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Toward Real-World Super-Resolution
via Adaptive Downsampling Models
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Abstract—Most image super-resolution (SR) methods are developed on synthetic low-resolution (LR) and high-resolution (HR) image
pairs that are constructed by a predetermined operation, e.g., bicubic downsampling. As existing methods typically learn an inverse
mapping of the specific function, they produce blurry results when applied to real-world images whose exact formulation is different and
unknown. Therefore, several methods attempt to synthesize much more diverse LR samples or learn a realistic downsampling model.
However, due to restrictive assumptions on the downsampling process, they are still biased and less generalizable. This study
proposes a novel method to simulate an unknown downsampling process without imposing restrictive prior knowledge. We propose a
generalizable low-frequency loss (LFL) in the adversarial training framework to imitate the distribution of target LR images without using
any paired examples. Furthermore, we design an adaptive data loss (ADL) for the downsampler, which can be adaptively learned and
updated from the data during the training loops. Extensive experiments validate that our downsampling model can facilitate existing SR
methods to perform more accurate reconstructions on various synthetic and real-world examples than the conventional approaches.

Index Terms—Image super-resolution, image downsampling, unsupervised learning
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1 INTRODUCTION

IMAGE super-resolution (SR), which aims to reconstruct a
high-resolution (HR) image from a low-resolution (LR)

input, plays an essential role in computer vision and digital
photography. There exist numerous applications, including
enhancing the details and photorealism of an image [1],
high-quality editing [2], and breaking the sensor limitation
of mobile cameras [3]. Recently, a plethora of SR methods
have been developed on the basis of deep CNNs [1], [4],
[5], [6] and large-scale datasets [6], [7]. However, state-of-
the-art methods [8], [9], [10], [11] do not generalize well
to the real-world inputs even they perform relatively well
on synthesized, e.g., bicubic-downsampled, LR images. In
overcoming this issue, few recent approaches [12], [13], [14],
[15] have collected high-quality pairs of real-world LR and
HR examples to learn their SR models. Nevertheless, such
an acquisition process remains to be challenging due to
outdoor scene dynamics and spatial misalignments [12].

Conventional SR methods synthesize various LR sam-
ples ILR from ground-truth HR images IHR by the following:

ILR = (IHR ∗ k)↓s + n, (1)

where k ∈ R2 is a 2D degradation kernel, ∗ is a spatial
convolution, ↓s is a decimation with a stride s, and n is a
noise term. The decimation operator corresponds to direct
downsampling mentioned in the super-resolution litera-
ture [16]. With a specific assumption of blur kernels, e.g.,
variants of Gaussian [16], [17], [18], LR and HR pairs can
be synthesized to train the following SR models. However,
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(a) Bicubic (b) [8] (c) [19] + [20] (d) Ours (e) GT

Fig. 1. ×4 SR results on a real-world LR image. (a) LR image
magnified with bicubic interpolation. (b) Result of RRDB [8]. (c) Result
of KernelGAN [19] + ZSSR [20]. (d) Our unsupervised approach (ADL
+ RRDB) reconstructs a sharp and visually pleasing output without arti-
facts and aliasing compared with the existing methods. (e) Ground-truth
patch from RealSR-V3 [14]. Images are cropped from ‘Canon/045.png.’

such prior typically limit the kernel space, and the synthe-
sized LR images may not reflect the distribution of real-
world inputs [13]. Therefore, the learned SR models become
less generalizable toward arbitrary real-world input images.

On the other hand, recent unsupervised methods simu-
late real-world LR samples that contain unknown noise [21],
[22] and artifacts [23], [24]. Without using a paired dataset,
they first learn a downsampling model under adversar-
ial training frameworks [25] to imitate the distribution of
real-world images. The following SR models can then be
trained in a supervised manner on the simulated dataset
to deliver accurate reconstruction results on the real-world
inputs. One of the challenges in such methods arises from
preserving image content across different scales, i.e., HR
and LR, while learning the downsampling model. Existing
approaches deal with this problem using a predetermined
downsampling operator, e.g., bicubic downsampling, in
their objective functions and constrain the simulated LR
images not to deviate much from the known formulations.
However, the manual selection of the operator can introduce
a bias in the unsupervised learning framework, which can
also act as a restrictive prior if the ground-truth downsam-
pling model is much different from the used one. While
KernelGAN [19] alleviates the issue by estimating a low-
dimensional downsampling kernel k in (1) from an LR
image ILR, various regularization terms need to be applied
to restrict the diversity of the possible kernel space.
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Therefore, we propose an effective way of imitating
the real-world LR samples of an unknown distribution to
address the aforementioned issues. Similar to the previous
unsupervised methods [19], [23], we also train a down-
sampling CNN to simulate the LR images in our target
distribution. However, rather than formulating the objective
function with a handcrafted downsampling operator, we
propose a novel and generalizable low-frequency loss (LFL)
that does not pose substantial bias. Our LFL facilitates
the downsampling model to learn much more diverse and
precise functions without being constrained to a specific
prior assumption. Furthermore, we develop an adaptive
data loss (ADL) that iteratively adjusts the training objective
for the given dataset and stabilizes the learning process.
As shown in Fig. 1, our unsupervised learning framework
is straightforward, effective, and generalizable to arbitrary
downsampling models. Extensive experiments validate that
the SR models learned on our downsampled images per-
form favorably on synthetic and real-world LR images. The
contributions of this study can be organized threefold:
• We present a novel unsupervised learning framework to

learn an unknown downsampling process without using
any HR and LR image pairs.
• We propose LFL and ADL to simulate accurate and real-

istic LR samples from HR images without relying on any
predetermined downsampling operators.
• We demonstrate that the proposed method can be eas-

ily integrated with existing SR frameworks and achieve
much better results on synthetic and real-world images.

2 RELATED WORK

2.1 SR on bicubic downsampled images

With the success of SRCNN [4], several CNN-based meth-
ods have been developed for image SR. As one of the most
influential studies, VDSR [26] has proposed a novel residual
learning strategy to train a deep network and inspired lots of
following methods [1], [6], [27], [28]. Earlier works primarily
focus on improving the network designs, such as pixel
shuffling [29], progressive upsampling [5], [30], [31], dense
connections [11], [32], [33], recursive structures [34], [35],
[36], and back-projection [10]. Recent approaches utilize the
attention [9], [37], [38], while designing architectures for
efficient inference [39], [40], [41] is considered essential as
well. From the perspective of image realism, several meth-
ods introduce perceptual loss [42], [43], [44], [45] to synthe-
size photorealistic textures [1], [8], [46], [47]. However, the
existing methods are typically trained on synthesized image
pairs in which LR inputs are generated using conventional
bicubic interpolation from HR targets. While state-of-the-
art algorithms perform impressively well when training
and test distributions are matched, i.e., test inputs are also
downsampled with the same operator, they cannot be fully
generalized to arbitrary in-the-wild LR images [20], [48].

2.2 Synthesizing diverse LR images for SR

For practical SR application, it is essential to determine how
to generate LR images [49] so that a supervised SR model
can be trained without real-world LR and HR image pairs.
Several approaches have synthesized diverse LR images

with multiple degradations to train their SR algorithms,
assuming that the generalization on such examples can
improve SR performance on arbitrary inputs. SRMD [16]
considers the formation of LR images under various down-
sampling kernels k in (1). It can reconstruct HR images from
diverse types of LR inputs, using off-the-shelf methods [19],
[50], [51] to predict a candidate kernel k from a given LR
input. USRNet [52] further allows diversity to the down-
sampling kernel k and can deliver clean SR results even
when LR inputs are corrupted with motion blur and noise.

Furthermore, recent methods [17], [18], [53] present
unified frameworks to jointly estimate the kernel k and
reconstruct visually pleasing results from an arbitrary LR
image. However, since considering all possible forms of
downsampling operation is not practical, the candidate
kernels in such methods are often simplified to variants of
2D Gaussian. Recent studies have demonstrated that such
approximations may not hold for actual LR images [13], [54]
in the wild, thus making the abovementioned SR algorithms
less generalizable. In this study, we demonstrate that exist-
ing approaches [17], [18] do not perform well on inputs from
unknown downsampling kernels or real-world images, and
our method provides better generalization.

2.3 Learning to simulate real-world LR images
Instead of synthesizing LR images from some handcrafted
formulations, numerous approaches [21], [22], [23], [24]
have adopted adversarial training [25] to simulate the un-
known distributions of real-world LR images using down-
sampler CNNs. These methods have shown impressive
performance when dealing with unknown noise [21], [22]
and artifacts [23], [24] in real-world LR images. Consid-
ering the definition of downsampling, one of the required
characteristics of such methods is to preserve the contents
of HR input and generate a feasible LR image. Therefore,
predetermined downsampling operators [22], [23], [24] and
cyclic architecture [55] are used to guide the generated
LR images not deviating much from the desired outputs.
However, a significant limitation of this formulation is
that the necessity of estimating an accurate downsampling
process is often considered less important. In particular,
the handcrafted operators may significantly differ from the
unknown downsampling function and bias the following
downsampler, making the model less effective in estimating
the actual operators rather than noise and artifacts.

On the other hand, KernelGAN [19] is designed to di-
rectly predict the degradation kernel k, which is used to
generate the given LR image ILR. The estimated kernel is
then used to synthesize LR and HR pairs for the follow-
ing SR model [20]. In addressing the ill-posed problem of
finding the kernel k in (1), several optimization constraints
are assumed, such as patch recurrences [50] in a single
image, deep linear generator, and various prior knowledge
on physically meaningful kernels. However, this approach
may not handle practical cases in which such strong as-
sumptions do not hold. While Ji et al. [56] have extended
the approach to a set of LR images, several prior terms for
the appropriate degradation kernel still act as a bottleneck
for generalization. On the contrary, our LFL and ADL are
designed to reduce inherent bias from adopting a specific
downsampling operator or strong kernel priors.
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2.4 Paired datasets for real-world SR
Limitations of existing SR methods arise from difficulties in
constructing the real-world dataset. Few approaches capture
the paired dataset [13], [14], [15] by precisely manipulating
camera parameters in which images captured from long
and short focal lengths are labeled as HR and LR samples,
respectively. Zhang et al. [12] introduces SR-RAW based on
raw images and contextual bilateral loss to handle misalign-
ments in the real-world pairs. Xu et al. [57] utilizes raw and
color images jointly in their model for effective real-world
SR. Those image pairs can be used to learn the real-world SR
models to some extent. Nevertheless, they still suffer from
a lack of scene diversity, misalignments, dynamic motions,
and scalability issues. To overcome the several challenges in
acquiring realistic SR datasets, we synthesize accurate HR
and LR pairs from unpaired examples. While we assume
that a set of LR images undergo the same or similar forma-
tion process, the data collection is much easier since careful
alignment and delicate post-processing are not required.

3 LEARNING TO DOWNSAMPLE

In conventional frameworks, mismatches between the
handcrafted kernel space and real-world downsampling
model [13], [54] makes the following SR networks less
generalizable. Thus, we develop an unsupervised learning
framework to accurately simulate the LR samples ILR ∈ ILR
from the unpaired HR images IHR ∈ IHR. The following SR
model can then be trained to reconstruct the HR results from
the given LR dataset ILR. For simplicity, we assume that the
LR and HR images have spatial resolutions of H ×W and
sH × sW , respectively, for a downsampling factor s.

3.1 Learning an unknown downsampling process
We synthesize LR images under the generalized formulation
as ILR = D∗ (I∗HR), where I∗HR ∈ I∗HR is the latent HR samples
from the distribution I∗HR and D∗ is an unknown downsam-
pling operator. The goal is to learn an SR model S , which
can reconstruct a high-quality HR image from the given
LR image ILR ∈ ILR. However, it is not straightforward to
learn the upsampling function directly as the corresponding
ground-truth HR images I∗HR are unavailable. Thus, we
first learn a downsampling model D in an unsupervised
manner, so that the distribution of the synthesized images
IDown = D (IHR) is close to the distribution of the target LR
samples ILR. By using the generated pairs of (IDown, IHR),
our SR model can be trained to reconstruct HR images from
the given LR distribution ILR in a fully supervised manner.

To learn the downsampling function D, we adopt ad-
versarial training framework [25] to jointly optimize the
downsampler CNN D (·; θD) and the discriminator CNN
F (·; θF ). Then, we formulate the downsampling and dis-
criminator objectives, LD and LF , as follows:

LD = αLdata + Ladv = αLdata − E [logF (IDown)] ,

LF = −E [logF (ILR)] + E [log (1−F (IDown))] ,
(2)

where Ldata is the data loss, Ladv is the adversarial loss [25],
and α is a hyperparameter. If the learned downsampling
model can accurately synthesize LR images from IHR, i.e.,
the distribution of IDown and ILR are approximately the

≈Training

(a) Downsampling

Training

Inference

(b) Super-resolution

Fig. 2. Our two-stage approach for unpaired SR. (a) We first optimize
a downsampling model D to synthesize ILR from IHR. The primary
goal is to learn the distribution of downsampled images rather than a
proper downsampling function. (b) Using generated pairs, we train the
SR model S, which can also be generalized to the target LR images
ILR. Dotted lines represent latent components that are not available in
the entire learning process. Blue items show learned elements in each
stage, and red elements denote the actual goal we want to achieve.

same, the following SR model can be generalized on ILR
by learning from a set of training pairs (IDown, IHR). Fig. 2
shows the overall pipeline of our method, which learns the
downsampling and super-resolution models consecutively.

For simplicity, we assume that the target LR images
ILR are not corrupted with noise, where the term n in (1)
is ignored. The primary reason is that the noise can be a
discriminative feature between the real LR and downsam-
pled images in adversarial training. Since we do not include
randomness in our downsampler architecture, such behav-
ior also prevents the proposed method from learning an
accurate downsampling function. In Section 4.7, we discuss
the effect of real-world noise in the proposed framework.

3.2 Data constraint in the downsampling model

In practice, the actual formulation of the given LR images,
i.e., the ground-truth downsampling model, is unknown.
Thus, we introduce the adversarial loss Ladv to enforce
the downsampled images IDown to follow a target distribu-
tion ILR without using ground-truth LR images. However,
unlike the other image generation tasks [58], appropriate
constraints are also required to generate faithful LR samples
to the given HR counterparts and preserve input contents. In
particular, low-level information of a given image, e.g., pixel
colors and edge structures, should not be changed during
the downsampling, as shown in Fig. 3(a) and (b). Thus,
the appropriate formulation of the data term Ldata in (2)
plays a critical role in preserving the image content across
different scales. A widely-used approach is to define the
data loss Ldata with a known operator RHR, such as bicubic
downsampling or s× s average pooling [24], as follows:

Ldata = ‖RHR (IHR)−D (IHR)‖1 ,
= ‖RHR (IHR)− IDown‖1 .

(3)

That is, a reference example RHR (IHR) constrains the gen-
erated LR sample D (IHR) to be a feasible downsampled
image. A recent method from Maeda [22] has also combined
the bicubic downsampling operator B and image-to-image
translation CNN G in their downsampling model so that
D = G ◦ B. Under the such configuration, the translator
network G is trained to maintain the consistency between
its input and output which corresponds to RHR = B in (3).

In (3), the data term Ldata enforces the downsampled
images IDown to be close to references RHR (IHR). Such a
formulation contributes to preserve the image content and
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(a) IHR (b) ILR (c) B (IHR) (d) Ours

(e) α = 0 (f) α = 1 (g) α = 10 (h) α = 100

Fig. 3. Differences between the ground-truth and learned LR im-
ages under various configurations. (a) A reference HR. (b) A ground-
truth LR patch ILR = (IHR ∗ k)↓2 we want to synthesize, where the
kernel k is unknown. (c) The corresponding bicubic-downsampled LR
which is different from ILR. (d) The absolute difference between ILR and
generated LR from our downsampling model is visualized with color-
coding, where red pixels indicate large differences. (e)-(h) Difference be-
tween ILR and outputs from the learned downsampler under (2), where
the bicubic downsampling operator is used for Ldata. Difference maps
are normalized for better visualization. See more details in Section 4.2.

facilitate the training process for generating LR images.
Nevertheless, optimizing the data term Ldata in (2) may bias
the learned model toward the used operator RHR. The bias
may conflict with the adversarial training objective Ladv
if the distribution of the downsampled images RHR (IHR)
deviate significantly from the target distribution ILR.

Fig. 3 illustrates an example to demonstrate the negative
effect of using a predetermined downsampling operator,
e.g., bicubic kernel B, in the data term Ldata. The target
LR images ILR are generated using a different kernel k,
where B (IHR) 6= (IHR ∗ k)↓s for an arbitrary HR image IHR
shown in Fig. 3(a)–(c). Then, we jointly minimize the data
and adversarial loss terms in (2) under different α values
so that the downsampling model can be close to the target
distribution ILR. Fig. 3(e)–(h) illustrate differences between
the actual LR and downsampled image |ILR − IDown| with a
varying α. If the data term Ldata is not used, i.e., α = 0, the
adversarial loss Ladv is solely optimized in the training so
that D (IHR) ∈ ILR. As shown in Fig. 3(e), the downsampled
image does not preserve the original colors and becomes
inconsistent with the input IHR in such case.

On the other hand, if we increase weight α to retain
the input content, the resulting downsampled images will
more likely resemble B (IHR) rather than the desired output
(IHR ∗ k)↓2, as shown around edge and corner regions of
Fig. 3(f)–(h). The tradeoff between preserving image con-
tents and synthesizing an accurate distribution of the LR
images occurs due to the inherent conflict between the
predetermined downsampling operator RHR and the ad-
versarial loss Ladv. While the data term Ldata is necessary
to learn an appropriate downsampling function, it also
operates as a restrictive prior and prevents an accurate
simulation of the target LR images. Therefore, an SR method
developed with the biased downsampler may not perform
well on the target distribution ILR, as conventional bicubic
SR algorithms cannot be generalized on real-world images.

3.3 Data loss over low-frequency components

We propose an effective and generalizable formulation of
the data term Ldata to address the limitations of the existing

approaches. Similar to the previous methods, our down-
sampler also takes an input HR image IHR and generates
a downsampled image IDown. However, to preserve image
contents and low-level structures in the downsampling
process, we first define the operator LPFm : RH×W →
RH/m×W/m as a combination of low-pass filtering and sub-
sampling by m, which reduces the resolution of a given
image by a factor of m > 1. Then, we rewrite the data loss in
(2) with a low-frequency loss (LFL) Ldata = LLFL as follows:

LLFL = ‖LPFms (IHR)− LPFm (IDown)‖1 , (4)

where s is a scaling factor. Since the HR image IHR is
s times larger than the downsampled one IDown, sizes of
LPFms (IHR) and LPFm (IDown) are the same. We adopt two
different low-pass filters: the box and Gaussian, to formulate
the loss term. As the HR and downsampled images have
different resolutions, we adjust the filter weights propor-
tionally so that the same context can be covered from the
images with different scales. By default, we use 32 × 32
and 16 × 16 box filters for LPFms and LPFm, respectively,
with the scaling factor s = 2. We provide more details and
ablations regarding the low-pass filters in Appendix A.

Fig. 4 illustrates the differences between the existing for-
mulation and the proposed loss term. As shown in Fig. 4(a),
the handcrafted operator constrains each pixel of the down-
sampled image IDown to be a predetermined function of the
input HR image IHR. The primary limitation of such an ap-
proach is that the HR image IHR and operator RHR are both
kept unchanged throughout the entire learning process.
Therefore, the reference image RHR (IHR) is also fixed for
each HR image, which can bias the learning process. Thus,
even with the adversarial training objective, the learned
downsampler D can be biased toward the predetermined
operatorRHR rather than the desired downsampling model,
especially when the weight α in (2) is large.

Our motivation is that we only need to preserve the low-
frequency components of the image contents and structures.
Fig. 4(b) demonstrate that the downsampled image IDown is
no longer constrained to be a specific function of its HR
counterpart with our LFL. Instead, we adopt a relaxed ob-
jective designed to match low-frequency structures between
input and output of the downsampler. By doing so, the
adversarial loss can play a significant role in rendering the
unknown types of LR images. Our LFL is not a restrictive
constraint for a general downsampling model and can be
generalized well on various synthetic and real-world im-
ages. In other words, we can minimize the new data term
LLFL without causing notable conflict with the adversarial
loss for LR images ILR from an arbitrary downsampling
model. More details are described in Section 4.5.

Scale transfer learning. The proposed LFL does not include
any scale-specific formulation and can be generalized to
larger scales, e.g., ×4. However, directly optimizing a high-
scale downsampler may cause less stable behaviors due
to the significant differences in the HR and downsampled
images. To ensure stability, we learn a ×2 model D×2 on the
desired distribution ILR and repeat it n > 1 times [19] to
obtain the ×2n downsampling models D×2n by following:

D×2
n

= D×2
n−1

◦ D×2 (n > 1) . (5)
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Predetermined

Kernel

Pixel

(a) Data loss from a predetermined ker-
nel

(b) LFL (Proposed)

Pixel

Adaptive

Kernel

(c) ADL (Proposed)

Fig. 4. Different formulation for the data term. We visualize how pixels in IDown is constrained to IHR depending on the data term Ldata. (a) Data
loss from a predetermined kernel. (b) In the proposed LFL, we apply low-pass filters to HR and downsampled images so that image contents can be
preserved across different scales regardless of the downsampling model. (c) In our adaptive data term, the orange kernel is learned from training
samples and iteratively adjusted inside the training loops rather than handcrafted.

3.4 Adaptive data loss

Our LFL is designed to reduce the bias from selecting a
predetermined downsampling operator for the data loss
Ldata. While this formulation enables LFL to be general-
ized well across various unknown degradations, several
limitations exist. For example, an inherent ambiguity in
LFL makes it challenging to solve the optimization problem
because the LR images from the different downsampling
processes may share similar low-frequency components, i.e.,
LPFm (Ia) = LPFm (Ib) for Ia 6= Ib. Considering that our
goal is to simulate the unknown downsampling model D∗
with a CNN-based downsamplerD, the ideal data loss Ldata
should be zero only if the condition D (IHR) ≡ D∗ (IHR)
satisfies. The primary limitation of LFL is that it is designed
to maintain consistency between HR and LR images, not to
simulate structures of LR images in the target distribution.
Since LFL only considers low-frequency components in the
image, optimizing the term is an ill-posed problem where
numerous possible D exist. In particular, minimizing LFL
allows the downsampler to generate valid LR images, while
it is not guaranteed that the learned downsampler achieves
our desired behavior. Therefore, the definition of LFL is
generalizable but cannot be an optimal one for any arbitrary
downsampling model due to the ambiguity.

Moreover, LFL can be problematic when the downsam-
pled image IDown is corrupted with high-frequency noise,
which is suppresssed after low-pass filtering. Since the pro-
posed LFL cannot reject noisy estimations, it is challenging
to generate clean and accurate LR samples of the desired
distribution. Consequently, the downsampler heavily relies
on adversarial loss to simulate an accurate distribution of
ILR, which may not be very stable in practice [58].

Therefore, we propose an adaptive data loss (ADL) to
complement the limitations of LFL. The primary motivation
is that the LFL-based downsampler D̄ can serve as a dataset-
specific objective if D̄ and the ground-truth downsampling
model D∗ are similar to some extent. To formulate the ADL,
we first reduce the noise in the pre-trained model D̄. Rather
than introducing a new objective term in (2) for regulariza-
tion, we retrieve a low-rank approximation of the learned
network with a simple function. From the observation that a
proper downsampling function consists of low-pass filtering
and decimation [17], [18], [19], [50], we linearize the learned
downsampling model D̄ to a corresponding 2D kernel k̄:

k̄ = argmin
k

N∑
i=1

∥∥∥(IiHR ∗ k
)
↓s − D̄

(
IiHR

)∥∥∥2
2
, (6)

where IiHR denotes an i-th example to estimate the kernel
and N is the total number of samples that have been used,
respectively. We note that there exists a closed-form solution
for the least-squares in (6). Since (6) can be interpreted as an
average of the possibly noisy downsampling network over
N inputs, the kernel k̄ is a regularized representation of the
pre-trained network D̄. With the estimated kernel k̄, a novel
ADL for data term Ldata = LADL is defined as follows:

LADL =
∥∥∥(IHR ∗ k̄

)
↓s − IDown

∥∥∥
1
. (7)

While (7) looks identical to the data terms with hand-
crafted downsampling in (3), we can deduce several merits
from the ADL formulation. Unlike the predetermined op-
erators RHR or B, the kernel k̄ is adaptively learned from
the training data and shows less conflict to the adversarial
loss Ladv. In other words, the linear downsampling process
in (7) is less likely to deviate considerably from our desired
downsampling model D∗. Compared with the LFL formu-
lation, the ADL term can provide a stable training objective
and prevent the downsampler from learning false-negative
cases. Moreover, the learned downsampling model D is not
constrained to be a deep linear network [19], as we jointly
optimize the adversarial loss Ladv with the ADL.

Also, we introduce two modifications to utilize our
ADL effectively in practice. First, the downsampler D has
been observed to simulate a target downsampling model
D∗ to some extent under the LFL, even with few training
iterations. Rather than using a fully pre-trained model D̄
for the kernel estimation, we start from scratch and train
the downsampler for twarm-up iterations with the LFL. We
then replace our data term with the ADL, in which the
kernel k̄ is calculated from the downsamplerD after twarm-up
updates. Second, we periodically adjust the kernel k̄ to pre-
vent our downsampling model from being biased toward
a fixed operator. Similar to (3), our ADL may also bias
the training process unless D∗ (IHR) ≡

(
IHR ∗ k̄

)
↓s holds.

Thus, we periodically update the kernel k̄ by retrieving it
from the currently learned downsampler. Even if the initial
estimation k̄ is less accurate, such periodic updates allow the
kernel to be adaptively adjusted during learning loops. The
training pipeline of our downsampler D with the modified
ADL formulation is summarized in Algorithm 1.

3.5 Image super-resolution

To learn the SR model S (·;φ), we first generate the LR
images IDown from HR images with the learned down-
sampler D to construct a training set of (IDown, IHR) pairs.
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(a) IHR (b) k0 and (IHR ∗ k0)↓2 (c) k1 and (IHR ∗ k1)↓2 (d) k2 and (IHR ∗ k2)↓2 (e) k3 and (IHR ∗ k3)↓2 (f) k4 and (IHR ∗ k4)↓2

(g) k̄0 and D0 (IHR) (h) k̄1 and D1 (IHR) (i) k̄2 and D2 (IHR) (j) k̄3 and D3 (IHR) (k) k̄4 and D4 (IHR)

Fig. 5. Examples of bicubic and randomly selected Gaussian kernels with corresponding ×2 LR images. (a) We use DIV2K [7] ‘0869.png’
for the HR image IHR. (b)-(f) We note that the bicubic kernel k0 contains positive (green) and small negative (red) values together. The former
two Gaussian kernels k1 and k2 are isotropic, while later kernels k3 and k4 are anisotropic. We note that there exist subtle differences between
images from different downsampling kernels. (g)-(k) We also visualize downsampled images IDown from the proposed ADL formulation. Here, Di

and k̄i refer to the downsampling CNN D and approximated kernel k̄ in Algorithm 1 that are learned on the synthetic DIV2K dataset from ki. Kernel
boundaries are cropped for better visualization. Best viewed with digital zoom.

Algorithm 1 ADL for learning our downsampler D
Input: Set of HR patches IHR, set of unpaired LR patches
ILR, warm-up interval twarm-up, update interval tupdate,
total training iterations T , and learning rate η.

Output: Downsampler parameters θD and discriminator
parameters θF .

1: θD, θF ← N
(
0, 0.022

)
. // Parameter initialization [58].

2: k̄ = None.
3: for i = 1 : T do
4: ILR ∼ ILR, IHR ∼ IHR. // Sample training batches.
5: IDown = D (IHR; θD).
6: θF ← θF − η∇θFLF . // Update θF by (2).
7: if i < twarm-up then
8: Calculate Ldata with (4).
9: else

10: if mod
(
i, tupdate

)
== 0 or k̄ is None then

11: Calculate k̄ from D. // Retrieve the kernel.
12: end if
13: Calculate Ldata = LADL with (7).
14: end if
15: θD ← θD − η∇θDLD. // Update θD by (2).
16: end for

A downsampling-specific SR model can be trained in a
supervised manner by optimizing the L1 loss [5], [6]:

LS = ‖IHR − ISR‖1
= ‖IHR − S (IDown)‖1 = ‖IHR − S (D (IHR))‖1 ,

(8)

where ISR = S (IDown) refers to a super-resolved image.
As shown in (8), our approach does not require any paired
examples, i.e., LR image ILR, to learn the SR model for ILR.

One of our contributions is that the downsampling and
SR models can be learned independently. For instance, it
is straightforward to introduce perceptual objective [1], [8],
[42], [45] for the SR network, which can be used to recon-
struct photo-realistic results. To reconstruct more realistic
textures from the real-world LR images, we jointly optimize
LP and LG to learn the perceptual SR model P (·; θP) and
the discriminator network G (·; θG) respectively:

LP =
∥∥V54 (IHR)− V54

(
ISR-p

)∥∥
1

+ βLadv-P ,

LG = −E [log G (IHR)]− E
[
log
(
1− G

(
ISR-p

))]
,

(9)

where V54 is features of the pre-trained VGG-19 [1], [8], [59]
network after the conv5_4 layer, ISR-p = P (ILR) is a super-

resolved image, Ladv-P = −E [log G (ISR)] is adversarial loss,
and β = 0.02 is a hyperparameter, respectively.

4 EXPERIMENTS

We implement our method based on the PyTorch frame-
work. More results can be further provided in our Appendix
and project site: https://cv.snu.ac.kr/research/ADL. We
will also release the source code and pre-trained models.

4.1 Experimental setups

Dataset. To validate whether our method can simulate an
unknown distribution of LR images accurately, we construct
a synthetic dataset by using a bicubic kernel (k0) and the
Gaussian kernels (k1–k4) with random shapes [17], [18].
Then, we obtain LR inputs for the test from HR images
by following (1). We visualize the different ×2 degradation
kernels ki used in our experiments and the corresponding
LR images in Fig. 5. For the ×4 configurations, we use two
times the enlarged versions of the ×2 kernels. More details
about the selected kernels are described in Appendix B.

We construct unpaired training data by dividing 800 HR
images from the DIV2K [7] training that is split by half.
For each degradation kernel, we assign 400 HR samples
(‘0001.png’–‘0400.png’) to IHR. The remaining 400 images
(‘0401.png’–‘0800.png’) are used to synthesize LR samples
and allocated to ILR. The images do not overlap between
IHR and ILR. With the proposed LFL and ADL formulation,
the downsampler D can learn to simulate the distribution of
LR samples ILR by using the given HR images IHR. For fair
evaluations, we use another 100 images from the DIV2K [7]
validation set to generate test inputs for different kernel ki.
Evaluation metrics. We evaluate our downsampling meth-
ods in two aspects. As the primary goal of our methods
is generating training examples to learn SR models on an
unknown distribution of LR images, we generate pairs of
(IDown, IHR) using 400 HR images in IHR with the learned
downsampler D for each test degradation ki. Then, we train
the SR model as described in Section 3.5, and report the
PSNR values between the reconstructed images ISR and the
reference HR images IHR. We note that generating more ac-
curate LR images allows the following SR model to improve
generalization on the inputs from unknown degradation. In
addition to the SR task, we also measure the PSNR values
between the downsampled images IDown and ground-truth



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

TABLE 1
Evaluation of LR images from our unsupervised downsampler.

We evaluate PSNR (dB) between downsampled and ground-truth LR
images on the synthetic DIV2K dataset for each kernel ki. The best
and second-best methods are bolded and underlined, respectively.

Ldata s
PSNR↑ between ILR and IDown
k0 k1 k2 k3 k4

‖B (IHR)− IDown‖1
×2

40.70 39.64 35.79 37.88 37.22
‖APs (IHR)− IDown‖1 40.33 38.54 36.03 37.35 35.13
LLFL in (4) (Proposed) 43.16 42.03 43.30 43.69 43.75
LADL in (7) (Proposed) 45.83 45.61 46.34 44.86 46.41

‖B (IHR)− IDown‖1
×4

26.36 26.91 26.85 25.54 25.67
‖APs (IHR)− IDown‖1 24.18 25.63 25.40 26.64 26.70
LLFL in (4) (Proposed) 31.13 34.28 39.66 38.31 37.17
LADL in (7) (Proposed) 38.24 38.12 43.54 39.08 41.10

TABLE 2
Training configurations of different SR methods.

All the other hyperparameters are kept fixed to train those SR models.
We note that the downsampler D is learned for each specific

degradation in an unsupervised manner.

Method Training input Training target

Bicubic B (IHR) = (IHR ∗ k0)↓s
IHROracle (IHR ∗ ki)↓s

Proposed D (IHR)

LR images to quantitatively evaluate the performance of
the learned downsampling models D. All PSNR values are
calculated using RGB channels rather than luminance.
Model architecture. We use the patch-based discrimina-
tor [60] with the instance normalization [61] for training.
For the SR task, we use a small EDSR [6] model as the
baseline with 1.5M parameters. To demonstrate that our
method is orthogonal to the selection of the SR backbone,
we also introduce a larger RRDB [8] architecture with 16.7M
parameters. The details regarding our downsampling and
discriminator CNNs are described in Appendix E.
Hyperparameters. In all experiments, we use a 32 × 32
box filter for LPFms and the one with 16 × 16 spatial size
for LPFm with a scale factor of 2. The ablation studies
about the filter selection and relevant hyperparameters are
described in Section 4.5. In training, one epoch consists of
1,741 iterations, which is proportional to the number of total
training patches. More details are provided in Appendix F.

4.2 Evaluating simulated LR images
The primary contribution of our LFL and ADL is that they
do not make a conflict with the adversarial loss, which
guides downsampled images to resemble LR samples from
an unknown distribution. To demonstrate the advantages
of the proposed framework when simulating an arbitrary
downsampling process, we compare our LFL and ADL
to data terms using predetermined operators. Maeda [22]
proposes to utilize bicubic downsampled images in an
unsupervised downsampling model, especially for cycle
consistency and identity loss terms. While the unsupervised
learning approach from Maeda [22] is not the same as
our formulation, the objective between the generated LR
and bicubic downsampled images can be interpreted as
RHR = B in (3). Similarly, Bulat et al. [24] used an s × s
average pooling (APs) for the resizing operator RHR in the
data term Ldata, where s corresponds to a scaling factor.

We note that direct comparisons between ours and the
existing generation-based methods [22], [24], including Lug-
mayr et al. [23] are not conducted due to several reasons.
First, we explicitly find the unknown downsampling oper-
ator, while previous approaches focus on modeling noise
and artifacts in real-world LR images. In addition, as those
methods do not provide source code, evaluation on diverse
synthetic kernels cannot be carried out for fair comparisons.
Therefore, we train multiple downsampling networks under
different data terms Ldata on different synthetic kernels (k0–
k4) and scales (×2 and ×4). Then, we compare how the
proposed data term outperforms the previous formulations
in terms of the feasibility of the synthesized samples.

Table 1 illustrates the average PSNR between the gen-
erated LR images from each downsampler and ground-
truth. When the predetermined operator is well-matched
with a ground-truth downsampling function, e.g., using B
to estimate k0, the unsupervised models effectively simulate
target LR images. However, if the predetermined functions
(bicubic and average pooling) are not overlapped with the
unknown degradation kernel (k1–k4), the data term Ldata
biases the training objective and conflicts with the adver-
sarial loss. Table 1 demonstrates that the conflict affects the
learned downsampling model in a negative way and makes
the SR model less generalizable, even with synthetic kernels.
On the other hand, the proposed LFL and ADL terms can
be generalized better and facilitate the downsampler D to
generate accurate LR images for various configurations.

4.3 SR on the synthetic examples

Using generated LR images from our downsampler, we
train baseline EDSR [6] and RRDB [8] and evaluate them on
each degradation kernel ki individually on three different
configurations described in Table 2. In the bicubic configura-
tion, bicubic-downsampled images are used to train the SR
model as those in existing approaches [1], [4], [26]. We note
that the bicubic models are shared across different setups.
In contrast, our method first learns a degradation-specific
downsampling model D from unpaired LR and HR images
and leverages it to generate training samples for the SR
model. We also introduce an oracle for each degradation
ki, where the SR model can fully utilize the ground-truth
kernel to synthesize training images. As the distributions of
the training and test images are matched, the oracle serves
as an upper bound for a specific degradation kernel ki.

Table 3 compares various SR methods on the synthetic
DIV2K dataset. EDSR and RRDB trained on bicubic LR
images perform well when the inputs are also formed by
the bicubic kernel (k0). However, they do not generalize
well when the inputs are downsampled by different kernels
(k1–k4), as the distribution of the test images deviates sig-
nificantly from that of the training samples. Also, the larger
RRDB network does not bring any advantages over the
smaller EDSR model, showing that the bicubic SR models
cannot be generalized to unknown types of LR images.

On the other hand, EDSR and RRDB achieve signifi-
cant performance gains over the other approaches when
the training LR images are generated from the proposed
LFL and ADL. As discussed previously in Section 4.2, our
approach can generate a set of faithful LR and HR training
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TABLE 3
Blind super-resolution results on synthetic LR images.

We show PSNR (dB) between ground-truth HR and SR images from various methods on the synthetic DIV2K test dataset. Performance is not
reported (−) if the pre-trained model is available only for a specific scale or cannot generate output images. k0 refers to the bicubic kernel.

Method PSNR↑ for ×2 SR PSNR↑ for ×4 SR
k0 k1 k2 k3 k4 k0 k1 k2 k3 k4

EDSR [6] (Bicubic) 34.61 31.51 27.76 27.91 27.95 28.92 26.35 24.06 24.21 24.21
RRDB [8] (Bicubic) − − − − − 29.45 26.44 24.07 24.22 24.22

EDSR (Oracle) 34.61 34.44 33.64 33.23 33.27 28.92 28.73 28.02 27.79 27.84
RRDB (Oracle) − − − − − 29.45 29.28 28.39 28.08 28.62

KernelGAN [19] + ZSSR [20] 22.32 26.42 30.44 29.10 29.12 20.11 24.67 25.85 25.21 25.36
IKC [17] − − − − − 28.59 28.07 27.65 24.15 25.12
BlindSR [18] 26.56 − 26.62 26.49 − − − − − −

LFL + EDSR (Proposed) 33.91 33.26 31.38 31.48 31.57 27.45 27.31 26.69 26.65 26.33
ADL + EDSR (Proposed) 34.07 33.68 32.51 32.08 32.05 28.16 28.04 27.08 26.82 26.97
ADL + RRDB (Proposed) − − − − − 28.55 28.49 27.51 27.00 27.19

TABLE 4
Blind super-resolution results on realistic LR images.

We provide PSNR (dB) between ground-truth HR and SR results from different methods on the RealSR-V3 [14] dataset. Since the KernelGAN [19]
and ZSSR [20] combination is learned on each test image, they require ×50 parameters in practice to handle 50 inputs.

Method # Parameters Training data PSNR↑ for ×2 SR PSNR↑ for ×4 SR
Canon Nikon Canon Nikon

EDSR [6] (Bicubic) 1.5M Synthetic
(Bicubic k)

30.58 30.00 26.05 25.89
RRDB [8] (Bicubic) 16.7M − − 26.05 25.91

EDSR (Oracle) 1.5M RealSR-V3
(Paired)

32.45 31.59 27.59 27.14
RRDB (Oracle) 16.7M − − 27.90 27.39

KernelGAN [19] + ZSSR [20] 50 × (0.2M + 0.2M) A given ILR 28.79 27.54 23.68 22.46

IKC [17] 9.0M Synthetic
(Multiple k)

− − 25.71 25.27
BlindSR [18] 1.1M 25.80 24.17 − −

LFL + EDSR (Proposed) 0.9M + 1.5M RealSR-V3
(Unpaired)

31.67 30.75 26.47 25.90
ADL + EDSR (Proposed) 0.9M + 1.5M 31.81 30.99 26.79 26.46
ADL + RRDB (Proposed) 0.9M + 16.7M − − 26.90 26.64

pairs so that the following SR models can achieve much
better performance on LR images from some unknown
downsampling process. Since LFL does not bias the learned
downsampler D to a specific downsampling operator, e.g.,
bicubic or average pooling, the respective EDSR and RRDB
generalize well across various kernels (k0–k4) and scales
(×2 and ×4). Furthermore, our downsampling model with
ADL generates more accurate training LR images for the SR
models and brings significant improvements to EDSR and
RRDB across all kernel configurations consistently.

Interestingly, a larger RRDB model with ADL achieves
better performance and even comparable to the oracle
EDSR, especially on the×4 SR task with k0 and k1. If the dis-
tribution of the downsampled images, i.e., D (IHR), deviates
much from that of the target LR images, then a better fitting
to the training data may worsen the performance on the
test images. Therefore, the performance gain of the RRDB
model demonstrates that our unsupervised downsampling
framework can faithfully simulate the distribution of the
target LR images to a certain extent. We also note that our
data generation process is orthogonal to the architecture of
the SR models. Therefore, integrating the proposed down-
sampling models with state-of-the-art SR architectures [9],
[10] can directly improve performance.

We also apply the existing approaches to various syn-
thetic degradation kernels. The combination of Kernel-
GAN [19] and ZSSR [20] first estimates an input-specific

degradation kernel from a single image [19] and applies
the zero-shot SR model [20] to deal with the arbitrary LR
images. Compared with bicubic EDSR and RRDB, the sin-
gle image approach achieves better performance on k2–k4,
demonstrating the importance of estimating image-specific
kernel modeling for the blind SR task. However, this method
does not perform well when test images are downsampled
by k0 and k1, as depicted by the significant decrease in
PSNR with respect to the oracle model.

Instead of synthesizing realistic LR images, IKC [17]
and BlindSR [18] utilize large-scale synthetic data in which
the degradation kernels follow specific shapes. They first
predict the kernel used to generate the given LR image and
derive input-dependent SR results within a single network
architecture. As the IKC model only considers isotropic
Gaussian kernels, it achieves comparable performance to the
oracle models on k0–k2. However, it does not perform well
on the k3 and k4 cases, where the degradation kernels are
anisotropic. While BlindSR [18] also takes a similar strategy,
it is less stable and unable to handle some inputs from k1
and k4, and it also diverges. As shown in Fig. 6 (first row),
RRDB that has learned on our training data can reconstruct
realistic details from the challenging ×4 SR task.

4.4 SR on the RealSR-V3 dataset
Our approach can also be applied to real-world LR images
from unknown camera processing pipelines. For the quan-
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(a) ILR (Input) (b) RRDB [8] (c) IKC [17] (d) [19] + [20] (e) ADL + [8] (f) Oracle (g) IHR (GT)

Fig. 6. Qualitative ×4 SR results on the various datasets. Patches in each row are from the synthetic DIV2K [7] dataset ‘0820.png (k1),’
‘0853.png (k4),’ RealSR-V3 [14] dataset ‘Canon/006.png,’ and ‘Nikon/041.png,’ respectively. The RRDB [8] model is used as a backbone SR
architecture for our ADL as well as the Oracle.

titative evaluation, we utilize RealSR-V3 [14] containing 200
well-aligned LR and HR image pairs for two different real-
world cameras: Canon and Nikon. Similar to the description
in Section 4.1, we divide the dataset by half for each camera
model. The same amounts of images are assigned to IHR
and ILR without overlapping. We learn the corresponding
downsampling and SR models by following our pipeline, as
described in Section 4.1. As the dataset provides accurately
aligned LR and HR examples to train a supervised SR
model, the oracle models learn from those image pairs.

Compared to the experiments on synthetic images in Sec-
tion 4.3, real-world cases are more challenging. First, a set of
LR images may share the similar but not exactly the same
degradation process. Also, since the dataset mainly consists
of indoor scenes and static objects without large motions,
training the images may lack the diversity that can hinder
generalization. Table 4 shows the results of the evaluated
SR algorithms on RealSR-V3, where each of the Canon and
Nikon split contains 50 test images. KernelGAN + ZSSR,
IKC, and BlindSR do not perform well even compared to
EDSR and RRDB learned on bicubic downsampled images.
The primary reason is that numerous constraints in these
methods, e.g., Gaussian kernels [17], [18] or kernel shape
priors [19], do not usually hold for real-world scenes.

In contrast, our downsampling method with different SR
backbones (LFL + EDSR, ADL + EDSR, and ADL + RRDB)
achieve better results on both cameras at different scales
(×2 and ×4), compared with the other approaches. Even
if the LR images in RealSR-V3 are not formulated from the
same kernel, our LFL and ADL can learn an average of all
possible downsampling operators and generalize well on
the real-world dataset. We also demonstrate that the larger
RRDB model performs better in the realistic case, showing
that a better fitting on the generated LR images can help
generalization on unseen real-world examples. Fig. 6 shows
that our approach can reconstruct more visually pleasing
results than the existing methods on RealSR-V3.

TABLE 5
Ablation studies on the proposed method.

We report how different training configurations for the downsampling
network affect the SR results on the synthetic DIV2K dataset.

(a) Effect of the balancing parameter α in (2).

Method \ α PSNR↑ for ×2 SR (k4)
1 10 100 200

LFL + EDSR (Proposed) 29.36 30.70 31.49 31.57
ADL + EDSR (Proposed) 29.08 31.42 32.05 32.02

(b) Effect of the number of training LR images |ILR|.

Method \ |ILR|
PSNR↑ for ×2 SR (k4)

1 10 50 100

KernelGAN + ZSSR 29.12 − − −

LFL + EDSR (Proposed) 25.43 28.70 29.86 31.21
ADL + EDSR (Proposed) 29.84 30.20 31.36 32.10

(c) Effect of the joint training.

Method \ Configuration PSNR↑ (dB) for ×2 SR (k4)
Joint +BP +BP+FQ Two-stage

ADL + EDSR (Proposed) 32.09 31.39 31.50 32.05

4.5 Ablation study

To see the contribution of each design component in our LFL
and ADL, we conduct extensive ablation studies in this sec-
tion. The selected hyperparameters are used throughout the
entire experiments in Section 4.3, 4.4, and 4.7, without any
additional adjustments. We note that an ablation regarding
the shape of LPFm is described in our Appendix A. The
stability of our LFL and ADL is described in Appendix C.

Effect of the balancing hyperparameter. As we describe in
Section 3.2, the predetermined downsampling operatorRHR
may bias the overall training objective of the downsampler
LD , especially when the balancing hyperparameter α is
large. To validate that our LFL and ADL terms do not
impose negative bias in the learning stage, we analyze how
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Synthetic
DIV2K (k3)

RealSR-V3
(Nikon)

(a) 1 epoch (b) 2 epochs (c) 10 epochs (d) 20 epochs (e) 40 epochs (f) 60 epochs (g) 80 epochs

✘
(h) GT kernel

Fig. 7. Evolution of the retrieved ×2 degradation kernel k̄ in the proposed ADL. We visualize the estimated kernels from (6) on two different
datasets. For simplicity, we refer 1,741 iterations as one epoch. Since we apply the ADL after 10 warm-up epochs, downsampling networks in (a)
and (b) are trained under LFL, not ADL. Furthermore, (a) and (b) visualize the linear approximations of the learned downsamplers after a certain
number of training epochs rather than the approximated kernels k̄. In the RealSR-V3 [14] dataset, no ground-truth kernel is available for the Nikon
camera configuration. We crop image boundaries for better illustration.

the balance between data and adversarial losses in (2) affects
the associated SR models. Table 5(a) shows that the SR
model with LFL and ADL do not perform well when α = 1
or 10, as preserving image content is challenging during the
downsampling process. When using relative larger values
of α, i.e., α = 100 or 200, the baseline SR models with LFL
and ADL terms perform reasonably well without making
bias. As such, we choose α = 200 for the LFL and α = 100
for the ADL to achieve the best performance.

Effect of the number of training samples. In Section 4.3, we
train the proposed downsampling model on 400 LR images
generated from the same kernel ki. Compared with the Ker-
nelGAN [19] method, which predicts a proper degradation
kernel from a single input image, our approach requires
more examples to estimate an unknown degradation accu-
rately. For a fair comparison, we vary the number of LR
images to train the downsampling model and analyze the
performance of the following SR models. We use the first 1,
10, 50, and 100 examples from ILR, e.g., ‘0401.png’ for the
|ILR| = 1 case, to learn our downsampling model. The other
hyperparameters are fixed unless mentioned otherwise.

Table 5(b) shows how the size of ILR for the downsam-
pler affects the following SR performance. Our methods
(LFL + EDSR and ADL + EDSR) gradually achieve better
performance as the number of training samples increases,
validating the effectiveness of using large-scale datasets.
Nevertheless, even with a single LR sample, ADL + EDSR
outperforms the single-image method. Table 5(b) also shows
that ADL consistently outperforms LFL, especially when the
number of training LR images is limited. Specifically, ADL +
EDSR with a single LR image performs equally well as LFL
+ EDSR with 50 LR images. In Appendix D, we also analyze
some opposite cases for fair comparison where KernelGAN
is trained with multiple LR and HR images.

Joint training of downsampling and SR networks. Our
two-stage (downsampling + SR) pipeline has several advan-
tages. First, if the two models are jointly learned, one may
affect the other to be suboptimal solution. For example, the
downsampler may generate LR images that can be easily
upsampled rather than accurately simulating the desired
target. In addition, connecting the two models increases
the algorithmic complexity, making hard to train the whole
model. Finally, the two-stage approach accommodates more
effective models and objective functions, as we have a fixed
downsampling network and corresponding LR images.

On the other hand, it is possible to optimize the down-

sampling and SR networks jointly. Table 5(c) provides ex-
perimental results of joint training with different setups.
To reduce the training time, we optimize downsampling
and SR networks together (joint), contrary to the original
formulation (two-stage). We note that the gradient from the
SR model does not backpropagate to the downsampler in
this configuration. Interestingly, the joint training approach
achieves marginal performance gain to the SR network.
Since we do not fix input of the SR network and keep
updating the downsampler, it has similar effects to data aug-
mentation and slightly improves the following SR model.

We also train the downsampling and SR networks to-
gether in an end-to-end manner, where backpropagated gra-
dient from the SR model flows to the downsampler (+BP).
However, this approach negatively affects the following SR
network in two specific aspects. First, the downsampler
tends to generate images that are easy to be upscaled rather
than accurately simulating samples in the target LR distri-
bution. Second, each color pixel in the generated image is
a continuous variable, while pixels in our test samples only
have 256 discontinuous values. We further introduce fake
quantization (+BP+FQ) to deal with the second issue, where
output of the downsampler are quantized while the gradient
flows just as the pixel values are continuous. Although it
brings +0.11dB performance gain, the end-to-end learning
does not bring any advantage in our framework. As such,
we use the two-stage approach in all the experiments.

4.6 Analysis on ADL
As the estimated kernel k̄ in Algorithm 1 is derived from
the training dataset, the ADL does not make a significant
conflict with the adversarial loss Ladv. To demonstrate the
effectiveness of our adaptive adjustment strategy, we visu-
alize how the estimated kernels k̄ on the synthetic DIV2K
and RealSR-V3 datasets are updated in Fig. 7. We note that
the kernels from the RealSR-V3 [14] dataset do not appear
to be standard Gaussian forms that are preferred in the
existing approaches [17], [18]. Since we do not constrain
the downsampling network to resemble specific shapes of
kernels, our approach can yield better generalizability.

In the synthetic cases, the estimated kernel k̄ should be
similar to the ground-truth ki for the following SR training.
Thus, we show the kernel similarity [62] between the re-
trieved and ground-truth degradation kernels in Table 6(a)
to validate that our prediction becomes more accurate as
the training proceeds. It is also demonstrated that the more
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(a) ILR (Input) (b) RRDB [8] (c) IKC [17] (d) [19] + [20] (e) ADL + RRDB (f) ADL + P
Fig. 8. Perceptual ×4 SR results on the DPED dataset. We note that no ground-truth HR images exist for the dataset. Therefore, quantitative
comparison on the DPED images nor the oracle model is not available. P denotes the RRDB [8] model learned with (9) to reconstruct more realistic
textures and sharper details. From the top, patches are cropped from the DPED-val ‘20.png,’ ‘49.png,’ and ‘63.png,’ respectively.

TABLE 6
Ablation study about the proposed ADL method.

To evaluate the SR performance, we use ADL + EDSR configuration
and the synthetic DIV2K dataset. (a) We note that the kernel

similarity [62] is measured after the last update, and k̄ is a linear
approximation of the learned downsampler for each configuration. (b)
∞ means that the kernel k̄ is not updated after the first estimation.

(a) Effect of the total training epochs in Algorithm 1.

Total training epochs T 20 40 60 80

Similarity↑
(
k̄, k4

)
0.9682 0.9707 0.9714 0.9718

PSNR↑ for ×2 SR (k4) 31.48 31.96 31.93 32.05

(b) Effect of the iterative adjustment in Algorithm 1.

Update interval t (epochs) ADL + EDSR (Proposed)
1 10 20 ∞

PSNR↑ for ×2 SR (k4) 31.65 32.05 32.01 31.85

(c) Effect of the number of samples for kernel estimation in (6).

The number of samples N ADL + EDSR (Proposed)
1 5 10 50

PSNR↑ for ×2 SR (k4) 31.09 31.84 32.01 32.05

precise estimation supports the following SR network to
perform better, and the performance is maximized at 80
epochs. Furthermore, Table 6(b) shows that our iterative
update prevents the downsampler from being biased to-
ward the fixed kernel k̄ and helps with the convergence.
As we describe in Section 3.4, ADL is designed to stabilize
the potentially noisy downsampling model. Therefore, the
number of samples N for the kernel estimation is also
crucial. Table 6(c) demonstrates that the ADL does not
perform well only with a single training image. However,
as the number of examples increases, our method can assist
the following SR model to generate better results.

4.7 SR on the real-world images
Our methods assume that the set of available LR images fol-
low the same downsampling process. In practice, acquiring
multiple images from a similar degradation pipeline, such

as photos from a fixed camera configuration [63] or multiple
frames in a video, is relatively easier than collecting real-
world LR and HR pairs. We validate the proposed method
by using the DPED [63] dataset, which consists of low-
quality photos captured by an iPhone 3GS camera. To train
the downsampler, we assign random 120 images from the
DPED [63] dataset as ILR, while DIV2K is used for the
HR samples IHR. Since the dataset consists of low-quality
examples captured by the iPhone 3GS camera, we remove
the unknown noise and artifacts in ILR by applying the off-
the-shelf RL-restore [64] algorithm as a preprocessing. Fig. 8
compares the SR results of the preprocessed DPED [63]
dataset. As no ground-truth HR images exist in this dataset,
we note that no oracle model is available for the dataset.
Compared with the existing methods, our ADL facilitates
RRDB [8] to reconstruct sharper edges and more detailed
textures without introducing visual artifacts. Moreover, we
train the ADL-based downsampler without RL-restore [64].

We also train the perceptual SR network P using the
images from ADL-based downsampler to demonstrate the
merit of our approach for real-world SR. Compared with
the PSNR-based model (ADL + RRDB) trained with (8), the
perceptual RRDB model (ADL + P) from (9) reconstructs
more realistic and visually pleasing results. The advantage
of the two-stage approach is that we do not require addi-
tional training of the downsampler to introduce different
optimization objectives for the SR network. Thus, the only
difference between Fig. 8(e) and Fig. 8(f) is training loss
while the backbone networks are the same. More additional
qualitative SR results are presented in Appendix G.

In Fig. 9, we analyze how much our ADL is affected
by noise and artifacts. For comparison, we evaluate the
pretrained RealSR [56] and BSRGAN [49] models on the
same DPED images. Since those methods explicitly consider
noise and artifacts in LR inputs, their results look robust
to such degradation. In contrast, our ADL yields sharper
but a bit noisy outputs. Note that when the preprocessing
is not applied (ADL-n), it gives blurry SR results since
noisy LR samples prevent the discriminator from learning
distinguishable features from downsampled images.
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(a) RealSR (b) BSRGAN (c) ADL + P (d) ADL-n + P
Fig. 9. Effect of preprocessing on the DPED dataset. In ADL, appro-
priate preprocessing is required for more effective learning. Patches are
cropped from DPED-val ‘45.png,’ ‘63.png,’ and ‘84.png,’ respectively.

5 CONCLUSIONS

We propose a novel unsupervised method to estimate an
unknown distribution of LR images using unpaired LR
and HR examples. The proposed LFL and ADL terms fa-
cilitate the downsampler to accurately synthesize the LR
images with the desired distribution. Compared to con-
ventional approaches, we do not pose restrictive priors to
the learned function in the adversarial training framework.
Consequently, the existing SR models can be trained with
our LR images and achieve significant performance gains
on synthetic and realistic datasets. We also demonstrate that
our approach can be applied to a set of arbitrary images [14],
[63] in the wild. The results verify that the proposed method
can be used to handle real-world SR problems. In the future
work, we will extend our approach to estimating a feasible
downsampling model with real-world noise jointly.
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S1 DETAILS ABOUT THE LOW-PASS FILTERS

Formulation of the low-pass filters. We describe specific
implementations of low-pass filters in the proposed LFL
formulation. Our LFL utilizes conventional low-pass filters
to extract low-frequency components from given images.
Therefore, we replace the term LPF∗ in (4) to a kernel
representation kHR and kDown to simplify the description as
follows:

LLFL =
∥∥∥(IHR ∗ kHR)↓ms − (IDown ∗ kDown)↓m

∥∥∥
1
, (S1)

wherem is a subsampling factor of the LR image, and (S1) is
equivalent to (4) in our main manuscript. For example, our
default LFLm formulation corresponds to a 2D kernel kDown
of m ×m where kDown (x, y) ≡ 1/m2. We note that m = 16
is used throughout our studies. In ×2 downsamping case,
a kernel kHR for HR images can be expressed as a box filter
of 32 × 32 with kHR (x, y) ≡ 1/322. Here, (x, y) describes a
coordinate system of the downsampling kernel, including a
sub-pixel shift. Specifically, a center of the 16 × 16 kernel,
which is not a pixel, corresponds to k (0, 0) and neighboring
4 pixels are represented as k (±0.5,±0.5), respectively. This
formulation is useful for Gaussian kernels on an even-sized
grid as follows:

k (x, y) =
1

Z
exp

(
− x2

2σ2
x

− y2

2σ2
y

)
, (S2)

where Z is a normalization factor so that
∑
x,y k (x, y) ≡ 1.

For the proposed LFL, only isotropic cases are tested where
σx and σy are equal. In the Gaussian cases, we follow a
convention and set the kernel grid size to p × p where
p is the nearest power of two from 6σx. While we adopt
the filtering-based method for our LFL for simplicity, more
complex formulations such as Wavelet can be introduced
without losing generality.
Selection of the low-pass filters. An appropriate selection
of the low-pass filter in our LFL plays an essential role.
Therefore, we conduct an extensive ablation study to de-
termine the low-pass filter when training the downsampler
D. Table S2 shows how different types and shapes of low-
pass filters for the downsampler affect the SR results. We
present the performance evaluation on the synthetic DIV2K
dataset with a challenging anisotropic Gaussian kernel k4.
As shown in Table S2(a), a small box filter, e.g., m = 2,
may bias the training objective and degrade the following
SR performance. On the other hand, a large box filter
with m = 64 operates as an extremely loose constraint
and cannot contribute to preserving image contents across
different scales. In Table S2(b), we have also introduced 2D
Gaussian filters for the LFL. However, simple box filters
have demonstrated relatively better performance. Thus, we
use 16 × 16 box filters for the low-pass filter LPFm and
32× 32 for LPFms by default throughout our experiments.

S2 DETAILS ABOUT THE SYNTHETIC KERNELS

We present a formulation of the ×2 synthetic downsam-
pling kernels used for various experiments in our main
manuscript. As we describe in Section 4.1, k0 denotes a
widely-used MATLAB bicubic kernel. The other kernels,

TABLE S1
Specifications of low-pass filters we use.

For box and Gaussian filters, weights are normalized so that their
values are summed to 1. We note that a subsampling by ms and m

follow after LPFms and LPFs, respectively, to reduce image resolutions.
More details about the filters are described in Appendix A.

Type Filter Size Shape

2D Box LPFms ms×ms ms×ms box
LPFs m×m m×m box

2D Gaussian LPFms ms×ms σx = σy = sσ
LPFs m×m σx = σy = σ

TABLE S2
Ablation study on the shapes and sizes of LPFm.

We train the LFL-based downsampler and the following SR model on
DIV2K ×2 (k4) to observe how different low-pass filters affect the

performance of our approach.

(a) Box filters for LPFm

Method \ Box size m PSNR↑(dB) for ×2 SR (k4)
2 4 8 16 32 64

LFL + EDSR (Proposed) 29.51 30.17 31.06 31.57 31.58 28.11

(b) Gaussian filters for LPFm

Method \ Gaussian sigma σ PSNR↑ for ×2 SR (k4)
0.8 1.2 1.6 2.0 2.5 3.0

LFL + EDSR (Proposed) 29.64 30.24 30.42 30.62 30.96 30.75

TABLE S3
Detailed parameters to implement the synthetic Gaussian kernels.

Fig. 5 in our main manuscript also visualizes each downsampling
kernel in detail.

Kernel ki σx σy θ Type

k1 1.0 1.0 0◦ Isotropic
k2 1.6 1.6 0◦ Isotropic
k3 1.0 2.0 0◦ Anisotropic
k4 1.0 2.0 29◦ Anisotropic

i.e., k1 ∼ k4, are 20 × 20 and sampled from a standard
2D Gaussian distribution following (S2). Table S3 describes
the actual parameters used to instantiate our synthetic ker-
nels. To validate the generalization ability of the proposed
method, we do not resort to radial kernels that are relatively
easy to model and introduce anisotropic kernels k3 and k4.
The most challenging case k4 further includes rotation of
random degrees θ and have neither vertical nor horizontal
symmetries. For a larger ×4 downsampling factor, we fol-
low an approach from KernelGAN [19] and convolve the
same kernel twice to generate a larger one.

S3 STABILITY OF THE PROPOSED METHODS

Since our LFL and ADL rely on unsupervised adversar-
ial training, stability and reproducibility of the proposed
method can be an essential issue. Therefore, we conduct five
independent experiments for each of the five downsampling
kernels k0 ∼ k4 at a scale factor of ×2 t analyze the
stability of our training scheme. Fig. S1 shows the average
performance of the following SR model after we train the
downsampler using LFL and ADL, across five different
kernel configurations on the synthetic DIV2K dataset. Even
in the unsupervised learning framework, the SR model with
our LFL and ADL schemes performs consistently with a
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Fig. S1. Stability analysis of the proposed methods. We visualize
the average performance of the baseline EDSR ×2 model and stan-
dard deviation from five runs on each downsampling kernel. Notably,
ADL consistently outperforms LFL in all synthetic downsampling kernel
configurations.
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Fig. S2. Our CNN architectures. CK in the navy box denotes a K×K
convolutional layer, e.g., C5 for 5 × 5. For a sequence of the convo-
lutional, instance normalization [61], and ReLU (or LeakyReLU [58])
activation layers, we use the term CK + I + R (or L) for simplicity. The
green block in (a) incorporates a shortcut connection wrapping around
the CK + I + R sequence. We note that n refers to the number of
output channels, and s describes the stride of the convolutional layer
with a default value of 1, respectively.

small variation. Since the SR model performs stably across
different experimental configurations, we report the result
from one single run in the other sections.

S4 DETAILED COMPARISON WITH KERNELGAN
Table 4 in our main manuscript shows that the proposed
ADL + EDSR outperforms the KernelGAN + ZSSR combi-
nation by a significant margin even when only one LR image
is available for the training. In this section, we use multiple
images to train KernelGAN to demonstrate the advantage of
our method when large-scale unpaired images are available.
Table S4 shows extensive experimental results regarding
different training datasets of the KernelGAN. We note that
ZSSR is used to reconstruct ISR following KernelGAN by
default unless mentioned otherwise.

First, in Cases 1 and 2, we modify KernelGAN to use
100 validation LR images as a training dataset and pre-
dict a shared downsampling kernel rather than calculate
it for each image. This configuration demonstrates how
KernelGAN operates on large-scale data. Using the esti-
mated kernel, ZSSR is applied to each image independently.
Compared to the original KernelGAN + ZSSR configura-
tion, i.e., Case 0, using more images for kernel estimation
has demonstrated inconsistent performance variations on
synthetic kernel experiments k0 ∼ k4 in Case 1. For the
kernels k2 and k3, using more data has brought noticeable
performance improvements. However, with the kernels k0,
k1, and k4, using a single image yields better results.

The capacity of ZSSR is relatively smaller than recent
state-of-the-art methods, which may limit the performance
of the KernelGAN + ZSSR combination. Specifically, the
model has only 0.2M parameters and uses a single image
for training. Therefore, we introduce a larger EDSR-baseline
model as an SR backbone network with 400 training samples
in Case 2. Similar to the proposed LFL and ADL experi-
ments in our main manuscript, we synthesize 400 LR im-
ages from DIV2K ‘0001.png’∼‘0400.png’ using the estimated
kernel from the KernelGAN model. The following EDSR is
then trained on the synthetic LR-HR pairs. However, the
final SR performance decreases, while EDSR-baseline has a
larger capacity than ZSSR. Unlike our ADL which brings
additional performance gains with a larger SR backbone
(see ADL + EDSR and ADL + RRDB in Table 4), such
behavior demonstrates that better fitting to the kernel from
KernelGAN does not guarantee higher SR performance.

In Cases 3 and 4, we adopt the same dataset configu-
ration as the proposed LFL and ADL, i.e., 400 HR images
with unpaired 400 LR samples, when training KernelGAN.
Therefore, the only difference between our and KernelGAN
algorithms is model architectures (nonlinear CNN vs. deep
linear generator) and loss functions (adaptive downsam-
pling loss vs. kernel constraints). We first estimate the
shared kernel k by feeding IHR to the deep linear gener-
ator, and the discriminator is optimized to distinguish the
output of the downsampling model and real LR images ILR
synthesized by a ground-truth kernel ki. In Case 3, ZSSR
is applied to ‘0801.png’∼‘0900.png’ independently using a
single shared kernel. In Case 4, we train EDSR similar to
Case 2. We note that the only difference between Cases 1,
2, and Cases 3, 4 is a training dataset for the generator, i.e.,
downsampling model in KernelGAN.

To summarize, our ADL + EDSR or ADL + RRDB for-
mulation show consistently better performance compared to
KernelGAN regardless of the number of training data and
model capacity.

S5 NETWORK ARCHITECTURE

Fig. S2 illustrates CNN architectures we use throughout our
main manuscript. The downsampling network adopts the
residual connections [65] and instance normalization [61]
strategy for easier optimization. A global residual connec-
tion [26] with 2 × 2 average pooling operation is also
introduced to provide a stable starting point. We note that
the 2× 2 average pooling in Figure S2(a) does not operate as
a restrictive prior which instabilizes the adversarial training
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TABLE S4
Ablation study on using more data for the KernelGAN method.

HR images correspond to inputs of the ILR generator, i.e., the deep linear generator for KernelGAN experiments and our downsampling network
for the ADL configuration, while LR images are real samples for the discriminator network. We note that Case 0 and ADL correspond to Table 4 in
our main manuscript. EDSR denotes a baseline version that has 1.4M parameters. All evaluations are done using DIV2K ‘0801.png’∼‘0900.png.’

Case Dataset for the ILR Generator SR model PSNR↑(dB) for ×2 SR
HR image(s) LR image(s) k0 k1 k2 k3 k4

1 ‘0801’∼‘0900’ ZSSR 21.54 26.41 30.55 31.18 27.68
2 EDSR 16.87 18.55 29.95 31.08 23.28

3 ‘0001’∼‘0400’ ‘0401’∼‘0800’ ZSSR 20.91 26.83 29.97 28.46 27.99
4 EDSR 16.11 20.35 29.26 24.85 19.68

0 ILR ILR ZSSR 22.32 26.42 30.44 29.10 29.12

ADL ‘0001’∼‘0400’ ‘0401’∼‘0800’ EDSR 34.07 33.68 32.51 32.08 32.05

objective, since it does not force the output IDown to be
a specific function of the input IHR. Unlike the Kernel-
GAN [19] model, our downsampling CNN incorporates
nonlinear ReLU activations and thus can learn a more
generalized function. Our discriminator network is fully
convolutional [60] and returns a 2 × 2 probability map
from a 64× 64 input patch. Both of the downsampling and
discriminator CNNs are initialized with weights of random
Gaussian N

(
0, 0.022

)
.

S6 DETAILS ABOUT THE HYPERPARAMETERS

We present detailed hyperparameters and experimental con-
figurations that are not described in our main manuscript. In
the downsampling task, i.e., Algorithm 1 and (2) in our main
manuscript, we set the learning rate of η of downsampling
and discriminator CNNs D and F to 5 × 10−5. For each
iteration, we use 32 samples of patch size 128 × 128 as an
input batch and generate LR images of 64× 64. To train SR
models, we use a batch size of 16 with 48×48 input images.
The learning rate is set to 10−4, similar to conventional
approaches for deep image super-resolution [6], [9], [10].
The only differences are that we reduce the learning rate
by half for every 50 epochs and our baseline EDSR [6]
model is trained for 200 epochs, not 300, as validation
performance does not change after then. In all experiments,
pixel values are normalized from [0, 255] to [−1, 1]. We
adopt the ADAM [66] optimizer with (β1, β2) = (0.9, 0.999)
and ε = 10−8 for all learnable parameters. It takes about 15
hours to learn the proposed downsampler with a single RTX
2080 Ti GPU on the synthetic DIV2K dataset. The learning
time reduces to about 4 hours on the RealSR-V3 dataset as
it contains fewer HR and LR samples.

S7 ADDITIONAL QUALITATIVE COMPARISONS

We present more qualitative SR results in Figure S3, S4, and
S5. While the IKC [17] model also reconstructs clean and
sharp results for some specific synthetic cases, e.g., k1 and
k2, our combination of the ADL + RRDB [8] generalizes
well with a fixed hyperparameter configuration, regardless
of synthetic or realistic inputs. As described in our main
manuscript, more qualitative results can be found from our
project page: https://cv.snu.ac.kr/research/ADL.

https://cv.snu.ac.kr/research/ADL
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(a) ILR (Input) (b) RRDB [8] (c) IKC [17] (d) [19] + [20] (e) ADL + [8] (f) Oracle (g) IHR (GT)

Fig. S3. Additional qualitative ×4 SR results on the synthetic DIV2K [7] dataset. From the top, patches are cropped from the DIV2K ‘0806.png
(k1),’ ‘0825.png (k1),’ ‘0865.png (k2),’ ‘0807.png (k2),’ ‘0869.png (k3),’ ‘0884.png (k3),’ ‘0830.png (k4),’ and ‘0855.png (k4),’ respectively, where LR
images are synthesized using corresponding downsampling kernels in the parenthesis (·).
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(a) ILR (Input) (b) RRDB [8] (c) IKC [17] (d) [19] + [20] (e) ADL + [8] (f) Oracle (g) IHR (GT)

Fig. S4. Additional qualitative ×4 SR results on the RealSR-V3 [14] dataset. From the top, patches are cropped from ‘Canon/001.png,’
‘Canon/003.png,’ ‘Canon/022.png,’ ‘Canon/033.png,’ ‘Nikon/004.png,’ ‘Nikon/041.png,’ ‘Nikon/049.png,’ and ‘Nikon/050.png,’ respectively. Our ap-
proach (ADL + RRDB [8]) produces the least upsampling noise and artifacts in output images.
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(a) ILR (Input) (b) RRDB [8] (c) IKC [17] (d) [19] + [20] (e) ADL + RRDB [8] (f) ADL +P
Fig. S5. Additional Qualitative ×4 SR results on the DPED [63] dataset. From the top, patches are cropped from the ‘DPED-val ’ ‘14.png,’
‘36.png,’ ‘45.png,’ ‘58.png (1),’ ‘58.png (2),’ ‘84.png,’ and ‘96.png’ respectively. We note that P refers to the perceptual RRDB model trained with
(9) in our main manuscript. Compared to the other methods, our approaches (ADL + RRDB and ADL + P) reconstruct sharper edges and detailed
structures from given real-world LR images.


