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Toward Privacy Preserving and
Collusion Resistance in a

Location Proof Updating System
Zhichao Zhu, Student Member, IEEE, and Guohong Cao, Fellow, IEEE

Abstract—Today’s location-sensitive service relies on user’s mobile device to determine the current location. This allows malicious

users to access a restricted resource or provide bogus alibis by cheating on their locations. To address this issue, we propose A

Privacy-Preserving LocAtion proof Updating System (APPLAUS) in which colocated Bluetooth enabled mobile devices mutually

generate location proofs and send updates to a location proof server. Periodically changed pseudonyms are used by the mobile devices

to protect source location privacy from each other, and from the untrusted location proof server. We also develop user-centric location

privacy model in which individual users evaluate their location privacy levels and decide whether and when to accept the location proof

requests. In order to defend against colluding attacks, we also present betweenness ranking-based and correlation clustering-based

approaches for outlier detection. APPLAUS can be implemented with existing network infrastructure, and can be easily deployed in

Bluetooth enabled mobile devices with little computation or power cost. Extensive experimental results show that APPLAUS can

effectively provide location proofs, significantly preserve the source location privacy, and effectively detect colluding attacks.

Index Terms—Location-based service, location proof, location privacy, pseudonym, colluding attacks

Ç

1 INTRODUCTION

LOCATION-BASED services take advantage of user location
information and provide mobile users with various

resources and services. Nowadays, more and more location-
based applications and services require users to provide
location proofs at a particular time. For example, “Google
Latitude” and “Loopt” are two services that enable users to
track their friends’ locations in real time. These applications
are location-sensitive since location proof plays a critical
role in enabling these applications.

There are many kinds of location-sensitive applications.
One category is location-based access control. For example,
a hospital may allow patient information access only when
doctors or nurses can prove that they are in a particular
room of the hospital [19]. Another class of location-sensitive
applications require users to provide past location proofs
[26], such as auto insurance quote in which auto insurance
companies offer discounts to drivers who can prove that
they take safe routes during their daily commutes, police
investigations in which detectives are interested in finding
out if a person was at a murder scene at some time, and
location-based social networking in which a user can ask for a
location proof from the service requester and accepts the
request only if the sender is able to present a valid location
proof. The common theme across these location sensitive
applications is that they offer a reward or benefit to users

located in a certain geographical location at a certain time.
Thus, users have the incentive to cheat on their locations.

Location-sensitive applications require users to prove that
they really are (or were) at the claimed locations. Although
most mobile users have devices capable of discovering their
locations, some users may cheat on their locations and there
is a lack of secure mechanism to provide their current or past
locations to applications and services. One possible solution
[15] is to build a trusted computing module on each mobile
device to make sure trusted GPS data is generated and
transmitted. For example, Lenders et al. [15] proposed such a
solution which can be used to generate unforgeable geotags
for mobile content such as photos and video; however, it
relies on the expensive trusted computingmodule onmobile
devices to generate proofs. Although cellular service
providers have tracking services that can help verify the
locations of mobile users in real time, the accuracy is not
good enough and the location history can not be verified.
Recently, several systems have been designed to let end
users prove their locations through WiFi infrastructures. For
example, Saroiu and Wolman [26] proposed a solution
suitable for third-party attestation, but it relies on PKI and
the wide deployment of WiFi infrastructure.

In this paper, we propose A Privacy-Preserving LocA-
tion proof Updating System (APPLAUS), which does not
rely on the wide deployment of network infrastructure or
the expensive trusted computing module. In APPLAUS,
Bluetooth enabled mobile devices in range mutually
generate location proofs, which are uploaded to a untrusted
location proof server that can verify the trust level of each
location proof. An authorized verifier can query and
retrieve location proofs from the server. Moreover, our
location proof system guarantees user location privacy
from every party. More specifically, we use statistically
updated pseudonyms at each mobile device to protect
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location privacy from each other, and from the untrusted
location proof server. We develop a user-centric location
privacy model in which individual users evaluate their
location privacy levels in real time and decide whether and
when to accept a location proof request. In order to defend
against colluding attacks, we also present betweenness
ranking-based and correlation clustering-based approaches
for outlier detection. Extensive experimental and simula-
tion results based on multiple data sets show that
APPLAUS can effectively provide location proofs, signifi-
cantly preserve the source location privacy, and effectively
detect colluding attacks.

The rest of the paper is organized as follows: We first
introduce preliminaries of our scheme in Section 2, and then
present our location proof updating scheme in Section 3.
Section 4 presents the source location privacy analysis and
Section 5 discusses colluding attacks and countermensures.
The performance of our scheme is evaluated in Section 6.
Finally, we describe related work in Section 7 and conclude
the paper in Section 8.

2 PRELIMINARIES

In this paper, we focus on mobile networks where mobile
devices such as cellular phones communicate with each
other through Bluetooth. In our implementation, mobile
devices periodically initiate location proof requests to all
neighboring devices through Bluetooth. After receiving a
request, a mobile node decides whether to exchange
location proof, based on its own location proof updating
requirement and its own privacy consideration. Given its
appropriate range (about 10 m) and low power consump-
tion, Bluetooth is a natural choice for mutual encounters
and location proof exchange.

2.1 Pseudonym

As commonly used inmany networks, we consider an online

Certification Authority (CA) run by independent trusted

third party which can preestablish credentials for the mobile

devices. Similar to many pseudonym approaches, to protect

location privacy, every mobile node i registers with the

CA by preloading a set of M public/private key pairs

KPub
i ; KPrv

i
M

i¼1 before entering the network. The public key

KPub
i is used to serve as the pseudonym of node i. The

private key KPrv
i enables node i to digitally sign messages

so that the receiver can validate the signature authenticity.
Due to the broadcast nature of wireless communication,

probes are used for mobile nodes to discover their
neighbors. When a node i receives a probe from another
node, it checks the certificate of the public key of the sender
and the physical identity, e.g., Bluetooth MAC address.
After that, i verifies the signature of the probe message.
Subsequently, if confidentiality is required, a security
association is established (e.g., with Diffie-Hellman).

2.2 Threat Model

We assume that an adversary aims to track the location of a
mobile node. An adversary can have the same credential as
a mobile node and is equipped to eavesdrop communica-
tions. We assume that the adversary is internal, passive, and
global. By internal, we mean that the adversary is able to
compromise or control individual mobile device and then
communicate with others to explore private information, or

individual devices may collude with each other to generate
false proofs, which will be discussed in detail in Section 5.
We assume that the number of colluders is small compared
with that of valid devices. In the worst case, the adversary
could compromise the location proof server to get the stored
location proof records. However, it is not able to take
control of the server to work as a colluder, since once
compromised, the attack will be detected promptly and
the location proof server will be replaced by a back-up
server. The same assumption applies to the CA. By passive,
we assume the adversary cannot perform active channel
jamming, mobile worm attacks [34] or other denial-of-
service attacks, since these attacks are not related to location
privacy. By global, we assume the adversary can monitor,
eavesdrop, and analyze all the traffic in its neighboring area,
or even monitor all the traffic around the server.

In practice, the adversary can thus be a rogue
individual, a set of malicious mobile nodes, or eavesdrop-
ping devices in the network. In the worst case, it is possible
that the untrusted location proof server may be compro-
mised by the adversary and the location information can
then be easily inferred by examining the records of location
proofs, e.g., the adversary could apply statistical testing
such as K-S test to identify a user although no real identity
is included. Therefore, we need to appropriately design
and arrange the location proof records in the untrusted
server so that no private information related to individual
users will be revealed even after it is compromised. Hence,
the problem we address in this paper consists of collecting
a set of location proofs for each peer node and protecting
the location privacy of peer nodes from each other, from
the adversary, or even from the untrusted location proof
server to prevent other parties from learning a node’s past
and current location information.

2.3 Location Privacy Level

In this paper, we use multiple pseudonyms to preserve
location privacy; i.e., mobile nodes periodically change the
pseudonym used to sign messages, thus reducing their long
term linkability. To avoid spatial correlation of their location,
mobile nodes in proximity coordinate pseudonym changes
by using silent mix zones [16], [17], or regions where the
adversary has no coverage [4]. Without loss of generality, we
assume each node changes its pseudonyms from time to
time according to its privacy requirement. If this node
changes its pseudonym at least once during a time period
(mix zone), a mix of its identity and location occurs, and
the mix zone becomes a confusion point for the adversary.

Consider a mobile network composed of N mobile nodes
and each node has M pseudonyms. At time t, for each
node i there are a group of mðtÞ pseudonyms observed at
the location proof server. Each pseudonym among the mðtÞ
pseudonyms can involve multiple location proofs across
various locations l1; l2; . . . ; ln at different time t1; t2; . . . ; tn.
An adversary is able to correlate the location and time
distribution of each pseudonym to see if two pseudonyms
belong to the same node. For example, the adversary can
observe a series of location proofs with mðT Þ pseudonyms
during time T . He then compares the distribution of location
proof set B of pseudonym b with the distribution of location
proof set D of pseudonym d to determine if the two
pseudonyms can be linked. Let pd¼b ¼ Pr (distribution D of
pseudonym corresponds to distribution B of pseudonym b),
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the location privacy level of node i (i.e., the uncertainty of
the adversary) at time T , is

EiðT Þ ¼ �
X

d;b2mðT Þ

pd¼blog2ðpd¼bÞ: ð1Þ

The achievable location privacy depends on the number
of nodes (mðT Þ) and the unpredictability of their where-
abouts in the mix zone (pdjb). If a node i has only one
pseudonym observed till time T , its identity is known to
the adversary and its location privacy level is defined to be
EiðT Þ ¼ 0. We can achieve the maximum entropy when
every pd¼b is close to 0; i.e., the distribution of location
proofs for each pseudonym is undistinguishable.

3 THE LOCATION PROOF UPDATING SYSTEM

In this section, we introduce the location proof updating
architecture, the protocol, and how mobile nodes schedule
their location proof updating to achieve location privacy in
APPLAUS.

3.1 Architecture

In APPLAUS, mobile nodes communicate with neighboring
nodes through Bluetooth, and communicate with the
untrusted server through the cellular network interface.
Based on different roles they play in the process of location
proof updating, they are categorized as Prover, Witness,
Location Proof Server, Certificate Authority or Verifier. The
architecture and message flow of APPLAUS is shown in
Fig. 1.

. Prover: the node who needs to collect location proofs
from its neighboring nodes. When a location proof is
needed at time t, the prover will broadcast a location
proof request to its neighboring nodes through
Bluetooth. If no positive response is received, the
prover will generate a dummy location proof and
submit it to the location proof server.

. Witness: Once a neighboring node agrees to provide
location proof for the prover, this node becomes a
witness of the prover. The witness node will generate
a location proof and send it back to the prover.

. Location proof server: As our goal is not only to
monitor real-time locations, but also to retrieve
history location proof information when needed, a
location proof server is necessary for storing the

history records of the location proofs. It commu-
nicates directly with the prover nodes who submit
their location proofs. As the source identities of the
location proofs are stored as pseudonyms, the
location proof server is untrusted in the sense that
even though it is compromised and monitored by
attackers, it is impossible for the attacker to reveal
the real source of the location proof.

. Certificate authority: As commonly used in many
networks, we consider an online CA which is run by
an independent trusted third party. Every mobile
node registers with the CA and pre-loads a set of
public/private key pairs before entering the net-
work. CA is the only party who knows the mapping
between the real identity and pseudonyms (public
keys), and works as a bridge between the verifier and
the location proof server. It can retrieve location
proof from the server and forward it to the verifier.

. Verifier: a third-party user or an application who is
authorized to verify a prover’s location within a
specific time period. The verifier usually has close
relationship with the prover, e.g., friends or collea-
gues, to be trusted enough to gain authorization.

3.2 Protocol

When a prover needs to collect location proofs at time t, it
executes the protocol in Fig. 2 to obtain location proofs from
the neighboring nodes within its Bluetooth communication
range. Each node uses its M pseudonyms PM

i¼1 as its
identity throughout the communication.

1. The prover broadcasts a location proof request to its
neighboring nodes through Bluetooth according to
its update scheduling. The request should contain
the prover’s current pseudonym Pprov, and a random
number Rprov.

2. The witness decides whether to accept the location
proof request according to its witness scheduling.
Once agreed, it will generate a location proof for
both prover and itself and send the proof back to the
prover. This location proof includes the prover’s
pseudonym Pprov, prover’s random number Rprov,
witness’s current time stamp Twitt, witness’s pseu-
donym Pwitt, and their shared location L. This proof
is signed and hashed by the witness to make sure
that no attacker or prover can modify the location
proof and the witness cannot deny this proof. It is
also encrypted by the server’s public key to prevent
from traffic monitoring or eavesdropping.

3. After receiving the location proof, the prover is
responsible for submitting this proof to the location
proof server. The message also includes prover’s
pseudonym Pprov and random number Rprov, or its
own location for verification purpose.
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Fig. 2. Location proof updating protocol.



4. An authorized verifier can query the CA for location
proofs of a specific prover. This query contains a
real identity and a time interval. The CA first
authenticates the verifier, and then converts the real
identity to its corresponding pseudonyms during
that time period and retrieves their location proofs
from the server. In order not to expose correlation
between pseudonyms to the location server, CA will
always collect enough queries from k different
nodes before a set of queries are sent out.

5. The location proof server only returns hashed
location rather than the real location to the CA, who
then forwards to the verifier. The verifier compares
the hashed location with the claimed location
acquired from the prover to decide if the claimed
location is authentic.

In order to prevent the CA from knowing locations of a
real identity, the location proof server calculates the hash of
each location and only sends the hashed locations to the
CA in step 5. In this way, the following property can be
achieved.

Definition 1 (Separation of privacy knowledge). The
knowledge of the privacy information is separately distributed
to the location proof server, the CA, and the verifier. Thus, each
party only has partial knowledge.

The privacy property of our protocol is ensured by the
separation of privacy knowledge: the location proof server
only knows pseudonyms and locations, the CA only knows
the mapping between the real identity and its pseudonyms,
while the verifier only knows the real identity and its
authorized locations. Attackers are unable to learn a user’s
location information without integrating all the knowledge.
Therefore, compromising either party of the system does
not reveal privacy information.

3.3 Scheduling Location Proof Updates

As discussed before, the adversary may obtain complete
coverage and track nodes throughout the entire network, by
compromising the location proof server and obtain all
history location proofs. Therefore, we need to appropriately
design and arrange the location proof updating schedules
for both prover and witness so that no source location
information related to individual user is revealed even if the
server is compromised.

Suppose a mobile node i has a set of pseudonyms
P1; P2; . . . ; PM which change periodically, and distinct
parameters �1; �2; . . . ; �M for each pseudonym are prede-
termined. If each pseudonym Pj updates its location proofs
such that the interupdate interval follows Poisson distribu-
tion with parameter �j, as shown in Fig. 3, then the entire
interupdate intervals for node i follow Poisson distribution
with a parameter of � ¼ �1 þ �2 þ � � � þ �M . As will be
discussed in the next section, it has the properties of
pseudonym unlinkability and statistically strong source
location unobservability. The detailed scheduling protocol
for the prover is shown in Algorithm 1. The predefined
updating parameter � determines how frequently location
proofs are updated. In some cases, no location proof is
generated when the location proof updating time arrives.
To ensure that location proof updating follows the

scheduled Poisson distribution, a dummy proof is gener-
ated and submitted. The dummy proof has the same format
as the real location proof and cannot be differentiated by

the attackers.

Algorithm 1. Location Proof Update Scheduling for

the prover

Input: updating parameter �;

1: generate M distinct parameter �1; �2; � � � ; �M such
that �1 þ �2 þ � � � þ �M ¼ �

2: for each pseudonym i do

3: while current timestamp t follows Poisson

distribution with �i do

4: send location proof request

5: if request is accepted then

6: submit location proof

7: else

8: generate and submit dummy proof

9: end if

10: end while

11: end for

The location privacy of witness nodes varies depending

on the time and location when they exchange location
proofs. It is thus desirable to protect the location privacy
in a user-centric manner, such that each user can decide
when and how to protect his location privacy. User-centric
location privacy [12], [17] follows a distributed approach

where each mobile node locally monitors its location
privacy level over time. A network wide metric measures
the average location privacy but may ignore that some
nodes have low location privacy levels. However, the user
centric approach is more scalable and can maintain location

privacy at a more fine-grained level. In our model, the
location privacy of a node may accumulate over time. It
depends on the distribution diversity of the last pseudo-
nym and its previous pseudonyms before the last success-
ful pseudonym change. Each mobile node monitors and

measures its own privacy level in real time and decides
whether and when to accept a location proof exchange
request. After receiving a location proof exchange request,
it calculates the privacy loss between the next scheduled
updating time and the current updating time. In this way, a

node has autonomy to control the time period over which
its location is tracked. The privacy loss of node i is defined
as follows:
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� ¼
Eiðt

0Þ � EiðtÞ

EiðtÞ
; ð2Þ

where EiðtÞ is the location privacy level when the location
proof exchange request is accepted while Eiðt

0Þ is the
location privacy level at the next scheduled location proof
updating cycle. The difference between them indicates the
privacy loss if this location proof request is accepted. The
location proof request is only accepted when the privacy
loss is less than a predefined threshold. The drawback of
the user-centric model is that nodes may have misaligned
incentives (i.e., different privacy requirement), which can
lead to failed attempts to obtain enough location proofs. We
use dummy proofs in Algorithm 1 to deal with failed
attempts. The detailed scheduling protocol for witness is
presented in Algorithm 2.

Algorithm 2. Scheduling Location Proof Updates

at Witnesses
Input: time t of incoming location proof request;

1: calculate location privacy loss � assuming the

incoming request is accepted

2: if� > �, � is pre-defined location privacy loss threshold

then

3: deny location proof request

4: else

5: accept location proof request
6: end if

4 SOURCE LOCATION PRIVACY ANALYSIS

In this section, we discuss the location privacy threat in our
system, as well as our countermeasures.

We first look at how an adversary may reveal location
information by analyzing the location proof history.
Suppose the attacker has sufficient resources (e.g., in
storage, computation and communication). First, the attack-
er may simply monitor and examine the content of a record
that contain the user’s identity and location. Second, even
if the user’s ID is encrypted or pseudonymized, it is easy for
the adversary to trace back all the location activities related
to the same ID once its pseudonym is discovered. Third,
even though the user’s pseudonyms change periodically, it
is still possible for the adversary to infer this user’s other
pseudonyms from one pseudonym if these pseudonyms
change at similar time or locations. Moreover, the attacker
may perform more advanced traffic analysis including rate
monitoring and location correlation. In a rate monitoring
attack, the attacker tries to monitor and correlate location
proof updating rates from different pseudonyms. In a
location correlation attack, the attacker may observe the
correlation in the updated location between a node and its
neighbors, attempting to deduce a relationship.

According to [23], a mechanism to achieve anonymity
appropriately combined with dummy traffic yields unobser-
vability, In our case, we are interested in the privacy
property of each node, and we have the following definition:

Definition 2. Source location unobservability is a privacy
property that can be satisfied if an attacker cannot determine
the real identity of mobile nodes through observation of the
location proof records. That is, for each possible observation O
that an attacker can make, if the probability of an identity I is

equal to the probability of I given O; i.e., 8O;P ðIÞ ¼ P ðIjOÞ,
then I is called unobservable.

Based on the above definition, we have the following
definition on pseudonym unlinkability:

Definition 3. A system has the property of pseudonym
unlinkability if the pseudonyms P1; P2; . . . ; PM of an identity
I presented in the location proof records cannot be inferred from
one to another: 8i; j; 8O; probðPijOÞ 6¼ probðPjjOÞ; i; j 2
f1; 2; . . . ;Mg; i 6¼ j.

Obviously, a system satisfies source location unobserva-
bility if and only if it has the property of pseudonym
unlinkability. We need to design a probabilistic solution,
which can provide a satisfactory degree of event unobser-
vability and reduce the latency as much as possible. For
example, we can adopt a Poisson distribution to determine
the time intervals between location proof updates. Under
our attack model, an adversary can easily know a constant
rate distribution and its mean by statistic test over the
history of location proof records. However, if we use a
probabilistic rate scheme and keep the seed for generating
random numbers secret from an attacker, the attacker may
not be able to notice if a proof update is due to a real event
or a dummy message even if a node sends out a real event
message immediately. Intuitively, a node cannot always
initiate or accept a proof request immediately in the
presence of burst events; otherwise, an attacker may notice
the change of the underlying distribution. Therefore, it is
difficult to guarantee perfect event unobservability while
providing low latency. Thus, we adopt statistically strong
source location unobservability to achieve low latency and
high privacy.

Suppose the interupdate delay (d) between location
proof updates kðk > 0Þ and kþ 1 from a pseudonym ið1 �
i�MÞ of a mobile node is dik ¼ tikþ1� tik, where tik is the
update time of location proof k from pseudonym i. A global
attacker can observe a sequence of interupdate delays,
which can be represented as a distribution Xi ¼ di1; d

i
2; . . ..

Ideally, in a scheme with perfect unobservability but high
latency, interupdate delays from all the pseudonyms of the
same node follow different distribution, so that an attacker
cannot identify the relations between these pseudonyms. In
our case of statistically strong source location unobserva-
bility, distributions of interupdate delays by different
pseudonyms are statistically distinct from each other. They
are distinct from each other in the sense that by a statistic
test one cannot correlate them with each other. We have the
definition of statistically distinct distributions as follows:

Definition 4. Two probabilistic distinct distribution Xi and
Xjð1 � i; j �M; i 6¼ jÞ are statistically distinct from each
other if they follow the same type of probabilistic distribution
with distinct parameter.

Clearly, the more parameters a distribution has, the
harder it is to prove its statistical distinction. In our scheme,
we decided to use Poisson distribution to control the rate of
location proof updating due to its one-parameter advan-
tage, which makes it relatively easy to achieve source
location unobservability. More specifically, we have the
following lemma:
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Lemma 1. Suppose a mobile node has a set of pseudonyms
P1; P2; . . . ; PM which change periodically. Each pseudonym i
sends out its location proof updates (including dummy
updates) whose interupdate delay follows Poisson distribution
with a parameter �i. Then all the interupdate delays of this
mobile node follow Poisson distribution with parameter � ¼
�1 þ �2 þ � � � þ �M .

Proof 1. Without loss of generality, we assume the mobile

node changes its pseudonyms in the order of P1; P2; . . . ;

PM . As each pseudonym i follows Poisson distribution

Xi ¼ P ðX ¼ tÞ ¼
�t
ie
��i

t! , the distribution of the combina-

tion of pseudonyms Pi and Pj is

Y ¼ P ðXi þXj ¼ kÞ ð3Þ

¼
Xk

t¼0

P ðXi ¼ tÞP ðXj ¼ k� tÞ ð4Þ

¼
Xk

t¼0

�t
ie
��i

t!
�
�
ð
jk� tÞe��i

ðk� tÞ!
ð5Þ

¼
ð�i þ �jÞ

te�ð�iþ�jÞ

t!
: ð6Þ

That is, the sum of two independent Poisson distribu-
tions with parameters of �i and �j also follow a
Poisson distribution with parameter �i þ �j. It is easy
to extend that the sum of all pseudonyms also follows
Poisson distribution with a parameter of � ¼ �i þ
�2 þ � � � þ �M . tu

Therefore, if each mobile node in the network chooses M
distinct parameters from �1 to �M for its M pseudonyms,
and schedules location proof updates based on the
aforementioned Poisson distributions, the location proof
records in the server have the properties of pseudonym
unlinkability and statistically strong source location un-
observability. When parameter � is fixed, increasing the
number of pseudonyms (M) improves the privacy level, as
it increases the possibility for attackers to confuse between
pseudonyms from different nodes. Meanwhile, as each
node presents more pseudonyms in the system, it also
decreases the possibility for this node to be identified even

though one of its pseudonym has been recognized.
Quantifying the relationship between the number of
pseudonyms (M) and the privacy level is difficult since
the privacy level is determined by many other parameters.
However, the upper bound of M may always be deter-
mined due to the space limit of mobile devices. There are a
number of ways to pick individual �i when � is fixed. For
example, one intuitive solution is to generate an arithmetic
progression or a geometric progression which sums to �.

5 COLLUDING ATTACKS AND COUNTERMEASURES

The joint issues of location proof and location privacy have
been studied in [33], but the threat of colluding attack is still
an open issue. This threat exists when two nodes collude
with each other to generate bogus location proofs. For
example, when a dishonest node C1 from San Francisco
needs to prove herself in New York City (NYC), she can
have another colluding node C2 to generate bogus location
proofs for her, with location tag of New York City.
Generally speaking, such attacks can be identified by
looking into the location traces and examining the interac-
tions between colluders as well as the time and location
consistency along the moving trajectory. We first consider
statistical threshold based solution in which the system
requires the prover to obtain a number of witness nodes, no
matter what their real identities are. As we know, the
location proof server has information about the number of
pseudonyms at a particular time and location. This
information can be used to estimate whether the prover
lies about not finding enough peers or always finding the
same peer based on some statistical techniques.

More specifically, the server-level detection is performed
on individual location proof based on its embedded time
stamp and location information, where all concurrent and
co-located location proofs from other nodes (pseudonyms)
are used to verify its trust level. For example in the normal
case, as in Fig. 4a, PA is a legitimate prover who has
received location proofs from all neighboring witness
nodes PB, PE , and PF , except PG due to interference or
synchronization reasons. Therefore, PA has collected
three location proofs (Nproof ¼ 3) from four neighbors
(Nneighbor ¼ 4), and we denote the trust level of this location
proof as TLPA

¼
Nproof

Nneighbor
¼ 0:75. Since the trust level TL is
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Fig. 4. Threshold based verification. (a) all nodes are legitimate nodes. TLPA
¼

Nproof

Nneighbor
¼ 0:75. (b) PA tries to claim her location in NYC with her

colluders although she is not at NYC. PB is PA’s colluder and witness. TLPA
¼ 1=4 ¼ 0:25, and PA is detected as malicious.



higher than preselected threshold, PA is considered as a
good node.

Fig. 4b illustrate a colluding case where node PA tries to
claim her location in New York city with her colluders
although she is not at NYC. Although PA finds a colluder
PB who is located in NYC to generate a fake location proof
for her, it can’t use other provers since she is not at NYC.
The location proof server looks through the location proof
records to check if there are other provers in PA’s
communication range. In this example, several other
nodes (e.g., PE , PF , and PG) exist. It is easy to calculate
the trust level of PA’s location proof is TLPA

¼ 1=4 ¼ 0:25,
which is below the threshold. Thus, PA is listed as
suspicious to be malicious.

Calculating the trust level of a location proof involves the
examination of its surrounding location proofs for both
prover and witness, as well as large amount of redundant
calculations between individual location proofs. To address
this problem, we develop techniques that can perform
verifications on a set of location proofs which are relevant in
time and space, rather than individual proofs. We present
two approaches to detect suspicious location proofs and
pseudonyms: betweenness ranking and correlation clustering.
The betweenness ranking approach calculates the between-
ness of each pseudonym in a graph and then ranks these
pseudonyms based on their betweenness value. The
pseudonyms with low ranking are considered as suspicious
nodes. The correlation clustering approach takes into account
the time delay between two neighboring location proofs,
and uses a modified correlation clustering algorithm on a
temporal-weighted graph to rule out outlier clusters, which
are considered as suspicious location proofs. Both ap-
proaches use undirected graph to reflect the relationship
between pseudonyms or between location proofs.

5.1 Betweenness Ranking

As the pseudonyms of each node keep changing, we don’t
have the contact patterns of individual nodes except their
pseudonyms. Therefore, we can only verify pseudonyms
that are relevant enough in both temporal and spatial
domains. Considering all the concurrent (within 60 seconds
delay) location proofs in a region, we first describe how to
construct a pseudonym-correlation graph.

Definition 5. A pseudonym-correlation graph for region R is an
undirected graph G ¼ ðV ;EÞ, with vertex set v1; v2; . . . ; vn,
were n ¼ jV j. Each vertex vi 2 V represents a pseudonym Pi

in region R, while each edge ðvi; vjÞ 2 E denotes that there is
a location proof generated between node vi and node vj.

Let s ¼ v0 and t ¼ vl. A path from s to t is defined as a
sequence of edges ðvi; viþ1Þ, 0 � i � l. The length of a path is
the number of edges in the sequence. We use dðs; tÞ to denote
the distance (the minimum length of any path connecting s
and t in G) between s and t. With dði; iÞ ¼ 0, we have the
following definition of betweenness:

Definition 6. Let �st (which is equal to �ts) denote the total
number of shortest paths from s to t, where �ss ¼ 1. Let �stðvÞ
denote the number of shortest paths from s to t which include
node v 2 V . Then the betweenness of v is as following:

BðvÞ ¼
X

s 6¼v 6¼t

�stðvÞ

�st
: ð7Þ

Betweenness is defined as the number of shortest paths
from all vertices to all others that pass through node v. It is
an indicator of who is the most influential node in the
network (i.e., who interconnects with most others). As in
Fig. 5a, there are seven shortest paths (v1 � v5; v1 � v6;
v2 � v5; v2 � v6; v3 � v5; v3 � v6; v5 � v6) pass through v4, the
betweenness of node v4 can be calculated as Bðv4Þ ¼P

7 ð1Þ ¼ 7. Similarly, we can get Bðv5Þ ¼ Bðv6Þ ¼ 0. Ob-
viously v5 and v6 have higher chance to be malicious node
than v4. One notable feature of the definition is that the
betweenness measurement gives very clear winners and
losers among the nodes in the network: individuals with
the highest betweenness are well ahead of those with the
second highest, who are in turn well ahead of those with
the third highest, and so on. Individuals with the lowest
betweenness usually only connect to one or few neighbors.
They are treated as outliers among all the nodes and thus
most likely are colluding attackers.

Let �stðvÞ ¼
�stðvÞ
�st

. The dependency of a source vetex s on a
vertex v is defined as

�s�ðvÞ ¼
X

t:t6¼s;t 6¼v

�stðvÞ: ð8Þ

The betweenness of a vertex v can be expressed as

BðvÞ ¼
X

s6¼v

�s�ðvÞ: ð9Þ

Define the set of predecessors of a vertex v on the shortest
paths from s as PsðvÞ¼u2V :ðu; vÞ2E; dðs; vÞ ¼ dðs; uÞþ1.

ZHU AND CAO: TOWARD PRIVACY PRESERVING AND COLLUSION RESISTANCE IN A LOCATION PROOF UPDATING SYSTEM 57

Fig. 5. Examples of unweighted pseudonym-correlation graph and temporal-weighted proof-correlation graph.



The following theorem states that the dependencies of the
closer vertices can be computed from the dependencies of
the farther vertices.

Lemma 2. If there is exactly one shortest path from s to each t,
the dependency of s on any vertex v obeys

�s�ðvÞ ¼
X

w:v2PsðwÞ

ð1þ �s�ðwÞÞ: ð10Þ

Proof 2. The assumption implies that the vertices and edges
of all shortest paths from s form a tree. Therefore, v lies
on either all or none of the paths between s and some
vertex t, i.e., �stðvÞ equals either 1 or 0. Moreover, v lies on
all shortest paths to those vertices for which it is a
predecessor, and on all shortest paths that these lie on.tu

In the general case, a very similar theorem [2] holds
below:

Theorem 1. The dependency of s on any vertex v obeys

�s�ðvÞ ¼
X

w:v2PsðwÞ

�sv

�sw
� ð1þ �s�ðwÞÞ: ð11Þ

The naive way to calculate betweenness takes time of
order Oðmn2Þ, since there are Oðn2Þ shortest paths to be
considered, each of which takes OðmÞ to calculate. How-
ever, since breadth-first search algorithms can calculate n
shortest paths in time OðmÞ, we can calculate betweenness
for all vertices in time OðmnÞ. Here, we present an
algorithm that performs betweenness calculation based on
the above theorem.

In Algorithm 3, n single-source shortest paths are first
computed, for each s. The predecessor sets PsðwÞ are
maintained during these computations. Next, for every s,
using the information from the shortest path tree and
predecessor sets along the paths, we can compute the
dependencies �s�ðvÞ for all other vertex v. To obtain the
betweenness value of vertex v, we then calculate the sum
of all dependency values. The Oðn2Þ space requirements
can be reduced to OðnþmÞ by maintaining a running
betweenness score. This algorithm runs in OðnmÞ time for
unweighted pseudonym-correlation graphs.

Algorithm 3. Betweenness calculation on

pseudonym-correlation graph

Input: B½v� ¼ 0, v 2 V ; S  empty stack; Q empty

queue;

1: for s 2 V do

2: P ½w�  empty list, �½w� ¼ 0, d½w� ¼ �1, w 2 V ;

3: �½s� ¼ 1; d½s� ¼ 0;

4: enqueue s! Q

5: while Q not empty do

6: dequeue v Q;

7: push v! S;

8: for each neighbor w of v do

9: if w found for the first time then

10: enqueue w! Q;

11: d½w� ¼ d½v� þ 1;

12: end if

13: if d½w� ¼ d½v� þ 1 then

14: �½w� ¼ �½w� þ �½v�

15: append v! P ½w�;
16: end if

17: end for

18: end while

19: �½v� ¼ 0, v 2 V ;

20: while S not empty do

21: pop w S;

22: for v 2 P ½w� do

23: �½v� ¼ �½v� þ �½v�
�½w� � ð1þ �½w�Þ;

24: end for

25: if w 6¼ s then

26: B½w� ¼ B½w� þ �½w�;

27: end if

28: end while

29: end for

5.2 Correlation Clustering

The above approach only considers two location proofs

correlated if they occurred at the same time (e.g., within

60 seconds). However, in most case, a node may have to

wait for a time period until its next location proof updating

cycle. If the time delay between two location proofs is not

too large, we should still consider them correlated. There-

fore, if we consider each location proof as a vertex, we have

the following definition of temporal-weighted proof-corre-

lation graph.

Definition 7. A weighted proof-correlation graph for region R is

an undirected graphG ¼ ðV ;EÞ, with vertex set v1; v2; . . . ; vn,

where n ¼ jV j. Each vertex vi 2 V represents a location

proof LPi in region R. Each positive edge ðvi; vjÞ 2 E denotes

that location proofs LPi and LPj share prover or witness while

each negative edge ðvi; vjÞ 2 E denotes that LPi’s prover is

actually LPj’s witness, or vice versa. For each edge ði; jÞ, let tij
be the time difference between two location proofs represented

by vi and vj, where 0 � tij < þ1, then we define weight

function cij for each edge ði; jÞ as follows:

cij ¼
1

1þ tij
: ð12Þ

The weight function cij has both 0 � cij � 1 for positive and

negative edges. The smaller the time interval tij is, the larger

the weight cij is.

Fig. 5b shows one example of weighted proof-correla-

tion graph. Location proof v1 and location proof v2 share

the same prover node, so the edge between them is

positive with weight of 1. On the other hand, location

proof v5’s prover is also location proof v6’s witness, so the

edge is negative. Our goal is to have location proofs with

position edges grouped together (e.g., v1 and v2), and to

separate the location proofs with negative edges (e.g., v5
and v6). The reason is intuitive: the location proofs with

negative edges are abnormal, since within similar time

interval and similar space, there should be another location

proof consisting of v5’s prover and v6’s witness. Fig. 5b

shows how correlation clustering works on the graph.

Since this problem is NP-hard, we transfer the above

proof-correlation graph to a double-labeled graph.
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With G¼ðV ;EÞ, each edge ði; jÞ has a weight function cij.
Let eðu; vÞ denote the label ðhþi; h�iÞ of the edge ðu; vÞ. Let
Ehþi be the set of positive edges (where 0 � tij � 1) and let
Ghþi be the graph induced byEhþi,Ghþi ¼ ðV ;EhþiÞ. We then
define Eh�i and Gh�i for negative edges in the same way. In
our scenario, the weight value from one node to another can
be treated as a measure of similarity, with high weight
indicating similarity and low weight indicating dissimilar-
ity. We can perform a correlation clustering over the graph,
grouping nodes together who have higher positive weight
with others, and separating nodes who have higher negative
weight with others. Since the time complexity is too high for
correlation clustering, we focus on approximation algo-
rithms to achieve better performance.

Let OPT represent the optimal clustering algorithm, in
which positive labeled edges are always in one cluster,
while negative labeled edges are always between different
clusters. Our goal is to propose an approximation algorithm
close to OPT , by minimizing the weight of positive edges
between clusters and the weight of negative edges inside
clusters. Also, the approximation algorithm should max-
imize the weight of positive edges inside clusters and
maximize the weight of negative edges between clusters.
Given a clustering algorithm S, the difference between S
and OPT is denoted as dðSÞ which is the sum of the
weights of negative labeled edges inside a cluster, plus
weights of positive labeled edges between clusters in S. We
then formulate the problem with linear programming and
then give an approximation algorithm. Consider assigning
a variable xij to each pair of vertices (xij ¼ xji); xij ¼ 0 if vi
and vj are in a common cluster, and xij ¼ 1 otherwise. As
1� xij is 1 if edge ði; jÞ is within a cluster and 0 if edge ði; jÞ
is between clusters, we have the following:

dðSÞ ¼
X

ði;jÞ2Eh�i

cijð1� xijÞ þ
X

ði;jÞ2Ehþi

cijxij: ð13Þ

Our goal is to find an assignment of xij to minimize the
difference dðSÞ. We relax the requirement and get the
following linear program:

minimize
X

ði;jÞ2Eh�i

cijð1� xijÞ þ
X

ði;jÞ2Ehþi

cijxij; ð14Þ

subject to xij 2 ½0; 1�; ð15Þ

xij þ xjk � xik; ð16Þ

xij ¼ xji: ð17Þ

We present a OðlognÞ approximation solution to this
linear program, which is the best approximation factor that
can be achieved as proved in [7].

First we define a circle Cði; rÞ with radius r around
node vi which consists of all nodes vj such that xij � r. The
cut of a set of nodes S, denoted by cutðSÞ, is the weight of
the positive edges with exactly one endpoint in S:

cutðSÞ ¼
X

jvj;vk\Sj¼1;ðj;kÞ2Ehþi

cjk: ð18Þ

The cut of a circle is the cut induced by the set of vertices
included in the circle. The volume of a set of nodes S,
denoted by volðSÞ, is the weighted distance of the edges
with both endpoints in S:

volðSÞ ¼
X

vj;vk�S;ðj;kÞ2Ehþi

cjkxjk: ð19Þ

Therefore, the volume of a circle is the volume of Cði; rÞ
including the fractional weighted distance of positive
edges leaving Cði; rÞ. In other words, if ðj; kÞ 2 Ehþi is a
cut positive edge of circle Cði; rÞ with vj 2 Cði; rÞ and
vk 62 Cði; rÞ, then ðj; kÞ contributes cjk � ðr� xijÞweight to the
volume of circle Cði; rÞ. We include an initial volume I to
the volume of every circle (i.e., circle Cði; 0Þ has volume I).
The correlation clustering algorithm on a weighted proof-
correlation graph is shown in Algorithm 4. One advantage
of this approach is that the correlation clustering algorithm
can handle outliers naturally. Outliers will usually have a
cluster of their own. Thus, when the algorithm ends, we can
simply discard small isolated clusters.

Algorithm 4. Correlation clustering on proof-correlation

graph

Input: queue G with all the nodes vi 2 V , weight

function cij for each edge ði; jÞ;

1: while G not empty do

2: dequeue vi  G;

3: r ¼ 0;

4: while cutðCði; rÞÞ > c � lnðnþ 1Þ 	 volðCði; rÞÞ do

5: r ¼ rþminfðdij � rÞ > 0 : v 62 Cði; rÞg;

6: end while

7: output Cði; rÞ as one of the clusters;

8: remove Cði; rÞ and related edges from G;

9: end while

6 PERFORMANCE EVALUATIONS

In this section, we study the feasibility of deploying
APPLAUS such as the computation and storage constraint,
power consumption, and the proof exchange latency. We
also use simulations to evaluate the performance of
APPLAUS.

6.1 Prototype Implementation

To study the feasibility of our scheme, we have developed a
prototype of APPLAUS based on the techniques presented
in the previous sections. The prototype has two software
components: client and server. The client is implemented in
JAVA on Android Developer Phone 2 (ADP2), which is
equipped with 528 MHz chipset, 512 MB ROM, 192 MB
RAM, Bluetooth, and GPS module, and running Google
Android 1.6 OS. It can communicate with the server
anytime through AT&T’s 3G wireless data service. The
server is implemented on a T4300 2.1 GHz 3 GB RAM
laptop. It stores the uploaded location proof records and
manages corresponding indices using MySQL 5.0. We use
two android phones to communicate with each other to test
our solution.

The client code consumes only 80 KB of data memory.
When running, less than 2.5 percent of the available
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memory is used. We measure the CPU utilization of our
client code using a monitoring application, which allows
one to monitor the CPU usage of all the processes running
on the phone. When the application is in standby, the CPU
utilization is about 0.5 percent, indicating that listening to
incoming Bluetooth inquiries requires very low computa-
tion. The CPU utilization goes to 3 and 5 percent,
respectively, when communicating with another device
and with the server, due to using different communication
interfaces. We observe that the CPU utilization reaches the
highest level of 10 percent when a location proof packet is
generated, in which heavy computations such as authenti-
cation and encryption/decryption are involved.

We also study the appropriate size of the public/private
key pair. The key size determines the number of bits of the
encrypting key as well as the size of the pseudonym. Larger
key size can provide better security, but involves more
computations and storage resources, as well as power
consumption. We use Elliptic Curve Cryptography (ECC) in
our implementation as it provides the same functionality
and security features as the widely used RSA cryptosystem,
but requires much shorter key length for achieving a similar
security level. For example, a 160-bit ECC-key attains about
the same level of security as a 1,024-bit RSA key. There is
always a tradeoff between performance and security level
when choosing the key size. In mobile computing scenario
where computation and power resource are limited, we
tend to assign more weight to performance. Some of the
organizations (e.g., recent ECRYPT II recommendation [28])
recommend 160-bit key for ECC, while others recommend
256-bit. Our experimental results in Fig. 6 show that 256-bit
key consumes much more power than that of 160-bit key,
under different Poisson distribution parameters. As our
goal is to find the smallest key size which can achieve
general security requirement for light-weight mobile sce-
nario, 160-bit is used to in our prototype. Other crypto-
graphy methods or key sizes can be also applied depending
on different emphasis of performance or security.

We also show how power consumption affects the daily
normal usage of the mobile device. Fig. 6 shows the
percentage of power consumption as a function of the
Poisson parameter � used in location proof exchange. As �
becomes larger, the power consumption increases, due to the

more frequent location proof updating activities. It is easy
to see our scheme will not increase the power consumption
too much (with less than 2.5 percent power consumption).

The distance between the phones when they exchange
location proofs also affects the latency, where longer distance
means longer delay due to the weak signal strength. As has
been established in earlier studies [14], more than 80 percent
of contact durations are less than 10 seconds, and thus there
is no problem for our proof exchange process to be finished
within the contact duration. Fig. 7 measures the power
consumption under different Bluetooth status. There are
three status: inquiry, standby and proof exchange. The inquiry
status is used to discover other Bluetooth devices within
communication range, and send out proof requests. The
inquiry process continues for a prespecified time, until a
prespecified number of units have been discovered or until it
is stopped explicitly. Bluetooth devices that only listen to
inquiry messages are in standby. In our system, inquiry and
standby are mutual exclusive at any time. The device enters
the proof exchange status when it exchanges location proofs
with others. The most frequent status is standby, which
consumes less than 0.1 mW of power with any communica-
tion distance. The proof exchange status consumes the most
amount of power and deteriorates with increasing commu-
nication distance; however, it will not appear until the next
location proof updating cycle.

6.2 Simulation Results

In our simulations, 1,000 mobile nodes are deployed in a
3 km	 3 km area. We use the Levy walk mobility model
[24] to generate synthetic node contact events. Previous
work has shown that the Levy walk model can describe the
mobility patterns of a human being relatively well for a
campus-sized area. A contact between two nodes happens
when the nodes are within 10 m range of each other, which
is the communication range of Bluetooth.

For each simulation run, we generate a Levy walk trace
with a certain contact rate and initiate the location proof
updating process with various time intervals. We repeat
this experiment 100 times, choosing different contact rates
for each run. Each node has M ¼ 10 pairs of 160-bit public/
private keys and a Poisson distribution parameter �, which
is used to determine when to change pseudonyms. � is
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Fig. 6. Power consumptions under different key sizes and Poisson
distribution mean �.

Fig. 7. Power consumption under different Bluetooth status and different
communication distance.



divided into 10 different numbers: �1; �2; . . . ; �10, where � ¼
�1 þ �2 þ � � � þ �10. We define a parameter �, which is the
standard deviation of two consecutive �i and �iþ1 (assum-
ing �i and �iþ1 are in nondecreasing order), to control how
to cut �. Another parameter � is chosen by each node as a
threshold to determine whether to accept a location proof
exchange request based on the user-centric privacy level.

We compare our APPLAUS scheme with a baseline
scheme. In the baseline scheme, each node does not change
pseudonyms based on Poisson distribution. Instead, it uses
a constant rate to upload location proofs. Unlike APPLAUS
where two nodes mutually exchange location proofs, the
baseline scheme only uploads its own location proof if there
is a proof available. A dummy message is uploaded when
there is no proof available.

In the comparisons, we use three metrics:message overhead
ratio, proof delivery ratio, and average delay. The message
overhead ratio is defined as the ratio of dummy proof traffic
and real location proof traffic. The proof delivery ratio is the
percentage of location proof message that is successfully
uploaded to the location proof server. The average delay is
the time difference between the time when a location proof
update is needed and when the location proof message
has reached the location proof server.

Fig. 8 shows the performance comparisons between our
scheme and the baseline scheme under different ratio of
! ¼ Tproof=Tcontact, where Tproof is the required interval
between two location proof updates, and Tcontact is the
mean real node contact interval. Fig. 8a shows that
APPLAUS outperforms baseline on overhead ratio when
! is larger than 0.75. When ! > 1:5, the overhead ratio of
APPLAUS decreases to as low as 0.2. As shown in Fig. 8b,
the proof delivery ratio of APPLAUS significantly outper-
forms the baseline scheme, and it reaches 93 percent when
! > 1:5. From Fig. 8c, we can see that APPLAUS and
baseline have similar average delay when ! > 1, in which
the delay is measured as the unit of Tproof . When ! > 1:5,
the delay of APPLAUS becomes lower than 0.15 of Tproof .
Thus, when ! > 1:5; i.e., when the location proof update
interval is at least 1.5 of the contact interval, the
performance of APPLAUS reaches an adequate level. The
delay will not change too much after ! ¼ 2. Therefore, an
appropriate ratio ! should be chosen between 1.5 and 2.

6.3 Privacy Evaluation

In the previous section, we already showed that our location
proof updating system has the property of pseudonym

unlinkability and statistically strong source location unob-
servability. In this section, we evaluate the robustness of
APPLAUS such as defending against traffic analysis and
statistical test.

With our scheme, we consider what the attacker can do
to detect real events. Clearly, we cannot prevent the attacker
from using any statistical analysis tool, so what we show
below are based on the general techniques that can be used
by the attacker. We believe other statistic testing methods
will render similar results.

We assume that the attacker has enough resources
(e.g., storage and computation ability) to collect and
analyze location proof updating time by traffic monitoring
or by compromising the location proof server. Then, the
attacker will try to infer that two pseudonyms belong to
the same ID if the distributions of their location proof
updating time intervals are identical. To achieve this, the
attacker can first conduct some goodness of fit tests such as
the Kolmogorov-Simirnov (K-S) test [25] to check whether
the probabilistic distributions of the location proof updat-
ing time intervals from every pseudonym follow the same
Poisson distribution. The attacker then performs the mean
test such as Sequential Probability Ratio Test (SPRT) [29] if
the distributions can pass the goodness of fit test. Those
distributions whose sample means deviate from the true
mean beyond a certain degree will be marked as potential
abnormal pseudonyms.

To detect if two pseudonyms belong to the same source,
the attacker can check whether the two probabilistic
distributions of location proof updating time intervals from
the two pseudonyms are identical. For the attacker, the
hypotheses of the test are:

. H0—the two pseudonyms belong to the same source.

. H1—the two pseudonyms belong to different source.

When the attacker makes a decision, there are some
risks to get wrong decision. The decision is called a
detection, if H0 is accepted when it is actually true. If H0 is
in fact true, accepting H1 is a false negative. On the other
hand, if H1 is in fact true, accepting H0 is a false positive.
False positive has no negative effect on privacy since
taking two different pseudonyms as the same would not
help identifying the real source. We focus on false negative
which indicates the percentage of cases that has not been
detected by the attackers.
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Fig. 8. Performance under different ratio of ! ¼ Tproof=Tcontact.



To evaluate false negative, we use the same simulation
setup as previous section and repeatedly perform K-S test
[22] on the distributions under different standard deviation
� (ranging from 0.2 to 1) and threshold � (ranging from
0.02 to 0.1). Based on the test results, we get the false
negative rate as shown in Fig. 9. The x-axis is the threshold
� of each user. The smaller � is, the less likely a location
proof exchange request will be accepted. The y-axis
represents the standard deviation � of two Poisson
distribution means. Obviously, larger � indicates wider
difference between the two Poisson distributions, which is
harder for attackers to differentiate. We can observe from
the figure that the false negative rate of the attacker’s test
is high (above 90 percent), especially when � > 0:04 and
� > 0:5, which indicates that as long as the parameters of �
and � are appropriately selected, the privacy of our system
can be preserved.

6.4 Collusion Detection

In this section, we evaluate the performance of collusion
detection based on betweenness ranking and correlation
clustering approaches. We consider three data sets: besides
the above mentioned synthetic trace and the MIT reality
trace [8], we also crawl live data from Foursquare, one of
the most popular location-based social networking ser-
vices. The data crawling task is to collect correlated user
and location data. We select well-connected users (who
have hundreds of friends) as seeds to start the crawling.
After aggregating the user and location data, we obtain a

data set of 58,659 users and 96,219 locations. Note that each
user and location in the data set are associated with an
address which can be converted to a geographical location
(i.e., latitude and longitude) via Google map service.

The quality of betweenness ranking is measured by the
ranking score, where we use Mean Average Precision
(MAP), to measure the ranking performance of the
calculated betweenness. MAP is the most frequently
used summary measure of a ranked retrieval run. In our
scenario, it stands for the mean of the precision score after
each betweenness is generated:

MAP ¼

PB
b¼1 AveP ðbÞ

B
; ð20Þ

where B is the number of betweenness. Fig. 10a shows the
ranking score of the betweenness ranking method.

The quality of correlation clustering is measured by the
separation score, which is calculated as a weighted average
distance between cluster centers:

Sep ¼
1P

i6¼j NiNj

X

i 6¼j

NiNjDðCi; CjÞ; ð21Þ

where Ci and Cj are the centers of the ith and jth clusters,
Ni and Nj are the number of vetices in the ith and
jth clusters, and D is the distance function. Thus, Sep

reflects the overall distance between clusters. Higher Sep

means better results. Fig. 10b shows the separation score of
our temporal-weighted correlation clustering results. Worth
to mention, when the threshold of the time delay between
location proofs is around 1 hour, our solution achieves the
best clustering quality.

In order to evaluate the performance of these two
approaches on detecting colluding nodes, we use compu-
tation time and successful detection ratio to measure the
efficiency and effectiveness, respectively. We also compare
these two approaches with a standard algorithm, in which
every location proof or pseudonym is verified individu-
ally. All approaches are evaluated based on the Four-
square data set. As shown in Fig. 11, the correlation
clustering approach runs faster than the betweenness
ranking approach, and both are much faster than the
standard algorithm. Even though the detection ratio of the
clustering approach and the ranking approach is a little bit
lower than the standard algorithm, the big difference in
computation time is worth the cost.
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Fig. 9. False negative rate under different parameter of � and �.

Fig. 10. Metrics of quality evaluation for two approaches.



7 RELATED WORK

Recently, several systems have been proposed to provide
end users the ability to prove that they were in a particular
place at a particular time. The solution in [3] relies on the
fact that nothing is faster than the speed of light in order to
compute an upper bound of a user’s distance. Capkun and
Hubax [5] propose challenge-response schemes, which use
multiple receivers to accurately estimate a wireless node
location using RF propagation characteristics. In [15],
the authors describe a secure localization service that can
be used to generate unforgeable geotags for mobile content
such as photos and video. However dedicated measuring
hardware or high-cost trusted computing module are
required. Saroiu and Wolman [26] propose a solution
suitable for third-party attestation, but it relies on a PKI and
the wide deployment of WiFi infrastructure. Different from
these solutions, APPLAUS uses a peer-to-peer approach
and does not require any change to the existing infra-
structure. SmokeScreen [6] introduces a presence sharing
mobile social service between colocated users which relies
on centralized, trusted brokers to coordinate anonymous
communication between strangers. SMILE [20], [21] allows
users to establish missed connections and utilizes similar
wireless techniques to prove if a physical encounter
occurred. However, this service does not reveal the actual
location information to the service provider thus can only
provide location proofs between two users who have
actually encountered. APPLAUS can provide location
proofs to third-party by uploading real encounter location
to the untrusted server while maintaining location privacy.

There are lots of existing works on location privacy in
wireless networks. In [11], the authors propose to reduce the
accuracy of location information along spatial and/or
temporal dimensions. This basic concept has been improved
by a series of works [10], [13]. All the above techniques cloak
a node’s locations with its current neighbors by trusted
central servers which is vulnerable to DoS attacks or to be
compromised. Different from them, our approach does not
require the location proof server to be trustworthy. Xu and
Cai [30] propose a feeling-based model which allows a user
to express his privacy requirement. One important concern
here is that the spatial and temporal correlation between
successive locations of mobile nodes must be carefully
eliminated to prevent external parties from compromising
their location privacy. The techniques in [1], [9] achieve

location privacy by changing pseudonyms in regions called
mix zones. In this paper, pseudonyms of each node are
changed by the node itself periodically following a Poisson
distribution, rather than being exchanged between two
untrusted nodes. Identifying a fundamental tradeoff be-
tween performance and privacy, Shao et al. [27], [31]
propose a notion of statistically strong source anonymity
in wireless sensor networks for the first time, while Li and
Ren [18] and Zhang et al. [32] tried to provide source location
privacy against traffic analysis attacks through dynamic
routing or anonymous authentication. Our scheme uses
similar source location unobservability concept in which the
real location proof message is scheduled through statistical
algorithms. However, their focus is to generate identical
distributions between different nodes to hide the real event
source, while our focus is to design distinct distributions
between different pseudonyms to protect the real identity.

8 CONCLUSIONS

In this paper, we proposed a privacy-preserving location
proof updating system called APPLAUS, where colocated
Bluetooth enabled mobile devices mutually generate loca-
tion proofs and upload to the location proof server. We use
statistically changed pseudonyms for each device to protect
source location privacy from each other, and from the
untrusted location proof server. We also develop a user-
centric location privacy model in which individual users
evaluate their location privacy levels in real time and decide
whether and when to accept a location proof exchange
request based on their location privacy levels. To the best of
our knowledge, this is the first work to address the joint
problem of location proof and location privacy. To deal
with colluding attacks, we proposed betweenness ranking
based and correlation clustering-based approaches for
outlier detection. Extensive experimental and simulation
results show that APPLAUS can provide real-time location
proofs effectively. Moreover, it preserves source location
privacy and it is collusion resistant.
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