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Abstract—Uniformly random or Poisson distributions are widely accepted models for the location of the nodes in wireless sensor

networks if nodes are deployed in large quantities and there is little control over where they are dropped. On the other hand, by placing

nodes in regular topologies, we expect benefits both in coverage and efficiency of communication. We describe and analyze a basic

localized algorithm and three modifications for topology control that provide a tradeoff between performance and deployment cost. The

objective is to regularize the topology for improved energy efficiency. The basic algorithm produces quasiregular networks, which only

use nodes as sentries and relays that are approximately evenly spaced, thereby emulating a regular grid topology. It is shown that

quasiregular networks have a significant energy and lifetime advantage compared with purely random networks. We consider two

specific types of quasiregular networks: the ones that are based on a Gaussian deviation about an ideal grid point (type A), and the

ones that consist of a subset of nodes taken from a Poisson point process (type B). We show that the two types are equivalent for a

certain density of the Poisson point process and, in particular, that in both cases the deviation from the ideal regular grid follows a

Rayleigh distribution, whereas the distance between nearest neighbors is Ricean.

Index Terms—Wireless sensor networks, wireless communications, network topology, network protocols, Poisson point processes,

Rayleigh fading.

Ç

1 INTRODUCTION

IN theoretical studies and simulations, the nodes of large
sensor networks are often assumed to be randomly

distributed, either uniformly or as a Poisson point process,
which seems to be a good model for certain modes of
deployment, for example, when nodes are dropped in large
numbers from an airplane. On the other hand, depending
on the application, it may also be possible to place sensors
at equal distances, for example, in a square grid. In so
doing, we expect benefits both in coverage and efficiency of
communication [1].

Uniformly random and completely regular topologies
are the two extreme cases. For some applications, a model
that incorporates some uncertainty into a regular distribu-
tion may be more realistic, as it may not be possible to
deploy nodes completely regularly.

The idea to partition the network area into regular
square grid cells has been explored for energy-saving
purposes. Xu et al. [2] came up with virtual grids which
are defined such that the nodes in one square cell can
communicate with all the nodes in the neighboring cell. In
that way, nodes in one cell are considered equivalent for
routing. So, only one node needs to be active in each cell,
while the other nodes can sleep to save energy. The

problems with this model arc that there may be empty
cells, that active nodes may still be very close, and that
nodes need to be able to transmit reliably over distances
larger than twice the length of the cell.

Due to the large variance in the internode distances, it is
very difficult to efficiently communicate and balance the
energy consumption in a network with uniformly random
distribution. Hence, it is highly desirable to make the node
distribution more regular by selecting an appropriate subset
of random nodes. We describe and analyze a basic localized
algorithm and three modifications for topology control that
achieve this objective of regularizing the topology for
improved energy efficiency while maintaining the coverage
properties. The basic algorithm produces quasiregular net-
works, where only nodes that are approximately evenly
spaced to emulate a regular grid network are active and
other nodes are put to sleep to save energy. After nodes
remain active for a period of time, the virtual grid is shifted
and nodes closest to the shifted grid points are active for the
same period of time (or phase). We analyze the network
lifetime of quasiregular networks in two operating modes, a
monitoring mode where a subset of nodes is active, acting as
sentries, and a reporting mode, where an event of interest has
been detected and a set of nodes forming a route to a base
station is relaying messages. It is shown that quasiregular
networks substantially outperform random networks in
both modes.

Section 2 gives two definitions of quasiregular networks
and introduces two types of quasiregular networks: Type A,
where the coordinates of the nodes are Gaussian distributed
with the mean given by regular grid points; Type B, where
the selected nodes are a subset of a Poisson point process
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and every selected node is closest to a regular grid point.
For networks of type B, a basic local topology control
algorithm is also given. Section 3 shows that quasiregular
networks of types A and B are equivalent if the density of
the Poisson point process is appropriately chosen. Section 4
provides a detailed analysis of quasiregular networks of
type B. It further gives a detailed analysis of the network
reliability for different phases. In Section 5, it is shown that
quasiregular networks of types A and B turn the Rayleigh
internode distance distribution of random networks into a
Ricean distribution, resulting in a significant advantage in
terms of energy consumption and lifetime. To extend the
network lifetime, three improved algorithms are introduced
in Section 6, and their distance properties are analyzed.
Section 7 concludes the paper.

2 A TOPOLOGY CONTROL ALGORITHM FOR

SENSOR NETWORKS

In regular networks, the nodes are placed on the vertices of
a regular grid. Here, we focus on square grids (square
lattices). In (purely) random networks, the position of the
nodes constitute a Poisson point process with density �.
Note that � does not affect the relative distances, since all the
distances are simply scaled by 1=

ffiffiffi

�
p

compared with the
network with � ¼ 1. Quasiregular networks are networks
that are more regular than the Poisson point process, but
not perfectly regular. We offer two definitions. To be
concise, we focus on infinite networks. Let R be the distance
to the nearest neighbor of a node that lies within a sector
�=2 of a desired direction (the source-destination axis). For a
fair comparison, the network has to be normalized such that
IE½R� ¼ 1. In the Poisson case, this corresponds to a network
with density 1. Both definitions are based on a measure of
the uncertainty in R.

1. A quasiregular network is a network where the
differential entropy hðRÞ [3] (expressed in nats)
satisfies �1 < hðRÞ < 1þ �em�log�

2
, where �em is the

Euler-Mascheroni constant. The upper bound is the
differential entropy of the Rayleigh distribution with
mean 1, which is the distribution of R in a Poisson
point process [4].

2. A quasiregular network is a networkwith 0 < Var½R� <
4=�� 1. Again, the upper bound is the variance of the
Rayleigh distribution with mean 1.

The closer a network is to the lower bounds, the more
regular it is. The two definitions seem equivalent in the
sense that they order networks in the same way, since the
relationship hðRÞ / Var½R� holds for other distributions
than the Rayleigh distribution [3, p. 225].

We will focus on a particular type of quasiregular
networks, namely, the ones that can be obtained by thinning
a random network. The resulting subnetwork only activates
nodes as sentries and relays that are approximately evenly
spaced, thereby emulating a regular topology. For example,
as shown in Fig. 1, a network with uniformly randomly
distributed nodes (marked by circles) can emulate a regular
square network by appropriately selecting a subset of
random nodes. In the first phase, the nodes closest to the
integer grid points (marked by squares) are selected to be

active and all the other nodes are put to sleep. In the second
phase, the original grid points are shifted and a new set of
nearest nodes to the shifted grid points (marked by up-
triangles) are selected. In each phase, the grid that the
selected nodes are closest to is called the active grid. For
example, in Fig. 1, in the first, second, third, and fourth
phase, the active grid points are marked by squares, up-
triangles, diamonds, down-triangles, respectively. The
density of the active grid in each phase is one, without
loss of generality due to scale-invariance. The grid consist-
ing of all the original integer grid points and all the shifted
grid points is denoted as dense grid. The active grid is
always a subset of the dense grid. In this way, we can
construct a quasiregular network. Next, we formally define
two specific infinite quasiregular networks:

Quasiregular network of type A: Gaussian distribution. For
each grid point ðxi; yiÞ 2 ZZ2, place a node in the plane with
coordinates ðXi; YiÞ with Xi � Nðxi; �

2Þ, Yi � Nðyi; �2Þ,
where �2 < 1=ð2�Þ.

Quasiregular network of type B: Subset of Poisson point
process. Denote the set of vertices of a Poisson point process
in IR2 with density � > 1 by P . Network B consists of the
smallest subset S � P of nodes as follows: For each p 2 PnS
and any grid point, there is a node s 2 S such that s is closer
to that grid point than p, i.e., for all s 2 S; 9 zi 2 ZZ2 s:t:
s ¼ argminp2P kCðpÞ � zik, where CðpÞ 2 IR2 are the coordi-
nates of point p.

The uncertainty in the nearest-neighbor distance is
reduced since the probability that it is very small or very
large is substantially smaller than for a purely random
network. So, both types A and B networks are indeed
quasiregular.1

This definition of quasiregular network of type B implies
a basic local topology control algorithm to achieve quasir-
egularity (of type B): By exchanging position information
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Fig. 1. A part of a network where nodes are uniformly distributed in an
area 100� 100. The circles denote the random nodes. The squares, up-
triangles, diamonds, and down-triangles denote the active grids in the
first, second, third, and fourth phase and all of them constitute the dense
grid.

1. For a detailed analysis, please refer to Theorem 1, Theorem 3, and
Section 5.3.



with its neighbors, each node determines whether it is

closest to a virtual integer grid point.

Basic algorithm:

1. Perform synchronization and localization of the
network nodes.

2. Calculate distances to the nearest grid points,
exchange this information with neighboring nodes,
and decide whether to enter sleep mode or stay
active as a sentry.

3. After a certain period, wake up all nodes, shift the
virtual grid by a certain amount. Go back to Step 2
unless the desired number of periods has passed.

Note that this is a local algorithm since it is fully

distributed and only requires local data exchange. Many

distributed synchronization and localization algorithms

have been proposed for sensor networks, see, e.g., [5], [6]

and references therein. The outcome of the localization step

is that all the nodes know their position with respect to a

common coordinate system, i.e., a joint grid, which is

exactly what is required for Step 2 in the algorithm. The

number of neighbors with which each node needs to share

its distance information is limited; it does not exceed the

average number of nodes within a finite radius that is of the

order of the grid distance. This algorithm will be analyzed

in detail in Section 4, and three modifications will be

suggested in Section 6 to overcome its shortcomings.
Note that switching periods or phases incurs a sub-

stantial expenditure of energy, since all nodes need to be

woken up first before Steps 2 and 3 of the basic algorithm

can be carried out. Therefore, it is normally preferred to

perform phase shifts only if necessary, i.e., when the

currently active set of nodes is about to run out of energy.

Also, phase shifts should only happen during monitoring

mode. The detection of an event of interest by a sentry is

assumed to cause the network to switch from monitoring to

reporting mode. In reporting mode, the active set of nodes

should not be changed to not perturb the ongoing

transmission and avoid rerouting. If fresh nodes are being

added to the network, they can be naturally integrated at

the beginning of the next phase. As the phase shifts, the new

nodes are considered part of the network, and after

localization and synchronization, they may be selected as

active nodes in the next phase.

3 PROPERTIES OF QUASIREGULAR NETWORKS

Theorem 1. The distributions of quasiregular networks of types

A and B are equivalent if 2��2 < 1 and

� ¼ 1

2��2
: ð1Þ

By equivalence, we mean that the distances between the integer

grid point and its nearest neighbor node are identically

distributed.

Proof. For network type A, the distance

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXi � xiÞ2 þ ðYi � yiÞ2
q

from node ðXi; YiÞ to the grid point ðxi; yiÞ is Rayleigh

distributed with mean IE½D� ¼ �
ffiffiffiffiffiffiffiffi

�=2
p

since the square

root of the square summation of two Gaussian random

variables is Rayleigh distributed. For network type B, the

distance from an arbitrarily chosen point to its nearest

node is alsoRayleighdistributedwithmean1=ð2
ffiffiffi

�
p

Þ [4]. In
particular, this is true if thearbitrarily chosenpoint is agrid

point. So, for � ¼ 1=ð2��2Þ, the two distributions are

identical. tu
In practice, we may consider finite areas and uniformly

random distributions rather than Poisson point processes.
We expect Theorem 1 to hold with good accuracy if the
number of nodes is large, in which case the uniform
distribution is equivalent to the Poisson process for all
practical purposes.2 For example, for a network of type A,
consider an area ½� 1

2
; 19
2
�2 and place 100 nodes close to the

integer square grid points with � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� � 16

p
� 0:0997 inX

and Y . This yields a grid with Gaussian uncertainty. Manual
placement (with someGaussian uncertainty) as for networks
of typeA can be costly and impractical, sowe focus on type B,
where we start with a Poisson point process and apply
thinning to make it more regular. This thinning procedure is
exactly the topology control algorithm described in the
previous section. In the subsequent analysis, we therefore
focus on networks of type B. So, for the network of type B,
placeN nodes uniformly randomly in the same area and pick
the 100 nodes closest to the 100 active grid points. Due to the
localization (Step 1 in thebasic algorithm), the node can easily
determine whether they are closest to an active grid point.
Since the area is 100, N ¼ 1600. So, for each phase, almost
1� 100=1600 � 94% nodes can be put to sleep. They will be
activated later when the grid is shifted. For the quasiregular
network to emulate a square regular network in all phases,
the phase number np and the shift interval � are related by
np ¼ 1=�2. The shift interval and the density � can, in
principle, be chosen independently.However, the casewhere
the number of dense grid points equals the number of points
in the Poisson point process is of particular importance and
will henceforth be referred to as the natural choice. For the
previous example, if the active grid has density one, the shift
interval � should be � ¼ 1=

ffiffiffi

�
p

so that the total number of
selected nodes in all the phases is approximately the total
number of random nodes. In this case, the total number of
phases is np ¼ 1=�2 ¼ �, which implies that for the natural
choice the number of phases equals the density, i.e., np ¼ �.3

Thegrid shift selection schemeof thenatural choice for� ¼ 16

is shown in Fig. 2b, whereA,B,C, andD are the original grid
points in the active grid for the first phase. The 16 circles
within the dashed box exceptA are the 15 shifted grid points
of the original grid point A. The shift interval is
� ¼ 1=

ffiffiffi

�
p

¼ 1=4. Since a particular node may be closest to
both an original grid point and the shifted grid points, the
node could be selected several times (see Fig. 1). The usage
number U of a node in a quasiregular network of type B is
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2. Note that, conditioned on the number of nodes in an area, the
distribution of points in a Poisson process is uniformly random.

3. For noninteger density �, np ¼ ½roundð
ffiffiffi

�
p

Þ�2, where rounding is used
to obtain an integer that is close to the natural choice.



definedas thenumberofdensegridpoints anode is closest to.

For the natural choice, themeanusage number is one because

IE½U � ¼
X1

i¼0

i � Ui ¼
density of dense grid

density of Poisson points
¼ 1; ð2Þ

where Ui denotes the probability mass function (pmf) of U ,

i.e., Ui ¼ IP½U ¼ i� with 0 	 i < 1, which means the

probability that a node is selected by i dense grid points.
We focus on a specific network with node density � ¼ 4.

The phase number for the natural choice is 4. The grid shift

selection scheme is shown in Fig. 2a, where A, B, C, and D

are the original grid points in the active grid for the first

phase. For the natural choice with 4 phases, for original grid

point A (first phase), the shifted grid points are E, F , and G

(second, third, and fourth phases). The dense grid consists

of the original grid points and the shifted grid points. The

shift interval is � ¼ 1=
ffiffiffi

�
p

¼ 1=2. In the next section, a

detailed analysis on the node usage number U will be

provided.

4 ANALYSIS OF NODE USAGE

4.1 Numerical Investigation

To determine how often a node is selected, we simulated

109 points of the Poisson process. For � ¼ 4, in addition to

the natural choice, we also consider another shift value by

increasing the phase number from 4 to 16. As shown in

Fig. 2a, for the 16-phase case, the 15 filled circles consist of

the 15 shifted grid points of the original grid point A. The
normalized histograms (probability mass functions or pmfs)
of the usage numbers for the natural choice and the 16-
phase case are illustrated in Figs. 3a and 3b.

For node density � ¼ 16, the natural choice has
16 phases. We also study the case with four phases. As
shown in Fig. 2b, for the 4-phase case, E, F , and G are the
three shifted grid points of the original grid point A. The
normalized histograms of the node usage numbers for the
natural choice and the 4-phase case are shown in Fig. 3c and
Fig. 3d.

An interesting observation from comparing Fig. 3a and
Fig. 3c is that the normalized histograms of the node usage
number with natural choice are similar, e.g., the probability
that a node is not active is approximately 15 percent in
Figs. 3a and 3c. Furthermore, we can see that employing
more phases than the natural choice decreases the number
of nodes that are not active, as expected.

4.2 Asymptotic Behavior

If the shift interval � gets smaller and smaller, the number of
phases increases. In the limiting case, there is an infinite
number of shift phases so that the usage number of a node
will be proportional to the area of the Voronoi cell of that
node. Fig. 4a plots the normalized histogram of the usage
numbers for 64 phases as � ¼ 4. Fig. 4b displays the
normalized histogram of the Poisson Voronoi cell area
(solid curve) which match the generalized gamma distribu-
tion (dashed curve):
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Fig. 2. Shift assignment of quasiregular network of type B. whereA, B, C, andD are the original square grid points with density one. (a) � ¼ 4, natural
choice has four phases and � ¼ 1=2, where for original grid point A (first phase), the shifted grid points are E, F , and G (second, third, and fourth
phases). For the 16-phase case, the 15 filled circles consist of the 15 shifted grid points of the original grid point A. (b) � ¼ 16, natural choice has
16 phases and � ¼ 1=4, where the 16 circles within the dashed box except A are the 15 shifted grid points of the original grid point A. For the 4-phase
case, E, F , G are the three shifted grid points of the original grid point A. (a) � ¼ 4, np ¼ 4, or 16. (b) � ¼ 16, np ¼ 4, or 16.

Fig. 3. Normalized histogram (pmf) of node usage numbers for � ¼ 4; 16, and different phase numbers. (a) and (c) are natural choices. (a) � ¼ 4,

4-phase. (b) � ¼ 4, 16-phase. (c) � ¼ 16, 16-phase. (d) � ¼ 16, 4-phase.



fðxja; b; cÞ ¼ abc=a

�ðc=aÞx
c�1 expð�bxaÞ ða; b; c > 0Þ; ð3Þ

where a ¼ 1:07950, b ¼ 3:03226, and c ¼ 3:31122 are from [7].

4.3 Analytic Bounds

The natural choice for the density of the underlying Poisson
process for networks of type B is appealing since it provides
a good trade-off between regularity and hardware cost. An
exact and complete analysis of the usage numbers for this
case is elusive. It is, however, possible to derive sharp
bounds.

4.3.1 Probability That a Node is Not Active

Here, we determine the lower bound of the probability that
a node is not active. The exact probability calculation is
given in the Appendix. If a node is not active, it is not the
nearest neighbor of any grid point. In particular, it is not the
nearest neighbor of its four neighbor grid points. In
addition, it is not the nearest neighbor of any more distant
grid points. We consider the probability that a node at
ðX;Y Þ is not the nearest neighbor of its four neighbor grid

points A, B, C, D4 (shown in Fig. 5a) because this is the

most likely event. Note here the grid points are A and its

shifted versions B, C, and D. We have

IP½node ðX;Y Þ is not the nearest neighbor of A; B; C; and D�

 p̂ ¼ IE½ð1� e���r2

1Þð1� e���r2
2Þð1� e���r2

3Þð1� e���r2
4Þ�:

ð4Þ
p̂ is the lower bound since (4) does not consider the overlaps

between the circles (the shaded areas in Fig. 5b). It is

assumed that we need four different other nodes that are

closer to the four cell corner grid points, although two or

three nodes may be sufficient if one or more lies in the

intersection of any two circles. The probability that a node is

not active by its four nearest-neighbor grid points but is

active by more distant grid points is rather small and

neglected here. Plugging the coordinate of A, B, C, and D
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Fig. 4. (a) Normalized histogram (pmf) of usage numbers of nodes for 64 phases for � ¼ 4. (b) Normalized histogram (pmf) of Voronoi cells area

(solid curve) and the generalized gamma distribution in (3) (dashed curve).

Fig. 5. In a quasiregular network, node ðX;Y Þ and its four nearest neighbor grid points A, B, C, and D. The distance from node ðX;Y Þ to A, B, C,

and D is r1, r2, r3, r4. The shift interval for the natural choice is � ¼ 1ffiffi
�

p , so the coordinates of A, B, C, and D are ð0; 1ffiffi
�

p Þ, ð 1ffiffi
�

p ; 1ffiffi
�

p Þ, ð 1ffiffi
�

p ; 0Þ, and ð0; 0Þ.

4. Here, the points A, B, C, and D are different from the integer grid
points A, B, C, and D in Fig. 2.



ð0; 1ffiffi
�

p Þ, ð 1ffiffi
�

p ; 1ffiffi
�

p Þ, ð 1ffiffi
�

p ; 0Þ, ð0; 0Þ into (4), and considering the

uniform distribution of X and Y , we obtain

p̂ ¼1� erf2ð ffiffiffi
�

p Þ þ erfð
ffiffiffiffiffiffi

2�
p

2
Þerf

ffiffiffiffiffiffi

2�
p

e�
�
2 þ erf2ð

ffiffiffiffiffiffi

2�
p

2
Þe��

� 1

3
e�

4�
3 ½erfð2

ffiffiffi
�

3

r

Þ þ erfð
ffiffiffi
�

3

r

Þ�2 þ 1

4
e�2�erf2ð ffiffiffi

�
p Þ � 0:2362:

ð5Þ
For � ¼ 4, the fraction of never active nodes is 24.68 percent
(see Fig. 3a), which confirms the above lower bound.

4.3.2 Probability That a Node is Active

The probability that a node is activated by its nearest grid
point is

p ¼ 4�

Z 1

2
ffiffi
�

p

0

Z 1

2
ffiffi
�

p

0

e���ðx2þy2Þdxdy ¼ erf

ffiffiffi
�

p

2

� �2

� 0:624; ð6Þ

which is a lower bound of the probability that a node is
active.

4.3.3 Probability That a Node is Selected Four Times

As shown in Fig. 5b, the area covered by the four circles is
smallest if the random node ðX;Y Þ is in the center of the
square. In this case, the area is 1

� ð2þ �Þ, so the probability
that the area has no other random nodes is

p ¼ e��1
�ð2þ�Þ � 0:58%; ð7Þ

which is an upper bound of the probability that a node is
selected four times.

4.4 Reliability Analysis for Different Phases

In this section, we assume that the network is in monitoring
mode, i.e., that most of the nodes’ energy is consumed to
stay awake for surveillance. So, we define the node lifetime
L as the duration of a node being continuously active
(awake), which is identical for every node. The lifetime of
network type B is defined as the time during which in each
phase at least a threshold ratio � of the selected subset is
alive. So, in the following, we will determine the fraction of
live nodes in each phase. Again, we first consider the
important natural choice with � ¼ 4 for the reliability
analysis. For network type B, we define the subset Si

(i 2 IN), to be the set of selected nodes in the ith phase. We
extend this notation by introducing S0—the set of nodes
that are never used. The subset of nodes that are selected in
different phases are not disjoint, i.e., nodes may be selected
repeatedly. As shown in Fig. 1, some nodes are selected in
several phases, which means they are the nearest neighbor
of several dense grid points (connected to two, three, or four
dense grid points by black lines). It is important to find the
probability that a node belongs to multiple Si, i.e., is
selected in several phases. To this end, we introduce a
probability measure �ð�Þ as follows: �ð�Þ : S ! ½0; 1� is the
probability that a node of the original Poisson point process
belongs to a set S 2 S, where S is the �-algebra of the
Poisson point set5 and, therefore, constitutes a measurable

space with �ðS0 [ S1 [ S2 [ . . .Þ ¼ 1, so �ð�Þ is a probability
measure. With Ui the pmf of the usage number U (the

fraction of nodes that are selected i times), we have
�ðS1 [ S2 [ . . .Þ ¼ 1� U0. Moreover, as shown in Fig. 5b,

the probabilities that a node is selected in phases 1 and/or 2
and/or 3 and/or 4 (nearest neighbor of D and/or C and/or
B and/or A) have the following equalities due to the

homogeneity of the Poisson point process:

�ðS1Þ ¼ �ðS2Þ ¼ �ðS3Þ ¼ �ðS4Þ ¼: �1

�ðS1 \ S2Þ ¼ �ðS2 \ S3Þ ¼ �ðS3 \ S4Þ ¼ �ðS4 \ S1Þ ¼: �2n

�ðS1 \ S3Þ ¼ �ðS2 \ S4Þ ¼: �2d

�ðS1 \ S2 \ S3Þ ¼ �ðS1 \ S2 \ S4Þ ¼ �ðS1 \ S3 \ S4Þ
¼ �ðS2 \ S3 \ S4Þ ¼: �3

�ðS1 \ S2 \ S3 \ S4Þ ¼: �4:

ð8Þ
So, we denote �1 as the probability that a node belongs to Si

with i > 0; �2n as the probability that a node is selected by
two nearest-neighbor dense grid points, e.g., �ðS1 \ S2Þ
(selected by D and C in Fig. 5b); �2d as the probability that a
node is selected by two diagonal dense grid points, e.g.
�ðS2 \ S4Þ (selected by C and A in Fig. 5b); �3 as the
probability that a node belongs to the intersection of three of
these sets, etc. Our simulation considering 109 points (as
shown in Fig. 3a) indicates U0 ¼ 24:6829 percent, U1 ¼
54:1292 percent, U2 ¼ 18:0906 percent, U3 ¼ 2:7125 percent,
U4 ¼ 0:3644 percent, and U5 ¼ 0:0189 percent. U5 > 0 shows
that there is a small fraction of nodes that actually are
selected by two points in the active grid in the same phase.
For higher i, Ui becomes too small to be seen in the figure.
Since the Ui values are very small for i > 4 (and
exponentially decreasing), we can safely ignore them and
assume that only U0 through U4 are nonzero. In terms of
probabilities, this means that we are looking at nodes that
are selected at most four times only. Analogously to �2n and
�2d, there are two different probabilities that a node is
selected by two dense grid points, we denote them as U2n

(nearest neighbor) and U2d (diagonal), so U2 ¼ U2n þ U2d.
From the simulation, we obtain U2n ¼ 16:7661 percent,
U2d ¼ 1:3245 percent. Note that there are five � values and
five U values and there is a one-to-one relationship between
them. For example, the probability that a node is only
selected in phase 1 (but not selected in phases 2, 3, or 4) can
be expressed as:

�
�
S1nðS2 [ S3 [ S4Þ

�
¼ U1=4 ¼ �ðS1Þ � �ðS1 \ S2Þ
� �ðS1 \ S4Þ � �ðS1 \ S3Þ
þ �ðS1 \ S2 \ S3Þ þ �ðS1 \ S2 \ S4Þ
þ �ðS1 \ S3 \ S4Þ
� �ðS1 \ S2 \ S3 \ S4Þ
¼ �1 � 2�2n � �2d þ 3�3 � �4;

ð9Þ
since the intersections of two and more sets have to be

added and subtracted appropriately to yield the measure
for S1nðS2 [ S3 [ S4Þ. Carrying this out for all values of
Ui, the relationship between the pmf of the usage number

and the measures �i can be summarized as follows:
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5. So, in particular, S includes all the possible unions and intersections of
the sets Si.
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:

ð10Þ
Since the matrix T is upper triangular, it is very easily
invertible. The �i values are given by

½�1 �2n �2d �3 �4�t ¼ T�1½U1 U2n U2d U3 U4�t

¼ ½0:2498 0:0591 0:0238 0:0104 0:0036�t:
ð11Þ

For the natural choice, the duration of a phase is assumed

to be equal to the lifetime of the nodes. Because shifting the

grid and activating a different set of nodes causes overhead,

there is no reason to do this before the current set of nodes

expires. In eachphase,1=� ¼ 1=4 ¼ 25percent of all nodesare

selected. Then, after phase 1, 25percent of the nodes are dead.

Since a fraction �ðS1 \ S2Þ of the nodes are in S1 \ S2, in

phase 2 there are only f2 ¼ 1� �ðS1\S2Þ
1=� ¼ 1� 4�2n of thenodes

inS2 alive.Note that thefi denote the fractionofnodesalive in

phase i. Taking into account the fraction of nodes that have

been active already inpreviousphases,weobtain for phases 3

and 4:

f3 ¼ 1� 1

1=�

�
�ðS2 \ S3Þ þ �ðS1 \ S3Þ � �ðS1 \ S2 \ S3Þ

�

¼ 1� 4
�
�2n þ �2d � �3

�

f4 ¼ 1� 4
�
�ðS1 \ S4Þ þ �ðS2 \ S4Þ þ �ðS3 \ S4Þ

� �ðS1 \ S2 \ S4Þ � �ðS1 \ S3 \ S4Þ
� �ðS2 \ S3 \ S4Þ þ �ðS1 \ S2 \ S3 \ S4Þ

�

¼ 1� 4
�
2�2n þ �2d � 3�3 þ �4

�
:

ð12Þ
From above analysis and (11), we have f1 ¼ 1, f2 ¼ 0:7635,
f3 ¼ 0:7099, andf4 ¼ 0:5422. So, by simple inspectionoff1,f2,
f3, and f4, it is straightforward to obtain the first column of
Table 1 (which is the natural choice for � ¼ 4): For the
threshold � ¼ 0:75, only f1 and f2 are greater than �, so there
are two phases that have an alive node percentage greater
than � ¼ 0:75, which results in a lifetime of 2L. We also
consider thenatural cases for� ¼ 9,16, and 25and include the
results in Table 1. For all the natural cases, we can proceed as
in (12) to obtain the fi values. Thedetails are omittedhere. For
� ¼ 4 and 16, we also consider non-natural cases, see Table 1.

For the case � ¼ 4, np ¼ 16, one may also decide to switch
phases after L=4, so that the maximum duration of the entire
network is 4L, as in the natural case � ¼ np ¼ 4. The resulting
lifetime is 2:5L for � ¼ 0:75 and 3:75L for � ¼ 0:5. Although
this is slightly better for � ¼ 0:75 than the natural case, the
energy consumption to switchphasesneeds to be considered,
too, and is likely to offset the benefit of choosing a largernp. In
conclusion, the natural choice best enhances the lifetime of
quasiregular networks. Note that for a regular network with
unity density, the lifetime is L. This analysis confirms that
emulating a regular network from a random one indeed
increases the network lifetime, at the price of more nodes
deployed in the network.As canbe seen from the four natural
cases considered in Table 1, increasing the node density
results in longer lifetime, so there is a tradeoff between
hardware cost and lifetime.

If the node density � is not exactly i2 for some i 2 IN, the
phase number has to be chosen as np ¼ ½roundð

ffiffiffi

�
p

Þ�2 to
ensure that each node is used approximately once, i.e., to
get close to the natural case. If np > �, nodes will be selected
more than once on average, and if np < �, some nodes will
never be used. The above choice of np best balances these
two problems of shortened lifetime and waste of nodes.

5 COMPARISON OF THE ROUTE LIFETIME FOR

DIFFERENT NETWORKS

In this section, we assume the network operates in reporting
mode, i.e., there is a phenomenon of interest detected in the
network, causing heavy traffic along at least one route. In
this case, the lifetime of this route is determined by the
transmit (and possibly receive) energy consumption. We
will focus on the former.

5.1 The Rayleigh Fading Link Model

We assume a narrowband Rayleigh block fading channel. A
transmission from node i to node j is successful if the
signal-to-interference-plus-noise ratio (SINR) �ij is above a
certain threshold � that is determined by the communica-
tion hardware and the modulation and coding scheme [8].
The SINR � is given by � ¼ Q=ðN0 þ IÞ , where Q is the
received power, which is exponentially distributed with
mean �Q. Over a transmission of distance d with an
attenuation factor 	, we have �Q ¼ P0d

�	, where P0 denotes
the transmit power, N0 the noise power, and I is the
interference power affecting the transmission, i.e., the sum
of the received power from all the undesired transmitters.
The analysis is simplified by the following Theorem [9]:

Theorem 2. In a network where all channels are affected by
independent Rayleigh fading and nodes transmit at power level
Pi (i ¼ 0; . . . ; k), the reception probability IP½Q0 
 �ðI þ
N0Þ� of a transmission over a link distance d0 with transmit
power P0 and k other nodes at distance di can be factorized into
the reception probability of a zero-noise network and the
reception probability of a zero-interference network, i.e.,

pr ¼ exp
�

� �N0

P0d
�	
0

�

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

pNr

�
Yk

i¼1

1

1þ� Pi

P0

�
d0
di

�	

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pIr

: ð13Þ

pNr is the probability that the SNR �N :¼ Q0=N0 is above the
threshold �, i.e., the reception probability in a zero-interference
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TABLE 1
Lifetime Comparison of Two Quasiregular Networks of Type B

with Different Phase Number np and Density �

The network lifetime is defined as the time during which in each phase at
least a fraction � of the selected subset is alive. (N denotes the natural
choice.)



network as it depends only on the noise. The second factor pIr is
the reception probability in a zero-noise network.

This allows an independent analysis of noise and
interference issues. From (1), we have

P0 ¼
d	0�N0

� ln pNr
: ð14Þ

If the link reception probability pNr is fixed, we can adapt the
transmit power based on (2). Note we only consider the case
when pNr is fixed since P0 / d	0 gives constant pNr . pr is much
more difficult to keep constant because the interference is
likely to change in every timeslot, in particular if the traffic
is bursty. The link reception probability decreases mono-
tonically with distance if the transmit power is fixed, and in
networks with nondeterministic node placement, the link
energy consumption is proportional to IE½d	0 �.

5.2 Regular and Random Networks

The lifetime of a route is determined by the maximum
energy consumption among the nodes in the route. In
regular networks, we assume the nodes are placed on an
integer square grid over an area ½0;m� � ½0; m�, and the next-
hop receiver of each node is one of the four nearest
neighbors. For random networks, the Poisson point process
has density one, and the nodes are distributed in the same
area. So, random networks have the same size and node
densities as regular networks.

5.2.1 Random Networks

With power control: We adapt the transmit power to d	 to

compensate for the path loss (see (2)) and employ the generic

routing strategy from [4]: Eachnode in the path sends packets

to its nearest neighbor that lies within a sector 
, i.e., within

�
=2 of the source-destination direction. The internode

distance R (node distance between nearest neighbors) along

one route is Rayleigh distributed i.e., fRðxÞ ¼ x
e�x2
=2 [4].

The expected value of d	 is IE½R	� ¼ 2



� �	=2
�ð1þ 	

2
Þ. The

energy consumption is decreasing with increasing 
. The

maximum energy consumption in an h-hop route

IE½R	
maxjh� ¼ IE½maxfR	

1 ; R
	
2 ; . . .R

	
hg�

is given by:

IE½R	
maxjh� ¼

Z 1

0

½1� ðFR	ðyÞÞh�dy;

FR	ðyÞ ¼ IP½R	 	 y� ¼ 1� e�
y2=	


2 ;

ð15Þ

where h is the hop number and FR	ðyÞ is the cumulative
distribution function (cdf) of R	. We use a routing sector

 ¼ �=2 for random networks (with power control) which is
equivalent to nearest-neighbor routing in regular square
grid networks. As was derived in [10], for 	 
 2

IE½maxfR1; R2; . . . ; Rhg	� 
 ðIE½maxfR2
1; R

2
2; . . . ; R

2
hg�Þ

	
2

> IE½R2�ðlnhþ �emÞ	=2;
ð16Þ

where �em � 0:5772 is the Euler-Mascheroni constant. Thus,
for 	 
 2, the maximum energy consumption is at least
logarithmically increasing with the hop number h. For
example, for a 30-hop route, IE½R4

maxj30� is about 28,
indicating that the lifetime of this route is only 1=28 of that
of a regular network, where IE½R	� ¼ 1.

In a square regular network with unit density, the energy
consumption is the same for all nodes in a route, i.e., the
normalized energy consumption is IE½R	� ¼ IE½R	

maxjh� ¼ 1

for any h. In a random network (with 
 ¼ �=2 and 	 ¼ 4),
however, we obtain IE½R	� ¼ 3:6 and IE½R	

maxjh ¼ 10� ¼ 16:4
for a 10-hop route and IE½R	

maxjh ¼ 20� ¼ 23:6 for a 20-hop
route, respectively. So, the lifetime of the routes in random
networks is considerably shorter.

Without power control: Since strategies with equal transmit

power are energy balanced, we also study equal transmit

power schemes. Let the normalized SNR �N :¼ P0=ð�N0Þ,
from (13), resulting in a link reception probability pNr ¼ e

�d	

�N .

Considering the link distance d a randomvariable, thenPD
r ¼

e
�d	

�N is essentially a transformation of the random variable d

and has a cdf as following:

FPD
r
ðyÞ ¼ IP½PD

r 	 y� ¼ IP e
�d	

�N 	 y
h i

¼
Z 1

ð��N ln yÞ1	
x
e�

x2

2 dx

¼ e�
ð��N ln yÞ

2
	


2 :

ð17Þ
Note that for 	 ! 1, FPD

r
ðyÞ ¼ e�1 for 0 	 y < 1; and

FPD
r
ðyÞ ¼ 1 for y 
 1. So, the limiting case is actually a disk

model.
Fig. 6 illustrates the cdf of PD

r for 	 ¼ 2; 3; 4 and �N ¼ 10

in random networks. It is shown that with medium transmit
power, very small link reception probabilities exist with a
certain probability. If �N ¼ 10 and 	 ¼ 4, for example, the
probability that PD

r is below 20 percent is 4.3 percent. Over
an h-hop route, the cdf of the minimum reception prob-
ability is:

IP½minfPD
r1 ; P

D
r2 . . .P

D
rhg 	 y� ¼ 1� ðIP½PD

r > y�Þh

¼ 1� ð1� FPD
r
ðyÞÞh:

ð18Þ
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Fig. 6. Cdf of PD
r for random networks with �N ¼ 10.



For example, for a 30-hop route,with �N ¼ 10, corresponding

to PD
r ¼ 90 percent for d ¼ 1, there is a 14 percent chance that

the minimum pNr is below 1 percent for 	 ¼ 4. This illustrates

that strategies without power control will suffer from either

very low end-to-end throughput or very high energy

consumption (and interference) over short links.

5.3 Quasiregular Networks

By comparing the energy consumption for random and
regular networks, we demonstrated that random distribu-
tions incur substantially higher energy expenditures. The
large variance in the link distances necessitates power
control with a large dynamic range, which, in turn, entails a
proportional variance in the nodes’ lifetime. The only way
to avoid these fundamental problems is to abandon the
principle of nearest-neighbor routing and only use nodes as
relays that are approximately evenly spaced.

Theorem 3. In quasiregular networks (of type A or B), the node

distance between nearest neighbors (internode distance)

follows a Ricean distribution.

Proof. The distances in the x and y-axes of a node to the

ideal grid point are Gaussian random variables. As

shown in Fig. 7, we assume the ideal grid points are ð0; 0Þ
and ð0; 1Þ, the real location of the two nodes is ðX1; Y1Þ
and ðX2; Y2Þ. Thus, X1 � Nð0; �2Þ, X2 � Nð1; �2Þ, and

Y1 � Nð0; �2Þ, Y2 � Nð0; �2Þ. We have

�X ¼ X2 �X1 � Nð1; 2�2Þ;
�Y ¼ Y2 � Y1 � Nð0; 2�2Þ:

ð19Þ

The internode distance R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�X2 þ�Y 2
p

is Ricean

distributed with pdf

pRðrÞ ¼
r

2�2
exp � 1þ r2

4�2

� �

I0
r

2�2

� �

; r 
 0; ð20Þ

where I0ð�Þ is the zero-order modified Bessel function of
the first kind [11]. tu
Therefore, quasiregular networks turn the Rayleigh

internode distance distribution of Poisson random net-
works into Ricean distribution. This is analogical to turning
the Rayleigh fading channel into a Ricean channel by
adding a strong line of sight (LOS) component.

Now, we study the differential entropy and variance of
the internode distance R to see if they meet the requirement
of the two definitions of quasiregular networks. Because the
variance of R comes from the variances of �X and �Y ,
under the condition that 2��2 < 1 (see Theorem 1), it is
reasonable to assume that the variance is dominated by the
distance along the axis that has Nð1; 2�2Þ distribution. So,
the variance of R can be approximated by the variance of
�X, namely, 2�2. Consider the 4-phase natural choice,
where � ¼ 4 and � � 0:1995 (see Theorem 1), the variance of
R is 2�2 ¼ 1=ð4�Þ, which is less than the upper bound 4=��
1 given by definition (2) of quasiregular networks. With 2�2

as the variance of the approximated Gaussian internode
distance, we have hðRÞ ¼ 1=2 � logð2�e2�2Þ [3]. So, in the
case � ¼ 4, we obtain hðRÞ ¼ 1=2 � logð2e=4Þ � 0:15, which is
less than the 0:72 upper bound given by definition ð1Þ of
quasiregular network.

Next, we will determine the lifetime benefit that results
from Ricean distances rather than Rayleigh distances. The
simulation results of average maximum R	 for an h-hop
route IE½R	

maxjh� is plotted in Fig. 8 for 	 ¼ 2, 3, 4 by solid
lines. The dashed line is IE½R	

maxjh� for random network for
	 ¼ 4. Obviously, the maximum energy consumption in a
route for quasiregular networks is much smaller than that
of random networks.

6 MODIFIED ALGORITHMS FOR EXTENDED LIFETIME

In the basic topology control algorithm introduced in
Section 3, there is a fraction of nodes that is never used,
and there are more and more nodes missing in the
quasiregular topology with increasing phase numbers. To
alleviate this problem, we suggest three improvements over
the basic algorithm which make better use of the nodes. The
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Fig. 7. Internode distance in a quasiregular network.

Fig. 8. IE½R	
maxjh� versus h for (a) � ¼ 4 and (b) � ¼ 16. The solid lines are for quasiregular networks for various 	. The dashed line is for random

networks for 	 ¼ 4. The dash-dotted line is for a square regular network with unit density, where IE½R	� ¼ IE½R	
maxjh� ¼ 1. (a) � ¼ 4. (b) � ¼ 16.



numerical results presented in this section are obtained
from simulations with area 100� 100.

6.1 Modification I

From the previous analysis, we know that for the natural
choice, approximately 25 percent (Fig. 3a and Fig. 3c) of the
nodes are never activated. However, they can be turned on
in an additional phase at the end. By doing so, the modified
algorithm I extends the network lifetime by one more phase
duration L. So, the network has original phases (the ones
already present in the basic algorithm) and an additional
phase. The distribution of the distance between a grid point
and its nearest node in this additional phase may be
approximated by the distribution of the distance between
nearest neighbors in a Poisson point process with density
�=4, which is simply Rayleigh with mean 1=

ffiffiffi

�
p

[4]. The
difference stems from the fact that the selected nodes in
previous phases are not chosen independently. Fig. 9a
displays the comparison of such two distance distributions
in the additional phase for � ¼ 4. Note that in previous
phases, the distance between a grid point and its nearest
node has Rayleigh distribution with mean 1=ð2

ffiffiffi

�
p

Þ. The
disadvantage is that certain nodes are still selected in
multiple phases.

6.2 Modification II

To avoid the problem that nodes are selected in multiple
phases, Modification II lets each node be picked only once,
which means once a node has been selected by one grid
point, it can not be selected again even it is also the nearest
node of other grid points. The advantage of Modification II
is that every node is selected exactly once, which increases
the lifetime in the original phases in monitoring mode
compared to Modification I. The disadvantage is that the
distances between the grid points and their nearest nodes
grow larger at later phases (as shown in Figs. 9b and 9c).
The analysis in Section 5.3 shows that larger distances from
the grid points imply a higher variance in the internode
distance, which results in higher energy consumption for a
route in a reporting mode.

6.3 Modification III

The problem of smaller reliability in later phases and very

large distance in the final phase can be solved by the third

proposed modification, which is a trade-off between

Modifications I and II. In each phase, pick the closest node

to the active grid point from the nodes that are alive. The

simulation result (� ¼ 4) shows that the fraction of live

nodes in Modification III for phases 2, 3, and 4 are 0:9879,

0:9195, and 0:7059, which are better than 0:7635, 0:7099, and

0:5422 of Modification I, but there are still 10:1 percent of

the total number of nodes never activated. The normalized

distance histograms of four phases (Fig. 10a) can be

approximated by the Rayleigh distributions (Fig. 10b) with

mean 1=
�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� fÞ
p �

, where f is the fraction of nodes that

has been selected in the previous phase(s). Note that in

contrast to Modification II, the same node in Modification

III may be picked by two active grid points. The advantage

of Modification III is that it decreases the fraction of nodes

that are selected multiple times, which increases the lifetime

in the original phases in monitoring mode compared to

Modification I, and it has smaller distances in higher phases

than Modification II (by comparing Fig. 9c and Fig. 10a).

7 CONCLUSIONS

We proposed and analyzed topology control algorithms for
improved energy efficiency. The basic algorithm turns a
random network into a quasiregular network of type B,
which is equivalent to the Gaussian quasiregular network of
type A. It abandons the principle of nearest-neighbor
routing and has every node transmit over a similar distance.
This way, the nodes chosen as sentries and relays
approximately form a regular subnetwork, emulating a
regular topology. We suggest differential entropy and variance
of the nearest-neighbor distance as measures for regularity.
If the variance of the nearest-neighbor distances goes to
zero, the network is completely regular. Similarly, since
differential entropy is a measure for the uncertainty of a
random variable, the higher it is for the nearest-neighbor
distances, the “more random” the network topology is. The
two measures are not independent. They both capture the
(ir)regularity of a node distribution.

We have analyzed the network lifetime of regular,
random, and quasiregular networks in two operating
modes, a monitoring mode and a reporting mode. In both
cases, quasiregular networks have substantial advantages
over purely random ones.
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Fig. 9. For � ¼ 4, for Modification I, (a) comparison of the distribution of distance in the additional phase with the Rayleigh distribution with mean
1=

ffiffiffi

�
p

¼ 1=2. For Modification II, (b) normalized distance histograms of phases 1, 2, and 3, and (c) of phase 4. Note that a logarithmic scale is used
for (c) to better visualize the small but nonzero probabilities of large distances.



Monitoring mode: Compared with regular networks (that
have � times less nodes), the lifetime of quasiregular
networks of type B is extended, i.e., the quasiregular
network can to some extent exploit the higher number of
nodes. For the natural choice in quasiregular networks of
type B, where the number of nodes corresponds to the total
number of dense grid points, approximately 25 percent of
the nodes are never activated. An improved algorithm
(Modification I) extends the network lifetime by activating
all the unused nodes in an additional phase (but does not
solve the problem that nodes may be selected repeatedly in
previous phases). Modification II lets each node be selected
exactly once, with the disadvantage that the distances
between a grid point and its nearest live node grow large
for the later phases. Modification III presents a trade-off
between I and II, selecting the closest node to the active grid
point from nodes that are still alive. However, there are still
some nodes never activated.

Reporting mode: The comparison of the maximum node

energy consumption (that determines the lifetime of the

route) of a single route in networks with regular and random

topology shows that regular networksdrastically outperform

random ones: for a path loss exponent of 4 and a route of 10-

20 hops, the lifetime of a route in a random network is about

20� smaller. This analysis assumes that nodes adapt their

transmit power according to the hop distance to keep the link

reception probability pNr constant. Equal power strategies

would better balance the energy consumption among the

nodes but the routes would suffer from very low reception

probabilities. Clearly, the cause of these problems is the

variance in the transmission distances. It is shown that

quasiregular networks of type B provide a solution to the

energy consumption problem in random networks. Based on

the premise that route longevity implies network longevity,

quasiregular networks of type B outlive random networks

although the number of nodes is the same.
The proposed “distance equalization” scheme also solves

the problem of power amplifier inefficiencies addressed in
[12], since it avoids power control over a large dynamic
range and, in turn, permits the amplifiers to use operating
points with high efficiency. In terms of deployment, these
results suggest that one should aim at a regular node
spacing whenever possible. For sensor networks, more

regular topologies also have an obvious advantage in terms
of coverage [1]. By turning random into quasiregular
networks by means of the proposed algorithm, we expect
little or no loss in coverage, since isolated nodes will still be
active. Clearly, by thinning, it is not possible to improve the
coverage, but if it is done in a clever way as suggested, there
is no significant loss in coverage.

APPENDIX

THE PROBABILITY THAT A NODE IS NOT ACTIVE FOR

THE NATURAL CHOICE

A node is not activated means it is not closest to any dense
grid points. Denote p as the probability that node ðX;Y Þ is
not the nearest neighbor of dense grid point A, B, C, and D
(shown in Fig. 5). We have

p ¼ 1� p1 þ p2 � p3 þ p4; ð21Þ
where p1 ¼ 4�1 is the probability that node ðX;Y Þ is closest
to any one grid point of A, B, C, and D; p2 ¼ 4�2n þ 2�2d is
the probability that node ðX;Y Þ is closest to any two grid
points; p3 ¼ 4�3 is the probability that node ðX;Y Þ is closest
to any three grid points; and p4 ¼ �4 is the probability that
node ðX;Y Þ is closest to the four grid points. We denote the
area of circle centered at A as MA, the area covered by the
overlap between circles centered at A, B as MA\B, the area
covered by circles centered at A, B is MA[B, and so on. So,

p1 ¼ IE½e��MA þ e���MB þ e��MC þ e���MD �
¼ IE½e���r2

1 þ e���r2
2 þ e���r2

3 þ e���r2
4 �;

p2 ¼ IE½e��MA[B þ e��MB[C þ e��MC[D þ e��MD[A þ e��MA[C

þ e��MB[D �;
p3 ¼ IE½e��MA[B[C þ e��MB[C[D þ e��MC[D[A þ e��MD[A[B �;
p4 ¼ IE½e��MA[B[C[D �:

ð22Þ
When we calculate p3, we neglect the area where three

circles overlaps, shown by the area filled by dense square

grids in Fig. 5b, since for some node locations, this area

should be added, whereas in others, it should be deducted.

We obtain
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Fig. 10. For � ¼ 4, for Modification III, (a) normalized distance histograms of different phases and (b) Rayleigh distributions with mean 0:2500, 0:2886,

0:3523, 0:4780.



MA[B[C[D ¼ �r21 þ �r22 þ �r23 þ �r24 �MA\B �MB\C
�MC\D �MD\A þMB\D þMA\C ;

MA[B[C ¼ �r21 þ �r22 þ �r23 �MA\B �MB\C�

sign X þ Y � 1
ffiffiffi

�
p

� �

MA\C ;

MA[B ¼ �r21 þ �r22 �MA\B:

ð23Þ

The area covered by circles centered at A, B, and C is

the sum of the area of circles centered at A, B, and C

minus the overlap area of MA\B þMB\C and minus

sign ðX þ Y � 1ffiffi
�

p ÞMA\C . The terms of sign ðX þ Y � 1ffiffi
�

p Þ
comes from the fact that if the node is in the left-lower

triangle, the area of MA\C should be added, if the node is

in the right-upper triangle, the area of MA\C should be

subtracted.

MA\B ¼ r21 arcsin
1=

ffiffiffi

�
p

� Y

r1
þ r22 arcsin

1=
ffiffiffi

�
p

� Y

r2

� 1
ffiffiffi

�
p � Y

� �
1
ffiffiffi

�
p ;

MA\C ¼ r21 arcsin
Y 0

r1
þ r23 arcsin

Y 0

r3
� Y 0

ffiffiffi
2

p
ffiffiffi

�
p ;

Y 0 ¼ r1











sin

�

4
� arctan

X
1ffiffi
�

p � Y

 !









;

MB\D ¼ r22 arcsin
Y 00

r2
þ r24 arcsin

Y 00

r4
� Y 00

ffiffiffi

2
p
ffiffiffi

�
p ;

Y 00 ¼ r4











sin arctan

Y

X
� �

4

� �








:

ð24Þ

Note although MA\C is different from MB\D for a specific

point, their average values after integration are the same.

Using MATLAB’s dblquad function, p is 0:2479 which

does not depend on �. The simulation shows that the

probability that a node is not active is 0:2468 (Fig. 3a).
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