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Abstract 
Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans.  Even if conservative 

estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands 

evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, 

the status of the primary international R&D programs, and the remaining science and technological challenges facing 

commercialization of production.  After a brief examination of gas hydrate accumulations that are well characterized and 

appear to be models for future development and gas production, we analyze the role of numerical simulation in the 

assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of 

knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical 

simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed.  We 

review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and 

determine that there are consistent indications of a large production potential at high rates over long periods from a wide 

variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential 

production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain 

gas hydrate deposits undesirable for production. 

 

Introduction 
Background. Gas hydrates are solid crystalline compounds in which gas molecules (referred to as guests) occupy the lattices 

of ice-like crystal structures called hosts. Under suitable conditions of low temperature T and high pressure P, the hydration 

reaction of a gas G is described by the general equation  

G + NH H2O  = G•NH H2O,……………………………………………………………………………………………………(1) 

where NH is the hydration number. Hydrate deposits occur in two distinctly different geographic settings where the necessary 

conditions of low T and high P exist for their formation and stability: in the permafrost and in deep ocean sediments 

(Kvenvolden, 1988). 

The majority of naturally occurring hydrocarbon gas hydrates contain CH4 in overwhelming abundance.  Simple CH4-

hydrates concentrate methane volumetrically by a factor of 164 when compared to standard P and T conditions (STP).  Some 

modeling suggests that the energy needed for dissociation could be less than 15% of the recovered energy (Sloan and Koh, 

2008). Natural CH4-hydrates crystallize mostly in the structure I form, which contains 46 H2O molecules per unit cell.  

Structure I hydrates have a NH ranging from 5.77 to 7.4, with NH = 6 being the average hydration number and NH = 5.75 

corresponding to complete hydration (Sloan and Koh, 2008).  Natural gas hydrates can also contain other hydrocarbons 

(alkanes CνH2ν+2, ν = 2 to 4), but may also comprise lesser amounts of other gases (mainly CO2, H2S or N2). 

Gas hydrates were first discovered in laboratory studies ca. 1800, but it was as late as 1965 that mankind first recognized 

that they may be common in nature, and that the age of some natural gas hydrate systems may be on the order of millions of 

years (Sloan and Koh, 2008). Although there has been no systematic effort to map and evaluate this resource on a global 

scale, and current estimates of in-place volumes vary widely
 
(ranging between 10

15 
to 10

18
 m

3
 at standard conditions), the 

consensus is that the worldwide quantity of hydrocarbon gas hydrates is vast (Milkov, 2004; Klauda and Sandler, 2005).  

Given the sheer magnitude of the resource, ever increasing global energy demand, and the finite volume of conventional 

fossil fuel reserves, gas hydrates are emerging as a potential energy source for a growing number of nations. The attractive-

ness of gas hydrates is further enhanced by the environmental desirability of natural gas (as opposed to solid or liquid) fuels.  

Thus, the appeal of gas hydrate accumulations as future hydrocarbon gas sources is rapidly increasing and their production 

potential clearly demands technical and economic evaluation.   

 The past decade has seen a marked acceleration in gas hydrate R&D, including both a proliferation of basic scientific 

endeavors as well as the strong emergence of focused field-based study of gas hydrate productivity, primarily within national 

gas hydrate programs.   Together, these efforts have helped to clarify the dominant issues and challenges facing the extraction 

of methane from gas hydrates. Among the most important developments is the increasing focus of studies in the lab on gas 

hydrates bearing sediments (as opposed to crystalline gas hydrate), the dramatic improvements in tools available for sample 

collection and analysis, the emergence of robust numerical simulation capabilities, and the imminent transition of gas hydrate 

resources from the era of astronomic in place numbers to the more relevant assessment of potential recoverability (Boswell, 

2007).  We have gone from thinking of marine gas hydrates as being controlled primarily by pressure and temperature 

conditions to a fuller understanding of the complexities of gas hydrate geological systems, including new insights into the 

effects of solubility, salinity and heat flow (Ruppel et al., 2005; Paull et al., 2005), reservoir lithology, and rates and 
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migration pathways for both gas and water.  Taking advantage of this new data is a new marine gas hydrate resource 

assessment under way by the U.S. Minerals Management Service of the U.S. Department of the Interior in the Gulf of Mexico 
(Ray, 2005) that is expected to appear early in 2008 

Going forward, the attempt to commercially produce gas from geologic hydrate deposits will face major challenges.  

Critical data gaps, such as information on the mechanical and hydraulic properties of hydrate-bearing media are being 

actively addressed.  Furthermore, significant inroads are now being made into our understanding of hydrate behavior under 

different potential production scenarios.  Nevertheless, critical challenges remain that are compounded by the complexity of 

dealing with a solid compound that releases gas only through an endothermic reaction, as opposed to a simple fluid 

withdrawal that characterizes production from conventional reservoirs.  In addition, there is the difficulty of operating in the 

hostile Arctic and deep marine environments where gas hydrates are encountered. 
Gas hydrates are often compared to coalbed gas resources, which were also considered to be an uneconomic resource in the 

not too distant past (Collett, 2007). However, once the resource was geologically understood, the reservoir properties defined, 
and the production challenges addressed, coalbed gas became a viable fuel in its own right and an important part of the energy 
mix in the United States, where it accounts for almost 10% of the natural gas production.  Past experience with the 
development of other unconventional energy resources clearly shows that the evolution of gas hydrate into a producible source 

of energy will require a significant and sustained research and development (R&D) effort. Our paper discusses the current 

states of this R&D effort and of the corresponding knowledge. 

 

Objective. The objective of this review paper is to review the state of knowledge on the subject of gas production from 

hydrates.  This includes (1) an assessment of the resource and its global distribution, (2) a discussion of current policies, 

focus and priorities, (3) a synopsis of the technical advances that have addressed some of the early knowledge gaps in hydrate 

science that are relevant to production, (4) a review of the proposed production technologies and strategies (as dictated or 

constrained by the deposit conditions), (5) an analysis of current production predictions, (6) a summary of guidelines, criteria 

and recommendations for the selection of hydrate deposits as production targets and evaluation of the corresponding 

production methods, and (7) identification of remaining challenges and knowledge gaps at this early stage of the hydrate 

exploitation endeavor. 

Note that, in this review paper, we do not address the subject of geophysics, and its potential role in the detection of 

hydrates, evaluation of the resource, and monitoring of the dissociation-fueled gas production process.  The subject is 

sufficiently important and complex to merit its own separate review. 

 

Methods of Production from Gas Hydrates. Gas can be produced from hydrates by inducing dissociation, which also 

releases large amounts of H2O (Eq. 1).  The three main methods of hydrate dissociation are: (1) depressurization, in which the 

pressure P is lowered to a level lower than the hydration pressure Pe at the prevailing temperature T, (2) thermal stimulation, 

in which T is raised above the hydration temperature Te at the prevailing P, and (3) the use of inhibitors (such as salts and 

alcohols), which shifts the Pe-Te equilibrium through competition with the hydrate for guest and host molecules (Makagon, 

1997).  Long-term production strategies often involve combinations of the three main dissociation methods (Moridis and 

Reagan, 2007a,b). 

 

Occurrence, Research Activities and Priorities, and Prospective Production Targets 
Magnitude and Global Distribution of the Hydrate Resource. Knowledge of the occurrence of in situ gas hydrates is very 

incomplete, and is obtained from both indirect and direct evidence. There have been 23 locations where irrefutable evidence 

of hydrates has been seen through direct recovery of hydrate samples: 3 in the permafrost and 20 in ocean environments 

(Sloan and Koh, 2008). In permafrost regions, evidence of gas hydrate is provided two ongoing R&D programs (discussed 

below) and by analysis of industry 3-D seismic data and data obtained during the drilling and logging conventional oil and 

gas wells.  The ability to prospect for gas hydrate deposits using this data has recently been demonstrated in the Prudhoe Bay 

region of the Alaska North Slope (Inks et al., in press).  In the marine environment, the bulk of the data supporting the 

interpretation of gas hydrates at the majority of locations in indirect indicators (such as Bottom simulating reflections) on 

relatively low-quality2-D seismic data.  However, direct gas hydrate detection and characterization from marine 3-D data has 

recently been shown by Dai et al., (in press) and the use of 4-component ocean bottom seismic also shows great promise 

(Backus et al., 2006; Bunz and Mienert, 2005)  

Given the relative abundance of marine gas hydrate resources, these occurrences will likely be the primary targets for 

future R&D activities.  However, given the favorable economics of conducting long-term field programs in the Arctic (as 

opposed to the deep water, it is expected that arctic R&D activities will also continue.  Two countries, the U.S., and Japan, 

are making considerable R&D investments in the Arctic, under the reasoning that the information gained on the behavior of 

gas hydrate bearing sand reservoirs can be readily transferred to the study of marine resources at a later date.  

 

Estimates of Gas Trapped in Hydrates and Related Uncertainties. Table 1 lists the estimates of natural gas in hydrates in 

the geosphere’s gas hydrate stability zone (GHSZ). These estimates range from the maximum values of Trofimuk et al. 

(1973), (3.053x10
18

 m
3
 STP of CH4, based on the assumption that hydrates could occur wherever a satisfactory P-T regime 

exists), to the minimum values of Soloviev (2002) (2x10
14

 m
3
 STP, accounting for limiting factors such as CH4 availability, 
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limited organic matter, porosity φ, the thermal history of various regions, etc.).  All the estimates in Table 1 (except that of 

Klauda and Sandler, 2005) involve extrapolation of a limited amount of fairly well known, localized geological data to a 

global level.  The Klauda and Sandler
 
estimate is based on a state-of-the-art model that involves (1) a new ab initio 

thermodynamic model that includes the effects of pores and salt, (2) estimates of the locus of the intersection of the 

geothermal gradient with the phase boundary (obtained from measured local temperatures and gradients in the world oceans), 

and (3) measured local organic sediment contents that (4) served as inputs to the methanogenesis mass transfer model of Davie 

and Buffett (2003).  The model enables prediction of most recorded occurrencesof hydrates, and reasonable explanations for 

the remaining exceptions (Sloan and Koh, 2008). The large amount of hydrates predicted by Klauda and Sandler
 
includes 

both very deep hydrates and very dispersed hydrates, many of which are not accounted for by the other models or are not 

discovered by sampling due to dissociation. When only continental hydrates are considered, Klauda and Sandler predict 

4.4x10
16

 m
3
 (STP) of gas in hydrates. 

None of the estimates of natural gas hydrates are well defined, and therefore they are all speculative to a certain extent. 

However, even the most conservative estimates suggest enormous amounts of gas in hydrated form, the magnitude of which 

can be appreciated by comparing them to the current rate of 10
12

 m
3
 STP of gas-equivalent annual energy consumption in the 

United States.  All estimates are comparatively large relative to estimates of the conventional gas reserve of 1.5x10
14

 m
3
 of 

methane (Radler, 2000).  Kvenvolden
 
(1988) indicated that his estimate of 1.8x10

16 
m

3
 of methane in hydrates may surpass 

the available, recoverable conventional CH4 by two orders of magnitude, or a factor of two larger than the CH4-equivalent of 

the total of all fossil fuel deposits. 

The only systematic assessment U.S. hydrate resources to date has been by Collett (1995). He assigned probabilities to 12 

different factors (geological attributes correlated with the existence of hydrates) to estimate the 50% probability (mean) 

estimate of hydrate resources within the United States at 9x10
15

 m
3
 of CH4 (with the 95% probability estimate at 3x10

15
 m

3
 

and the 5% probability estimate at 1.9x10
16

 m
3
), i.e., the mean hydrate value indicates 300 times more hydrated gas than the 

gas in the total remaining recoverable conventional resources.  

Geographic Occurrences. In terms of global distribution, the amount of hydrates in the ocean surpasses that in the 

permafrost by two orders of magnitude (Sloan and Koh, 2008). This oceanic amount is disproportionately large, considering 

that the oceans and the permafrost comprise 70% and 7%, respectively, of the earth’s surface.  The estimates of the oceanic 

hydrate resources are so large compared to those in the permafrost (Table 2) that a 1% error in the ocean approximations 

could encompass the entire permafrost hydrate reserves. Kvenvolden (2005) compiled 89 hydrate sites shown in Figure 1 

(Sloan and Koh, 2008).  At those locations hydrates were either: 

1. Recovered as samples (23 locations), 

2. Inferred from (a) Bottom Simulating Reflector (BSR) geophysical signatures (63 locations), (b) decrease in pore 

water chlorinity (11 locations), well logs (5 locations), and slumps/pockmarks (5 locations – note that the is 

skepticism as to whether some of these slumps are indicative of hydrate occurrence), or 

3. Interpreted from geologic settings (6 locations). 

A measure of the dearth of direct knowledge on the global distribution of hydrates, as well as on the properties of hydrate-

bearing sediments, can be gleaned by attempting to compare this meager list of sampled (or even merely geophysically 

investigated) locations that represents the entirety of the accumulated data-base of natural hydrates, to the huge body on 

information on conventional oil and gas reservoirs, or even to the large (and rapidly increasing) data-base of information on 

unconventional resources such as coalbed methane (Warner, 2007). 

 

Policies, Focus, Activities, and Priorities. The following review focuses on those studies that are most relevant to the 

assessment of gas hydrate resource potential: 

Policies, Institutional Support, and Research Activities. By the early 1990s, it was clear that the potential implications of 

gas hydrates to the future balance of energy, especially in countries with limited conventional oil and gas resources (Boswell, 

2007). Japan took a leading role in the effort to explore the potential of geologic hydrate deposits as an energy source when 

the Japanese Ministry of International Trade and Industry (MITI) established a research program in 1995, which led to the 

drilling and installation of the first well designed to investigate marine gas hydrate deposits from a resource perspective 

(Takahashi et al., 2001). This exploration well was drilled from November 1999 to February 2000 in the Nankai Trough 

offshore Japan at a water depth of 945 m, at a location where the BSR seismic signature indicated a high probability of 

hydrate (Uchida et al., 2004; Tsuji et al., 2004; Matsumoto et al., 2004). One of the most important accomplishments of this 

pioneering effort was the development of a methodology to evaluate hydrate occurrence while drilling a well (Takahashi et 

al, 2001; JNOC-TRC, 1998).  The initial MITI program was succeeded by a larger multi-well exploration program 

(Matsumoto et al., 2004), and is probably the most advanced program in the world in terms of proximity to commercial 

production. 

In the U.S., gas hydrate studies related to resource issues had begun in 1980s with small program within the U.S. DOE 

and the USGS.  The DOE program ceased in 1990, although the USGS continued to make significant contributions, including 

the 1995 release of an estimate of 9x10
15

 m
3
 STP (= 3.2x10

17
 STP ft

3
 = 320,000 TCF) of domestic gas hydrate resources via 

the worlds first systematic gas hydrate resource assessment.  Spurred by this information, and other factors, in 2000, the U.S. 

Congress restarted the U.S. national program by enacting the Methane Hydrate Research and Development Act (MHR&D 
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Act). This legislation authorized substantially increased funding and directed the U.S. Department of Energy, the U.S. 

Geological Survey (USGS), the Minerals Management Service, the National Oceanic and Atmospheric Administration 

(NOAA), the Naval Research Laboratory, and the National Science Foundation to work together to uncover the physical 

nature, economic potential, and environmental role of naturally-occurring methane hydrates.  Over the first 5 years of the 

MHR&D Act, hydrate science advanced significantly, both in terms of knowledge of natural hydrate occurrences, hydrate 

physical/chemical properties, and in the tools available to researchers.  

Working from a solid foundation of knowledge obtained from earlier studies (Sloan and Koh, 2008; Boswell, 2007), 

researchers gained a greater understanding of the complexity of hydrate accumulations through laboratory work (Waite et al., 

2002; Durham et al., 2003; Winters et al., 2004; Kneafsey et al., 2005; Gupta et al., 2006), numerical simulation analyses 

(Moridis and Reagan, 2007a,b; Moridis et al., 2007a; Moridis and Sloan, 2007), and national and international collaborative 

field experiments (Dallimore and Collett, 2005) (see discussion in following sections of this paper), and began the 

development of the precursors to tomorrow's hydrate exploration and evaluation technologies. By 2005, it was clear that, 

given certain reservoir conditions, production of methane from hydrate was technically feasible and potentially commercially 

viable through specially tailored application of existing technologies (Boswell, 2007). In 2005, the U.S. interagency R&D 

program began implementing the second 5-year authorization of the MHR&D Act, which saw the ongoing transition of the 

effort from one based primarily on studies in the lab to a more integrated effort focused on collection of data in the field. 

Synopsis of Global Research Activities. In the US, research activities include laboratory experiments and simulation 

studies (Boswell, 2007), in addition to field studies that focus on onshore Alaska and the offshore Gulf of Mexico — i.e., 

sites of proven exploration targets for gas hydrates in the US (Collett, 1995; Collett, 2004; Collett, 2007). There, documented 

prolific petroleum systems coexist with critical drilling and transportation infrastructure that may allow gas hydrate prospects 

to be drilled and produced from existing installations. Major federal-industry partnerships have been formed in both the Gulf 

of Mexico and on the North Slope of Alaska (Collett, 2004).   

It is likely that the first US domestic production from hydrates may occur in Alaska, where gas from onshore hydrates 

will either support local oil and gas field operations, or be available for commercial sale if and when a gas pipeline is 

constructed.  However, it is not possible to completely discount the possibility of first US domestic production of gas from 

hydrates occurring in the Gulf of Mexico because, despite of the substantially increased complexity and cost of offshore 

operations, there is a higher probability of available pipeline capacity and easier access to markets. 

Japan has a rigorous research plan and an advanced exploration program that has led the drilling of 36 wells in gas 

hydrate-bearing turbiditic sand reservoirs in the Nankai Trough off Japan’s east coast (Takahashi and Tsuji, 2005).  Fujii et 

al. (2005) described the variety of gas hydrate occurrence found in the Nankai region, and Kurihara et al. (2005) discussed 

the relative economic favorability of gas hydrates in different geologic settings. The Japanese effort is probably the most 

advanced in terms of approaching commercial production, which is expected to begin around 2016.  Japan has also 

collaborated with Canada and other nations to conducted scientific studies and initial gas hydrate production tests in the 

Canadian Arctic.  Canada has established a large gas hydrate research and development program that resulted in the Mallik 

production field test (Dallimore and Collett, 2005), the most significant to-date development in the quest for gas production 

from hydrates (see later discussion).  

The government of India is also funding a large national gas hydrate program to meet its growing gas requirements.  

Earlier seismic data (acquired on the Indian continental margin) and gas hydrate occurrences that were accidentally 

discovered during drilling for conventional oil and gas resources (Collett, 2004) provided the impetus for a hydrate-focused 

scientific expedition in the summer of 2006.  This expedition confirmed large hydrate deposits at four offshore locations, 

from which a large number of hydrate-bearing sediment cores were obtained.  Most notable was the 130-meter thick fractured 

shale occurrence in the Krishna-Godowari basin that contained gas hydrate concentrations previously unseen in shale-

dominated reservoirs (Collett et al., 2006).    

China has pursued gas hydrates R&D for more than a decade (Fan et al., 2005) and conducted its initial drilling and 

coring program in the South China Sea in early 2007.  That expedition found saturations of gas hydrate up to 40% in 

undeformed, clay-dominated sediments at a number of sites (Zhang, et al., 2007).  Like the India expedition before it, these 

results were totally unexpected, and indicated that, given adequate sources of gas, hydrates are remarkably effective at filling 

any available pore space.  

Korea has established a significant research program that aims to assess the potential hydrate resources in the Korean East 

Sea.  Preliminary surveys conducted by the Korea Institute of Geoscience and Mineral Resources (KIGAM) between 2000 

and 2004 suggest that there is a significant potential for gas hydrate occurrence in the Ulleung Basin (Park, 2006), and 

numerical simulation studies have raised intriguing possibilities about the production potential of these deposits (Moridis et 

al., 2007b).  In late 2007, news reports emanating from the drilling and coring program in Korea’s East Sea reported several 

100-meter thick occurrences that appear to be similar to the thick fractured shale deposit discovered offshore India in 2006. 

 Other countries (e.g., Norway, Russia, Mexico, Taiwan, Vietnam, Malaysia) have either embarked on, or are 

investigating the viability of, government-sponsored research programs to investigate the potential of gas production from 

national hydrate deposits.  This list is only expected to continue to grow.  In Europe, research programs like Hydratech and 

Hydramed have received funding from E.U. sources, however, these programs have tended to focus primarily on scientific 

and environmental issues. 
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A major contributor to the advance of gas hydrate science has been a series of field expeditions carried out under the 

Integrated Ocean Drilling Program (IODP) and its predecessors.  IODP efforts included the initial discovery of marine gas 

hydrate offshore Guatemala in 1982, as well as seminal expedition offshore Peru, at the Blake Ridge (offshore S. Carolina), 

in the Nankai Trough, and at Hydrate Ridge (offshore Oregon).  The most recent Expedition, X311, conducted a systematic 

sampling of gas hydrate within the accretionary wedge sediments offshore Vancouver Island.  This expedition produced an 

array of important findings, including major new insights into the importance of gas hydrate solubility/methane saturation in 

pore waters, and the major control that reservoir lithology can play in determine degree of gas hydrate concentration (Reidel 

et al, 2005). 

Given the difficulty and the large costs of conducting field studies on hydrates, significant effort is invested in 

international collaborative projects that combine the talents and resources of the participants.  The most well known (and 

probably the most important, in terms of knowledge generated) was the 2002 Mallik project, conducted at that site in 

Canada’s Mackenzie Delta (Northwest Territories) by an international consortium that included seven organizations from 

five countries (Japan, Canada, the United States, India and Germany) as well as the International Continental Scientific 

Drilling Program.  Current international collaborative projects include the Mallik 2007-2008 project (Dallimore et al., 2007) 

(Japan and Canada), as well as other bilateral collaborations, e.g., US-India (Collett et al., 2006) and US-China (see later 

discussion).  

Focus and Priorities. As in the case of conventional hydrocarbon production, it is logical to expect that the first gas 

recovery from hydrate resources will occur where there is relatively easy site access and the gas hydrate is concentrated 

(Collett, 2007).  It is obvious that such sites and deposits constitute the first targets on which the attempt to produce gas from 

hydrates must be focused.  While the following discussion is based on the conditions and properties of US deposits, and the 

results and experiences from the US research effort, the approach and concepts apply universally. 

The recently published Interagency R&D Roadmap (Boswell et al., 2006) recognizes that the wide range of geological 

settings for gas hydrate implies a variety of gas hydrate occurrences.  The analysis of Boswell and Collett (2006) used 

relative prospects for future production as the criterion to identify several key tiers of gas hydrate resource categories within 

the context of a gas hydrates resource pyramid (Figure 2).  This depiction can accurately display the relative size and 

producibility of the different types, with the most promising resources at the top and the most technically challenging at the 

base (Boswell and Collett, 2006). The pyramid shape reflects the natural tendency for the most abundant elements of a 

resource group to also typically be the most difficult to profitably extract. Figure 2 also includes an accurately scaled (with 

regard to relative size) schematic resource pyramid for all domestic non-hydrate natural gas resources. 

At the peak of the Gas Hydrates Resource Pyramid (those resources that are closest to potential commercialization) are 

gas hydrates that exist at high saturations within quality reservoirs rocks under existing Arctic infrastructure (Figure 2). This 

resource is currently estimated to be in the range of 9.4x10
11

 m
3
 STP (= 33 TCF) of gas-in-place (in the “Eileen” trend of 

Alaska’s North Slope).  Modeling studies suggest that as much as 3.4x10
11

 m
3
 STP (= 12 TCF) of that volume may be 

technically recoverable.  The second-from-the-top tier of hydrate resources is that of less well-defined accumulations that 

exist in similar geologic settings (discretely trapped, high-saturation occurrences within high-quality sandstone reservoirs) on 

the North Slope, but away from existing infrastructure. The current USGS estimate for total North Slope resources is 

approximately 1.7x10
13

 m
3
 STP (= 590 TCF) gas-in-place (Collett, 2005).    

The next most challenging (third) tier of resources includes gas hydrates of moderate-to-high concentrations that occur 

within quality sandstone reservoirs in the marine environment. Because these resources are usually burdened by the likely 

high costs of extraction from deep water, the most favorable accumulations are those found in the Gulf of Mexico in the 

vicinity of oil and gas production infrastructure (Boswell, 2007). The scale of this resource is not well known, but is the 

subject of an ongoing assessment by the U.S. Minerals Management Service, which has recently revealed the occurrence of 

significant volumes of sandy sediments within the shallow section (Ray, 2005). Examples of this category of resource have 

been documented form the Gulf of Mexico (Smith et al., 2006), as well as form the Nankai Trough offshore Japan (Fujii et 

al,, 2005) and by the recent IODP Expedition 311 offshore Vancouver Island (Reidel et al., 2005). 

The fourth tier involves massive deposits of gas hydrate, generally found encased in fine-grained muds and shales.  Most 

promising among this group appear to be those with elevated SH primarily because of extensive structural disturbance of the 

sediment. Such fractured-reservoir accumulations may be common in certain areas, with thick sections exhibiting massive 

vein fills, high concentrations of small hydrate nodules, smaller vein fills, or massive layers parallel to bedding planes 

(Boswell et al., 2007). However, unlike the sand/sandstone systems where grain-supported reservoirs result in high matrix 

permeability and for which well-based production concepts are more plausible, extraction of methane from these shale-

encased fractured accumulations is expected to be problematic because of significant geomechanical challenges that may 

affect the integrity of the formation and the well stability (Rutqvist and Moridis, 2007). Major technological advancements 

beyond current production systems will be needed before production from such deposits becomes feasible. 

In order of decreasing producibility, the fifth tier of occurrences involves massive gas hydrate mounds that lie exposed at 

or near the seafloor and extend to unknown depths (Boswell and Collett, 2006).  These features are possibly very dynamic 

and may be common, but their contribution to the hydrate resource is unknown.  Their potentially limited magnitude (as a 

fraction of the total hydrate mass) notwithstanding, recovery of methane from such features is practically impossible using 

conventional well technology (because of their proximity to the ocean floor and the practically limitless supply of water), and 
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may be very difficult if subsea mining technologies are attempted (because of the likelihood for significant disturbance of 

sensitive sea-floor ecosystems).   

At the very base of the gas hydrate resource pyramid (sixth tier) are those finely-disseminated accumulations, typified by 

the Blake Ridge accumulation offshore the Carolinas (Borowski, 2004), in which large volumes of gas hydrate are relatively 

evenly distributed through vast volumes of fine-grained and relatively undeformed sediment at low (~2-4% average, with a 

maximum estimate of 5%-12%) saturations. Such resources may represent the bulk of the world’s global gas hydrate in-place 

resource (in the hundreds of Tcf gas-in-place).  Unfortunately, the prospects for economic recovery of natural gas from this 

highly disseminated resource are very poor with current technologies (Moridis and Sloan, 2007).   

 

Hydrate Deposits That Are Production Targets. From the previous discussion, it is obvious that hydrate deposits that are 

being considered as production targets must have the following attributes:  

• Confirmed presence of high hydrate saturation (preferably by coring and well logging, or by geophysical methods at 

a minimum),  

• Occurrence within sediments of sufficient reservoir quality to support well-based production methods,  

• Site accessibility through proximity to existing infrastructure, and  

• Access to gas markets through pipeline availability.  

Such potential targets are limited because these requirements further restrict the possible choices from among the scant 

deposits for which data are available.  In this section we discuss the features and attributes of hydrate deposits (permafrost or 

oceanic) that are either known or likely targets for gas production, and we analyze the geologic and engineering factors that 

control their ultimate resource potential. 

Permafrost Deposits. The discussion in this section follows closely the analysis of Collett (2007), which is the most 

thorough analysis of the subject.  It is generally believed that thermal conditions conducive to the formation of permafrost 

and gas hydrate have persisted in the Arctic since the end of the Pliocene (about 1.88 Ma).  Maps of present-day permafrost 

indicate that about 20 percent of the land area of the northern hemisphere is underlain by permafrost.  Geologic studies 

(Molochuskin, 1978) and thermal modeling of subsea conditions (Osterkamp, 1993) also indicate that relic permafrost 

(Collett, 2007) and gas hydrate may exist within the continental shelf of the Arctic Ocean.  In practical terms, onshore and 

near-shore gas hydrate can only exist in close association with permafrost.  Thus, the map in Figure 3 depicts not only the 

distribution of onshore continuous permafrost and the potential extent of relic sub-sea permafrost, but also the maximum 

possible extent of occurrence of onshore and near-shore gas hydrates.  Because of relatively easier access, data from 

permafrost deposits are of better quality and represent a disproportionately large fraction of the entire hydrate database.  Note 

that permafrost deposits represent the two top tiers of the hydrate resource pyramid of Figure 2, indicating their relative 

desirability compared to oceanic accumulations. There are three permafrost deposits under consideration as production 

targets, as discussed in this section. 

Mackenzie Delta, Canada – Mallik Gas Hydrate Accumulation. This is likely the best-characterized gas hydrate 

accumulation in the world.  The assessment of gas hydrate occurrences in the Mackenzie Delta-Beaufort Sea area was made 

originally on the basis of data collected during the past three decades of conventional hydrocarbon exploration in the area 

(Judge et al., 1994), and were refined with data from three dedicated scientific drilling programs (Dallimore and Collett, 

1995; Dallimore et al., 1999; Dallimore and Collett, 2005) that included the collection of gas-hydrate-bearing core samples. 

This gas hydrate field is overlain by 600 m of permafrost, and is located within a sequence of Tertiary sediments (Collett, 

2007). At least 10 discrete gas hydrate layers, with a total thickness of over 110 m and high hydrate saturation SH 

(occasionally exceeding 80%), were identified from well-log analysis in the 900 m to 1,100 m interval (Dallimore et al, 1999; 

Dallimore and Collett, 2005).  The estimates of the amount of gas in the hydrate accumulations are in the 2.8x10
10

 - 2.8x10
11

 

m
3
 STP (= 1 to 10 TCF) range (Majorowicz and Osadetz, 2001; Osadetz and Chen, 2005), making the Mallik field as one of 

the most concentrated gas hydrate deposits in the world. 
Because of the success of the earlier (1998) Mallik 2L-38 gas hydrate research well program, the Mallik site (Figure 4) 

became the test site of two additional gas hydrate production research programs: (1) The Mallik 2002 Gas Hydrate 
Production Research Well Program (Dallimore and Collett, 2005), and (2) the 2006-2008 JOGMEC/NRCan/Aurora Mallik 
Gas Hydrate Production Research Program (Dallimore et al, 2007).  The Mallik 2002 Gas Hydrate Production Research Well 
Program involved an international consortium (comprising the Japan National Oil Corporation, the Geological Survey of 
Canada, the U.S. Geological Survey, the U.S. Department of Energy, the GeoForschungZentrum-Potsdam, the Indian 
Ministry of Petroleum Geology and Natural Gas, Gas Authority India Ltd, and the International Continental Scientific 
Drilling Program), conducted the first fully integrated field study and test of production from hydrates, and yielded unique 

data that provided a detailed analysis of the geology, geochemistry, geotechnical and microbiological properties of gas 

hydrate bearing sediments (Collett, 2007).  Over 150 m of high quality gas hydrate cores collected during the Mallik 2002 

program provided additional insights into the macroscopic and microscopic properties of the reservoir sediments (Figure 5). 

The studies originating from the Mallik 2002 test included investigations of (a) the kinetics of gas hydrate dissociation, 

(b) petrophysical properties and initial SH of the hydrate-bearing media (HBM), (b) the HBM thermal and hydraulic 

properties, (c) the HBM geochemistry, (d) the HBM geotechnical properties such as compressive strengths and stress regime, 

and (e) the capability of geophysical methods to accurately quantify the hydrate distributions by using a variety of surveys 
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(surface, downhole, cross-hole seismic studies and advanced well log surveys, in addition to fiber optics for high-definition 

determination of the transient geothermal regime).   

Short-term depressurization experiments monitored the HBS response, investigated the feasibility of depressurization-

induced gas production from hydrates, and indicated higher effective permeability of the HBM than previously thought. A 

longer (5-day) experiment of gas production by thermal stimulation involved the circulation of warm water in a 17m-thick 

section of highly concentrated hydrates (Figure 6), and resulted in continuous gas production at varying rates that peaked at 

1,500 m
3
/day (Figure 7).  These results confirmed earlier predictions that gas production from hydrates at the Mallik site by 

means of thermally induced dissociation was technically feasible (Moridis et al., 2005b).   

The extensive data sets that obtained from the production tests allowed (a) the calibration of several hydrate reservoir 

models through a history-matching (inverse modeling) process that minimized deviations between observations and 

predictions, thus providing the first indications of the model validity, (b) the determination of important properties and 

parameters of the HBS and of the kinetic dissociation reaction, and (c) a rational assessment of the long-term production 

response of a gas hydrate accumulation (Moridis et al, 2005b; Kurihara et al., 2005a,c). The long-term predictions of 

production indicated the advantage of depressurization (over thermal stimulation) as a viable method for hydrate dissociation 

and commercial gas production, and further demonstrated the superiority of methods combining depressurization and thermal 

stimulation (Moridis et al., 2005b; Kurihara et al., 2005c). The substantial differences in the long-term predictions of the 

models were not unexpected (given the short duration of the experiment and the almost chaotic behavior of gas wells 

immediately after the initiation of production), and served to underscore the need for longer-term tests. 
The 2006-2008 JOGMEC/NRCan/Aurora Mallik Gas Hydrate Production Research Program (Dallimore et al., 2007) is a 

continuation of the 2002 test.  The primary objective of this research program is to conduct and monitor long-term tests of 
gas production from hydrates.  The 2007 activities involved instrument and equipment installation, in addition to a 
successful short-term drawdown production test at a 12-m-thick hydrate-bearing section near the base of the stability zone 
(Dallimore et al., 2007; Collett, 2007).  This research program is still in progress. 

North Slope, Alaska, USA – Eileen Gas Hydrate Accumulation. The geology and petroleum geochemistry of the rocks on 

the North Slope of Alaska, and the subsurface temperature data needed to assess the distribution of the gas hydrate stability, 

are described in considerable detail in a number of publications (Bird and Magoon, 1987; Collett, 1993). The CH4-hydrate 
stability zone in northern Alaska, as mapped in Figure 8, covers most of the North Slope.   

The first direct confirmation of gas hydrate on the North Slope was provided by data from a single well (the Northwest 
Eileen State-2 well, located in the northwest part of the Prudhoe Bay Field), in which studies of pressurized core samples, 
downhole logs, and production testing had confirmed the occurrence of three gas-hydrate-bearing stratigraphic units (Collett, 
1993).  Analysis of downhole log data from an additional 50 exploratory and production wells in the same area provided 
additional indications of hydrate occurrence in six laterally continuous sandstone and conglomerate units (A to F), which are 
all confined to the geographical area shown in Figures 9a and 9b. Collett (2007) indicated that the hydrate units appear to 
trap down-dip several large free-gas accumulations (Figures 9a and 9b; Units A through D).  The volume of gas within the 
Eileen Gas Hydrate Accumulation (Collett, 2007) is estimated at about twice the volume of known conventional gas in the 
Prudhoe Bay Field (Collett, 1993), and ranges between 1.0x10

12
 and 1.2x10

12 
m

3
 STP (Collett, 2007). 

A project funded by by the MHR&D Act involves collaboration of the BP Exploration (Alaska - BPXA), Inc., the DOE, 

and the USGS and aims to determine the viability of the North Slope hydrates as an energy source (Mount Elbert Science 

Team, 2007).  Analysis of geophysical surveys and well log data led the team to the installation of a well in 2007 at a 
previously undrilled, fault-bounded accumulation named the “Mount Elbert” prospect. to acquire critical reservoir data 
needed to develop a longer-term production test program.

 

The well was drilled (Figure 10) to a depth of 915 m using chilled oil-based drilling fluid to avoid the inhibitor-induced 

dissociation caused by salts and alcohols in conventional muds.  A remarkable achievement was the recovery of significant 

lengths of core of the hydrate intervals (Figure 11), which were used for subsequent analyses of pore water geochemistry, 

microbiology, gas chemistry, petrophysical properties, and thermal and physical properties.  After a battery of well log 

surveys was completed, a Schlumberger Modular Dynamic Testing (MDT) was conducted in two reservoir-quality sandy 

hydrate-bearing sections with high SH (60% to 75%).  Gas was produced from the gas hydrates in each of the tests. This study 

has yielded one of the most comprehensive datasets yet compiled on a naturally occurring gas hydrate geologic deposit 

(Collett, 2007).   

Presently, the project research partners are in the process of fully analyzing and integrating the data collected from the 

well, including re-calibration of the initial geological and seismic models for the site.  These data will then be used to 

determine if, where, and when to proceed into the next phase of the project — currently envisioned as a long-term production 

test to determine reservoir deliverability under a variety of production/completion/operation scenarios.  Long-term 

predictions of production under a variety of scenarios are being used in a DOE-sponsored code comparison study for the 

cross-validation of several numerical codes (Wilder et al., 2007), and will be used during the analysis of the project’s long-

term production test options 

West Siberia, Russia – The Messoyakha Field.  The Messoyakha Field, a gas field located in the northern part of the West 

Siberian Basin (and at the apex of the resource pyramid in Figure 2), is often used as an example of a hydrocarbon 

accumulation from which gas has already been produced from in-situ natural gas hydrates.  Production data and other 

pertinent geologic information have been used to deduce the presence of gas hydrates within the upper part of the 
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Messoyakha field (Makagon, 1981). It has been suggested that the production history of the Messoyakha field demonstrates 

that gas hydrates are a readily producible source of natural gas, and that production can be started and maintained by 

conventional methods (simple depressurization using a standard well design).  The presence of hydrates was inferred from 

the evolution of pressure over time—as production began from the lower free-gas portion of the Messoyakha field in 1969, 

the measured reservoir pressures followed predicted decline relations, but began to deviate from expected values in 1971.  

This deviation has been attributed to the release of gas from dissociating gas hydrates.  Cumulatively, it is estimated that 

about 36% (about 5x10
9
 m

3
 STP) of the total produced gas originated from gas hydrates (Makogan, 1981). Unfortunately, 

incomplete and/or inaccessible data from the Messoyakha field and the existence of plausible alternative theories for the 

pressure deviations (Krason and Finley, 1992; Collett and Ginsburg, 1998) do not allow the unequivocal consideration of 

Messoyakha as a hydrate-supported gas reservoir.  Had such data been available and had the contribution of hydrates to the 

production stream been confirmed, the Messoyakha field would have been by far the most important system in our 

consideration because it would have provided irrefutable evidence of the technical and economic feasibility of long-term 

production. 
 

Oceanic Deposits. The most favorable oceanic deposits will be those with high gas saturation in high-quality reservoirs.    

The challenges facing commercialization of marine gas hydrates will likely be higher than those in the Arctic, given the 

higher costs of operating in deep water, and the likely reduced reservoir quality of deep marine sands.  However, the presence 

of established gas gathering and marketing systems in regions like the Gulf of Mexico should also be considered.  And even 

where such systems do not exist, pursuit of marine gas hydrate will continue as many of the most motivated national 

programs (India, Korea, Japan) do not have the Arctic gas hydrate option available.  The two oceanic deposits that serve as 

models for the evaluation of marine gas hydrate prospects are described below. 

Offshore Japan – Nankai Trough.  This area has probably experienced the largest investment and most advanced field 

research activity because of the intensive Japanese effort to evaluate the potential and feasibility of gas production from 

hydrates.  Following the discovery of hydrates and the drilling of an exploration well at a water depth of 945 m in 2000 

(Takahashi et al., 2001), a multi-well exploration program was conducted in 2004 at 16 locations in three different sites 

(Kumano Basin, Second Atsumi Knoll and Offshore Tokai) at water depths of 720 m to 2,033 m (Figure 12) that had been 

selected on the basis of the BSR signature (Takahashi and Tsuji, 2005).   

A total of 32 wells were drilled, and a comprehensive evaluation research and test program was implemented, which 

included logging while drilling (16 wells), wireline logging (2 wells), and coring.  The latter was done for visual 

determination of the occurrence of hydrate in the sediment (3 wells), sample acquisition for studies on sedimentology and 

hydrate origin (3 wells), and acquisition of high quality hydrate-rich samples for laboratory studies (6 wells).   

The experimental program focused heavily on the practicalities and challenges of well construction in hydrate sediments, 

and involved evaluation of well designs appropriate for oceanic hydrate deposits (Figure 13), cementing to minimize gas 

leakage, hole caliper measurement while- and after drilling, measurement of formation and fracture pressures, monitoring of 

bottomhole pressure and temperature while drilling, and successful horizontal drilling (the first such attempt in the world) in 

the unconsolidated shallow formations typical of hydrate deposits (Takahashi and Tsuji, 2005).  Following successful 

completion of this phase of the research program, all wells were plugged and abandoned. Analysis of the acquired geological/ 

petrophysical information has led to the refinement of the hydrate resource estimates in the Eastern Nankai Trough.  As for 

future plans, there is only scant (and mostly anecdotal) information, but an offshore production test appears to be the next 

logical step (Takahashi and Tsuji, 2005).  

Gulf of Mexico – Oligocene Frio Formation This first documented case of highly-saturated gas-hydrate bearing sand in 

the Gulf of Mexico was described by Smith et al., (2006) from Alaminos Canyon Block 818 of the Gulf of Mexico (Figure 

14). Log data from a specially designed exploration well in about 2750 m (9000 ft) of water at the site indicated the presence 

of an 18.25-m (60-ft) thick sandy hydrate-bearing layer (10,530 to 10,590 ft drilling depth) at a relatively high temperature 

(about 21 
o
C), with a high porosity φ (about 0.30), Darcy-range intrinsic permeability k, and high SH (Figures 15 and 16). 

Thus, this deposit belongs to the third tier in the resource pyramid of Figure 2. Initial estimates of SH derived from analyses 

of the resistivity and p-wave velocity data (Collett and Lee, 2006) indicate a range from 0.6 to over 0.8 (Figures 15 and 16). 

Preliminary calculations indicated that the base of the gas hydrate stability zone at this location occurs at or slightly below the 

base of the hydrate (Smith et al, 2006; Collett and Lee, 2006).
  

The Tigershark data are particularly valuable because they describe a promising target for gas production (as indicated by 

the high SH and the thermodynamic proximity of the HBL to the bottom of the hydrate stability zone), and because of the 

paucity of data on marine hydrate deposits. Preliminary simulations with synthetic data (describing hydrate reservoirs under 

the Tigershark conditions) indicate that such systems can reach gas production rates well in excess of 2.8x10
5
 m

3
/day = 10 

MMSCFD (Moridis and Reagan, 2007a,b).  

 

The Role of Numerical Simulation 
As in every attempt to evaluate conventional oil and gas reserves, the assessment of the production potential of hydrates 

involves predictions of the complex system behavior. The reliability and accuracy of these predictions hinges on the 

following three factors: (1) the availability of robust numerical simulators that cover the spectrum of the dominant processes 

and phenomena, (2) knowledge of the parameters and relationships that describe quantitatively the physical processes 
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(usually obtained from laboratory experiments and/or from field tests either by direct measurement or through history-

matching) and the thermophysical properties of all the components of the system under investigation, and (3) the availability 

of field and laboratory data for the validation of the numerical models. The complexity of the coupled processes involved in 

the dissociation reaction do not permit the use of analytical models either for direct predictions or for the verification of the 

numerical models except under limited conditions, i.e., at early times and after significant approximations. 

Thus, the role of numerical simulation is critically important, and is the only tool that allows the assessment of the gas 

production potential of hydrates as there is no possibility of prediction without it.  It allows the design of laboratory and field 

experiments, can provide answers (or, at a minimum, general behavior trends) to very complicated problems at a very 

reasonable cost before necessitating substantial investments for operations, and allows investigation of a wide range of 

alternative (what-if) scenarios that would be impossible to explore otherwise.  Note that even if there are no field or 

laboratory data for code validation and only very sketchy data describing the properties and physical processes in the system 

are available, numerical simulation can provide very important insights (provided the underlying physics are correct and 

representative of the simulated processes) because it makes it possible to determine technical feasibility, to establish 

envelopes of possible solutions, to determine sensitivity to particular parameters and processes, and to identify promising 

target zones of hydrates for development. 

 

Code Availability. The ability to numerically simulate the behavior of geologic hydrate reservoirs has improved 

substantially over the past 5 years in terms of both code availability and capabilities (Boswell, 2007).  There are currently 

several numerical models that can simulate the system behavior in hydrate-bearing geologic media.  The most commonly 

used simulators are the following: 

(a) The TOUGH+HYDRATE code (Moridis et al., 2005a), and its earlier, open-source version that is distributed by the 

National Energy Technology Laboratory under the name HydrateResSim (NETL, 2007) 

(b) The MH21 code developed by a Japanese team including the Japan Oil Engineering Company, the National institute 

for Advanced Industrial Science and Technology and the University of Tokyo (Kurihara, 2005b) 

(c) The STOMP-HYD code developed by the Pacific Northwest National Laboratory (Phale et al., 2006) 

(d) A hydrate-specific variant of the commercial simulator CMG-STARS (Computer Modeling Group, STARS) 

(e) The Hydrsim simulator developed by the University of Calgary (Hong and Pooladi-Darvish, 2005) 

There are a few other simulators of hydrate behavior in porous media (Sun and Mohanty, 2005; Pawar et al., 2005), but these 

are not widely used.  Codes (a) and (b) were calibrated against the data from the thermal dissociation test at the Mallik site (a 

process that provided an initial basis in the validation effort) and showed good agreement with observations, but exhibited 

significant deviations when predicting long-term production performance. Since that time, both codes were substantially 

enhanced.  Codes (a) through (e) are participating in a code-comparison study sponsored by the US DOE (NETL, 2007), and 

most are capable of simulating the behavior of hydrates and reservoir fluids during common dissociation scenarios.  Recent 

independent studies of designing and analyzing laboratory experiments involved predictions and calibrations (Tang et al., 

2007) that increased confidence in the models.  While the behavior of the various codes can be similar over a wide range of 

problems (thus providing a foundation for the claim of cross-validation), measurable differences exist. In the absence of 

reliable and well-documented data sets from field experiments (i.e., an indisputable baseline for comparison), it is not 

possible to claim that any of these codes has been fully validated. The impression among the participants of the code-

comparison study is that the models generally account for the important physics of the problem, and that validation and 

calibration (rather than adequacy of the numerical code capabilities) will be a constraining factor in the assessment of the 

hydrates as an energy resource. 

 

Data Needs for Simulations in Support of Assessment of the Hydrate Production Potential. These are divided into three 

different types: (a) data requirements that are common to all reservoir simulations, (b) those that stem from the presence of 

the solid hydrate in the pores and/or fractures of the geologic media and its interference with the flow of reservoir fluids, and 

(c) data needs that are unique to hydrates, and are related to their phase behavior and thermodynamic properties. In this 

section we discuss each type of data need. 

Data Needs Common to All Simulations of Subsurface Flow and Transport.  These include data needs related to space 

discretization (adequately detailed to describe heterogeneity), distribution of the thermal and hydraulic properties of the 

hydrate-free media and of the gas and aqueous phases, timing information (e.g., maximum timestep size, maximum number 

of timesteps, duration of simulation, etc.), and parameters that determine computational options (e.g., method of upstream 

weighting in multiphase flow, method of solution of the matrix equations, convergence criteria), execution control (e.g., 

determining when to force a premature cessation of the simulation), and output options.  This type of data need includes the 

thermophysical properties of reservoir fluids in hydrate deposits, i.e., the properties of water (NIST, 2000) and of the CH4-

H2O real gas mixture (e.g., Peng and Robinson, 1976). All these needs are well known and/or very basic (as they are 

routinely an issue in non-hydrate simulations), pose no special challenge in the attempt to model hydrate-bearing systems, 

and will not be further discussed.   

Data Needs Related to The Presence of Hydrates in The Pores of the Geologic Media.  Such data involve relationships 

and parameters that are defined and usually known in hydrate-free media, but which must be amended to describe the effects 

of the solid hydrate on the composite hydraulic, thermal and geomechanical behavior of HBM.  These effects are not 
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considered in standard simulations, and quantitative relationships (and the corresponding parameters) need to be included for 

an accurate representation of the physics. 

Hydrate Effects on the Composite Thermal Properties.  These properties include the composite thermal conductivity kΘ 

and specific heat CΘ.  Laboratory (Moridis et al., 2005c) and field data (Dallimore et al., 2005) clearly indicate that the 

conventional approach of estimating kΘ as the weighted average (Bejan, 1984) of the contributing phases, i.e., gas, aqueous, 

solid grains, ice and hydrate, is inaccurate.  By history-matching laboratory data, Moridis et al. (2005c) determined the 

relationship  

k" = kdry + ( SA + SH )(kwet # kdry ) + $SI%I  ………………………………………………………………….………...(2) 

which is an extension of an earlier kΘ model (Somerton et al., 1973; 1974) used extensively in geothermal studies, and which 

adequately describes the data. The computation of CΘ poses far fewer challenges, as a saturation- and density-weighted 

average appears to describe well the system behavior (Moridis et al., 2005c). However, the subject is far from exhausted, and 

there is significant room for more studies to be conducted, and new kΘ and CΘ relationships to be developed. 

Hydrate Effects on the Flow (Hydraulic) Properties.  These are the wettability-related properties, and include the phase 

relative permeabilities krel and capillary pressures Pcap. Laboratory studies to determine the effect of solid phases (i.e., hydrate 

and ice) on the effective permeability of porous media—from which the phase relative krel permeabilities may be extracted—

are in progress (see discussion in a subsequent section), but the results have not yet reached the refereed literature.  This is an 

issue of the highest priority because of the strong dependence of gas recovery from hydrates on the effective permeability of 

HBM (Kurihara et al., 2005b; Moridis and Reagan, 2007a,b), and accurate quantitative descriptions to obtain reliable 

estimates.   

In the meantime, the krel and Pcap relationships (functions of saturation) used in hydrate simulations are theoretical 

extensions of conventional multi-phase flow models.  Moridis et al. (2005a; 2007a) proposed two alternative models to 

describe the wettability processes (relative permeability and capillary pressure) in hydrate- and/or ice-bearing media.  The 

first general model is the Original Porous Medium (OPM) model, and is based on the treatment of (a) the medium porosity as 

unaffected by the emergence of hydrates and/or ice (although subject to change due to changes in pressure and temperature), 

(b) the intrinsic permeability of the porous media as unchanging during the evolution of the solid phases, and (c) the fluid 

flow as a relative permeability issue controlled by the saturations of the various phases in the pores. The second general 

model is the Evolving Porous Medium (EPM) model, which considers the evolution of the solid phases (hydrate and ice) as 

tantamount to the creation of a new porous medium with continuously changing porosity and intrinsic permeability, the pore 

space of which is occupied only by the two fluid phases (aqueous and gas).  Within the OPM and EPM models, krel and Pcap 

are computed using standard relationships. 

Hydrate Effects on the Composite Geomechanical Properties.  These are important in coupled geomechanical studies of 

production from HBM because of (a) their possible adverse effects on flow properties and (b) concerns about wellbore 

stability and formation structural integrity. Natural hydrates usually occur in unlithified, unconsolidated media that are prone 

to subsidence and yielding during production because dissociation removes the strong cementing effect of hydrates. The 

currently available literature is scant (Durham et al., 2003), but the subject of geomechanical response of HBM is the focus of 

significant attention (not only as related to production, but also as a geohazard in the installation of offshore structures) and 

the subject of several investigations in several countries (see discussion in a subsequent section).  It is expected that 

significant new information will become available in the next few years as the results of the various studies in progress begin 

reaching the peer-reviewed literature. 

Data Needs Unique to Hydrates.  These include the thermophysical properties of hydrates, as well as their 

thermodynamic properties and phase behavior.  Obviously, assessments of the production potential of hydrates may be 

compromised if incorrect phase relationships are used.  The specific data needs are described in detail below. 

P – T Relationships and Phase Diagram.  These are of critical importance, as they define the dissociation behavior of the 

hydrate.  If a pure CH4-hydrate is involved, then the P vs. T relationships (and the corresponding phase diagram) are well 

defined.  There are two relationships describing the P–T relationship along the 3-phase (aqueous + hydrate + gas, or ice + 

hydrate + gas; Lw-H-V and I-H-V, respectively) equilibrium lines. The first is the regression equation of Kamath (1984) 
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  and  T = Tc + 273.15  ……………………………………………. (4) 

The second relationship (shown in Figure 17) covers a wider temperature range (from –124 
o
C to 48 

o
C, allowing its use in 

experiments where liquid N2 is used to stabilize the hydrate), and is a general regression expression derived by Moridis 

(2003) based on data from several researchers reported in Sloan (1998).  Figure 17 shows the entire phase diagram, i.e., all 

the phase co-existence regimes defined by the P-T relationship. 

The picture becomes far more complicated if composite hydrates (i.e., hydrates produced from more than one gas) are 

involved.  In this case it is not possible to assume that the composite hydrate is a mixture of individual pure hydrates that 

behave independently because such an assumption would violate the laws of thermodynamics and would produce erroneous 
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results.  Composite hydrates behave as solid solutions, and a 1% C2H6 in a CH4-hydrate is sufficient to change the 

equilibrium pressure by about 40%.  Thus, complete P–T–X relationships need to be used to describe composite hydrates.  

For implementation in numerical simulators, these P–T–X relationships need to be described by fast parametric functions.  

Such functions are unavailable because only a very limited (practically infinitesimal) part of the possible hydrate-forming gas 

mixtures has been studied experimentally, and the complexity of deriving even interpolation-based parametric relationships 

increases with the number of gases nG (requiring regression of nG – 1 variables).   

The only possible option in this case is the use of statistical thermodynamics (Sloan and Koh, 2008), which is very 

powerful, can be used to determine a wide range of other thermophysical properties of the composite hydrate, and has been 

verified against laboratory experiments.  However, this model is unsuitable for use in fully implicit numerical simulators 

because of the tremendous computational load it imposes (requiring a minimization of the Gibbs energy at every attempt at 

computation).  Unless and until simple and general parametric P–T–X relationships become available, the only possibilities 

are either (a) the implementation of the statistical thermodynamics approach using powerful computational platforms (such as 

clusters and supercomputers), or (b) the use of statistical thermodynamics to develop hydrate-specific parametric P-T-X 

relationships on a case-by-case basis, which can then be implemented in numerical simulators.  Fortunately, the hydrates that 

have been investigated as possible production targets in field studies up to now (i.e., Mallik, Mount Elbert, Nankai Trough) 

are over 99.5% CH4 (Dallimore et al., 2005; JNOC-TRC, 1998). 

ΔH
0

 – T Relationships and Phase Diagram.  The relationship between the heat of dissociation ΔH
0

 and temperature is also 

critical, given the fact that heat transport appears to be by far the dominant mechanism controlling dissociation (Kowalsky 

and Moridis, 2007).  As in the P–T relationship, under three-phase conditions (Lw-H-V and I-H-V) ΔH
0
 can be computed 

from the simple equation of Kamath [1984] as,  
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As can be seen, ΔH
0
 is a weak function of temperature.  More recent studies with advanced instrumentation (Gupta, 2007) 

indicate that ΔH
0
 is practically temperature-insensitive over a wide range of temperatures. The current practice is to 

extrapolate equation (5) beyond its validated temperature range.   

Kinetics of the Hydration/Dissociation Equation.  The main equation describing the kinetics of the CH4-hydrate reaction 

was proposed by Kim et al. (1987), and was then modified by Clarke and Bishnoi (2002) to assume the form: 

QH = "K0 exp
#Ea

RT

$ 

% 
& 

' 

( 
) FAA feq " fv( )  ……………………………………………………………………………………(7) 

where K0 is the intrinsic hydration reaction constant [kg m-2 Pa-1 s-1], ΔEa is the hydration activation energy [J mol-1], R is the 

universal gas constant [8.314 J mol
-1

 K
-1

], FA is an area adjustment factor (dimensionless), A is the surface area participating 

in the reaction [m
2
], feq is the fugacity at equilibrium at temperature T (Pa), and fv is the fugacity in the gas phase at 

temperature T (Pa).  While the form of equation (7) is widely accepted, some additional values for K0 and ΔEa—other than 

those of Kim et al. (1987) and Clarke and Bishnoi (2002) that had been derived from experiments involving hydrate particles 

in water systems without any porous media—have been proposed (e.g., Moridis et al., 2005b; 2005c; Tang et al., 2007).   

However, Kowalsky and Moridis (2007) showed that, while kinetics play an important role in short-term dissociation 

processes lasting a few minutes to a few hours (e.g., the dissociation of an unpressurized hydrate-bearing core as it ascents to 

the surface and is transferred to storage), they are not important in realistic, long-term gas production schemes.  Their 

predictions of long-term production based on the kinetic and the equilibrium reaction models practically coincided, and 

indicated that mass and heat transfer are the dominant (and practically the only) limitation.  These results are in agreement 

with earlier studies (Pawar et al., 2005; Hong and Pooladi-Darvish, 2005), and are exceptionally important because they 

remove the possibility of a potentially significant obstacle (i.e., kinetic limitation) in the quest for gas production from natural 

hydrate deposits. A related computational benefit is the reduction of the size of the matrix equations (the equilibrium model 

requires one less degree of freedom, and, thus, one less equation per cell), resulting in faster executions. 

Thermophysical Properties of the Solid Hydrate.  These include the density, specific heat and thermal conductivity, and 

their relationships to P and T.  Sloan (1998) and Sloan and Koh (2008) provide updated lists of constant values of these 

properties, and more recent data have become recently available.  However, because of the very narrow temperature range of 

hydrate existence in natural systems targeted for dissociation-induced gas production (based on our experience, at no time 

exceeding 25 
o
C) and the relative insensitivity of these properties to P and T, an attempt to introduce P-T dependence would 

result in a second- or third-order effect. This being the case, the reliability of the production predictions will be unaffected if 

well-documented constant values are used in the simulation, provided that accurate models are available to describe the 

composite HBS behavior.  

Laboratory Studies in Support of Numerical Simulations.  Some of the hydrate-related data needed as inputs to 

numerical simulations of production predictions are obtained from targeted laboratory experiments. Here we discuss 

important laboratory studies (recent and/or in progress) that yield such data for use in simulators.  
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Thermal Properties of Hydrates and HBS.  The thermal properties of CH4-hydrates (pure and in porous media) have been 

investigated by several research groups.  Waite et al. (2002) measured directly the kΘ of four porous mixtures of quartz sand 

and CH4-hydrate at SH = 0, 33%, 67%, and 100%. Kumar et al. (2004) and Gupta et al., (2006) employed inverse modeling to 

determine the thermal properties of a porous methane hydrate plug.  Rosenbaum et al (2007) used a novel single-sided 

transient plane source technique to determine the thermal conductivity and thermal diffusivity of a compacted methane 

hydrate sample over the temperature range of 261.5-277.4 K and at gas-phase pressures ranging from 3.8 to 14.2 MPa. 

Moridis et al. (2005c) used inverse modeling to determine the composite thermal conductivity of silica sand CH4-hydrate 

samples by analyzing laboratory results consisting of T-P data, as well as X-ray CT scans that provided a density map of the 

sample. The use of X-ray CT scans is deemed essential in the laboratory studies because without them it is easy to 

misinterpret localized phenomena (such as the expected significant heterogeneity in the dissociation pattern) as volume-

averaged processes.  Thus, the data sets to be used in history matching of hydrate laboratory experiments should include 

images of phase distributions and dissociation fronts. 

Relative Permeability of HBS. Using a vertical packed sand column under gravity drainage, Jaiswal (2004) formed CH4-

hydrate and measured krel in hydrate-bearing consolidated Oklahoma 100 mesh sand and core samples from a North Slope 

formation.  In a study that is still in progress, Kneafsey et al. (2007) and Seol et al. (2006) used flow measurements through 

horizontal samples of HBS (involving silica sands and silts) to measure their absolute and effective permeabilites, thus 

determining krel endpoints. Additionally, data from a waterflood and the corresponding x-ray CT scans (Figure 18) are being 

analyzed by means of numerical inversion (history-matching) to deduce the krel behavior. CT scanning allows for attribution 

processes to specific locations, rather than to the bulk. 

Capillary Pressure of HBS. Researchers at Lawrence Berkeley National Laboratory are conducting experiments to 

describe the Pcap vs. saturation relationships of HBS involving hydrate-bearing silica sands. These are difficult and time-

consuming tests that are challenged by the requirement that they be conducted exactly at conditions of hydrate equilibrium 

without allowing phase changes. The scant limited field data that are available (including a Pcap estimated from a history 

matching effort of the Mount Elbert MDT test data, not yet published) suggest that the porous media in desirable hydrate 

accumulations are characterized by high k, φ and SH, and by low Pcap. An issue of particular interest is whether the presence 

of hydrate significantly influences Pcap. The results of this study could be very important because a high Pcap can adversely 

affect gas production from hydrates (Moridis et al., 2007a). 

Geomechanical Properties of HBS. Knowledge of the geomechanical properties of hydrate-bearing sediments is critical, 

because of the serious implications for wellbore stability and formation structural integrity during hydrate dissociation (in 

response to production or simple thermal loading), which can result in reduction in (and possibly loss of) production and 

damage to wellbores supported by hydrate-bearing sediments. The problem is accentuated in marine environments because 

the proximity of HBS to the ocean floor and the large compressibility of marine sediments can compromise the stability of 

structures such as platforms with catastrophic economic and safety consequences, and even more so along the continental 

slope, where underconsolidated and possibly overpressured zones developed during hydrate dissociation can trigger 

submarine landslides.  Initial geomechanical investigations focused on pure compacted CH4-hydrates (Durham et al., 2003).  

Geomechanical properties of laboratory-formed and natural samples have been measured in the GHASTLI apparatus by 

USGS researchers (Waite et al., 2004; Winters et al., 2004).  Masui et al. (2005) conducted some pioneering geomechanical 

studies using hydrate-impregnated Toyoura sand, developed stress and strain relationships, and defined the relationship 

between SH and various geomechanical properties (e.g., modulus of elasticity, Poisson’s ratio, internal friction angle, etc.).  

Investigations of geomechanical properties of sediments containing tetrahydrofuran hydrate have been conducted at Georgia 

Tech (Lee et al., 2007; Yun et al., 2007).  Current investigations of the geomechanical strength of methane HBS are being 

performed at Lawrence Berkeley National Laboratory in a specially designed apparatus that permits the concurrent analysis 

of coupled geomechanical, geophysical and flow processes, and x-ray CT scans (Figure 19.) 

Geophysical Properties of HBS.  Geophysical methods appear to be the most promising (and cost-effective) techniques to 

remotely detect hydrate deposits, and to monitor their changes in the course of gas production.  Helgerud et al. (1999) 

measured elastic wave properties of marine HBS. Using their GHASTLI apparatus (Winters et al., 2004), USGS researchers 

are conducting studies that measure the elastic wave properties of HBS. In a related experiment that is currently in progress, 

LBNL researchers are measuring the elastic wave properties of HBS using the geomechanical test cell (Figure 19) and a low 

frequency resonant bar apparatus. 

 

Gas Production Strategies 
Classification of Gas Hydrate Deposits. Natural gas hydrate accumulations are divided into three main classes (Moridis and 

Collett, 2003) based on simple geologic features (Figure 20).  Note that, while this classification is simple, it is quite effective 

as it can provide insights into the optimal production method.  Class 1 accumulations are composed of two layers: the 

Hydrate-Bearing Layer (HBL) and an underlying two-phase fluid zone containing free (mobile) gas and liquid water. There 

are two kinds of such deposits: the first involves water and hydrate in the hydrate zone (Class 1W, gas-poor system), while 

the second involves gas and hydrate (Class 1G, water-poor system). In this class, the bottom of the hydrate stability zone (i.e., 

the location above which hydrates are stable because of thermodynamically favorable P and T conditions) coincides with the 

bottom of the hydrate interval.  For a given temperature, this is the most desirable class because it is the easiest to destabilize 
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and release gas.  Class 1 accumulations are sometimes referred to as “Hydrate-Capped Gas Reservoirs” (Gerami and Pooladi-

Darvish, 2006). 

Class 2 deposits comprise two zones: (1) an HBL, overlying (2) a zone of mobile water (hereafter referred to as WZ). 

Class 3 accumulations are composed of a single zone, the hydrate interval (HBL), and are characterized by the absence of an 

underlying zone of mobile fluids. In Classes 2 and 3, the entire HBL may be well within the hydrate stability zone and can 

exist under equilibrium or stable conditions. A fourth class (Class 4), pertains specifically to oceanic accumulations, and 

involves disperse, low-saturation hydrate (<10%) deposits that lack confining geologic strata (Moridis and Sloan, 2007).  

In the following sections we discuss the specifics of production from each of the first three classes of deposits.  Although 

interest in this subject has only recently begun and the available literature is limited, sufficient progress has been attained to 

be able to discern appropriate production practices and conditions to maximize potential production. 

 

Gas Production From Class 1 Deposits. Of the three main dissociation methods, depressurization-based production 

strategies appear well suited to the conditions of Class 1 deposits (and are possible the only long-term practical option) 

because of their simplicity, technical and economic effectiveness, and the fast (practically immediate) response of hydrates to 

the rapidly propagating pressure wave (as opposed to the much slower response to thermal stimulation). Because of the 

strongly endothermic nature of the dissociation reaction and the rapidity of dissociation under depressurization, care must be 

taken to limit the formation of solid phases (i.e., secondary hydrate and ice) in the vicinity of the producing well, which may 

have adverse effects on the fluid permeability regime and, consequently, on gas production. Thus, the top of the production 

(perforated) interval must be located at a sufficient distance from the nearly impermeable initial hydrate interface (Moridis et 

al., 2007a). Otherwise, the resulting steep P and T gradients can lead to secondary hydrate formation, which can choke the 

well (Kurihara et al., 2005). Although this may appear counterintuitive in a depressurization process, it is necessary because 

spatially uniform and gentle P and T gradients (as opposed to steep localized fronts) can significantly enhance long-term 

production from gas hydrates (Moridis et al., 2007a). 

Practically all the studies focusing on production from Class 1 deposits are based on depressurization.  Hong and Pooladi-

Darvish (2005) applied constant-P depressurization (i.e., a constant bottomhole pressure) at a well at the center of a small 

(rmax = 200 m) Class 1G cylindrical reservoir, and analyzed the sensitivity of the continuously declining production to various 

properties and operational conditions (Figure 20).  They reported that, at the end of the first year of production, about 48% of 

the produced gas had been replenished by hydrate-originated CH4.  As expected, production was marked by a continuous 

(and significant) decline in T because of continuous reservoir cooling caused by the endothermic dissociation. The most 

important observations from this study are the confirmation of the technical feasibility of production from hydrates using 

conventional technology, and that heat transfer was the dominant mechanism controlling dissociation (kinetics having 

practically no effect). Their results also indicated increasing contribution of dissociation to the production stream with an 

increasing permeability k and a decreasing bottomhole pressure Pw (factors that can be affected by the choice of production 

target or operation practices).  Kurihara et al. (2005b) investigated a cylindrical Class 1G deposit produced under constant-Q 

(rate) conditions, and, while they indicated that gas production from such a system was expected to be “huge”, he did not 

provide any data documenting quantitatively the contribution of dissociation to the production stream at the end of the year-

long simulation period. 

Moridis et al. (2007) conducted a study of long-term (10 to 30 years) of constant-Q (= 0.81944 ST m
3
/s = 2.5 MMSCFD) 

production from both Class 1W and 1G hydrate deposits that had the attributes of a permafrost system.  Single vertical wells 

were used, and the well spacing was 100 ha (rmax = 400 m).  To describe the contribution of gas released from hydrate to the 

production stream, they introduced the concepts of Rate Replenishment Ratio (RRR or R3) and Volume Replenishment Ratio 

(VRR or VR2). RRR is defined as the fraction of the gas production rate at the well(s) that is replenished by CH4 released 

from hydrate dissociation. VRR is defined as the fraction of the cumulative gas volume produced at the well(s) that is 

replenished by hydrate-originating CH4. These two parameters provide a measure of the hydrate system response and the 

effectiveness of dissociation as a gas-producing method. Review of the RRR in Figure 21 (Class 1W) demonstrates the 

effectiveness of depressurization and the technical feasibility of gas production from Class 1 hydrates. After attaining a 

maximum of 0.62, RRR begins to decline because of occlusion of the hydrate body by high-saturation hydrate shells that are 

effectively impermeable. This is a result of a very strong capillary pressure in the presence of hydrate (a very conservative 

approach), and the resulting SH is so high that the remaining fluids are immobile. As a result of the high capillary pressure, 

hydrate lensing is observed (Moridis et al., 2007a). The VRR in Figure 21 reaches a miximum of 0.46 (i.e., 46% of the 

cumulative gas produced until that time is replenished from hydrate dissociation) before it begins to fall as occlusion reduces 

dissociation (reaching a respectable 0,43 after about 3700 days of production).   

The evolution of the hydrate saturation distribution over time, the hydrate lensing, and other interesting phenomena 

(including the development of a honeycomb of wormhole-like dissociation patterns, all the result of capillarity) are shown in 

Figure 22, which also shows the destruction of the hydrate through dissociation. Figure 23 shows the corresponding spatial 

distribution of the gas saturation. Of particular interest is the evolution of an upper dissociation interface at the top of the 

hydrate zone, above which gas accumulates (See Figures 22 and 23).  This upper interface is caused by heat flows from the 

overburden (as the geothermal gradient is reversed because the hydrate becomes progressively colder as dissociation 

advances), and highlights the importance (if not necessity) of impermeable upper boundaries during production from 
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hydrates. Note that (a) it is possible to continue production from the gas zone, and (b) to destroy the nearly impermeable 

hydrate lenses by injection of warm water injection in localized applications. 

Production from a Class 1G deposit (with all other properties identical to the class 1W problem) appears to be simpler and 

faster. The VRR increases continuously over the 30-year production period, reaching a maximum of about 0.74, while the 

corresponding RRR is 0.54.  The desirability and the great production potential of such deposits are obvious.  It appears that 

the Messoyakha accumulation in Siberia (see earlier discussion) belonged to this Class (Makagon, 1981). In this case, 

because of high initial permeability, some concentration of hydrate, occlusion and lensing does occur, but does not hinder 

dissociation, which proceeds until the hydrate is practically exhausted (Figure 25). Note the emergence of the upper 

dissociation interface, which is a universal feature of hydrates under production (Moridis et al., 2007a; Moridis and Reagan, 

2007a;b).  Additional important issues that need to be raised are that (a) production from both Class 1W and 1G deposits 

involves conventional technologies, and (b) production from Class 1 hydrates necessitate continuous heating of the wellbore 

to prevent hydrate formation and plugging (Moridis et al., 2007a). 

 

Gas Production From Class 2 Deposits. As in the case of production from Class 1 deposits, depressurization-induced 

dissociation (based on fluid removal through wells) appears to be the most promising gas production strategy in Class 2 

deposits (Figure 26) because of its simplicity, technical and economic effectiveness, and the fast (practically immediate) 

response of hydrates to the rapidly propagating pressure wave. Because of the low effective permeability of the HBL, the 

well has to be completed partly in the WZ, and it is from there that the bulk of the produced fluids originate during the early 

stages of production. The effectiveness of depressurization is further enhanced by the near-incompressibility of water (which 

expands the volume over which depressurization is sensed by the HBL), and by the large heat capacity of water. The latter 

plays a significant role in providing part of the heat needed to support the strongly endothermic hydrate dissociation reaction 

as warmer water flows from the outer reaches of the formation toward the well.  

Although thermal stimulation can be effectively used in conjunction with depressurization for localized applications (to 

destroy secondary hydrate and ice, as is discussed in detail in subsequent sections of this paper), pure thermal stimulation 

does not appear to be a promising dissociation method because it is slow and inefficient. Additionally, it has very large 

energy needs (dictated by the high thermal inertia of subsurface media), and is inherently wasteful because of (a) increasing 

heat losses through the boundaries, and (b) the need to raise the temperature of not only the hydrate but also of the inert 

phases (i.e., the porous medium and the non-hydrate phases), which constitute the dominant portion of the mass of a given 

formation volume. If the heat-transfer mechanism is advection (e.g., warm water injection), then the injected fluid may have 

adverse effects on the relative permeability of the released gas. Heat transfer is significantly slower and less efficient if it is 

based on conduction, (e.g., through electrical heating). The use of inhibitors is not recommended either because of (a) rapid 

reduction in effectiveness caused by the dilution of the inhibitor by the H2O released from dissociation, (b) the cost of 

chemical inhibitors, and (c) the potentially adverse consequences of halite precipitation with salt-based inhibitors. 

Well Design.  A new well configuration was designed (Moridis and Reagan, 2007a) to maximize production from Class 2 

deposits and alleviate a persistent problem of substantial secondary hydrate (and occasionally ice) formation in a narrow zone 

(r < 10 m) around the well (Moridis and Reagan, 2007a). The well design denoted as “Phase 1” (see Figure 27) is used during 

the initial stages of production. The base case involves a production (perforated) interval that begins at the HBL base and 

extends 5m into the WZ. The decision to locate the perforated interval into the WZ below the hydrate zone is based on the 

very low permeability in the HBL (caused by the high SH = 0.70) and to ensure sufficiently high flow rates at the well. During 

Phase 1, the outer wellbore surface is heated. This heating causes thermal dissociation of the hydrate and leads to the creation 

of a cylindrical dissociation interface around the well that can communicate with the production interval because of locally 

enhanced permeability. Electrical heating may be used (at least initially) if the SH of the undisturbed HBL is sufficiently high 

to make flow difficult, but warm water injection (injected at the upper part of the wellbore) may be used at a later time (Phase 

2). This allows the replacement of the slow and inefficient conduction during thermal heating by the much faster and efficient 

advective heat transfer mechanism. 

The unique feature of this well design is that the outer wellbore heating prevents the formation of secondary hydrate 

around the wellbore. This is important because it is expected to provide a continuous flow pathway from both the cylindrical 

and the evolving upper horizontal dissociation interfaces to the perforated interval. Such access is by no means guaranteed 

without outer wellbore heating. The expectation is that fluid withdrawal using this well design will result in maximum gas 

release and production by maximizing the total dissociation area and access to the three interfaces (i.e., the cylindrical, the 

upper and the lower horizontal ones). As the cylindrical and the lower horizontal dissociation interfaces continue to recede 

during dissociation, it is possible to expand the production interval upward into the HBL (from its initial upper limit at the 

base of the hydrate zone) and reap the benefits of a longer perforated interval. 

The well may be further modified at a later stage (Phase 3, usually when less than 35% of the original hydrate remains) 

when there is significant gas accumulation at the top of the reservoir. Despite high volumes and large volumes, this gas 

cannot be recovered by using a conventional well perforated at the top of the formation because, after an initial short, high-

rate, production period (lasting from hours to weeks), the well is blocked by secondary hydrate and/ice. The problem is 

alleviated by modifying the well according to the design shown in Figure 27, which involves alternating thin zones (about 1 

m) of gas production and warm water injection. The warm water is injected at a low rate (< 1 kg/s) at a relatively low 

temperature (the reservoir is already cold because the well begins operating at a time corresponding to an advanced stage of 
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dissociation), and either prevents the formation of secondary hydrate or ice through mixing with the incoming fluid stream, or 

destroys pre-existing hydrate and ice blockages by thermal stimulation. This well configuration does not exceed current 

technical capabilities.  Note that a Phase 3 well may not be always needed. 

Evaluation of Production Potential.  Fluids are withdrawn from the well at a constant mass rate QM.  In the oceanic Class 

2 hydrate deposit in the example discussed here (with properties and conditions representative of those at the Tigeshark 

formation, see earlier discussion), QM = 19.2 kg/s = 10,000 BPD).  A universal characteristic of production from Class 2 

deposits is the variable QM: as production advances, cavitation (i.e., rapid pressure drop) occurs at the well either because 

secondary hydrate and/or ice are obstructing flow (in which a short term warm water injection may be appropriate) or 

because the increasing amount of lower-density gas arriving at the well cannot sustain the prescribed QM.  Thus, QM has to be 

reduced (note the drop in the see-saw appearance of the gas production rate QP curve in Figure 28) to continue production, 

but the reduction in QM does not necessarily result in a lasting decline in QP.  The latter recovers rapidly, and then exceeds the 

level at the last cavitation (see Figure 28).  Inspection of QP in Figure 28 shows that it proceeds in cycles marked by 

cavitation events. During each cycle, gas production increases continuously, while water production decreases (Moridis and 

Reagan, 2007a). Note that, unlike Class 1, all the gas produced here originates from hydrates and is easy to track. 

In the left panel of Figure 28, Stage IV corresponds to the introduction of the Phase 3 well design.  The same figure also 

shows that (a) QP reaches levels as high as 4.8x10
5
 m

3
/day (=17 MMSCFD), and (b) the average gas production Qavg over the 

5,660 day period of simulation (when both the hydrate and the gas are exhausted) is about 2.2x10
5
 m

3
/day (=7.8 MMSCFD), 

but (c) gas production is encumbered by a long initial lead time during which little gas is produced.  Actually, when the initial 

QM = 38.4 kg/s (20,000 BPD), then the maximum QP exceeds 5.7x10
5
 m

3
/day (=20 MMSCFD), and Qavg = 3.0x10

5
 m

3
/day 

(=10.5 MMSCFD) over a 4,700-day production period (Moridis and Reagan, 2007a). The obvious conclusion is that the 

highest possible initial QM that the system can sustain must be used to maximize production. The important observation from 

the right panel of Figure 28 is the very high recovery, which can exceed 100% (the extra originating from solution gas). Of 

course, the level of recovery may be limited by economic and geomechanical considerations.  These results indicate the very 

significant gas production potential of hydrates such as the Tigershark deposit. 

Production from Class 2 deposits (and the corresponding water-to-gas ratio RWGC decreases) with an increasing (a) QM, (b) 

hydrate temperature (which defines its stability for a given pressure), and (c) intrinsic permeability. Lower initial hydrate 

saturations lead initially to higher gas production and a lower RWGC, but the effect is later reversed as the hydrate is depleted 

(Figure 29). Note the continuous decline of RWGC over time, which is a universal feature of the depressurization-based 

production from Class 2 deposits indicating the continuously declining water production in proportion to the gas production. 

This observation is valid under any of the conditions and production methods (Moridis and Reagan, 2007a). An additional 

important point is the rapid improvement in performance at early times. This is in stark contrast to the reality in conventional 

gas reservoirs, in which RWGC invariably increases over time. The obvious conclusion is that hydrate deposits reserve their 

worst performance for the initial stages of production, but then they rapidly and continuously improve over time. 

The SH distribution in Figure 30 shows the gradual destruction of the hydrate, and attests to the efficiency of the well 

design to keep the pore space in the vicinity of the wellbore free of secondary hydrates and ice that can obstruct flow. Note 

again the evolution of the upper dissociation interface, as the hydrate recedes. Gas saturation reaches very high levels at this 

location (Moridis and Reagan, 2007a), and highlights the necessity for upper permeability barriers if gas production from 

hydrates is to become possible. Absence of such barriers will inevitably lead to gas escaping through the permeable 

overburden toward the ocean floor, with possibly undesirable consequences if such releases cannot be contained.   

Analysis of the gas production potential of (a) an oceanic Class 2 deposits in the Ulleung Basin of the Korean East Sea 

(Moridis and Reagan, 2007c) and (b) a permafrost deposit in the North slope show similar patterns (Figure 31).  Although the 

Ulleung Basin deposit is assumed to be substantially thicker than the Tigershark one (50m vs. 18m), it produces less gas 

because it is much colder and less permeable. The permafrost deposit is 15 m thick, but is colder than the Tigershark one (12 
o
C) and lacks the beneficial effect of the salt (an inhibitor) on dissociation.  The most important observation is that all these 

Class 2 deposits (oceanic and permafrost) appear to be able yield gas at rates of several MMSCFD. 

In a study of marine Class 2 deposits with permeable overburden and underburden, and/or with a deep water-zone, 

Moridis and Kowalsky (2005) determined that the production rates were too low to justify considering such accumulations as 

viable targets.  Both a single well and a multi-well (five-spot, with warm water injection) system were tested.  The production 

rate was higher in the case of single-well production because, in the five-spot pattern, the (a) gas produced from the thermal 

dissociation of hydrate caused by the warm water re-injection is very slow to reach the production well, and (b) the water 

injection does not allow a significant pressure drop, thus reducing the driving force of the depressurization-induced 

dissociation near the production well.  The main reasons for the limited potential of these deposits are (a) the ineffectiveness 

of depressurization as the driving force of dissociation in the absence of confining layers, (b) the availability of practically 

limitless amounts of water in the vicinity of the HBL, necessitating large water production rates for an effective pressure 

drop, (c) the challenge of focusing and directing water flow through the HBL (easily bypassed if higher permeability 

pathways through the enveloping boundary layers are available), and (d) the adverse relative permeability to gas flow, as gas 

attempts to emerge as a mobile free phase in a fast-flowing water-saturated geologic medium. 

 

Gas Production From Class 3 Deposits. While depressurization-induced dissociation appears to be the most promising 

strategy in gas production from Class 1 and Class 2 deposits,
 
 the situation is far less clear in Class 3 accumulations because 
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of the absence of a hydrate-free (and, consequently, relatively permeable) zone underneath the HBL from which fluids can be 

removed to induce depressurization of the overlying hydrates.  

Thus, the attractiveness of depressurization is challenged by permeability limitations in Class 3 deposits. In such deposits, 

the only method to induce dissociation by depressurization is via flow through the HBL. However, the low effective 

permeability keff = keff(t) of the solid hydrate inhibits large flow rates, leading to low rates of dissociation and gas production, 

and a localized system response that is expected to be limited to the area around the production well.   

Constant-Q depressurization. Simple comparison of the total area available for dissociation reveals that, even at a very 

early stage, depressurization-induced gas production from Class 3 deposits under constant QM production appears to lag 

significantly behind that from Classes 1 and 2. This is because the pressure disturbance cannot access the base or top of the 

HBL. This realization provides a potential insight into gas production from Class 3 hydrates: a plausible strategy to maximize 

QP would be to transform a Class 3 into Class 2 deposit through adoption of processes that enhance dissociation along the 

base of an HBL and development of a water zone. Increased hydrate saturation SH is expected to progressively exacerbate the 

problem of low QP because of a reduction in keff. Additionally, if a high QM rate is imposed at the well and/or SH is high in the 

HBL, ice can form because of the strongly endothermic hydrate dissociation reaction and Joule-Thompson cooling near the 

wellbore where gas velocities are high. Ice formation, especially when combined with secondary hydrate formation, can have 

a severe adverse effect on permeability.  

For the reasons discussed above, depressurization by imposing a constant QM at the well appears to be a possibility when 

(a) the intrinsic permeability k of the HBL formation is high, (b) the initial SH is moderate (i.e., SH < 0.5), (c) the capillary 

pressure Pcap is weak, and (d) the irreducible aqueous and gas saturations (SirA and SirG, respectively) are relatively low. 

Selection of this type of production presupposes knowledge that keff,0 (initial keff) of the HBL is capable of delivering the 

prescribed QM, and that the potential formation of secondary hydrate near the well does not lead to keff < keff,0. Such 

knowledge may not be available a priori. Generally, it is not advisable to use constant-Q depressurization for gas production 

in Class 3 hydrate accumulations. 

Constant-P depressurization. Constant-pressure production involves the maintenance of a constant pressure Pw at the 

well, which acts as an internal boundary. The flow rates QM, QP and QW under constant-P production are not constant but 

vary over time because they are controlled by the time-dependent phase mobilities at the well and the pressure differential 

between the well and its surroundings. 

Constant-P production is applicable to a wide range of formation permeabilities, is uniquely suited to allow continuous 

rate increases to match increasing permeability (the result of the dissociation-caused reduction in SH), and may be the only 

reasonable alternative when SH is high. An additional and very significant advantage of constant-P production is the 

elimination of the possibility of ice formation (with its detrimental effects on permeability and QP) through the selection of an 

appropriate Pw. This is ensured by selecting a Pw > PQ, i.e., the P at the quadruple point Q1 (see Figure 17).  

A possible drawback is that constant-P production may lead to large initial QW, which, however, decreases over time. An 

additional potential drawback is that, by selecting a Pw > PQ, both QP and the corresponding cumulative volume of produced 

gas VP is reduced because the pressure differential ΔP = P0 – Pw (the driving force of flow, dissociation and gas production) 

is not maximized. This is less of a problem in deeper and warmer oceanic accumulations, in which the initial pressure P0 can 

be high, than in shallower oceanic accumulations and in the relatively shallow permafrost deposits. This complication can be 

resolved by (a) maximizing ΔP by selecting a Pw slightly above PQ, and (b) varying Pw over time, keeping initially Pw > PQ 

until QP is significantly reduced (because of depressurization of the entire deposit) and then reducing Pw to levels below PQ 

(and as low as the atmospheric). This is possible because, by the time Pw is reduced to below PQ, SH is expected to be 

sufficiently low as to either eliminate the possibility of ice formation upon continuing dissociation, or to limit the possible ice 

saturation SI to levels which result in permeability reduction that is not prohibitive for gas production. Note that the final Pw, 

at which a considerable QP is observed, may be well below the normal abandonment pressure of conventional gas reservoirs. 

Thermal stimulation. Pure thermal stimulation and inhibitor effects face considerable challenges as a method for large-

scale gas production from Class 3 deposits. The reasons for their shortcomings were discussed in detail in the discussion of 

production from Class 2 deposits. It is possible that either may be used for localized, short-term and limited scale applications 

in conjunction with depressurization. 

Evaluation of Production Potential.  Figure 32 shows that the maximum gas production rates in this example (based on 

the properties of, and the favorable conditions of, the 18m-thick Tigershark accumulation, see Moridis and Reagan(2007b)) 

when exposed to two types of thermal stimulation (warm water circulation and electrical heating).  The QP in both cases is 

orders of magnitude below those observed in the Class 1 or Class 2 deposits, and cannot satisfy minimum economic viability 

conditions under any circumstances.  These results confirm the ineffectiveness of pure thermal stimulation, and preclude its 

use as a production method (Moridis and Reagan, 2007b). 

When gas is produced from the Class 3 accumulation by means of constant-P depressurization, QP follows a cyclical 

pattern that includes a long rising segment, followed by a short precipitous drop (Figure 33). QP reaches a maximum level of 

QP = 4.3x10
5
 ST m

3
/day of CH4 (= 15 MMSCFD).  During the 6,000-day production period, the hydrate was exhausted, and 

a total of VP = 1.37x10
9
 ST m

3
 (= 4.84x10

10
 ST ft

3
) of CH4 were produced at an average rate Qavg = 2.3x10

5
 ST m

3
/day (= 

8.10 MMSCFD). The water mass production rate QW shows an exponential-like decline with time (Figure 33) from a large 

initial level of QW = 23 kg/s (12,200 BPD) to an average of about QW = 2.5 kg/s (= 1,300 BPD) after t = 1,000 days. Even at 

its highest, this QW level is manageable, and so is the cumulative mass of produced water MW.  Production from Class 3 
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hydrates by constant-P depressurization is at its most challenging upon initiation, and the picture continuously improves with 

time.  

In contrast to production from Class 2 deposits with the same initial conditions, which is characterized by long lead times 

of low production QP, constant-P production from Class 3 deposits begins in earnest from the moment depressurization is 

applied. These results clearly indicate that there is nothing intrinsically prohibitive in the production from Class 3 hydrates, 

and provide convincing evidence that the earlier impressions of low production potential of such hydrate deposits were the 

result of inappropriate production methods. Thus, gas can be produced from Class 3 hydrates at high rates over long times 

using conventional well technology. 

The precipitous QP drops (see the oscillations in Figure 33) occur when a traveling dual barrier (composed of concentric 

cylindrical structures formed from secondary hydrates) evolves and restricts flow to the well (Figure 34). This dual barrier is 

caused by the pressure regime and dissociation patterns (Moridis and Reagan, 2007b), and is a unique feature of constant-P 

production from Class 3 hydrate accumulations. 

As in Class 2 deposits, dissociation in Class 3 accumulations is characterized by (a) the evolution of an upper dissociation 

interface at the top of the hydrate layer (caused by heat flows from the upper boundary) in addition to the lower dissociation 

interface at the bottom of the HBL, and (b) gas accumulation below the base of the overburden because of continuing 

dissociation and buoyancy-driven gas rise to the top of the formation. The gas accumulation pattern has particularly 

important (and potentially severe) implications for gas production from oceanic deposits because lack of a confining 

overburden could lead to gas loss through percolation though the overburden and release at the ocean floor. 

As in Class 2 deposits, processes and phenomena that occur within a narrow zone around the well control gas production 

from the entire hydrate deposit in the Class 3 case. This critical zone has a radius rc < 15-20 m, and fine discretization must 

be used in its simulations if these near-well phenomena are to be captured and described (Moridis and Reagan, 2007b). 

Dissociation and flow patterns are uniform and smooth along the entire area of the horizontal interfaces for r > rc (Figure 35). 

QR increases (and the corresponding RWGC decreases) with an increasing (a) hydrate temperature (which defines its 

stability for a given pressure), and (b) intrinsic permeability (Moridis and Reagan, 2007b). Lower initial hydrate saturations 

lead initially to higher gas production and a lower RWGC (due to the greater keff of the initial hydrate mass) but the effect is 

later reversed as the hydrate is depleted more quickly (Figure 36). 

The effect of heterogeneity in permeability k appears to be beneficial to gas production from Class 3 deposits (Kurihara et 

al., 2005).  Thus, a higher QR is observed with an increasing level of heterogeneity in k (Figure 37, panel A), which is evident 

in the SH distribution of panel B in Figure 37.  Finally, in an interlayered system of sandstone and mudstone strata, QR 

decreases with a decreasing mudstone permeability (as expected, because of decreased communication between successive 

hydrate layers).  Of particular interest is the observation that fracturing has very little effect (Kurihara et al., 2005b). 

 

Geomechanical Issues. Geomechanical changes brought about by dissociation can have a significant impact on production, 

including porosity and permeability reduction (as the cementing hydrate dissociates, and more stresses are transferred to the 

generally unconsolidated sediments in HBS), subsidence, formation yielding/failure, and wellbore stability (Rutqvist and 

Moridis, 2007).  It is possible that geomechanical considerations may prevent production from otherwise promising hydrate 

deposits if conventional oilfield technology is to be used.  Generally speaking, the subsidence of unconsolidated hydrate-

bearing sands (<5%, the rule of thumb of acceptable consolidation to maintain wellbore stability) is manageable, while the 

subsidence of clayey HBS is sufficiently large to result in formation failure and wellbore instability (see Table 3), even if the 

issues of low permeability and slurry production are not considered.  

 

Desirability of Potential Hydrate Targets 
Although the available body of information on production from hydrates is rather limited, there is sufficient information to 

begin identifying particular features, properties, conditions and production methods that are linked to a higher gas production 

potential and increase the desirability of hydrate deposits, and to use this information to develop a set of guidelines for the 

selection of promising production targets.   

 

Desirable Features and Conditions. These include the following: 

• Large permeabilities and porosities, which are almost invariably associated with sandy and gravely formations. 

These are usually associated with low capillary pressure and low irreducible gas and water saturations, leading to 

relatively high permeability to gas and aqueous flow 

• Field evidence has shown that such reservoirs, if they contain any gas hydrate at all, are typically highly 

saturated (60% < SH < 85%), with the degree of saturation being largely determined by intrinsic reservoir 

quality. However, if such cases can be found, production would likely benefit from medium-high hydrate 

saturations (30% < SH < 60%) that provide significant volumes of movable pore fluids to enable effective 

reservoir depressurization. The effect of SH on gas production is not monotonic, but a complex function of SH 

and the timeframe of observation. A lower SH has the advantage of higher effective permeability, mild 

depressurization over long periods because the pressure disturbance extends over a larger volume of the 

reservoir, generally earlier evolution of gas and larger production rates (Moridis and Reagan, 2007a,b).  The 

disadvantages of a lower SH include large early water production rates and early exhaustion of the resource. 
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Higher hydrate saturations exhibit slower evolution of gas and lower production rates, reach a maximum QP 

later, but yield larger amounts of cumulative gas. 

• The most desirable targets can be easily identified from the inspection of the phase diagram.  These are 

characterized by a large T and P, in addition to their proximity to the Lw + H + G (3-phase coexistence) 

equilibrium line (allowing easier destabilization). Additionally, the larger T provides a larger source of sensible 

heat to support the endothermic dissociation process, and a larger P allows a larger pressure drop before the 

evolution of ice, leading to larger production rates.  Thus, (a) hydrates that occur along this line (where P = Pe 

and T = Te) are very desirable, and (b) the desirability increases with an increasing equilibrium P (and, 

consequently, T).  This indicates that Class 1 hydrates (in which the bottom of the hydrate exists at the bottom of 

the stability zone) are obvious targets because the effort to destabilize them and effect dissociation and gas 

release is minimal (the additional advantage of having a source of free gas). The same can be said for Class 2 

and Class 3 hydrates that exist just above the equilibrium line. The production potential decreases as the stability 

of the hydrate deposit at its initial conditions (as quantified by the pressure differential ΔP = P – Pe at the 

prevailing reservoir T) increases. In practical terms: we target the deepest, warmest reservoirs that are as close as 

possible to equilibrium conditions. In addition, the deeper reservoirs will also be those with the most overburden, 

and therefore the less prone to geomechanic impacts at the surface or at the seafloor. 

• For reservoirs with the same hydraulic properties, SH, and at a given P: the warmest possible reservoir is the 

most desirable. For reservoirs with the same hydraulic properties, SH, and at a given T: The reservoir with the 

lowest possible P is the most desirable. In general, it is not possible to know a priori the relative production 

potential of a reservoir at equilibrium vs. a deposit at a higher P and T but further removed from equilibrium. 

• In terms of deposit Classes: Based on current evidence, Class 1 appears to be the most promising target for gas 

production because the thermodynamic proximity to the hydration equilibrium point at the highest possible 

temperature requires only small changes in pressure and temperature to induce dissociation. Additionally, the 

existence of a free gas zone provides a significant economic advantage because it guarantees gas production 

even when the hydrate contribution is small. Three-phase coexistence (gas, aqueous and hydrate) at the bottom 

of the hydrate interval is a unique characteristic of Class 1 deposits, which indicates that such permafrost 

accumulations have about the same P and T at the hydrate interface if the geothermal gradient does not exhibit 

significant local variations.  Class 1 deposits with thick gas zone are probably characterized by early gas 

production, lower water production, but also by later and slower hydrate dissociation (the larger free gas zone is 

slower to respond). Thinner gas zones may enhance dissociation, but they may also lead to greater water 

production. Within Class 1: Class 1 G is clearly a more desirable target. 

• Class 2 and Class 3: Class 2 can attain high rates, but is also burdened by longer lead times of very little gas 

production; Class 3 may yield gas earlier and can attain significant production rates, but there is indication that 

those are lower than in Class 2. The relative merits of these two types will likely be determined by site-specific 

reservoir quality issues, among which the thickness of the water zone in Class 2 deposits can be dominant. 

• All classes: The difficulties of site access notwithstanding, deeper and warmer (>14 
o
C) oceanic accumulations 

appear to be more productive than permafrost ones because permafrost deposits have (a) a lower temperature 

(not exceeding 14 
o
C), limiting the sensible heat available for dissociation and (b) a lower pressure, limiting the 

depressurization effectiveness, in addition to (c) lacking the beneficial dissociating effect of salt in oceanic 

hydrates. 

• All classes: The importance of impermeable or near-impermeable upper boundaries cannot be overemphasized. 

• In terms of production method: Depressurization appears to have a clear advantage in all three classes.  Thermal 

stimulation can only be considered for localized applications (i.e., destruction of secondary hydrate and/or ice) in 

the vicinity of the well, while inhibitors appear to make economic sense only when used to prevent hydrate 

formation in the wellbore.  In practical terms, if depressurization does not appear to be effective, the deposit is 

not a desirable target.   

 

Undesirable Features and Conditions. At this early stage in the quest of gas production from hydrates, accumulations 

characterized by the following features are to be completely avoided as production targets: 

• Class 4 deposits, or any deposits in which the enclosing media is undeformed clay sediments: Earlier studies by 

Moridis and Sloan (2007) have indicated the hopelessness of such deposits under any combination of conditions 

and production practices.  

• Fine sediments (i.e., rich in silts and clays), deformed fractured systems, as well as hydrates in veins and nodules 

(i.e., hydrate associated with displacement of, or extrusion into, soft sediments, as opposed to hydrates in the 

pores) despite high gas hydrate saturations, due to geomechanical instability and restriction of fluid flow. 

• In Class 2 deposits: Well configurations involving a perforated interval that penetrates the water zone but does 

not extend substantially into the HBL.  Such wells do not allow access to the gas bank developing above the 

upper dissociating interface, and result in generally low rates (Moridis and Reagan, 2007a). 
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• In Class 2 deposits: Constant-P production does not seem to be a promising production strategy because it can 

lead to early breakthrough and massive water production.  However, such an approach can be used in a short-

term flow test to determine the HBL properties. 

• In Class 2 deposits: Deep water zones, and/or permeable overburden and underburden, can drastically reduce gas 

production from Class 2 deposits.  Additionally, the use of multi-well (5-spot) systems involving simultaneous 

depressurization (at the production well) and thermal stimulation (through warm water injection) appears 

disappointing (Moridis and Kowalsky, 2005).  

• In all Classes: Permeable upper boundaries. 

• In all Classes: Pure thermal dissociation methods and/or inhibitor methods have high cost and limited (and 

continuously eroding) effectiveness. 

• In all Classes: SH that are so high that the remaining fluids are below their irreducible saturation levels. Such 

hydrates may not be prone to easy depressurization-induced dissociation. Additionally, knowledge on the 

behavior of such systems is minimal or nonexistent. 

• In all Classes: Fracturing appears to have limited effect on increasing productivity from hydrate deposits 

(Kurihara et al., 2005b).   

 

Conclusions 
We can draw the following conclusions from this study: 

(1) Gas hydrates are a vast resource with global distribution in the permafrost and in the oceans.  Even if a 

conservative estimate is considered and only a small fraction is recoverable, the sheer size of the resource is so 

large that it demands evaluation as a potential energy source. Although formidable difficulties exist, the 

development of hydrates into an energy source appears to have acquired its own global dynamic, with increased 

levels of international awareness, several national and international programs investigating the feasibility of the 

endeavor, and heightened levels of activity. Parallels can be drawn from the development of coalbed methane, 

which, after properly studied and understood, has graduated from being a safety hazard to becoming an 

increasingly conventional resource that now constitutes 10% of the U.S. gas production. 

(2) There is a concerted international effort (and remarkable cooperation) to determine the technical and economic 

feasibility of production from gas hydrates.  However, it is noteworthy that this effort is currently led by 

governments, with industry providing a supporting role.  

(3) Production from gas hydrates faces significant challenges because of the hostile environments in which they 

exist.  The difficulty of access, coupled with the significant cost of related work, and the need to have the first 

attempt at producing gas from this unconventional source be a success (lest failure condemns a large and 

worthy effort), have led to the development of a rational approach to prioritize potential targets. By need and 

design, the first attempts to produce gas from hydrates will be limited to the few relatively well-characterized 

sites with proven resources. 

(4) Because of its power, flexibility, and low-cost (compared to actual field studies), numerical simulation plays a 

critical role in the effort to assess the production potential of hydrates. While the dearth of field data has not 

allowed the full validation of numerical codes, the consensus of the scientists involved in the effort is that the 

models generally account for the important physics of the problem, and that validation and calibration (rather 

than adequacy of the numerical code capabilities) will be a constraining factor in the assessment of the hydrates 

as an energy resource. 

(5) A review of the data needs for the implementation of the numerical models indicates that, while knowledge 

gaps exist, these are being addressed, or can be adequately addressed by sensible approximations. In the case of 

critically important data, the problem can be addressed by sensitivity analyses that can bound the potential 

solutions. 

(6) Literature review provides strong indications that gas hydrates from a variety of types of deposits (even ones 

considered unproductive a few years ago) can yield large amounts of gas at high rates over long periods using 

conventional technologies.  Even when new well designs are proposed, these are well within the current 

technological capabilities. This bodes well for the production potential of this unconventional resource. 

Nomenclature 
 C = specific heat (J/kg/K) 

 k = intrinsic permeability (m
2
) 

 kΘ = thermal conductivity (W/m/K)  

 kΘRD = thermal conductivity of dry porous medium (W/m/K) 

 kΘRW = thermal conductivity of fully saturated porous medium (W/m/K) 

 NH = hydration number 

 P = pressure (Pa) 

 QM = mass rate of fluid withdrawal at the well (kg/s) 

 QP = volumetric rate of CH4 production at the well (ST m
3
/s) 
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 QR = volumetric rate of CH4 release from hydrate dissociation into the reservoir (ST m
3
/s) 

 QW = mass rate of water release into the ocean through the annular gravel pack (kg/s) 

 rw = radius of the well assembly (m) 

 rmax = maximum radius of the simulation domain (m) 

 RWGC = cumulative water-to-gas ratio (kg/ST m
3
) 

 S = phase saturation 

 t = time (days) 

 STP = standard pressure and temperature 

 T = temperature (K or 
o
C) 

 TCF = 10
12

 STP ft
3
 of gas 

 VR = cumulative volume of CH4 released from hydrate dissociation (ST m
3
) 

 VP = cumulative volume of CH4 released into the ocean through the annular gravel pack (ST m
3
) 

 

Greek Symbols 

 φ = porosity 

 

Subscripts and Superscripts 
 0 = denotes initial state 

 A = aqueous phase 

 e = equilibrium conditions 

 cap = capillary 

 G = gas phase 

 G0 = initial gas phase 

 H = solid hydrate phase 

 H0 = initial solid hydrate phase 

 irG = irreducible gas 

 irA = irreducible aqueous phase 

 P = production stream 

 R = rock 
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Table 1. Estimates of In Situ Methane Hydrates (Sloan and Koh, 2008) 
 

 
Year 

CH4 amount 
10

15
 m

3
 STP 

  
Citation 

1973  3053  Trofimuk et al. 
1977  1135  Trofimuk et al. 
1982  1573  Cherskiy et al. 
1981  120  Trofimuk et al. 
1981  3.1  McIver 
1974/1981  15  Makagon 
1982  15  Trofimuk et al. 
1988  40  Kvenvolden and Claypool 
1988  20  Kvenvolden 
1990  20  MacDonald 
1994  26.4  Gornitz and Fung 
1995  45.4  Harvey and Huang 
1995  1  Ginsburg and Soloviev 
1996  6.8  Holbrook et al. 
1997  15  Makogon 
2002  0.2  Soloviev 
2004  2.5  Milkov 
2005  120  Klauda and Sandler 
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Table 2. Estimates of Relative Hydrated Methane in the Permafrost and the Ocean (Sloan and Koh, 2008) 

 

Permafrost hydrated 
methane (10

14
 m

3
) 

Oceanic hydrated methane  
(10

16
 m

3
) 

 
References 

0.57 0.5–2.5 Trofimuk et al. (1977)  
0.31 0.31 McIver (1981)  
340 760 Dobrynin et al. (1981)  
1.0 1.0 Makogon (1988)  
7.4 2.1 MacDonald (1990) 

 

 

 

 

 

 

 

 

 

 

Table 3 – Comparison of geomechanical behavior for different types of host sediments 
(Rutqvist and Moridis, 2007) 

 

Parameter Toyoura 
sand

 
Clay

 
Berea Sandstone

 

Minimum Compressive 
Reservoir Stress �min (MPa) 

-12 -21 -9 

Maximum Compressive 
Reservoir Stress �max (MPa) 

-40 -40 -40 

Magnitude of settlement of the 
ocean floor Uz (m) 

0.8 4.3 0.05 

Yielding within the HBS Yes Yes No 

Borehole instability Yes Yes Yes 

 

 Thickness of the hydrate-bearing formation = 18.25 m 
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Figure 1 – Inferred (63), recovered (23), and potential (5) hydrate locations in the world (Kvenvolden, 2005).  

 

 

 
 

 
Figure 2 – Gas Hydrates Resource Pyramid (left). To the right is an example gas resources pyramid for all 

non-gas-hydrate resources (Boswell and Collett, 2006).  

 

 

 
 

Figure 3 – Distribution of permafrost in the Northern Hemisphere (Collett, 1993). 
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Figure 4 – Location of the wells during the 2002 field test at the Mallik site, Mackenzie Delta, Northwest Territories.  The base map is 
a false-color mosaic constructed from a Landsat V image taken July 8, 2002. Contours indicate depth to the base of the gas hydrate 

stability zone in meters. Symbols include small circles as well locations, larger circles with ticks are wells containing gas hydrate 
(Dallimore and Collett, 2005). 
 

 
 
 
 
 
 

 
 

Figure 5 – Photograph of a gas-hydrate-bearing rock core from the Mallik 5L-38 Gas Hydrate Research Well. Note that the gas 
hydrate is the white material filling the void spaces in this conglomerate (photo courtesy of the Mallik 2002 Gas Hydrate Production 

Research Well Program - Dallimore and Collett, 2005). 
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Figure 6 – Geophysical well logs indicating the presence and saturation of gas hydrates in the thermal test zone of the Mallik 5L-28 

research well (Dallimore and Collett, 2005). 
 
 

 

 
 
Figure 7 – Photograph of the gas flare from the thermal gas hydrate production test in the Mallik 5L-38 Gas Hydrate Research Well 
(photo courtesy of the Mallik 2002 Gas Hydrate Production Research Well Program - Dallimore and Collett, 2005). 
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Figure 8 – Map of the Alaska North Slope gas hydrate stability zone. Also shown is the location of the Eileen and Tarn gas hydrate 
accumulations (Collett, 1993).  

 

 

 

 

 

     
 
Figure 9 – (a) Cross section showing the lateral and vertical extent of gas hydrates and underlying free-gas occurrences in the 

Prudhoe Bay-Kuparuk River area in northern Alaska.  See Figure 9b for location of cross section.  The gas-hydrate-bearing units are 
identified with the reference letters A through F (Collett, 1993); (b) Composite map of all six gas-hydrate/free-gas units (Units A-F) 
from the Prudhoe Bay-Kuparuk River area in northern Alaska (Collett, 1993).   
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Figure 10 – Drilling rig at Milne Point, February 2007 (Mount Elbert, 2007). 

 

 

 

 

 
 
Figure 11 – Gas hydrate-bearing sand core and sample from the Mount Elbert deposit (Mount Elbert, 2007). 
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Figure 12 – (a) The hydrate deposit areas in the Nankai Trough region offshore Japan; (b) The drilling sites of the 2004 Drilling 

Program
 
(Takahashi and Tsuji, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Former Site 
Offshore 
Omaezaki 

Nankai Trough 
1999 

Offshore Tokai 
WD = 710- 1350 m 
BSR = 880 – 1675 

 

No.2 Atsumi Knoll 
WD = 1015 – 1455 m 
BSR = 1310 – 1850 m 

Kumano Basin 
WD = 1860 – 2045 m 
BSR = 2150 – 2348 
 

(b) 
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Figure 13 – Two experimental well designs investigated in the 2004 Drilling Program in the Nankai Trough (courtesy of Takahashi 
and Tsuji, 2005). 

 

 

 

 

 

 

         
 

Figure 14 – Approximate location of the “Tigershark” exploratory  Figure 15 – Hydrate saturation SH in Oligocene Frio 
well in the Alaminos Canyon block 818 (Smith et al., 2008). sand – Alaminos Canyon Block 818 (Collett and Lee, 

 2006). 
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Figure 16 – Well log montage showing data collected over the Frio gas hydrate-bearing sand at Alaminos Canyon Block 818 (from 

Smith et al, 2006) 

 

 

 
 
Figure 17 – Pressure-temperature equilibrium relationship in the phase diagram of the water–CH4–hydrate system (Moridis, 2003), 

Lw: Liquid water; H: Hydrate; V: Vapor (gas phase); I: Ice; Q1: Quadruple point = I + Lw + H + V) 
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Figure 18 – Relative permeability equipment and method in the LBNL study.  Top left – Flow-through x-ray transparent pressure 
vessel mounted on x-ray CT scanner, Bottom left – x-ray scan of the pressure vessel, Top right – Sequential CT scans of a single 

hydrate bearing location during a waterflood (higher densities are brighter and show where the water is flowing), Bottom right – 
Data from scans above and best fit curves. 

 

 

 

 
 
Figure 19 – The LBNL Hydrate Geomechanical Test Cell. 
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Figure 20 – Left: A schematic of a Class 1 system. Right: Comparison between cumulative gas production and the cumulative 

volume released from hydrate dissociation (courtesy of Hong and Pooladi-Darwish, 2005). 

 

 

 

    
 

 
Figure 21 – Left: Evolution of (A) the rate of CH4 release from hydrate dissociation, (B) the rate of CH4 production at the well, and (C) 
the corresponding RRR during long term production from a Class 1W hydrate deposit. Right: Evolution of (A) the CH4 volume 
released from hydrate dissociation, (B) the CH4 volume produced at the well, and (c) the corresponding VRR during long term 

production (Moridis et al., 2007). 
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Figure 22 – Evolution of the hydrate saturation distribution in a Class 1W hydrate deposit of Problem 1 during depressurization 
(Moridis et al., 2007). 

 

 
 

Figure 23 – Evolution of the gas saturation distribution in a Class 1W hydrate deposit of Problem 1 during depressurization (Moridis 

et al., 2007). 
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Figure 24 – Class 1G; Left: Evolution of (a) the rate of CH4 release from hydrate dissociation, (b) the rate of CH4 production at the 
well, and (c) the corresponding RRR over the 30-yr production period.  Right: Evolution of (a) the cumulative CH4 volume released 
from hydrate dissociation, (b) the produced CH4 volume at the well, and (c) the corresponding VRR over the 30-yr production period 

(Moridis et al., 2007). 

 

 
Figure 25 – Evolution of the hydrate saturation distribution in a Class 1G hydrate deposit during depressurization (Moridis et al., 
2007). 
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Figure 26 – A schematic of the Class 2 oceanic hydrate deposit simulated in the Moridis and Reagan (2007a) study. 
 

 

    
 

 
 
Figure 27 – Proposed well design for production from Class 2 hydrates. Phase 1, initial production stages. The production interval 

begins at the HBL and extends into the WZ, while the outer surface of of the wellbore in contact with the HBL is heated. Phase 2: 
Well design used in the early and intermediate production. Warm water injected into the formation at the top of the HBL. Phase 3: 
Well design used in the late stages of production. The system involves thin alternating zones of production and warm water 

injection (Moridis and Reagan, 2007a). 
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Figure 28 – Left: Rates of (a) hydrate-originating CH4 release in the reservoir (QR) and (b) CH4 production at the well (QP) during 

production from a Class 2 oceanic hydrate deposit. The production stages and the average production rate (Qavg) over the 
simulation period (5,660 days) are also shown. Right: Cumulative volumes of (a) hydrate-originating CH4 released in the reservoir 
(VR) and (b) produced CH4 at the well (VP) during production from the same deposit (Moridis and Reagan, 2007a). 

 

 

    
 
Figure 29 – Sensitivity analysis – Left: effect of various perturbation parameters on the evolution of VP and MW during production 
from a Class 2 oceanic hydrate deposit. Right: effect of various perturbation parameters on the evolution of the water-to-gas ratio 

RWGC during production from the same deposit (Moridis and Reagan, 2007a). 
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Figure 30 –Evolution of spatial distribution of SH during gas production from a Class 2 oceanic hydrate deposit (Moridis and 

Reagan, 2007a). 

 

                  
 
Figure 31 – Rates of (a) hydrate-originating CH4 release in the reservoir (QR), (b) CH4 production at the well (QP), and (c) average gas 
production rate.  Left: Class 2 oceanic deposit in the Ulleung Basin (Moridis et al., 2007).  Right: Class 2 permafrost deposit in the 
North Slope (Moridis and Reagan, 2007c).   
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Figure 32 –Rates of (a) hydrate-originating CH4 release in the reservoir (QR) and (b) CH4 production at the well (QP) during production 
from a Class 3 oceanic hydrate deposit.  Left: Warm water circulation. Right: Electrical heating (Moridis and Reagan, 2007b). 

 

 

 

 

         
 

 
Figure 33 – Left: Rates of (a) hydrate-originating CH4 release in the reservoir (QR) and (b) CH4 production at the well (QP) during 
constant-P production from a Class 3 oceanic hydrate deposit. The average production rate (Qavg) over the simulation period (6000 
days) is also shown. Right: (a) Rate of H2O production (QW) and (b) cumulative mass of produced H2O (MW) during production from 

the same deposit (Moridis and Reagan, 2007b). 
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Figure 34 –Evolution of spatial distribution of SH during constant-P gas production from a Class 3 oceanic hydrate deposit deposit 

(Moridis and Reagan, 2007b). 

 

 

 
 

 

Figure 35 – Evolution of the SH distribution over the entire Class 3 hydrate deposit of Figure 34 to demonstrate the uniformity of 
dissociation away from the critical near-well zone (Moridis and Reagan, 2007b). 
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Figure 36 – Sensitivity analysis. Left: effect of various perturbation parameters on VP and MW during constant-P production from a 
Class 3 oceanic hydrate deposit. Right: effect of various perturbation parameters on the evolution of the cumulative water-to-gas 

ratio RWGC during production from the same deposit (Moridis and Reagan, 2007b). 
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Figure 37 – Sensitivity to heterogeneity in a Class 3 deposit produced at constant pressure. A: Comparison of gas production rates 

and cumulative production volumes in three problems of various levels of permeability heterogeneity; B: Gas production rates and 
cumulative production volumes for various mudstone permeability and fracture regimes in a layered system; C: SH saturation 
distribution at the end of the simulation period in the cases depicted in A (Kurihara et al., 2005b). 
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