
Research Archive

Citation for published version:

M. Webster, et al., “Toward Reliable Autonomous Robotic 
Assistants Through Formal Verification: A Case Study”, IEEE 

Transactions on Human-Machine Systems, Vol. 46(2), May 

2015.

DOI:

10.1109/THMS.2015.2425139

Document Version:

This is the Published Version.

Copyright and Reuse: 

Copyright © 2016, IEEE 

This is an Open Access article distributed in accordance with 

the terms of the Creative Commons Attribution (CC BY 3.0) 

license, which permits others to copy, distribute, remix, adapt 

and build upon this work, for commercial use, provided the 

original work is properly cited. See: 

https://creativecommons.org/licenses/by/3.0/

Enquiries

If you believe this document infringes copyright, please contact the 

Research & Scholarly Communications Team at rsc@herts.ac.uk

https://doi.org/10.1109/THMS.2015.2425139
https://creativecommons.org/licenses/by/3.0/
mailto:rsc@herts.ac.uk


186 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 46, NO. 2, APRIL 2016

Toward Reliable Autonomous Robotic Assistants

Through Formal Verification: A Case Study
Matt Webster, Clare Dixon, Michael Fisher, Maha Salem, Joe Saunders, Kheng Lee Koay,

Kerstin Dautenhahn, Senior Member, IEEE, and Joan Saez-Pons

Abstract—It is essential for robots working in close proximity to
people to be both safe and trustworthy. We present a case study on
formal verification for a high-level planner/scheduler for the Care-
O-bot, an autonomous personal robotic assistant. We describe how
a model of the Care-O-bot and its environment was developed us-
ing Brahms, a multiagent workflow language. Formal verification
was then carried out by automatically translating this model to the
input language of an existing model checker. Four sample proper-
ties based on system requirements were verified. We then refined
the environment model three times to increase its accuracy and the
persuasiveness of the formal verification results. The first refine-
ment uses a user activity log based on real-life experiments, but is
deterministic. The second refinement uses the activities from the
user activity log nondeterministically. The third refinement uses
“conjoined activities” based on an observation that many user ac-
tivities can overlap. The four samples properties were verified for
each refinement of the environment model. Finally, we discuss the
approach of environment model refinement with respect to this
case study.

Index Terms—Autonomous systems, formal verification,
human–robot teams, model checking, robotics.

I. INTRODUCTION

R
OBOTIC assistants are likely to be used for a variety

of applications including personal healthcare, exploration

within remote environments, and manufacturing. These robots

will operate in close proximity to their human operators and,

therefore, must be safe and trustworthy in their operations. One

of the aims of the EPSRC-funded Trustworthy Robotic Assis-

tants (TRA) project1 is to develop tools and techniques for the

verification and validation of robotic assistants. The TRA project

uses three different methodologies for this: formal verification,

simulation-based testing, and end-user validation. In this paper,

we present a case study on the application of formal verification

to the Care-O-bot: an autonomous robotic assistant deployed at

the University of Hertfordshire’s Robot House (see Fig. 1).
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Fig. 1. Care-O-bot robotic assistant operating in the University of Hertford-
shire’s Robot House.

Verification is the process of assessing whether a system

meets its requirements; formal verification is the application

of formal (i.e., mathematical) methods to the verification of

systems. The formal verification approach used in this paper is

based on model checking [1], in which a model of a program or

process is constructed. This model is typically nondeterministic

so that each “run” (or simulation) of the model can be different

from the last. A program called a model checker exhaustively an-

alyzes all possible executions of the model in order to establish

that some property, usually derived from system requirements,

holds. Therefore, it is possible, for example, to use a model

checker to formally verify that in every execution of a given

program, the program will always reach a desirable situation.

In other words, we can formally verify that a given requirement

holds.

The model checker used for this case study, SPIN [2], has been

publicly available since 1991 and has been used for the formal

verification of a wide variety of systems, including flood con-

trol barriers, telecommunications switches, and several space

missions [3]. SPIN, which stands for Simple PROMELA Inter-

preter, verifies programs and processes written in PROMELA,

the Process Meta-Language. Rather than writing in PROMELA

directly, we utilize an intelligent agent modeling language and

simulation environment called Brahms [4] to develop models

of the Robot House and Care-O-bot. Brahms can be used to

develop detailed models of systems with multiple interacting

agents and has been used to model human–robot teams [5]

and complex workflows [4] for space exploration. We trans-

late the Brahms models automatically into PROMELA using

the BrahmsToPromela translator software [6] based on a for-

mal semantics for Brahms [7]. The autonomous control sys-

tems used in the Robot House were written at a similar level

of abstraction to constructs in the Brahms modeling language.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 2. Plan view of the ground floor of the University of Hertfordshire Robot
House. Numbered boxes show the locations of sensors.

Therefore, encoding these autonomous systems using Brahms

reduced modeling errors due to changes in abstraction level.

Brahms is a rich language for specifying the behavior of

multiagent systems and includes features such as inheritance,

geography, message passing, and probabilities. While some of

the features were necessary in modeling the Robot House (e.g.,

message passing), others were useful but not strictly necessary

(e.g., inheritance). It would have been possible to use a lower

level language to model the Robot House environment directly,

e.g., PROMELA, and therefore avoid the additional step needed

to translate from Brahms to PROMELA. However, as Brahms

workframes closely resembled the IF–THEN rules used in the

autonomous control systems within the Robot House, model-

ing these rules using Brahms could be achieved with limited

effort. In addition, the BrahmsToPromela translator had already

been developed, and therefore, the quickest way to obtain a

PROMELA model from the autonomous control system code

was to first encode the IF–THEN rules as Brahms workframes

and then translate into PROMELA automatically using Brahm-

sToPromela.

In the remainder of this section, we examine the Care-O-

bot and the Robot House in more detail and compare our ap-

proach to related work. In Section II, we describe the way in

which a model of the Care-O-bot’s high-level planner/scheduler

for autonomous decision-making system was developed using

Brahms. Then, in Section III, we show how that model was for-

mally verified using the SPIN model checker, and in Section IV,

we improve the environment models used by the model checker.

Finally, in Section V, we provide a concluding discussion.

A. Robot House and Care-O-bot

The University of Hertfordshire’s Robot House is a suburban

three-bedroom house near Hatfield, U.K. (see Figs. 1 and 2).

In addition to house furnishings and décor, the Robot House

is equipped with more than 50 sensors that provide real-time

episodic information on the state of the house and the individ-

uals occupying it. These sensors range across electrical (e.g.,

refrigerator door open/closed sensor), furniture (e.g., cupboard

drawers open), services (e.g., detect when toilet flush is being

used), and pressure (e.g., chair sensors to detect when someone

is seated) devices [8], [9].

The Robot House hosts a number of different robots that are

used to conduct human–robot interaction experiments (see, e.g.,

[10]). One of these robots is the commercially available Care-

O-bot robot manufactured by Fraunhofer IPA [11]. It has been

specifically developed as a mobile robotic assistant to support

people in domestic environments and is based on the concept

of a “robot butler” [12]. The Care-O-bot robot is equipped with

a 7-degree-of-freedom manipulator arm extended with a three-

finger gripper and also comprises an articulated torso, stereo

sensors serving as “eyes,” LED lights, and a tray. Accordingly,

the robot’s sensors include its current location, the state of the

arm, torso, eyes, and tray. By means of a text-to-speech synthe-

sizing module, the robot is also capable of expressing given text

as audio output.

The robot’s software is based on the robot operating system

(ROS) and a number of ROS packages (e.g., drivers, navigation,

and simulation software) are available online2. For example, to

navigate to any designated location within the house, the robot

uses the ROS navigation package2 in combination with its laser

range-finders to perform self-localization, map updating, path

planning, and obstacle avoidance in real time while navigating

along the planned route.

High-level commands are sent to the robot via the ROS script

server mechanism, which are then interpreted into low-level

commands by the robot’s software. For example, these high-

level commands can take the form “raise tray,” “move to location

x,” “grab object on tray,” “say hello,” etc.

The Care-O-bot’s high-level decision making is determined

by rules (stored in a MySQL database) of the form:

Guard
==
RobotAction*

Here, Guard is a sequence of propositional statements that

are either true or false, linked by Boolean AND (&) and OR

(|) operations, while RobotAction* is a sequence of actions

which the Care-O-bot will perform only if the Guard is true. In

practice, the Guard is implemented as a set of SQL queries and

the RobotActions are implemented through the ROS-based

cob_script_server package, which provides a simple in-

terface to operate Care-O-bot. For example, take the following

rule which lowers the Care-O-bot’s tray:

SELECT * FROM Sensors WHERE sensorId=500
AND value = 1 &

SELECT * FROM Sensors WHERE sensorId=504
AND value = 1

==
light,0,yellow
tray,0,down,,wait
light,0,white,,wait
cond,0,500,0
cond,0,501,1

2http://wiki.ros.org/care-o-bot, http://wiki.ros.org/navigation
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The SQL table called Sensors stores the values of all sen-

sors in the Robot House. One row at most is stored in the Sensor

table for each sensorId/value pair so that the SELECT

queries above will return exactly one value if the proposition

they represent is true, and false otherwise. (The word “sen-

sors” is used loosely and includes variables, which describe the

Robot House’s knowledge about the state of the house, e.g., the

“trayRaised” variable.)

In the rule above, the guard checks whether variable 500

(trayRaised) and 504 (trayEmpty) are set to 1 (true) or not by

performing the SQL SELECT queries. If the guard is true, the

Care-O-bot will change the light color to yellow (indicating that

the robot is in motion), set the tray to the lowered position,

wait for completion, set the light to white (indicating that the

robot has stopped moving), and wait for completion. Finally,

the variables 500 (trayRaised) and 501 (trayLowered) are set

to “false” and “true,” respectively. Note that twice the robot

waits for short periods of time (around one second). The wait
command is used to prevent the robot’s actions from executing

at the same time, e.g., to prevent the light being set to white

(indicating to the user that the robot has stopped moving) before

the robot actually stops moving.

The Care-O-bot’s rule database is composed of multiple rules

for determining a variety of autonomous behaviors, including

checking and answering the front doorbell and reminding a

person to take medication. The full Robot House rule database

includes a set of 31 default rules and can be obtained from the

EU ACCOMPANY project’s Git repository.3

B. Related Work

Stocker et al. [6] describe the development of the BrahmsTo-

Promela software tool, which is utilized in this study to auto-

matically translate a model of the Care-O-bot written in Brahms

into a PROMELA specification which can then be formally ver-

ified using the SPIN model checker. The authors examine an

assisted living scenario similar to the Robot House system tack-

led in this case study. However, the work here expands on the

work of Stocker et al. by modeling a real-life robotic system and

scenario where the rules are directly derived from actual code

used in practice. Additionally, this work has used user activity

logs from real-world experiments within the Robot House in

order to increase the verisimilitude of the person agent within

the model.

Saunders et al. [8] and Duque et al. [9] described the Uni-

versity of Hertfordshire Care-O-bot and Robot House systems,

which are used as a basis for this work. More information on

the development of these systems can be found on the ACCOM-

PANY project website.4

Formal verification has been used before for robotic systems.

For example, Mohammed et al. [13] used hybrid automata and

hybrid statecharts for formal modeling and verification of mul-

tirobot systems, Cowley and Taylor [14] used dependent-type

theory and linear logic for the formal verification of assembly

robots, and Kouskoulas et al. [15] formally verified control al-

gorithms for surgical robots. However, very little work has been

3https://github.com/uh-adapsys/accompany
4http://accompanyproject.eu

conducted to formally verify the safety and trustworthiness of

robotic home companions. This is where our work aims to com-

plement existing research in the area of formal verification of

autonomous and robotic systems.

II. MODELING THE CARE-O-BOT USING BRAHMS

The 31 default rules are similar in structure to common con-

structs within the Brahms multiagent workflow programming

language. The first step in modeling was to convert the full

set of Care-O-bot rules into a more convenient IF–THEN rule

representation. For example, the above rule was rewritten as

IF tray_is_raised AND tray_is_empty
THEN set_light(yellow)

move_tray(lowered_position)
wait()
set_light(white)
wait()
set(tray_is_raised,false)
set(tray_is_lowered,true)

Once translated into this format, these rules could then be

straightforwardly translated into Brahms. A key concept in

Brahms is the “workframe,” which specifies a sequence of

things to be done when a given condition holds. The Robot

House rules were translated into Brahms workframes within

the Care-O-bot agent, with the IF a THEN b rules translated

into if a then do {b} construct in Brahms. For example,

the rule above was translated into a Brahms workframe called

f_lowerTray:

workframe wf_lowerTray {
repeat: true;
priority: 10;
when(knownval(current.trayIsRaised
= true) and
knownval(current.trayIsEmpty = true))

do{
conclude((current.lightColour =

current.colourYellow));
lowerTray();
wait();
conclude((current.lightColour =

current.colourWhite));
wait();
conclude((current.trayIsRaised
= false));
conclude((current.trayIsLowered
= true));

}

This workframe is set to “repeat,” meaning that it can be used

more than once by the agent. Multiple workframes can be el-

igible for execution by the Brahms interpreter at the same time;

therefore, the priority sets the importance of the workframe

relative to other workframes (with larger numbers being more

important). If a then do {b} construct states that when

some conditions are true, in this case trayIsRaised and

trayIsEmpty, the agent should do the actions that follow. In

the action list, the conclude() construct is used to determine
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when beliefs should be updated within the Brahms agent. The

lowerTray() and wait() statements are programmer-

defined primitive actions whose function is to denote that

something has happened and has a certain duration, e.g.:

primitive_activity wait()
{ max_duration: 1}
In general, the Robot House rules were translated into Brahms

workframes on a one-to-one basis. However, in some cases, it

was necessary to use more than one Brahms workframe for a

rule. This generally happened when a rule contained interac-

tions with the user via the GUI. For instance, when the per-

son sits down and watches television (detected via sensors in

the sofa seats and the television power outlet), the Care-O-

bot approaches the person and asks whether he or she would

like to watch the television together. The person has three

options, which are presented by the Robot House via a GUI

on a tablet computer: to tell the Care-O-bot to watch televi-

sion, to return to its charging station, or to continue with its

current task. This behavior is modeled using a Brahms work-

frame within the Care-O-bot agent, in which these options are

communicated to the person using the announceQuery-
ToUser_ThreeOptions() activity:

workframe wf_watchTV {
repeat: true;
priority: 10;
when(knownval(robotHouse.sofaSeat
Occupied = true) and
knownval(robotHouse.televisionWattage
> 10) and ...)
do{
conclude((current.queryUserOption1 =

current.activityWatchTV));
conclude((current.queryUserOption2 =

current.activityReturnHome));
conclude((current.queryUserOption3 =

current.activityContinue));
conclude((current.userQueried = true));
conclude((current.queryUser_
ThreeOptions = true));
announceQuery ToUser_ThreeOptions();
conclude((current.askedToWatchTV
= true));

}

The “person” agent (simulating simple human behavior) then

selects a response and sends it back to the Care-O-bot model.

In this example, the person agent was set to always choose

to watch TV with the Care-O-bot when asked by the Care-O-

bot. The following Care-O-bot workframe is executed when the

person decides to watch TV:

workframe wf_optionSelectedWatchTV {
repeat: true;
priority: 10;
when(knownval(Person.userRespondedToQuery
= true) and
knownval(Person.queryResponse =

current.activityWatchTV))
do{

conclude((Person.userRespondedToQuery
= false));
conclude((Person.guiSetWatchTV
= true));
conclude((current.userQueried
= false));

}

Here, the guard uses the Care-O-bot’s belief about the per-

son agent’s belief about whether the person has responded

to the query. (While the belief is referred to as Per-
son.userRespondedToQuery, it concerns the Care-O-bot

agent’s belief about the person agent’s belief as this workframe

is part of the Care-O-bot agent. For more information on belief

handling in Brahms, see [16].). If this belief is set to “true,” and

the person has responded to the query, then the workframe will

execute. Note that later in the workframe the Care-O-bot agent

sets this belief to false so that the next time the person agent

responds to a query; this workframe will be able to execute

correctly.

A. Modeling a Scenario

After translating the Robot House rules into Brahms, it was

necessary to set up a model of the Robot House environment,

or scenario. The scenario determines the range of possibilities

within the Robot House environment consisting primarily of the

Care-O-bot, the person being assisted by Care-O-bot, and the

Robot House. For example, the scenario consists of a model of

the person and the Robot House, where each is defined as an

agent within Brahms. Another agent, the “Campanile Clock,”

measures the passage of time in the model and keeps the other

agents updated with the current time.

Information within the Brahms model is stored as agent be-

liefs, which can be public or private. Agents can reason about

their own beliefs as well as the beliefs of other agents. For ex-

ample, the Campanile Clock agent maintains the current time

within the model as a public belief and periodically announces

the time to the other agents. Therefore, the Campanile Clock’s

time variable can be used by all agents to refer to the current

time within the model. (This is useful when defining proper-

ties for formal verification.) Other information in the model is

held by the relevant agent. For example, the Robot House agent

maintains sensor data for Robot House, the Care-O-bot agent

maintains information about the location and state of the Care-

O-bot, and the Person agent maintains the location and state of

the person occupying the Robot House.

The layout of the Robot House is encoded using a geogra-

phy within Brahms, providing an hierarchical description of the

different places that the agent can occupy. For example:

areadef House extends BaseAreaDef { }
areadef Room extends House { }
areadef areaOfInterest extends Room { }
area LivingRoom
instanceof Room partof House { }
area LivingRoomTV instanceof areaOf
Interest
partof LivingRoom { }
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This Brahms geography states that there is a type of area

called House. House is an extension of a built-in Brahms

class called BaseAreaDef. Another area type, Room, extends

the House class, and areaOfInterest extends Room. The

LivingRoom is an instance of the Room class, and is part

of the House, and the LivingRoomTV is an instance of

areaOfInterest and is part of the LivingRoom. Note

that theHouse area definition is different from the Robot House

agent described above; the former describes the layout of the

robot house, while the latter encapsulates the data from the

Robot House’s sensors together with functionality for commu-

nicating sensor state with other agents.

Our scenario lasts from noon to 9 P.M. At any given point in

the day, the person may choose to sit and watch TV, move into

the living room area, or move into the kitchen (e.g., to prepare

food to eat), or may choose to send the Care-O-bot into the

kitchen or the living room. At 5 P.M., the person needs to take

medication.

The person can act nondeterministically, that is, behave in a

manner which is unpredictable within the model of the scenario.

This nondeterminism is implemented in Brahms as a set of five

workframes within the person agent, all of which will fire at a

given point. Each workframe has a priority. The highest priority

workframe is executed, and a belief is modified within the agent

(using the “conclude” keyword in Brahms). This belief is mod-

ified with a level of certainty (known as the belief-certainty),

which states that the belief will be updated with a given proba-

bility. If the belief is updated, this information is communicated

to the Care-O-bot agent or the Robot House agent (depending

on the workframe), which causes these agents to know that the

person has done something, e.g., sent the Robot to the kitchen

via the GUI, or that the person has moved into the living room.

If the belief is not updated, then the next workframe fires. It

is possible for none of the five workframes to update a belief

within the person agent, and this special case models the ability

of the person to do nothing.

Based on this simple scenario, we can establish a number

of high-level requirements for the Care-O-bot. For example, the

Care-O-bot should remind the person to take medication at 5 P.M.

Another requirement is that the Care-O-bot should go into the

living room if it is told to go into the living room by the person.

In the next section, we formalize these kinds of requirements

using temporal logic and verify them using the SPIN model

checker.

III. FORMAL VERIFICATION OF BRAHMS MODELS USING

BrahmsToPromela AND SPIN

Brahms refers to a multiagent workflow specification lan-

guage, as well as a software package consisting of an agent

simulation toolkit and an integrated development environment.

The Brahms software does not come with formal verification

tools built-in; for formal verification, we used the BrahmsTo-

Promela translator [6]. BrahmsToPromela allows models writ-

ten using a subset of Brahms to be automatically translated into

PROMELA, the process metalanguage used by the SPIN model

checker. Once translated, SPIN can be used for the automatic

formal verification of the Brahms model with respect to partic-

ular requirement. In our case, we formalize these requirements

using linear temporal logic, which allows the formalization of

concepts relating to time, e.g., “now and at all points in the fu-

ture” (via the � operator), “now or at some point in the future”

( ♦) and “in the next state” (©) [17]. This enables formalisation

of safety requirements (something bad never happens, �¬bad),

liveness properties (e.g., something good eventually happens,

♦good) and fairness properties (e.g., if one thing occurs in-

finitely often so does another, e.g., � ♦send ⇒ � ♦receive).

Using BrahmsToPromela extends SPIN’s property speci-

fication language with a belief operator, “B.” This is pa-

rameterized by the agent that holds the belief—therefore,

BCare-O-botx means that the Care-O-bot believes x is true.

Beliefs in Brahms are translated into Boolean variable arrays in

PROMELA. For example, BCare-O-botx is modeled by “bool
CareOBot_x[n],” where n is the number of agents and ob-

jects within the Brahms simulation. Beliefs are stored as arrays

as Brahms allows agents to (dis)believe other agents’ beliefs;

therefore, it is necessary to use an array to store whether or not

each agent believes a particular agent’s belief. Using this frame-

work, we model BCare-O-bot(BPersonx) (i.e., whether the

Care-O-bot believes that the Person believes x) as the Boolean

array index “Person_x[cob]” where cob is a constant that

refers to the Care-O-bot. Similarly, BPersonx is modeled as

“Person_x[person].”

All of the properties in this paper use beliefs rather than

facts about the environment. Beliefs may or may not hold, i.e.,

beliefs can be incorrect. However, in this system, we assume

complete sensor accuracy so that if x is true, then Bax is true

for all agents a.

To explore possibilities, the following sample requirements

were translated and their formalized properties verified using

SPIN for the Brahms model.

1) It is always the case that if the Care-O-bot believes that

the person has told it to move into the kitchen, then it will

eventually move into the kitchen

�

[

BCare−O−bot(BPersonguiGoToKitchen)

=⇒ ♦BCare−O−bot(location = Kitchen)

]

.

2) It is always the case that if the Care-O-bot believes that

the person has told it to move to the sofa in the living

room, then it will eventually move there

�

[

BCare−O−bot(BPersonguiGoToSofa)

=⇒ ♦BCare−O−bot(location = LivingRoomSofa)

]

.

3) It is always the case that if the Robot House believes

that the sofa seat has been occupied for at least 1 h,5

and if the Robot House believes that the television power

consumption is higher than 10 W, and if the Care-O-bot

believes that it has not yet asked the person if he or she

wants to watch television, then eventually, the Care-O-bot

will move to the living room sofa and ask the person if he

5This ensures that the Care-O-bot will only ask the person if he or she wants
to watch television once every hour at most.



WEBSTER et al.: TOWARD RELIABLE AUTONOMOUS ROBOTIC ASSISTANTS THROUGH FORMAL VERIFICATION 191

TABLE I
FORMAL VERIFICATION OF FOUR PROPERTIES FOR THE ORIGINAL MODEL

Prop. States Depth Memory (MB) Time (s)

1 302 160 74 819 399 9.9

2 302 160 74 819 399 9.7

3 576 317 81 341 410 18.0

4 302 160 74 819 399 9.7

or she wants to watch the television

�

⎡

⎢

⎢

⎢

⎢

⎢

⎣

BRobotHousesofaOccupied1Hour ∧ BRobotHousetvPower > 10

∧BCare-O-bot¬askedToWatchTV

=⇒ ♦

(

BCare-O-botlocation = LivingRoomSofa∧

BCare-O-botaskedToWatchTV

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

4) It is always the case that if the time is 5 P.M., then the

Care-O-bot will believe that the medicine is due

�

[

BCampanile Clocktime = 5pm ⇒

♦BCare-O-botmedicineDue

]

.

The first two requirements are derived from a higher level re-

quirement that, in general, the Care-O-bot should follow instruc-

tions given to it by the person. The third property is important

for maintaining the social activity of the person within the Robot

House, who is temporarily under the care of the Care-O-bot. The

fourth property is derived from a higher level requirement that

the Care-O-bot should remind the person to take medication at

the correct time.

Table I summarizes the verification results.6 These results

were obtained using an eight-core Intel Core i7-3720QM CPU

(2.60 GHz) laptop with 16 GB of memory running Ubuntu Linux

12.04 LTS. In each case, the same PROMELA model was used;

any difference in the number of states or time taken is due to

the complexity of the property being verified and the resulting

automaton used by the model checker. For requirements 1, 2,

and 4, the resources used were almost identical, and this is to

be expected as these properties were similar in structure and

produced similar automata. Property 3 produced a slightly more

complex automaton requiring more resources to verify.

IV. IMPROVING THE ENVIRONMENT MODEL

In the previous section, we were able to formally verify the

high-level decision making system within the Care-O-bot. This

provides a degree of assurance that the Care-O-bot will satisfy

the requirements/properties against which it has been verified.

However, this degree of assurance is dependent on the quality of

the model of the Care-O-bot’s environment. The environment

model determines the behavior of all agents beyond the Care-

O-bot, including any people within the Robot House, the Robot

House, and the sensors within the Robot House. In the case of

6The computational resources used are less than those reported in our earlier
paper [18] due to the use of hash compression in the SPIN model checker. For
consistency, hash compression was used throughout this paper.

the Care-O-bot, which has a deterministic control system, the

environment model is the sole source of nondeterminism within

the model and generates the state space, which is then model

checked.

However, the environment model used in the Brahms model is

simple. It describes a scenario that lasts from 12 P.M. to 9 P.M. In

each hour, the person agent can choose from one of six possible

options: sit down and watch TV, move into the living room area,

move into the kitchen, send the Care-O-bot into the kitchen,

send the Care-O-bot to the living room, or do nothing. At 5 P.M.,

the person will need to take medication and is reminded to do

so by the Care-O-bot. Which one of the six possible options is

chosen by the person is nondeterministic, and during simulation

of the model the choice made is random.

In a real-world Robot House scenario, there are many more

things that could happen than in our environment model. The

person may go to bed, for example, or choose to leave the

house. The doorbell could ring, or another person could enter the

house.

In order to generate a more interesting environment model,

we used the activity recognition system in [9] to collect data

from an actual person living in the Robot House for a period

of four days. The person’s behavior was monitored by sensors

throughout the Robot House (see Fig. 2). There are a total of

59 sensors in the Robot House, which allow the house to be

monitored in a variety of ways. A real-time energy monitor-

ing system can detect the activation and deactivation of elec-

trical devices like refrigerators and kettles. A different sensor

network is able to monitor the movement of people through

the Robot House using reed sensors, temperature sensors, and

pressure mats. Via these sensors, it is possible to detect when

someone sits down on a chair, or opens the bedroom door, for

example [9].

One person occupied the house for approximately four days

and 11 h. Combinations of sensor outputs were used to deter-

mine the current activity of the person within the Robot House

during this time. For instance, if the “bed contact” sensor is

activated, then it was assumed that the In_Bed activity was

underway. In other words, the person must be in bed. Activities

can also be related to other activities. For example, if the ac-

tivity In_Bed is active, and the activity Lamp_on_Bedroom
has been deactivated for at least 5 s, then the activity Sleep-
ing_Bedroom is inferred. If the person is in bed and has just

turned the light off, then the person must be sleeping in the

bed.

The user activity log generated automatically in the Robot

House contained 569 different entries, each being a tuple con-

taining the activity name, whether the activity was beginning

(i.e., being activated) or finishing (i.e., being deactivated) and

the date/time. For example, the following state that the activity

In_Bed began at 11:03 P.M. on May 19, 2013 and finished at

5:25 A.M. on May 20, 2013:

In_Bed 1 2013-05-19 23:03:50
In_Bed 0 2013-05-20 05:25:03
The entries covered a range of activities, including

In_Bathroom, Toiletting, Preparing_Hot_Drink,

Actively_Watching_TV, and Water_Sink_ON.
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Three different approaches to modeling the person were taken

in light of the user activity log. They are as follows.

A. Deterministic Environment Model

In the deterministic environment model, the entries in the user

activity log were converted directly into Brahms workframes

without abstraction so that if an event occurred at a particular

time within the Robot House, then the same event occurs within

the Brahms model at exactly the same time. For example, take

the following entries in the activity log:

Preparing_Hot_Drink 1 2013-05-
20 09:07:06
Preparing_Food 1 2013-05-

20 09:07:06
Both activities start at the same time, 9:07:06 A.M. These

were translated into the following Brahms workframe within

the person agent:

workframe wf_36196 {
repeat: true;
priority: 100;
when(knownval(Campanile_Clock.

time = 36196 ) and known-
val(current.wf36196 = false))

do {
conclude((current.Preparing
HotDrink = true));
conclude((current.PreparingFood
= true));
conclude((current.wf36196
= true));

wait();
}

}
This workframe was set to repeat (although repetition would

not happen due to the way the workframe is defined) with pri-

ority 100, the same as all other workframes generated from

the activity log. The when statement says that when the cam-

panile clock time is set to 36 196,7 to set the person agent’s

beliefs about preparing a hot drink and preparing food to true,

and to set the belief wf36193 to true. A precondition of

this when statement is that wf36196 is false; setting it to

true prevents this workframe from executing again in the

future.

A custom Java application automated the process to translate

a comma-delimited input file containing the complete activity

log into a set of Brahms workframes of the form above. Brahms

agent belief declarations, such as PreparingFood, were also

generated by the Java application. Since all beliefs were de-

scribing the activity of the person within the Robot House,

these belief declarations were included in the Person agent’s

specification in Brahms.

The resulting Brahms file was 316 kB in size and contained

over 500 workframes in the person agent—including one for

each user activity log entry. This is larger than the earlier Brahms

7The clock time of 36 196 was based on 9:07:06 A.M. being 36 196 s after the
first entry in the activity log.

TABLE II
FORMAL VERIFICATION OF FOUR PROPERTIES FOR DETERMINISTIC

ENVIRONMENT MODEL

Prop. States Depth Memory (MB) Time (s)

1 114 501 229 001 1463 8.4

2 45 272 90 543 674 3.3

3 109 329 218 655 1394 8.1

4 51 009 102 017 742 3.6

model (which was ∼ 107 kB), and Brahms was able to execute

the model in 10 s on the same laptop used for model checking.

However, translating this Brahms model into SPIN resulted in

a model too large to be model checked. There were too many

mtype elements (symbolic names for constant values) within

the PROMELA model. (SPIN allows a maximum of 255 distinct

names within an mtype declaration.) The mtype elements are

used by the BrahmsToPromela translator to keep track of agent

states within the PROMELA model. One strategy was to see

whether it was possible to verify a fragment of the user activity

log instead.

A fragment corresponding to the first 21 h of user activ-

ity was the largest fragment that could formally be verified.

The Robot House model incorporating the deterministic envi-

ronment model was formally verified with respect to the four

properties given in Section III. Table II summarizes the time and

memory usage.

The model checker was able to formally verify these proper-

ties much more quickly (a minimum of 3.3 s compared to 9.7 s),

and with fewer states (a minimum of 45 272 compared with

302 160). This is to be expected, as the model is deterministic,

resulting in a much smaller state space.

From a model-checking perspective, the deterministic envi-

ronment model can be seen as a single run (or simulation) of a

nondeterministic model. However, this model is still interesting

from a formal verification perspective as it allows validation

of the robot’s autonomous control system as modeled within

Brahms and translated using BrahmsToPromela. For example,

we can observe the behavior of the real-world Care-O-bot over

the 21-h period contained in the user activity log, and check

whether properties 1–4 actually held in the real world. If they

did not, this would indicate that there was a problem with the

Brahms model and that redesign would be necessary. Further-

more, use of a deterministic model within a model checker

allows us to verify a formally defined property and, therefore,

provide a more rigorous result than simply executing a simula-

tion of the Brahms model and checking the output trace to see

whether the requirement corresponding to the formal property

has held.

B. Extended Nondeterministic Environment Model

One of the strongest aspects of model checking is to auto-

matically explore the state space of a nondeterministic model.

Within such a model, there are points at which a number of dif-

ferent things could happen. For example, a person may sit down,



WEBSTER et al.: TOWARD RELIABLE AUTONOMOUS ROBOTIC ASSISTANTS THROUGH FORMAL VERIFICATION 193

Fig. 3. Part of the UH Robot House user activity log for a 6-h period beginning at approximately 4 A.M. on Thursday May 23, 2013.

TABLE III
FORMAL VERIFICATION OF FOUR PROPERTIES FOR EXTENDED

NONDETERMINISTIC ENVIRONMENT MODEL

Prop. States Depth Memory (MB) Time (s)

1 1 122 836 113 519 1223 107

2 1 122 836 113 519 1223 104

3 1 300 161 113 519 1118 111

4 1 122 836 113.519 1223 104

watch TV, or prepare a meal. These nondeterministic choices

produce a branching state space, which typically grows expo-

nentially with the number of such choices. One job of a model

checker, therefore, is to check all the possible paths through this

state space in order to ensure that a particular property holds at

all points during the execution of the model. For example, in

Section III, we showed that the Care-O-bot will always remind

the person in the house to take their medication at 5 P.M. By

using a model checker, we know that this is always true in every

possible run through the model, and in every possible state, with

respect to the environment model used.

In order to improve the environment model in Section II-A,

another nondeterministic model was developed. This new model

operates in a similar manner: There are a number of possible

actions that the person can take, and the choice of which action

to take is nondeterministic. However, this environment model

is a significant improvement over the environment model in

Section II-A as it contains a higher number of possible actions.

In the environment model from Section II-A, there were only

six things the person could choose to do in a given time step.

Inspection of the user activity logs revealed that there were many

more than six things that the person did and these activities were

used as the basis for the new environment model.

A fragment of the user activity log can be seen in Fig. 3.

Each of the activities shown on the left-hand side of the figure

were modeled using Brahms. There were a total of 26 different

user activities from which the person agent could choose (22

activities shown in Fig. 3, and four user activities from the

environment model in Section II that were not duplicated in the

user activity log).

The multiagent version of the Robot House scenario, includ-

ing the extended nondeterministic environment model described

above, was model checked with respect to the four properties

given in Section III. No errors were found. The time and memory

requirements are summarized in Table III.

Increased nondeterminism in the environment model has

resulted in the use of more computational resources during

model checking. For example, the number of states required

has roughly tripled compared to the results in Table I. This is to

be expected as there are more activities available to the person

agent.

C. Nondeterministic Conjoined Activity Environment Model

Examination of the user activity log showed that a number of

activities overlap and were not mutually exclusive. (A number

of overlapping activities can also be seen in Fig. 3.) Consider

the following:

In_Bathroom 1 2013-05-20 05:25:46
Toiletting 1 2013-05-20 05:26:01
Toiletting 0 2013-05-20 05:26:56
In_Bathroom 0 2013-05-20 05:27:05
Here, the In_Bathroom activity begins, and a few seconds

later, the Toiletting activity begins and then ends. Shortly,

the In_Bathroom activity ends. Clearly, these two activities

have overlapped. We could describe what has happened with a

simple state diagram:
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none

↓

InBathroom

↓

InBathroom_Toiletting

↓

InBathroom

↓

none

Here, none denotes a state in which no activities are hap-

pening. In the next state, In_Bathroom is active, and in the

next state, InBathroom_Toiletting is happening. Next

In_Bathroom occurs again (as Toiletting has now fin-

ished), and finally, we return to the none state.

The nondeterministic model in Section IV-B is, therefore,

less accurate than we thought, as the user can select from 26

mutually exclusive activities, whereas in reality, these activities

are not mutually exclusive and may overlap. In order to improve

the accuracy of the environment model, we therefore needed to

account for overlapping activities. This was done by “conjoin-

ing” the activities in the way we did with the In_Bathroom
and Toiletting activities above: These overlapping activi-

ties can be converted into the mutually exclusive states none,

In_Bathroom, and InBathroom_Toiletting. In other

words, by conjoining the names of the currently occurring ac-

tivities, we can describe them as mutually exclusive states of the

form we had in the example in Section II-A.

For the conversion, a Java application was implemented. The

application reads in an activity log from a comma-delimited

input file. This is then converted into a data structure D, which

maps timestamps to sets of activities, which are active at that

time. For example, for the activity log excerpt above, D would

be

{ 2013− 05− 2005 : 25 : 46 �→ {InBathroom},

2013− 05− 2005 : 26 : 01 �→ {InBathroom, Toiletting},

2013− 05− 2005 : 26 : 56 �→ {InBathroom},

2013− 05− 2005 : 27 : 05 �→ ∅}

Each set in the range of D is converted into a string denot-

ing a conjoined activity so that {InBathroom, Toiletting}
becomes InBathroom Toiletting. The conversion is

performed deterministically so that each set maps to

a single conjoined activity string, with no possibility

of having, say, InBathroom Toiletting distinct from

Toiletting InBathroom. This set of strings is then used

to output Brahms workframes describing those conjoined

activities. For example, the SittingDiningArea, Hav-
ingMeal and MedicineTaken activities all overlap and

so were converted to the conjoined activity Sitting-
DiningArea_HavingMeal_MedicineTaken, in turn

translated into the following Brahms workframes:

workframe wf_SittingDiningArea_
HavingMeal_Medicine-Taken {

repeat: true;
priority: 25;

when(knownval(Campanile_Clock.time
< 5) and

knownval(current.doneSitting
DiningArea_-
HavingMeal_MedicineTaken
= false) and

knownval(current.considered
Sitting-DiningArea_
HavingMeal_MedicineTaken

= false))
do {

conclude((current.considered
SittingDiningArea-

_HavingMeal_MedicineTaken
= true));

conclude((current.goalDo
SittingDiningArea_-
HavingMeal_MedicineTaken
= true),bc:20);
wait();

}
workframe wf_doSittingDining

Area_HavingMeal_-
MedicineTaken {

repeat: true;
priority: 25;

when(knownval(current.goalDoSitting
DiningArea_-
HavingMeal_MedicineTaken

= true) and
knownval(current.doneSitting
DiningArea_-
HavingMeal_MedicineTaken
= false))

do {
conclude((current.doneSitting

DiningArea_-
HavingMeal_MedicineTaken
= true));

conclude((current.Sitting
DiningArea = true));
conclude((current.HavingMeal
= true));

conclude((current.MedicineTaken
= true));
wait();

}
The first workframe says that if the time is be-

fore 5 P.M., and the conjoined activity Sitting-
DiningArea_HavingMeal_MedicineTaken has not

been done, and if this conjoined activity has not yet been

“considered,” then consider it by making a belief update with

certainty 20% (bc:20). Therefore, 20% of the time this up-

date is successful, which will cause the next workframe to

execute and update the beliefs of the person agent to reflect

that the activities SittingDiningArea, HavingMeal and

MedicineTaken are now taking place. 80% of the time this
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TABLE IV
FORMAL VERIFICATION OF FOUR PROPERTIES FOR NONDETERMINISTIC

CONJOINED ACTIVITY ENVIRONMENT MODEL

Prop. States Depth Memory (MB) Time (s)

1 4 470 619 337 437 5354 872

2 4 248 201 373 391 5938 871

3 4 587 998 384 157 6190 859

4 4 430 294 372 549 5926 848

belief update is not successful, which does not trigger the sec-

ond workframe. In this case, another workframe corresponding

to a distinct conjoined activity may execute. Ultimately, it is

possible that none of the conjoined activities happens, in which

case the person agent is doing nothing for that time step.

Using the ActivityLog Java application, a total of 133 con-

joined activities were found. Each of which was converted into

Brahms workframes as described above.

The multiagent system of the Robot House scenario, includ-

ing the nondeterministic conjoined activity environment model,

was model checked with respect to the four properties given

in Section III. No errors were found. The time and memory

requirements are presented in Table IV.

This environment model contained a larger number of activi-

ties for the person to be engaged in than in the nondeterministic

environment model used previously (there are now 133 different

conjoined activities compared with 26 different activities previ-

ously). It can be seen that the increased nondeterminism in the

environment model has increased the computational resources

required by the model checker. For example, the number of

states used is around four times as many as for the extended

nondeterministic environment model and around 14 times as

many as for the environment model used in Section III.

V. DISCUSSION

In this case study, we formally verified an autonomous de-

cision making planner/scheduler system for the Robot-House-

assisted living environment and the Care-O-bot robotic assistant.

This was done by converting the Robot House planner/scheduler

rules into Brahms: a workflow language for defining the behav-

ior of multiple agents. These rules matched closely the Brahms

style. Brahms was also used to model the Robot House en-

vironment, including the Care-O-bot, the Robot House, and

a resident. The Brahms model was then translated into the

PROMELA language using the BrahmsToPromela tool [6].

Once in PROMELA, the Brahms workflows (and, consequently,

the Care-O-bot’s decision making system) were formally veri-

fied. Four properties were formally verified, demonstrating that

this process can be used for verification of autonomous decision

making systems for robotic systems.

The simplistic nondeterministic environment model used in

Section III was enhanced in three different ways in order to

increase its fidelity. First, it was enhanced to a deterministic

model that covered a larger set of user activities. Then, it was

modified to include a total of 26 different activities for the

person agent to choose from (20 activities more than the initial

nondeterministic environment model). Finally, it was modified

to allow for the overlapping of the person agent’s activities,

resulting in 133 different conjoined activities. In all cases, the

model checker showed that there were no errors found, therefore

providing assurance that the Care-O-bot’s high level decision-

making system meets requirements.

The person agent in the environment model is the chief source

of nondeterminism, as is the case with the resident in the real-

life Robot House. Extending the environment model in three

different ways (to give a total of four different environment

models) means that the unpredictability of the person agent has

been modeled in four different ways. Each of the four models

provide a degree of assurance that the Care-O-bot is safe for

use by a single person in the Robot House, and together, they

provide an even greater degree of assurance. Obviously, a model

is an abstraction of the real world and will never be able to

fully represent all aspects of the actual situation. However, by

modeling human behavior in as many ways as possible, we gain

a greater confidence in the system being formally verified and a

greater level of trust in the autonomous robotic assistant.

The aim of this case study is to provide a detailed example of

how formal verification can be applied to an existing personal

robotic system. We show how formal verification can be used to

provide assurance that the robotic system will behave correctly

with respect to a small subset of the robot’s requirements. While

the size of this subset is small, it is sufficient as a proof of

concept.

The formal verification techniques used were effectively “off-

the-shelf” software components, consisting of Brahms, a multi-

agent simulation framework, BrahmsToPromela, an automatic

translator from Brahms to PROMELA, and SPIN, a well-known

model checker for the PROMELA language. The use of modular

components expedites the modeling and formal verification pro-

cess and minimizes errors that may be introduced by developing

new formal verification methods.
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