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1. Introduction 

Several technical problems stand in the way of shared, reusable knowledge-based 
software.  Like conventional applications, knowledge-based systems are based on 
heterogeneous hardware platforms, programming languages, and network protocols.  
However, knowledge-based systems pose special requirements for interoperability.  Such 
systems operate on and communicate using statements in a formal knowledge 
representation.  They ask queries and give answers.  They take “background knowledge” 
as an input.  And as agents in a distributed AI environment, they negotiate and exchange 
knowledge.  For such knowledge-level communication, we need conventions at three 
levels: representation language format, agent communication protocol, and specification 
of the content of shared knowledge.  Proposals for standard knowledge representation 
formats (Fulton, 1992; Genesereth & Fikes, 1992; Morik, Causse, & Boswell, 1991)  and 
agent communication languages (Finin et al., 1992)  are independent of the content of 
knowledge being exchanged or communicated.  For establishing agreements about 
knowledge, such as shared assumptions and models of the world, ontologies can play a 
software specification role (Gruber, 1991).  

Current research is exploring the use of formal ontologies for specifying content-
specific agreements for a variety of knowledge-sharing activities (Allen & Lehrer, 1992; 
Cutkosky et al., 1993; Fikes, Cutkosky, Gruber, & van Baalen, 1991; Genesereth, 1992; 
Gruber, Tenenbaum, & Weber, 1992; Neches et al., 1991; Patil et al., 1992; Walther, 
Eriksson, & Musen, 1992).  A long-term objective of such work is to enable libraries of 
reusable knowledge components and knowledge-based services that can be invoked over 
networks. We believe the success of these efforts depends on the development of an 
engineering discipline for ontology design, akin to software engineering for conventional 
software.   

This paper is an analysis of design requirements for shared ontologies and a proposal 
for design criteria to guide the development of ontologies for knowledge-sharing 
purposes. Section 2 describes a usage model for ontologies in knowledge sharing.  
Section 3 proposes some design criteria based on the requirements of this usage model. 
Section 4 shows how these criteria are applied in ontologies designed explicitly for the 
purpose of knowledge sharing. 

2. Ontologies as a specification mechanism 

A body of formally represented knowledge is based on a conceptualization: the objects, 
concepts, and other entities that are assumed to exist in some area of interest and the 
relationships that hold among them (Genesereth & Nilsson, 1987).  A conceptualization 
is an abstract, simplified view of the world that we wish to represent for some purpose.  
Every knowledge base, knowledge-based system, or knowledge-level agent is committed 
to some conceptualization, explicitly or implicitly. 

An ontology is an explicit specification of a conceptualization. The term is borrowed 
from philosophy, where an Ontology is a systematic account of Existence.  For AI 
systems, what “exists” is that which can be represented. When the knowledge of a 
domain is represented in a declarative formalism, the set of objects that can be 
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represented is called the universe of discourse.  This set of objects, and the describable 
relationships among them, are reflected in the representational vocabulary with which a 
knowledge-based program represents knowledge.  Thus, in the context of AI, we can 
describe the ontology of a program by defining a set of representational terms.  In such an 
ontology, definitions associate the names of entities in the universe of discourse (e.g., 
classes, relations, functions, or other objects) with human-readable text describing what 
the names mean, and formal axioms that constrain the interpretation and well-formed use 
of these terms.  Formally, an ontology is the statement of a logical theory.1 

We use common ontologies to describe ontological commitments for a set of agents 
so that they can communicate about a domain of discourse without necessarily operating 
on a globally shared theory.   We say that an agent commits to an ontology if its 
observable actions are consistent with the definitions in the ontology.  The idea of 
ontological commitments is based on the Knowledge-Level perspective (Newell, 1982).  
The Knowledge Level is a level of description of the knowledge of an agent that is 
independent of the symbol-level representation used internally by the agent.  Knowledge 
is attributed to agents by observing their actions; an agent “knows” something if it acts as 
if it had the information and is acting rationally to achieve its goals.  The “actions” of 
agents—including knowledge base servers and knowledge-based systems—can be seen 
through a tell and ask functional interface (Levesque, 1984), where a client interacts with 
an agent by making logical assertions (tell), and posing queries (ask). 

Pragmatically, a common ontology defines the vocabulary with which queries and 
assertions are exchanged among agents.  Ontological commitments are agreements to use 
the shared vocabulary in a coherent and consistent manner.  The agents sharing a 
vocabulary need not share a knowledge base; each knows things the other does not, and 
an agent that commits to an ontology is not required to answer all queries that can be 
formulated in the shared vocabulary.      

In short, a commitment to a common ontology is a guarantee of consistency, but not 
completeness, with respect to queries and assertions using the vocabulary defined in the 
ontology. 

3. Design criteria for ontologies 

Formal ontologies are designed.  When we choose how to represent something in an 
ontology, we are making design decisions.  To guide and evaluate our designs, we need 
objective criteria that are founded on the purpose of the resulting artifact, rather than 
based on a priori notions of naturalness or Truth.  Here we propose a preliminary set of 
design criteria for ontologies whose purpose is knowledge sharing and interoperation 
among programs based on a shared conceptualization. 

1. Clarity: An ontology should effectively communicate the intended meaning of 
defined terms.  Definitions should be objective.  While the motivation for defining a 

                                                 
1Ontologies are  often equated with taxonomic hierarchies of classes, but class definitions, and the 
subsumption relation, but ontologies need not be limited to these forms.  Ontologies are also  not limited to 
conservative definitions, that is, definitions in the traditional logic sense that only introduce terminology 
and do not add any knowledge about the world (Enderton, 1972) . To specify a conceptualization one 
needs to state axioms that do constrain the possible interpretations for the defined terms.  
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concept might arise from social situations or computational requirements, the 
definition should be independent of social or computational context.  Formalism is 
a means to this end. When a definition can be stated in logical axioms, it should be. 
Where possible, a complete definition (a predicate defined by necessary and 
sufficient conditions) is preferred over a partial definition (defined by only 
necessary or sufficient conditions).  All definitions should be documented with 
natural language. 

2. Coherence: An ontology should be coherent: that is, it should sanction inferences 
that are consistent with the definitions.  At the least, the defining axioms should be 
logically consistent.  Coherence should also apply to the concepts that are defined 
informally, such as those described in natural language documentation and 
examples.  If a sentence that can be inferred from the axioms contradicts a 
definition or example given informally, then the ontology is incoherent. 

3. Extendibility: An ontology should be designed to anticipate the uses of the shared 
vocabulary. It should offer a conceptual foundation for a range of anticipated tasks, 
and the representation should be crafted so that one can extend and specialize the 
ontology monotonically.  In other words, one should be able to define new terms for 
special uses based on the existing vocabulary, in a way that does not require the 
revision of the existing definitions. 

4. Minimal encoding bias: The conceptualization should be specified at the 
knowledge level without depending on a particular symbol-level encoding.  An 
encoding bias results when a representation choices are made purely for the 
convenience of notation or implementation. Encoding bias should be minimized, 
because knowledge-sharing agents may be implemented in different representation 
systems and styles of representation. 

5. Minimal ontological commitment: An ontology should require the minimal 
ontological commitment sufficient to support the intended knowledge sharing 
activities.  An ontology should make as few claims as possible about the world 
being modeled, allowing the parties committed to the ontology freedom to 
specialize and instantiate the ontology as needed.  Since ontological commitment is 
based on consistent use of vocabulary, ontological commitment can be minimized 
by specifying the weakest theory (allowing the most models) and defining only 
those terms that are essential to the communication of knowledge consistent with 
that theory.2 

Tradeoffs 
Ontology design, like most design problems, will require making tradeoffs among the 
criteria.  However, the criteria are not inherently at odds.  For example, in the interest of 
clarity, definitions should restrict the possible interpretations of terms.  Minimizing 
ontological commitment, however, means specifying a weak theory, admitting many 

                                                 
2An ontology serves a different purpose than a knowledge base, and therefore a different notion of 
representational adequacy (McCarthy & Hayes, 1969)  applies.  A shared ontology need only describe a 
vocabulary for talking about a domain, whereas a knowledge base may include the knowledge needed to 
solve a problem or answer arbitrary queries about a domain. 

 3



possible models.  These two goals are not in opposition.  The clarity criterion talks about 
definitions of terms, whereas ontological commitment is about the conceptualization 
being described.  Having decided that a distinction is worth making, one should give the 
tightest possible definition of it. 

Another apparent contradiction is between extendibility and ontological 
commitment.  An ontology that anticipates a range of tasks need not include vocabulary 
sufficient to express all the knowledge relevant to those tasks (requiring an increased 
commitment to that larger vocabulary). An extensible ontology may specify a very 
general theory, but include the representational machinery to define the required 
specializations.   

Extendibility and ontological commitment both include a notion of sufficiency or 
adequacy.  Since an ontology serves a different purpose than a knowledge base, the 
concept of representational adequacy (McCarthy & Hayes, 1969) differs.  A shared 
ontology need only describe a vocabulary for talking about a domain, whereas a 
knowledge base may include the knowledge needed to solve a problem or answer 
arbitrary queries about a domain.   

To see how these abstract criteria can be used guide ontology design, we will 
consider two case studies.  In each, we will discuss selected design decisions, evaluating 
alternative representation choices against the proposed criteria.  

4. Case studies in ontology design 

In this section we discuss the design of two ontologies.  In conventional data modeling, 
one would define ontologies with data-type declarations or a database schema.  Since we 
wish to write knowledge-level specifications, independent of particular data or 
programming languages, we use the knowledge interchange format KIF (Genesereth & 
Fikes, 1992)3  Each ontology defines a set of classes, relations, functions, and object 
constants for some domain of discourse, and includes an axiomatization to constrain the 
interpretation.  The resulting language (the basic logic from KIF + the vocabulary and 
theory from the ontologies) is a domain-specific specification of a conceptualization. 

4.1 A quick overview of KIF 
KIF is a prefix notation for predicate calculus with functional terms and equality.  Free 
variables, which start with the prefix ?, are universally quantified.  Material implication 
is indicated with the =>, <=, and <=> operators.  Equality between terms is denoted by the 
= relation.  The member relation indicates set-membership, and setof is the set 
construction operator.  Relations are first-class objects in the universe of discourse, 
defined as sets of tuples.  Relations are denoted by constants that serve as both predicate 
symbols and as terms denoting the relations as objects.  Functions are a special case of 
relations, where a function of N arguments is equivalent to a relation of N+1 arguments 
whose last argument is the value of the function on the first N arguments.  Classes are 
represented with unary relations.  For example, the sentence (C ?q) means ?q is an 

                                                 
3To support development, we used a set of KIF-based analysis and translation tools provided by the 
Ontolingua system (Gruber, 1992; Gruber, 1993) . 
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instance of the class C.  Definitions are given by the KIF definitional operators 
defrelation, deffunction, and defobject, which associate a relation, function, or 
object constant with the set of axioms that follow.  In the style of Lisp syntax, case is not 
significant in constants and the text following a semicolon on the same line is ignored. 

4.2 Case 1: Physical quantities, units of measure, and algebra for 
engineering models 

In the first case study, we consider the problem of representing mathematical models of 
engineered systems.  Engineers use mathematical models, such as sets of equations, to 
analyze the behavior of physical systems.  The conventional notations for formatting 
mathematical expressions in textbooks and the engineering literature usually implicit 
many of the details required to understand the equations.  For instance, it is not clear 
from the expression f = kx+c which symbols are variables or constants; whether they 
represent numbers or quantities (e.g., forces, lengths); whether the numbers are reals or 
vectors; whether the quantities are static values, functions of time, or functions of time 
and space; and the units of measure assumed.  The reader must interpret these notations 
using background knowledge and context.   

To build libraries of reusable engineering models, it is important to have a notation 
based on a formal language with a well-defined, context-independent interpretation.  For 
this purpose, Greg Olsen and I have developed a family of formal ontologies for 
engineering modeling.  Our goal was to define the vocabulary and conceptual foundation 
necessary for sharing mathematical models of device behavior among computer 
programs.  These ontologies can then be used as a language for communication among 
engineering tools in a distributed, heterogeneous environment (Gruber, Tenenbaum, & 
Weber, 1992; McGuire et al., 1992). 

The most important concepts in the ontologies are physical-quantity (e.g., 3 meters, 
80 kilometers/hour), physical-dimension (length, length/time), unit-of-measure (meters, 
kilometers/hour), magnitudes of various orders (scalars, vectors, tensors, and functions 
thereof), algebras for describing mathematical constraints (e.g., operators for products, 
sums, exponentiations, and derivatives), and the concepts at a metalinguistic level to 
describe mathematical expressions as objects in the universe of discourse (e.g., to reason 
about whether an expression is in closed form or to describe the dependent variables in 
system of equations). 

We now focus on the representation of physical quantities in engineering models.  
Engineers often use the word “quantity” to refer to both the thing-in-the-world, such as 
the length of some segment of railway track (about 3 meters), and the thing-in-the-
equation, such as the parameter X in an equation model denoting the position of a car 
along the track.  In the engineering ontologies, we distinguish these two notions.  A 
physical-quantity is the extent of some property in the world independent of how it is 
represented or measured (e.g., the length that is 3 meters long).  The symbol X is an 
expression that denotes a physical quantity.  A representation of X is at the metalinguistic 
level, where parameters and equations in an engineering model are treated as special 
cases of terms and sentences in the logic.  The treatment of the metalinguistic level is 
beyond the scope of this paper, so we will concentrate on the object level representation 
of physical-quantity. 
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Version 1 
Consider a straw-man proposal, which we will criticize and revise.   We will start with a 
straightforward definition of a physical quantity: a pair comprising a number and a unit 
of measure.  The KIF form below defines a physical-quantity as an object consisting 
of a magnitude and a unit, which are given by the unary functions quantity.magnitude 
and quantity.unit.  The definition says that the magnitude of a physical quantity must 
exist4 and be of type double-float and its unit must be a member of the standard set of 
units.  These constraints are analogous to slot value restrictions in object-centered 
languages.  Since the definition is an if-and-only-if (<=>) condition, it also says that every 
pair of such magnitudes and units defines a quantity. 

(defrelation PHYSICAL-QUANTITY 
  (<=> (PHYSICAL-QUANTITY ?q) 
       (and (defined (quantity.magnitude ?q)) 
            (double-float (quantity.magnitude ?q)) 
            (defined (quantity.unit ?q)) 
            (member (quantity.unit ?q) 
                    (setof meter second kilogram 
                           ampere kelvin mole candela))) 

Physical-quantity is a class (i.e., a unary relation that holds over instances of the 
class).  For describing individual instances of the class, we define a constructor function 
called the-quantity.  The term expression (the-quantity ?m ?u) denotes a physical 
quantity ?q whose magnitude is ?m and unit is ?u. 

(deffunction THE-QUANTITY 
  (<=> (and (defined (THE-QUANTITY ?m ?u)) 
            (= (THE-QUANTITY ?m ?u) ?q))   
       (and (physical-quantity ?q)           
            (= (quantity.magnitude ?q) ?m)    
            (= (quantity.unit ?q) ?u)))) 

The definition of physical-quantity already stated that all quantities are determined by 
the values of their magnitudes and units; this definition simply adds vocabulary to be able 
to denote a specific quantity with a term.  For example, the following states that X is the 
quantity 3 meters, where meter is one of the possible units of measure. 

(= X (the-quantity 3 meter)) 

Analysis 
Our original proposal satisfies some of the design criteria for ontologies.  The definition 
of physical-quantity is specified declaratively—its meaning is independent of any 
program. It is internally consistent, and simple enough to be clear.  However, it falls short 
on some of the other criteria.  First, the double-float constraint, while familiar to data 
definitions, is a specification of the precision of the encoding of numbers rather than the 
concept of physical quantities.  This is an instance of encoding bias because it reflects an 
implementation detail (bits of precision) rather than the knowledge-level commitments of 

                                                 
4In KIF, functions may be partial (only defined for some arguments).  The predicate defined is used to 
indicate that a function has a value for a particular sequence of arguments.  In relational terminology,  
(defined (f x)) implies that there exists a y such that, for the function F viewed as a binary relation, 
F(x, y) holds.  In slot-value terminology, it means that slot f has exactly one value on object x. 
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parties to the ontology.  It would be better to say that the magnitude of such a quantity is 
a real number, acknowledging that all computer programs must approximate the reals.5 

Second, the concept of units of measure is defined as a set of possible values for the 
quantity.unit function.  This is also a specification of the encoding rather than the 
world, although it is not as obvious as the double-float vs. real-number example.  What 
we mean by physical quantity does not depend on a commitment to a particular set of 
units.  Therefore, the set of possible units should not be part of the definition of physical-
quantity.  

Third, fixing the set of possible units is a limit on extendibility.  The world has 
many standards for units of measure, and the purposes of this ontology (sharing 
engineering models and theories across people, domains, and tools) do not sanction a 
preference for one standard.  Therefore, the ontology should allow for the definition of 
alternate sets of units, and a way to relate them to existing units. 

Version 2 
Consider how we could modify the initial proposal to remove these inadequacies.  First, 
we can reformulate the definition of physical-quantity so that the concepts of magnitude 
and unit of measure are made explicit as independent classes, magnitude and unit-of-
measure. 

(defrelation PHYSICAL-QUANTITY 
  (<=> (PHYSICAL-QUANTITY ?q) 
       (and (defined (quantity.magnitude ?q)) 
            (magnitude (quantity.magnitude ?q)) 
            (defined (quantity.unit ?q)) 
            (unit-of-measure (quantity.unit ?q)))))) 

Now we can define the class magnitude to include the class of all real  numbers, 
rather than the class of numbers encodable in floating point format.  The class real-
number comes from KIF’s number ontology. 

(defrelation MAGNITUDE 
  (<= (MAGNITUDE ?x) 
      (real-number ?x))) 

Note that the definition above is incomplete.  A complete definition of a relation 
includes necessary and sufficient conditions for the relation to hold.  The definition above 
gives sufficient conditions for being a member of the class—that all real numbers are 
magnitudes—but not necessary conditions.  This is done in anticipation that there will be 
other sorts of magnitudes in engineering models.   

The complete family of engineering math ontologies includes separate theories for 
vector and tensor quantities.  These specialized theories inherit from parent theories all 
the above axioms about quantities and magnitudes, and add axioms stating that vectors 
and tensors are also magnitudes.  

Decoupling the ontologies in this way helps to minimize ontological commitment.  
An agent can commit to the basic theory of real-valued quantities without any 
                                                 
5For sharing knowledge about discrete approximation, such as theories of error bounds on numeric 
computation, axioms about precision could be written without encoding bias. 
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commitment to higher order magnitudes.  The rationale for minimizing commitment is 
the assumption that greater commitment implies a more complex agent. 

To accommodate alternate sets of units, we define a class for units of measure, and 
provide vocabulary with which to define new units.  We start with a class called unit-
of-measure, which is a primitive.6 

(defrelation UNIT-OF-MEASURE 
  (class UNIT-OF-MEASURE)) 

To allow the user to extend the set of units we define a basis set called basic-unit 
(a subclass of unit-of-measure) and operators called unit* and unit^ for building new 
units from existing ones. Unit* is analogous to multiplication and unit^ is analogous to 
exponentiation to a real power.7   In an engineering equation, if two quantities are 
multiplied, their product can be expressed as the quantity whose magnitude is the 
arithmetic product of the magnitudes of the quantities and whose unit of measure is the 
unit* of the units of the two quantities.  The analogous relationship holds for 
exponentiation, which introduces division through negative exponents. 

(defrelation BASIC-UNIT 
  (=> (BASIC-UNIT ?u)         ; basic units are distinguished 
      (unit-of-measure ?u)))  ; units of measure 

(deffunction UNIT* 
  ; Unit* maps all pairs of units to units 
  (=> (and (unit-of-measure ?u1)     
           (unit-of-measure ?u2)) 
      (and (defined (UNIT* ?u1 ?u2)) 
           (unit-of-measure (UNIT* ?u1 ?u2)))) 
  ; It is commutative   
  (= (UNIT* ?u1 ?u2) (UNIT* ?u2 ?u1)) 
  ; It is associative 
  (= (UNIT* ?u1 (UNIT* ?u2 ?u3)) 
     (UNIT* (UNIT* ?u1 ?u2) ?u3)))            

                                                 
6A primitive term is one for which we are not able to give a complete axiomatic definition.  We must rely 
on textual documentation and a background of knowledge shared with the reader to convey the meanings 
of primitives.  Technically, all terms with incomplete definitions are primitives.  Some, like magnitude 
can be strengthened with further conditions to become complete (e.g., magnitude could be made 
equivalent to real-number).  Others, like unit-of-measure, must get their meaning from human 
interpretation (the meter is a unit of measure purely by convention). 
7In a later revision of the physical quantities theory, we defined units as special cases of quantities.  We 
also included real numbers as quantities with an identity dimension.  Since quantities became a 
generalization of numbers, we extended KIF’s * and expt functions with polymorphic definitions for 
each subclass of quantities, including units of measure. This allowed us to eliminate unit* and unit^, 
and substitute * and expt throughout. In this formulation, the-quantity reduces to *. 
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(deffunction UNIT^ 
  ; Unit^  maps all units and reals to units 
  (=> (and (unit-of-measure ?u)     
           (real-number ?r)) 
      (and (defined (UNIT^ ?u ?r)) 
           (unit-of-measure (UNIT^ ?u ?r)))) 
  ; It has the algebraic properties of exponentiation 
  (= (UNIT^ ?u 1) ?u) 
  (= (unit* (UNIT^ ?u ?r1) (UNIT^ ?u ?r2)) 
     (UNIT^ ?u (+ ?r1 ?r2))) 
  (= (UNIT^ (unit* ?u1 ?u2) ?r) 
     (unit* (UNIT^ ?u1 ?r) (UNIT^ ?u2 ?r))) 

For example, one can define meters as a basic-unit for length and seconds as a basic unit 
for time.  We then define a unit for velocity called meters/second using the combination 
operators.  We can use this new unit to denote a specific quantity of velocity. 

(defobject METER 
  (basic-unit METER)) 

(defobject SECOND 
  (basic-unit SECOND)) 

(defobject METER/SECOND 
  (= METER/SECOND 
     (unit* meter (unit^ second -1)))) 

(= REAL-FAST (the-quantity 10000 meter/second)) 

Analysis of Version 2 
This new axiomatization of quantities, magnitudes, and units is extensible, but it turns out 
to be incoherent.  Six feet and two yards are both descriptions of the same length, but if 
we use the definition above for physical quantities, treating them as pairs of magnitudes 
and units, then <6 feet> and <2 yards> are not the same quantity!  This is easily proved:  
If 

 (= (quantity.unit (the-quantity 6 foot)) foot) 
 (= (quantity.unit (the-quantity 2 yard) yard) 

and  
(not (= foot yard)) 

then 
(not (= (the-quantity 6 foot) (the-quantity 2 yard))). 

This conclusion is consistent with (and follows from) the axiomatic definitions.  
However, in our conceptualization, these quantities are lengths in the world, independent 
of how they are measured.  Thus 6 feet and 2 yards should be equal, and our proof has 
revealed a problem.  If the representation allows one to infer something that is not true in 
the conceptualization then the ontology is incoherent.8 

Version 3 

                                                 
8Of course we have no means of mechanically verifying coherence with the conceptualization.  We do 
have means of deriving consequences of the axioms, which we must interpret with respect to the intended 
conceptualization. 
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The original representation for quantities as aggregates with magnitude and unit 
components reflects a style encouraged by object-oriented data modeling techniques.  
Objects are entities whose state is given by instance variables or methods.  One can 
imagine implementing quantities as tuples of numbers and units.  But in this domain, this 
image led us astray.  If we abstract away from the implementation, we can solve the 
problem of equivalent quantities by changing the definitions of the functions that relate 
quantities to magnitudes and units.  In the next version, we say that the magnitude of a 
quantity depends on the unit in which it is requested.  This dependency is reflected in the 
definition below, in which quantity.magnitude becomes a binary function that maps 
quantities and units to magnitudes. With this definition, we avoid the incoherence; it is 
possible for two quantities specified in different units to be equal. 

(deffunction QUANTITY.MAGNITUDE 
  (=> (and (defined (QUANTITY.MAGNITUDE ?q ?u)) 
           (= (QUANTITY.MAGNITUDE ?q ?u) ?m)) 
      (and (physical-quantity ?q) 
           (unit-of-measure ?u) 
           (magnitude ?m)))) 

So far we have provided a formal mechanism to describe new units and physical 
quantities, but have not said enough about the semantics of quantities with respect to 
units and other quantities.  This is an issue of clarity.  Can any combination of quantities 
be compared on magnitudes, or added?  Which units make sense for which quantities?  
How is 1000 meter/second like 1 mile/hour but unlike 6 meters?  The missing link is the 
notion of physical dimension.  Length, time, and velocity are physical dimensions.  Both 
units and physical quantities are associated with physical dimensions, and the units used 
to specify a quantity must be of the same dimension as the quantity.  Only quantities of 
the same dimension can be added or compared. 

We can define a primitive class called physical-dimension (e.g., length, velocity), 
and say that a unit-of-measure must be associated with a single physical dimension.  The 
definition of unit-of-measure below states the latter constraint with a total functional 
mapping (via the function unit.dimension) from units to physical dimensions. 

(defrelation PHYSICAL-DIMENSION 
  (class PHYSICAL-DIMENSION)) 

(defrelation UNIT-OF-MEASURE 
  (=> (UNIT-OF-MEASURE ?u) 
      (and (defined (unit.dimension ?u)) 
           (physical-dimension (unit.dimension ?u))))) 

Similarly, we can define the function quantity.dimension mapping all quantities to 
their dimensions. 

(deffunction QUANTITY.DIMENSION 
  (=> (physical-quantity ?q) 
      (and (defined (QUANTITY.DIMENSION ?q)) 
           (physical-dimension (QUANTITY.DIMENSION ?q))))) 

We now have a notion of “compatibility” among quantities and units (i.e., equal 
dimensions).  We can specify this by strengthening the definition of the function 
quantity.magnitude, adding the constraint (underlined below) that the dimensions of 
the quantity and unit must be the same. 
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(deffunction QUANTITY.MAGNITUDE 
  (=> (and (defined (QUANTITY.MAGNITUDE ?q ?u)) 
           (= (QUANTITY.MAGNITUDE ?q ?u) ?m)) 
      (and (physical-quantity ?q) 
           (unit-of-measure ?u) 
           (magnitude ?m) 
           (= (quantity.dimension ?q) 
              (unit.dimension ?u))))) 

By introducing the concept of physical dimension, we have been able to add more 
axiomatic constraints to the definitions (increasing clarity) without changing the 
ontological commitment.  It doesn't make any sense to ask for the magnitude of a length 
in seconds; these constraints just make this understanding explicit. 

One final extension of the ontology does increase the ontological commitment, but is 
consistent with the existing definitions and makes the theory more useful for sharing 
engineering models.  In the extension, we say that the magnitudes of any two quantities 
of the same dimension can be compared, regardless of the units in which they were 
originally specified.  We can state this formally by making the function 
quantity.magnitude total for all quantities and units of the same dimension, adding 
another axiom to the definition of quantity.magnitude. 

(deffunction QUANTITY.MAGNITUDE 
  (=> (and (defined (QUANTITY.MAGNITUDE ?q ?u)) 
           (= (QUANTITY.MAGNITUDE ?q ?u) ?m)) 
      (and (physical-quantity ?q) 
           (unit-of-measure ?u) 
           (magnitude ?m) 
           (= (quantity.dimension ?q) 
              (unit.dimension ?u))))) 
  (=> (and (quantity ?q) 
           (unit-of-measure ?u) 
           (= (quantity.dimension  ?q) 
              (unit.dimension ?u))) 
      (defined (QUANTITY.MAGNITUDE ?q ?u))) 

Without this axiom, the definition of quantity.magnitude only stipulates necessary 
conditions—domain and range constraints that must hold whenever the function is 
defined.  

The practical consequence of this commitment is that unit conversion is now 
possible.  Given any quantity ?q, originally specified in unit ?u, there is a magnitude ?m = 
(quantity.magnitude ?q ?m). From the previous axiom, for any other unit ?u2 of the 
same dimension we can expect there to exist a magnitude ?m2 = (quantity.magnitude 
?q ?u2).  Thus, quantity.magnitude provides the vocabulary for unit conversion. 

Based on this ontology, Yves Peligry of the Stanford Knowledge Systems Lab has 
written an agent that can perform unit conversion operations.  It commits to the physical 
quantities ontology, and answers queries in KIF using the vocabulary from the ontology.  
It gets its information about the dimensions and relative magnitudes of various units by 
reading other ontologies containing unit definitions.  The unit ontologies describe 
systems of units in which some dimensions are fundamental, with standard units, and the 
rest are composed using multiplication and exponentiation operators.  For example, one 
such ontology specifies the standard SI system of units (Halliday & Resnick, 1978).  
Given such an ontology, the agent can determine whether the provided unit definitions 
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are sufficient to compute the magnitude of any quantity given in one unit in terms of 
another.  Then, given a query of the form 

(evaluate (quantity.magnitude quantity-expression unit-expression)) 

the agent can return the appropriate magnitude. 

This is an example of using an ontology for agent interoperation.  The ontology 
provides the vocabulary from which to construct such queries, and the semantics so that 
two agents can agree on what makes sense in a given vocabulary.  In this case, the agents 
can agree about which quantity expressions and term expressions denote quantities and 
units, and when they are given as arguments to the quantity.magnitude function, that 
the magnitude exists.  These agreements establish a basis for agent discourse. 

Separating the core ontology about quantities and units from the specific 
conventions for systems of units minimizes the ontological commitment of participating 
agents.  While they all need to commit to the core theory, they can commit to differing 
standards of measure.  Since commitment to an ontology does not require completeness 
of inference, agents can “understand” the conditions under which a value exists (e.g., a 
magnitude in some unknown unit) without knowing how to compute the value.  This 
makes it possible to capitalize on the services of “mediator” agents (Wiederhold, 1992) to 
translate between agents.  In this case, the mediator is the unit conversion agent. 

Summary of Case 1 
We have seen how a formal ontology for engineering models can be designed with 
respect to the general design criteria we outlined in the Section 3.  Criterion 1 asks for 
clarity.  In the engineering math ontologies, clarity is achieved from a formal 
axiomatization, which forced us to make explicit the distinctions and assumptions that 
are often left ambiguous in textbook notations.  Since the resulting ontology is machine 
interpretable, the “reader” can use a theorem prover to help answer the kinds of questions 
one finds at the end of textbook chapters (questions that probe the student’s 
understanding of the defined concepts).  The second criterion, coherence, guided the 
design of the ontology throughout.  In the case study we found that the definitions in an 
early version implied a conclusion that was inconsistent with our conceptualization 
(equivalent quantities expressed in different units were not equal).  Criterion 3, 
extendibility, also suggested a design change: instead of fixing a set of units, we added 
vocabulary to define new units and dimensions, and to allow for quantities to be 
expressed in any compatible unit.  We saw an instance of encoding bias (criterion 4) in 
the assumption about the precision of magnitudes.  To help minimize ontological 
commitment (criterion 5) we decomposed a comprehensive theory of engineering 
mathematics into modular theories, so that agents that who could reason about scalar 
quantities but not higher-order magnitudes, or agents that work in different standard 
units, could commit to the smallest theory needed to share models with other agents. 

We will now consider a domain in which the application of the same design criteria 
leads to different choices in the representation. 

4.3 Case 2: An ontology for sharing bibliographic data 
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The second case study involves an ontology for sharing bibliographic data, such as the 
information in a library's card catalog and the reference list at the end of a scholarly 
paper. This example will clarify some of the design issues relating ontologies and shared 
data. 

The bibliography ontology is designed to facilitate automatic translation among 
existing bibliographic databases, to support the specification of reference-formatting 
styles independently of database or program, and to provide a knowledge-level 
vocabulary for interacting with network-based services such as bibliography database 
search. 

Any such ontology describes a conceptualization, a view of a world from a particular 
perspective.  In this ontology, the world includes information.  We say that a 
bibliography is made up of references.  A reference contains the information needed to 
identify and retrieve a publication.  References contain data about publications; 
references are not the publications themselves.  Documents  are the things created by 
authors that can be read, viewed, listened to, etc.  Books and journals are documents.  
There may be references for several publications per document, as in edited collections. 
Documents are created by authors, who are people or other agents.  Documents are 
published by publishers at publication dates, which are time points.  Authors and 
publishers have names, which are strings. 

The bibliography ontology defines a class for each of the concepts italicized above.  
For example, bibliographic references are represented by instances of the class called 
reference. The definition of this class includes the necessary condition that a reference 
be associated with a document and a title.  The document associated with a reference is 
represented by the ref.document function and the title with ref.title.   

(defrelation REFERENCE 
; A bibliographic reference is a description of some publication 
; that uniquely identifies it, providing the information needed 
; to retrieve the associated document.  A reference is 
distinguished... 
  (=> (REFERENCE ?ref) 
      (and (defined (ref.document ?ref)) 
           (defined (ref.title ?ref))))) 

(deffunction REF.DOCUMENT 
; ref.document maps references to documents 
  (=> (and (defined (REF.DOCUMENT ?ref) 
           (= (REF.DOCUMENT ?ref) ?doc)) 
      (and (reference ?ref) 
           (document ?doc)))) 

(deffunction REF.TITLE 
; ref.title maps references to title strings 
  (=> (and (defined (REF.TITLE ?ref)) 
           (= (REF.TITLE ?ref) ?title)) 
      (and (reference ?ref) 
           (title-name ?title)))) 

In a database, an entity such as a reference might be encoded as a record or relation 
tuple.  The vocabulary for representing the data associated with these entities—the fields 
of a database record—are provided by unary functions and binary relations.  For 
example, the ref.title function represents the title field of a reference, whose value is a 
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title-name (a string).  The sentence (defined (ref.title ?ref)) in the definition of 
reference states that a valid reference must have an associated title. Another field is the 
ref.year, which will be defined below.  It is an “optional field” —not all references will 
include the year information. 

The ref.document function is different from the “data field” functions. 
Ref.document represents the relationship between a reference and a document.  The 
document is an element of our conceptualization, but it is not a data item like a name 
string or number.  It is used to help specify the relationship of other data.  For example, 
in an edited collection, all the papers share the same publication data.  This is because, in 
the world, the papers are published in a single document. In each reference, the fields for 
the publisher and year of publication are determined by the publisher and year of 
publication of the document.  This is true whether or not the document is represented in a 
database. 

The relationships between the data in a reference and the facts about documents and 
authors is provided by unary functions and binary relations.  Let us consider the 
ref.year function in detail.  The function ref.year maps a reference to an integer 
representing the year in which the associated document was published.  If the associated 
document was not published, then the ref.year function is undefined for that reference. 
The relationship between references, documents, and years is specified below: The 
ref.year of a reference is an integer that is the timepoint.year of the time point that is 
the doc.publication-date of the document associated with the reference.   

(deffunction REF.YEAR  
 (= (ref.year ?ref) 
    (timepoint.year (doc.publication-date (ref.document ?ref))))) 

(deffunction DOC.PUBLICATION-DATE 
; the timepoint at which the document was published 
  (=> (and (defined doc.publication-date ?doc) 
           (= (DOC.PUBLICATION-DATE ?doc) ?date)) 
      (and (document ?doc)  
           (timepoint ?date)))) 

Notice that the mapping from references to year numbers involves an intermediate 
entity called a timepoint.  A timepoint is a single point in real, historical time — the 
same for all observers and contexts.  It is continuous, and its meaning is independent of 
the granularity at which we wish to approximate it.  The date of birth of a person and the 
date of publication of a document are timepoints.  

(defrelation TIMEPOINT 
; A timepoint is a point in real, historical time -- the same for all 
; observers and contexts.  It is independent of measurement 
resolution. 
  (class TIMEPOINT)) 

Timepoint.year is a function from time points to integers representing the number of 
years since a fixed reference time point.   
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(deffunction TIMEPOINT.YEAR 
; the number of years between a timepoint and the origin timepoint 
; of the Christian calendar.  The value is an integer, rounded up. 
  (=> (and (defined (TIMEPOINT.YEAR ?t)) 
           (= (TIMEPOINT.YEAR ?t) ?y)) 
      (and (timepoint ?t) 
           (integer ?y))) 

Analysis 

At this point we have enough context to examine the rationale for the central design 
decision in this ontology: to define conceptual entities described by the data, rather than 
just specifying the data. Why are documents distinguished from references?  Why 
introduce publishers and authors as independent entities when only their names appear in 
references?  Why is a theory of time points included, when dates in references always 
appear as numbers and strings?  Do the anticipated applications need to reason about 
dates, publication events, authorship, and so forth?  If not, why ask them to commit to 
these concepts in an ontology? 

One reason for introducing these entities is to be able to state integrity constraints 
about the data in the reference object.  For instance, if two papers are published in the 
same edited collection, then one would like to ensure that their publication data (date, 
publisher, city, etc.) are the same.  By representing documents independently of 
references, we are able to write such constraints. Database agents can use integrity 
constraints to guarantee coherence and detect data processing errors. 

Representing the conceptual entities in addition to the data also provides some 
independence from application-specific encoding and resolution.  We distinguish 
timepoints, rather than just talking about year numbers, for this reason.  We say that 
documents are published at points in historical time, which, when mentioned in 
references, may be approximated at various levels of precision.  If one reference claims 
that a journal article was published in “1993,” and another that the article was published 
in “March 1993,” then we have the representational machinery to determine that these 
two references are consistent.  We could, instead, insist that all dates be represented in 
some canonical form, such as day/month/year.  However, this would be specifying a 
precision that may not be available in the data, and would vary over implemented 
systems. Since this commitment would follow from a particular format rather than from 
the conceptualization, it would be a kind of encoding bias. 

On the other hand, one might also question the rationale for describing the data 
(strings, numbers) at all.  Why represent the name of an author separately from the 
author, or the integer encoding of years separately from time points?  One could instead 
limit the ontology to the conceptual entities such as documents, authors, and time points, 
and leave it to the implementations to decide how a particular author might be named or 
date might be stored in a database.  More generally, the issue is whether identifiers for 
objects are appropriate to represent in knowledge-level specifications. 

Typically, the choice of identifiers for objects in a knowledge base is a symbol-level 
issue.  For example, a database may identify employees with unique integers that serve as 
keys in employee records.  If the identifier is an artifact of the database design, and not in 
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the world, then it is not appropriate to include in a shared ontology.  Defining employees 
in terms of numbers is an example of encoding bias. 

In the domain of the bibliography ontology, however, symbolic identifiers such as 
references and names are properly in the domain of discourse.  The reference object, and 
its data fields such as the year of publication, are in the conceptualization of the 
bibliographic domain.  It is part of the convention of bibliographic references that years 
are encoded as integers. This is independent of format, but it is an encoding.  Similarly, 
the names of authors are important elements of the domain.  For example, an early 
version of the bibliography ontology was revised to accommodate the concept of pen 
names: multiple names for the same author.  That authors sometime use pen names, and 
that these names are the official author names in publications, is a property of the world, 
not a database schema. 

Nonetheless, we need to distinguish the identifiers from the entities being identified 
to preserve coherence.  Names don't write; authors do!   

The identification of dates is a more subtle case.  The notion of dates in the 
bibliography domain assumes a coordinate system and unit of measure for historical time.  
The domain also has standards for the precision in which time is measured (integral 
years, months, and days).  Why is this not an encoding bias?  The commitment to a 
specific unit of measure might also seem to limit extendibility. Would an agent that 
works from a Chinese calendar be able to commit to an ontology based on the Western 
calendar?  Compare this situation to the physical quantities ontology (Section 4.1), in 
which we were careful to keep the concept of a quantity independent of the unit in which 
it is known, and to provide a mechanism for supporting multiple, equivalent units. 

The specification of a standard measurement or identification scheme does not 
inherently impose an encoding bias or limit extendibility.  The bibliography ontology 
does not equate the specification of dates with the concept of points in historical time.  
The notion of timepoint is independent of units, just as the concept of thermodynamic 
temperature is independent of whether it is measured on the Kelvin or Rankine scale.  
The unit and coordinate system are introduced by the mapping from time points to the 
surface encoding of the data via functions such as timepoint.year. 

The agent working on the Chinese calendar can read the date specified using the 
Western calendar, and convert it into the appropriate internal format.  In addition, 
because encodings are distinguished from the conceptual entities, one can extend the 
existing ontology to handle unforeseen units.  For example, some publication dates use 
the name of a season, as in “Summer 1993.” A function from time points to seasons could 
be defined without contradicting the underlying ontology. 

5. Summary and discussion 

We have described five general design criteria and have given detailed examples of the 
design of formal ontologies for knowledge sharing.  In these case studies, we found 
several instances of encoding bias, ranging from prescriptions of numerical precision to 
implicit assumptions resulting from viewing a quantity as a magnitude/unit pair.  We 
showed that when an encoding is intrinsic to the conceptualization (integers for years), 
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encoding bias can be avoided by representing both the underlying concept (time points) 
and the units of measure (timepoint years).  We showed how to extend the 
representational vocabulary (e.g., for units of measure in the engineering ontology) 
without overcommitment (e.g., to particular units as an exclusive standard). 

We found that the evaluation of design decisions against the criteria depends on the 
knowledge available and the applications anticipated for a domain. In the engineering 
domain, we have a strong theory with which to relate the concepts of physical quantity, 
unit of measure, dimension, and magnitude.  The ontology is specified with great clarity, 
since most of the concepts can be defined axiomatically.  The resulting specification 
imposes real constraints on the implementation of agents (e.g., they are prohibited from 
making implicit assumptions about units), allows for program- and notation-independent 
knowledge bases (libraries of engineering models), and provides the basis for useful 
inferential services (e.g., behavior prediction and unit conversion).  The ontological 
commitment to a strong theory is justified for the sharing of valuable mathematical 
models.  In the bibliography domain, the theory relating references, documents, people, 
publishers, and dates is weak.  We could have imposed a stronger theory, for instance, 
describing a world where all authors have permanent, unique names and the month is 
always known for a conference paper.  That would have been imposing more ontological 
commitment than is necessary to share the information. It would also be incoherent, since 
we know that these constraints do not hold in the world being modeled. 

Related work 
The design criteria proposed in this paper are primarily for evaluation of design decisions 
in choosing among representations, rather than as guidelines for generating theory.  
Choosing appropriate ways of conceptualizing a domain is a constructive modeling task, 
a topic of active research (e.g., (Ford & Bradshaw, 1993)).   

The LILOG project followed a set of software engineering principles, such as 
modularity and abstraction, in the development of its ontology Pirlein, 1993) .  These 
principles guide the form and organization of knowledge specifications, and are 
complementary to those proposed here, which pertain to choice of representation.  The 
design of the Penman ontology (Bateman, Kasper, Moore, & Whitney, 1990)  draws from 
knowledge of the structure and content of natural language (including the work of 
linguists, philosophers, psychologists, and lexicographers).  Skuce and Monarch (Skuce 
& Monarch, 1990) recommend a similar strategy for general knowledge acquisition.  In a 
workshop on the LILOG ontology, Simmons (Simmons, 1991) discussed content-
independent ontology design criteria, including the software engineering principles and 
some criteria similar to those proposed (independently) in this paper.  Reporting on 
experience in formalizing theories of objects and their properties, he concludes that these 
content-independent criteria are less important than the validity of the theory itself (i.e., 
as a scientific theory of cognition).  For both LILOG and Penman, the purpose of the 
ontology is to organize knowledge used for natural language processing, and so the 
ontology must account for distinctions found in language.  In contrast, for the ontologies 
discussed in this paper, which specify a common conceptualization for knowledge 
sharing among programs, whether the conceptualization is a good model of the world 
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was not the dominant criterion.  In any case, an ontology is only a specification, and the 
utility of an ontology ultimately depends on the utility of the theory it represents.   

Several examples of ontologies are being developed to enable knowledge sharing 
and reuse.  The Cyc project is generating a wealth of examples  (Lenat & Guha, 1990; 
Lenat, Guha, Pittman, Pratt, & Shepherd, 1990) and methods for partitioning knowledge 
bases into modular theories (Guha, 1991).  Guarino (Guarino, 1992), Sowa (Sowa, 1993) 
and others offer content-independent guidelines for organizing concepts, relations, and 
individuals in an ontology.  Comprehensive “top level” frameworks such as the Penman 
Upper Model (Bateman et al., 1990), the upper structure of LILOG, Skuce’s ontology, 
Takagaki’s adaptation of Mario Bunge’s ontology (Takagaki, 1990), the Ontek ontology, 
and the upper reaches of Cyc's ontology offer partial designs that can be extended and 
instantiated for particular needs.  There are a number of ontologies focusing on special 
representation problems, such as varieties of time (Allen, 1984; Ladkin, 1986; Shoham, 
1987), space (Cohn, 1993), part-whole structure (Eschenbach & Heydrich, 1993; Gerstl 
& Pribbenow, 1993) causality and change (Hobbs, 1993; Terenziani, 1993).  Formal 
specifications of domain or task specific conceptualizations are beginning to appear in 
the research literature.  Ontologies for the sharing and reuse of knowledge about 
engineering models (Alberts, 1993; Kiriyama, Yamamoto, Tomiyama, & Yoshikawa, 
1989), planning and scheduling (Allen & Lehrer, 1992; Hama, Hori, & Nakamura, 1993), 
manufacturing enterprises (Fox, 1993) and problem-solving tasks and methods 
(Ericksson, Puerta, & Musen, 1993; Musen, 1992; Steels, 1990; Walther, Eriksson, & 
Musen, 1992) can be viewed as modular building blocks for reusable knowledge bases 
and ontology-specific software.  Of particular relevance is the KADS methodology for 
expert system development, which is based on sharing and reusing “models of expertise” 
(theories about tasks, domains, and solution strategies) (Wielinga, Velde, Schreiber, & 
Akkermans, 1992; Wielinga, Schreiber, & Breuker, 1992).  These models are essentially 
ontologies, and recent work has begun to produce formal specifications (Aben, 1992; 
Akkermans, van Harmelen, Schreibner, & Wielinga, 1990; Angele, Fensel, & Landes, 
1992; Fensel & Studer, 1993; van Harmelen & Balder, 1992) 

We have a start on a technology to put such ontologies in portable form, for 
comparison and exchange (Genesereth & Fikes, 1992; Gruber, 1993).  With this we can 
begin to accumulate a corpus of examples of ontology design.  As we learn more about 
the design of ontologies for knowledge sharing, we may be able to evolve today's 
preliminary design criteria into working design principles. 
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