the components that
may be involved in the function of a module. Even well-studied functional entities
in the cell, such as the mitochondria or the nuclear pore complex, when subjected
to proteomic analysis, have shown the presence of yet unrecognized components
(30, 81). A recent study on the well-characterized tumor necrosis factor alpha
signaling pathway identified 10 new modulators that had not been discovered
by the biochemical and cell physiological studies (21). It would be best if the
emerging high-throughput genome-wide approaches were coupled with smaller
scale functional studies to yield precise definitions of components and interactions.

At a qualitative level, to define large networks the two approaches used most of-
ten are the identification of interactions by yeast two-hybrid screens (40, 51, 59, 68,
120) and the isolation of complexes followed by mass spectrometric identification
of components. The latter approach is also capable of identifying posttranslational
modifications and hence can provide additional information about the regulatory
status of components. A major limitation of both approaches is that they provide
no information about directionality of interactions, and such information must be
obtained from functional studies. Another popular approach for large-scale data
gathering is the use of microarrays to profile mRNA levels under varying condi-
tions (54). Although such datasets do provide useful signatures for disease states
(91) and the treatment outcomes (70), it appears unlikely that microarray data can
be useful in developing quantitative models of cell function. The major problem
lies in the lack of information regarding how levels of mRNA correlate with pro-
tein concentration. A recent study explicitly analyzing such correlation found that
only about 40% of the mRNA and corresponding protein levels correlated well
(107). It may be necessary to obtain reliable measurements of the various levels
of proteins individually albeit in high throughput.
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To develop quantitative models, we need several types of parameters. These
include concentrations of components, both global as well as local, so that con-
centrations are always correlated with spatial localization. Global concentrations
may be obtained by biochemical approaches such as quantitative immunoblotting,
whereas local concentrations can be obtained only by microscopy, ideally by live-
cell imaging. We also need to obtain reaction rates for various reactions and the
overall enzymatic rates. This must be done one reaction at a time, but if we are
to gather such kinetic parameters for thousands of interactions, technology devel-
opment is needed to obtain these measurements in a high throughput. Currently,
most of the kinetic parameters come from biochemical characterization experi-
ments, which have been conducted under a variety of conditions. It will be useful
to achieve some level of standardization so that we can obtain kinetic parameters
under similar conditions.

The requirement for both qualitative and quantitative data for mammalian cellu-
lar networks is matched by the requirement for appropriate databases to store these
parameters and interactions and to allow for the assembly of reactions and models
for both qualitative and quantitative analysis. Several potentially useful projects
to develop databases for computation of models are currently underway. A list of
freely accessible databases for both mammalian and nonmammalian systems is
provided in Table 1. Campagne et al. (25) have begun to develop a quantitative
database in which reactions of modules can be assembled and exported to sim-
ulation software for numerical computation. Such quantitative databases would
have to be fully integrated with genomic and proteomic databases. Eventually,
the development of a database that has the best features of many of the current
databases would be ideal. Such a database should link all the known genomic,
structural, and other qualitative information of each component to its quantitative
characteristics in specified cell types. Interactions should be described in terms
of directionality, location, and context for regulatory behavior. To achieve these
types of characterization, we need to develop a common vocabulary for database
entries. The SBML project (50) is an initial step toward the goal of developing a
common vocabulary and exchangeable models.

DEVELOPING PREDICTIVE MODELS

Ultimately our goal is to obtain detailed models of a mammalian cell such that
we can understand and predict its behavior as it encounters a variety of external
stimuli and undergoes internal changes. Such predictions at a high level would
not only describe the various functions that result in the cellular phenotype, but
also explain how variants of the same cell with somewhat different genotypes
resulting from single-nucleotide polymorphisms can yield differing responses to
the same stimuli. In predicting the trajectory of a cell through its life, we should
be able to predict the limits of its tolerance to perturbation and the mechanisms by
which catastrophic failures can occur. Such models would be similar to detailed
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engineering models of passenger jets that are now designed and initially analyzed
for performance solely on computers. However, models of cells are likely to be
more complicated owing to the turnover of components on a regular basis (116).
This situation is akin to the passenger jet having the rivets on the wings replaced
at timed intervals during flight. Does such complexity make the development
of detailed models unrealistic? Current progress suggests that development of
such models is indeed feasible. Much of the noise and fluctuations seen at the
most detailed level of organization are often smoothed out as higher orders of
organization arise, producing overall robustness of behavior. For this reason it is
useful to start with a top-down approach and identify the motifs and modules in
the cellular network. This should yield the broad overview without the details
of the functional characteristics of each module. This overview description can
then be used to drill-down to develop and analyze differential equation-based
models to define the input-output (I/O) relationships. These modules can then be
reassembled to obtain a large-scale model that describes the cell as a whole. The
proposed approach is schematically summarized in Figure 5 and is undoubtedly
simplistic. For example, the term experiment covers a vast area. There are many
technical challenges we need to overcome in gathering the data needed to construct

i Qualitative analysis
Experiments (graph theory)

Identify and assemble > Identify regulatory motifs
large-scale network and modules

A 4 Yy

Reassemble the Determine 1/0
modules to create a relationships for modules
large-scale predictive @ | by simulations using

model kinetic parameters

: :

|
Quantitative analysis (biochemical computation)

Figure 5 An integrative approach for the development of predictive
models.



4 Feb 2005 13:20 AR AR243-BB34-14.tex XMLPublishSM(2004/02/24) PI: JRX
AR REVIEWS IN ADVANCEI10.1146/annurev.biophys.34.040204.144415

344 MA’AYAN ® BLITZER ® [YENGAR

qualitative interaction maps for whole cells, as well as to constrain and validate the
quantitative models. There are considerable challenges at the level of modeling
as well. As we assemble modules that have been modeled in detail, the higher
order models should capture not only the balance of activity between modules, but
also the reach-through capability of key components within modules. This type
of analysis, although challenging, should be rewarding, because it is through the
assembly of the modules that we will identify the core design principles of a cell.
Such a design may include a definition of intrinsic uncertainty whereby there are
limits in our ability to predict cellular behavior, even when we know all the parts
and interactions. These limits can be discovered only through building and testing
models.
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Figure 2 Qualitative representation of networks. (a) Components are identified by cloning
of genes and/or purification of proteins and assigned function. Components with different
functions are color coded and labeled alphabetically. Numbers identify individual compo-
nents in a class. (b) Type I representation: The network is represented as an undirected
graph. (c) Type II representation: The network is represented as a directed graph. The
nature of the binary interactions is specified: activation in green, inhibition in red, and neu-
tral in blue. Neutral interactions often indicate binding to scaffold and anchor proteins.
(d) Type III representation: Both states of the nodes and weights of the connections are
specified. The different states of the components are labeled by a second digit. Specifying
the state of the nodes also leads to differential connectivity, and connectivity of differing
strengths is specified by line thickness. (e) Type IV representation: Spatial information is
included. The same components are in different compartments, where they have different
connectivity. Double-sided arrows indicate the ability of the components to move between
compartments.



