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A rapidly emerging application of network neuroscience in
neuroimaging studies has provided useful tools to understand
individual differences in complex brain function. However, the
variability of methodologies applied across studies - with respect
to node definition, edge construction, and graph measurements-
makes it difficult to directly compare findings and also challeng-
ing for end users to select the optimal strategies for mapping in-
dividual differences in brain networks. Here, we aim to provide
a benchmark for best practices by systematically comparing the
reliability of human brain network measurements of individual
differences under different analytical strategies using the test-
retest design of the resting-state functional magnetic resonance
imaging from the Human Connectome Project. The results un-
covered four essential principles to guide reliable network neu-
roscience of individual differences: 1) use a whole brain parcel-
lation to define network nodes, including subcortical and cere-
bellar regions, 2) construct functional connectome using spon-
taneous brain activity in multiple slow bands, 3) optimize topo-
logical economy of networks at individual level, 4) characterise
information flow with metrics of integration and segregation.

reliability | network | connectome | resting-state fMRI | open science
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Over the past two decades, network neuroscience has helped
transform the field of neuroscience, providing a quantita-
tive framework for modeling brains as graph (or networks)
composed of nodes (brain regions) and edges (their con-
nections) (1). The organization and topology of brain net-
works can be characterized by a growing suite of graph-
theoretic tools, including measurements of their global effi-
ciency, nodal centrality, clustering, small-word topology, and
many other graph metrics (2–4). In parallel, resting-state
fMRI (rfMRI) has opened up new avenues towards under-
standing the human brain function (5). In conjunction with
network neuroscience, rfMRI has led to the emergence of
a multidisciplinary field, functional connectomics (6–8), in
which the brain’s intrinsic, interregional connectivity is esti-
mated from rfMRI recordings. Functional connectomics has
been widely used to investigate the system-level organization
of the human brain (9) and its relationships with individual
differences (10) in developmental (11), socio-cultural (12)
and clinical conditions (13).

Previous studies have demonstrated that many measure-
ments made on networks estimated from rfMRI have limited
reliability (21, 22). These low levels of reliability could be
an indication of failure in handling individual variability at
different levels (23). In particular, experimental design and
processing decisions related to scan duration, determining
frequency range, and regressing global signal have impacts
on rfMRI measurements and thus their reliability (22, 24).
Although less focused on reliability, existing studies also re-
vealed that their findings are influenced by choices of parcel-
lation templates (25), edge construction and definition, and
choice of graph metrics (26). How these decisions affect the
reliability of functional connectomics deserves further inves-
tigation. These analytical choices have been implemented in
different software packages (27) but can vary from one pack-
age to another in terms of their parameterization. Beyond
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An important topic in functional connectomics and, in-
deed, any scientific discipline, is the notion of measurement
reliability. In general, reliability characterises a proportion
of measurement variability between different subjects rela-
tive to the overall variability including both between- and
within-subject, i.e. random, components (14), and is com-
monly used to assess the consistency or agreement between
measurements. However, it can also serve as a measure of
discriminablity. For example, if a measurement can suffi-
ciently capture individual characteristics, its reliability will
be higher than measurements that underestimate between-
subject variability. Thus, high reliability is essential for any
measurement to better differentiate a group of individuals,
i.e., inter-individual differences (15). Recent studies have
demonstrated that the reliability of measurements is equiv-
alent to the fingerprint and distinguishability of the measure-
ment under the Gaussian distribution (16) while it has well-
established statistical theory and applications to psychology,
i.e., psychometric theory (17) and medicine, i.e., diagnosis
theory (18). Reliability also provides an upper bound of the
measurement validity (4, 15), which cannot be readily quan-
tified as the reliability (15). Therefore, high levels of relia-
bility is the first and most basic requirement for quantifying
individual differences in functional connectomics. Accord-
ingly, the optimization of measurement reliability can help
guide processing and analysis pipelines for neurodevelop-
mental (19) and clinical applications (20).
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limited examinations on reliability (28–30), a systematic in-
vestigation into the reliability of network neuroscience with
rfMRI is warranted to guide software use and future func-
tional connectomics analyses.

In this paper, we conducted a systematic investigation of
reliability for network neuroscience based upon the test-retest
rfMRI data from the Human Connectome Project (HCP) (31).
Note that the HCP imaging acquisition settings and data pre-
processing have integrated various strategies to optimize the
measurement reliability (21, 32). We thus analyzed the min-
imally pre-processed HCP rfMRI data and focused our work
on four key post-processing stages: (1) node definition, (2)
edge construction, (3) network measurement, and (4) relia-
bility assessments. In the end, we propose a set of principles
to guide researchers in performing reliable network neuro-
science with rfMRI, advancing the field-standard call for the
best practices in clinical network neuroscience (23). Toward
an open network neuroscience, we shared all the codes and
reliability maps by building an online platform (ADD URL)
for sharing the reliability data and computation.

Results
A typical analysis pipeline in functional connectomics in-
cludes steps for node definition (parcellations) and edge con-
struction (frequency bands, connectivity estimation and fil-
tering schemes) (Fig. 1a). To determine an optimal pipeline,
our aim is to combine the most reliable strategies across dif-
ferent parts of the analysis by comparing the reliability of de-
rived global network metrics. The HCP test-retest data were
employed for reliability evaluation (Fig. 1b) using the intra-
class correlation (ICC) statistics on the measurement reliabil-
ity with five levels (34): 0< ICC≤ 0.2 (slight); 0.2< ICC≤
0.4 (fair); 0.4 < ICC ≤ 0.6 (moderate); 0.6 < ICC ≤ 0.8
(substantial); and 0.8 < ICC < 1.0 (almost perfect). Our
analyses produce massive amounts of reliability statistics:
524,160 ICCs. In this section we first present overall reliabil-
ity assessments associated with the various analytic strategies
as well as their impact on between- and within-subject vari-
ability (Fig. 1c). We then determine the optimized pipelines
based on the highest reliability measurements, while docu-
menting the derived both global and local network metrics
and both their reliability and variability at an individual level.
Based upon these results, we built the open resources for re-
liable functional connectomics, including all the codes, reli-
ability matrices and computation via an online platform for
resource sharing (ADD URL).

Whole brain networks are more reliable than cortical
networks. Elements derived from a brain parcellation (i.e.,
parcel) define the network nodes. Here, we evaluated relia-
bility based on 30 different parcellation choices (Fig. 2a, see
more details of these parcellations in Materials and Meth-
ods). In the following parts of the paper, we name a parcel-
lation as ‘ParcAbbr-NumberOfParcels’ (e.g., LGP-100 or its
whole-brain version wbLGP-458).

We found significant differences in ICC distributions
across the 30 parcellation choices (Fig. 2b, Friedman rank

sum test: χ2 = 28955.83,df = 29,p < 2.2× 10−16, effect
size WKendall = 0.425). The mean ICCs range from slight
(wbGICAP-15) to substantial (wbLGP-458). Given a par-
ticular parcellation and definition of nodes, we illustrate the
density distribution of its ICCs under all other strategies
(edge definition and metric derivation). Notably, whole-brain
parcellations (with the exception of wbGICAPs) yield higher
measurement reliability than parcellations of cerebral cortex
on their own (the effect sizes r(rank-biserial correlations)>
0.65). This improvement in reliability seems not simply a bi-
product of having more parcels. We chose the parcellations in
which the number of parcels (400 ≤ n ≤ 1000) almost over-
lapped between the cortex and the whole brain, and found
no correlation between the number of parcels and the me-
dian ICCs (r = −0.11,p = 0.7). We report the mean ICC
and the number of almost perfect (noap) ICCs (≥ 0.8) as
the descriptive statistics for the density distributions. The
wbLGP-458 (mean ICC: 0.671; noap ICC: 519), wbLGP-
558 (mean ICC: 0.671; noap ICC: 540) and The wbBNP-568
(mean ICC: 0.664; noap ICC: 511) are the three most reliable
choices (see more details of the post-hoc Wilcoxon signed
rank test in Table S5). Among the cortical parcellations, the
LGP-500 (mean ICC: 0.362; noap ICC: 0), LGP-400 (mean
ICC: 0.342; noap ICC: 0) and LGP-600 (mean ICC: 0.340;
noap ICC: 0) are the three most reliable choices (Table S5).
Performances of the ICA-based parcellation choices ranked
below the cortical parcellation choices depending on their
sizes: wbGICAP-300 (mean ICC: 0.241; noap ICC: 0) and
wbGICAP-200 (mean ICC: 0.214; noap ICC: 0) while other
wbGICAP choices showed the lowest ICCs.

To better understand the effect of introducing 358 sub-
cortical parcels into the cortical parcellations, we decom-
posed the reliability changes into a two-dimensional repre-
sentation of changes of individual variability (Fig. 2c,d).
This idea was motivated by the analysis of reliability de-
rived with individual variability (14, 15) as in Fig. 1c. For
each ICC under a given parcellation choice, we calculated
the related between-subject variability Vb and within-subject
variability Vw. Changes in the individual variability associ-
ated with the reliability improvements from cortical to whole-
brain pipelines were plotted along with ∆Vb and ∆Vw as ar-
rows. These arrows are distributed across the three quadrants
(quadI: 0.94%; quadII: 59.99%; quadIII: 39.07%). We no-
ticed that most of these arrows were distributed into the opti-
mal quadrant where the improvements of test-retest reliabil-
ity by the whole-brain parcellation choices largely attributing
to the increases of between-subject variability and decreases
of within-subject variability. The decreases of both between-
subject and within-subject variability may also strengthen the
measurement reliability (the suboptimal quadIII in Fig. 2).

Spontaneous brain activity portrays more reliable net-
works in higher slow bands. Brain oscillations are hier-
archically organized, and their frequency bands were theo-
retically driven by the natural logarithm linear law (33, 35).
By analogy, rfMRI oscillations can, similarly, be partitioned
into distinct frequency bands. Advanced by the fast imaging
protocols (TR = 720ms), HCP test-retest data allows us to
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Fig. 1. Analytical pipelines for reliable functional connectomics. a) There are five stages during our analyses: (1) test-retest dataset (white box) downloaded from HCP
website, (2) node definition (green box) defining nodes using a set of brain areas of 30 different partitions of the human brain, (3) edge construction (yellow box) estimating
individual correlation matrices using the six frequency bands (slow 1-6) from Buzsáki’s theoretical framework on the brain oscillations (33) as well as the widely used empirical
frequency band (Slow-emp) (5) and transferring these matrices into adjacency matrices using 7× 4× 12 different strategies on edge construction including band-pass
filtering, connectivity estimation and edge filtering, (4) network analysis (blue box) systematically calculating various brain graph metrics on measurements of information
flow, and (5) reliability assessment (red box) evaluating test-retest reliability with massive linear mixed models. b) The test-retest data shared multimodal MRI datasets of
46 subjects in the HCP S1200 release and the HCP Retest release. Each subject underwent the first four test scans on two days (two scans per day: REST1 and REST2)
and return several months later to finish the four retest scans on another two days. This was designed for evaluation of both the short-term (REST1 vs. REST2) and the
long-term (VISIT1 vs. VISIT2) reliability. c) Measurement reliability refers to the inter-individual or between-subject variabilityVb relative to the intra-individual or within-subject
variability Vw . Variability of both between-subject (Vb) and within-subject (Vw) are normalized into between 0 and 1 by the total sample variances. Their changes (∆Vb and
∆Vw) introduce a reliability gradient as represented by the vector (the black arrow). The length of the arrow reflects the amplitude of reliability changes when the reliability
assessment from one choice (pink circle, J) to another choice (red circle, K). Further, the arrow’s direction (JK) indicates the sources of this reliability change. Here the
reliability becomes from moderate to substantial level with increases of between-subject variability (∆Vb > 0) and decreases of within-subject variability (∆Vw < 0).

obtain more oscillation classes than traditional rfMRI acqui-
sitions (typical sampling frequency of TR = 2s). We incorpo-
rate Buzsáki’s framework (33, 36) with the HCP dataset by
using the DREAM toolbox (37) in the Connectome Compu-
tation System (27). It decomposed the time series into the six
slow bands (Fig. 3a):

• slow-6 (0.0069-0.0116 Hz)

• slow-5 (0.0116-0.0301 Hz)

• slow-4 (0.0301-0.0822 Hz)

• slow-3 (0.0822-0.2234 Hz)

• slow-2 (0.2234-0.6065 Hz)

• slow-1− (0.6065-0.6944 Hz)

We noticed that, due to the limited sampling rate (TR),
this slow-1− only covers a small part of the full slow-1
band (0.6065-1.6487 Hz) – we indicate this above. We
also included the frequency band, slow-emp (0.01-0.08 Hz)
for the sake of comparison, as it is covers a range com-
monly used in fMRI studies. A significant effect on order
(χ2 = 9871.291,df = 6,p< 2.2×10−16,WKendall = 0.163)
across the frequency bands was revealed based on the ICC

density distributions (Fig. 3b): slow-2, slow-1−, slow-3,
slow-emp, slow-4, slow-5, slow-6. Post-hoc paired tests in-
dicated that any pairs of neighbouring bands are significantly
different from one another (for more details, see Table S10-
12), with measurement reliability increasing with faster fre-
quency bands. Note, however, that slow-1− (mean ICC:
0.498) did not fit into this trend, possibly due to its limited
coverage of the full band. But remarkably, slow-1− exhib-
ited the largest number of almost prefect ICCs for poten-
tial reliability (noap ICC: 1746, for more details, see Figure
S9). Slow-emp (mean ICC: 0.467; noap ICC: 434) contains
overlapping frequencies with both slow-4 (mean ICC: 0.450;
noap ICC: 441) and slow-5 (mean ICC: 0.409; noap ICC:
285), and higher ICCs than the two bands but the effect sizes
are small to moderate (slow-emp vs. slow-4: 0.193; slow-
emp vs. slow-5: 0.485). Slow-6 is the choice with the lowest
ICCs (mean ICC: 0.278; noap ICC: 154) compared to other
bands (large effect sizes: r > 0.582).

To visualize variation in reliability across frequency
bands, we plotted a trajectory tracing reliability flow along
the five full (slow-6 to 2) bands in the reliability plane, whose
axes correspond to between- versus within-subject variabil-
ity (Fig. 3c). As expected, this nonlinear trajectory contains
two stages of almost linear changes of the network measure-
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Fig. 2. Parcellation choices impact measurement reliability and individual variability. a) Node definitions are derived from different resolutions of spatial parcellation
on the human cortex and whole brain (see more details of these name abbreviations in Materials and Methods). b) Density plots are visualized for distributions of the ICCs
under the various parcellation choices on node definition. These density distributions are ranked from top to bottom according to decreases of the mean ICCs while the four
colors depict the four quantiles. c) Reliability gradient between any one whole-brain parcellation choice and its corresponding cortical parcellation choice is decomposed into
the axis of changes of the between-subject variability (∆Vb) and the axis of changes of the within-subject variability (∆Vw). This gradient can be represented as an vector,
which is the black arrow from the origin with an angle θ with the x−axis while the color encodes this angle and the transparency or the length reflects the magnitude of the
degree of ICC improvement. According to the anatomy of reliability, the optimal space is in the second quadrant (quadII) while the first and third quadrant (quadI and quadIII)
are suboptimal for reliability. d) Improvements of reliability by the whole-brain node definition pipelines are represented as gradient arrows in the plane of individual variability.

ment reliability from slow to fast oscillations: whole brain
versus cortex. In each case, the reliability improvements at-
tribute to both increases of between-subject variability and
decreases of within-subject variability while the improve-
ments of whole-brain network measurement reliability were
largely driven by the increased variability between subjects.

Topological economics individualize highly reliable
functional brain networks. Estimating functional connec-
tions can be highly challenging due to the absence of a
‘ground truth’ human functional connectome. To provide a
reliable way of building candidate edges of the connections,
we sampled the 12 schemes on graph edge filtering (Fig. 4a),
which turn a fully connected matrix into a sparse graphical
representation of the corresponding brain network. These
schemes can be categorized into two classes: threshold-based
versus topology-based schemes. Absolute weight threshold-
ing (ABS)05, proportional thresholding (PROP)10, PROP20,
degree thresholding (DEG)5, DEG15, overall efficiency cost
optimization (ECO) and global cost efficiency optimization
(GCE) commonly employ an threshold for filtering edges
with higher strengths than a cut-off value. These schemes
are widely used in network neuroscience and ignore the in-
trinsic topological structure of the entire brain network (e.g,
leading to multiple connected components or isolated nodes).

In contrast, topology-based schemes such as minimum span-
ning tree (MST), orthogonal MST (OMST), planar maxi-
mally filtered graph (PMFG) and triangulated maximally fil-
tered graph (TMFG) come from other scientific disciplines
and are optimized based on the entire network topology (39–
42). To combine both the TMFG’s efficiency and OMST’s
accuracy, we proposed the orthogonal TMF graph (OTMFG).
All the schemes are plotted in the plane of cost versus global-
cost efficiency (43) to better visualize the economical proper-
ties of the derived networks (Fig. 4b). These plots are fitted
into the topographic (contour) maps where the local maxima
for each filtering choice is labeled as a circle. The human
brain networks achieve higher global efficiency with lower
cost using topology-based schemes compared to threshold-
based schemes, suggesting increasingly optimal economics.

Significant differences in test-retest reliability were
detectable across these 12 edge-filtering schemes (χ2 =
8749.223,df = 11,p < 2.2× 10−16,WKendall = 0.135, see
Fig. 4c). Among the topology-based schemes, OMST (mean
ICC: 0.538; noap ICC: 765), OTMFG (mean ICC: 0.531;
noap ICC: 781) and TMFG (mean ICC: 0.502; noap ICC:
767) were the three most reliable choices. They showed
significantly greater reliability than the three most reliable
threshold-based, respectively: PROP20 (mean ICC: 0.527;
noap ICC: 632), PROP10 (mean ICC: 0.488; noap ICC: 445)
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distributions are ranked from top to bottom according to decreases of the mean ICCs while the vertical lines depict the four quartiles. c) Network measurements are projected
onto the reliability anatomy plane coordinated by both between- and within-subject variability. These dot plots are fitted into the topographic (contour) maps where the local
maxima for each band is labeled as a circle. The red line shows the entire modeled trajectory tracing the reliability flow along slow-to-fast oscillations in cortex and whole
brain.

and GCE (mean ICC: 0.473; noap ICC: 352). Mean reli-
ability of MST are slight to fair (mean ICC: 0.267) but its
number of almost perfect reliability (noap ICC:362) is still
higher than all threshold-based schemes except PROP10 and
PROP20 (see Figure S23).

Network measurements are labeled based on topol-
ogy and threshold groups and projected onto the reliability
anatomy plane, whose axes represent between- and within-
subject variability (Fig. 4d). The contour maps are recon-
structed for each scheme based upon the individual variabil-
ity of all the related network measurements. The topology-
based methods (red) showed overall higher ICCs than the
threshold-based methods (blue), improvements that could be
attributed to increases in between-subject variability and de-
creases of within-subject variability. These observations are
consistent between cortex and whole brain networks while
topology-based whole brain network are almost perfectly re-
liable (meaning almost perfect reliability, i.e., ICC≥ 0.8).

We also explored connection transformation and edge
weights, two factors included in edge filtering, the choices of
connectivity transformation and weighing edges, in terms of
their measurement reliability. Positive (Eq.pos) (mean ICC:
0.453; noap ICC: 1,031) and exponential (Eq.exp) transfor-
mation (mean ICC: 0.451; noap ICC: 1,855) were the two
most reliable transformation choices. Comparing to the pos-
itive and absolute (Eq.abs) (mean ICC: 0.447; noap ICC:
1,050) transformation, the exponential and distance-inverse
(Eq.div) (mean ICC: 0.442; noap ICC: 1,031) transforma-
tion show larger number of almost perfect ICCs (see Table
S13-19). Weighted graphs are also more reliable than the

binary graphs while the normalized weighted graphs demon-
strated the highest ICCs. Such improvements reflect both the
increased between-subject variability and decreased within-
subject variability (Figure S1).

Network integration and segregation can serve reli-
able metrics of information flow. The previous big data
analysis suggests that the optimally reliable pipeline should:
1) define network nodes using a whole-brain parcellation, 2)
filter the time series with higher frequency bands, 3) trans-
form the connectivity using positive transformation, 4) con-
struct network edges using individualized methods and nor-
malized weights. Using the optimal pipelines, we evaluated
the reliability levels of various metrics from network neu-
roscience and their differences across individuals. Focus-
ing on the optimized pipeline with the highest ICCs of the
various choices (wbLGP-458, slow-2, pos, OMST), we re-
ported test-retest reliability of the measurements as well as
their corresponding individual variability. In Fig. 5a, we
found that the global network measurements of information
segregation and integration are at the level of almost perfect
reliability except for the modularity Q (ICC=0.46, 95% CI =
[0.252,0.625]). These high-level ICCs are derived with large
between-subject variability and small within-subject variabil-
ity (Fig. 5b). These findings are reproducible across the other
two parcellation choices (wbCABP-718, wbBNP-458).

Similar to the global metrics, shortest path length Lp
and nodal efficiency Enodal exhibited the highest ICCs (al-
most perfect test-retest reliability) while ICCs of other nodal
metrics remained less than 0.6. To visualize node-level net-
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Fig. 4. Edge filtering schemes and their networking performance. (a) Twelve schemes of filtering edge are applied to an individual connectivity matrix, resulting in the 12
brain networks with their nodes colored as the Yeo2011-7Networks (38). (b) Global cost efficiency are plotted against network wiring costs of all the brain networks derived
with the 12 edge filtering schemes from all the individual rfMRI scans. Red dots represent the topology-based while blue dots are for threshold-based networks. These dot
plots are fitted into the topographic (contour) maps where the local maxima for each filtering choice is labeled as a circle. (c) Density plots are for ICC distributions under
various the 12 edge filtering schemes. These density distributions are ranked from top to bottom according to decreases of the mean ICCs while the two colors depict the
topology-based and threshold-based schemes. Four quartiles were indicated by vertical lines. (d) Network measurements are projected onto the reliability anatomy plane
coordinated by both between- and within-subject variability. Red dots represent the topology-based while blue dots are for threshold-based networks. The topographic
(contour) maps fit the dots and label the local maxima as a circle for each scheme and the global maxima as a triangle for the topology and threshold groups, respectively.

work metrics, we reported results derived from the wbCABP-
718 choice. To improve spatial contrasts of reliability, we
ranked the parcels according to their ICCs and visualized
the ranks in Fig. 5c. Most nodal metrics are more reli-
able across the 360 cortical areas than the 358 subcortical
areas (Wilcoxon tests: all p-values less than 0.001, corrected
for multiple comparisons). However, Lp, Enodal and Bc
exhibited higher across subcortical areas than cortical areas
(corrected p < 0.001). Across the human cerebral cortex,
the right hemispheric areas demonstrated more reliable Cp
(corrected p < 0.0036) than the left hemispheric areas. In-
teresting patterns of the reliability gradient are also observ-
able along large-scale anatomical directions (dorsal>ventral,

posterior>anterior) across the nodal metrics of information
segregation and centrality. These spatial configuration pro-
files on the reliability reflected their correspondence on inter-
individual variability of these metrics, characterising the net-
work information flow through the slow-2 band.

Building an open resource for reliable network neu-
roscience. The results presented here represent huge costs
in terms of computational resources (more than 1,728,000
core-hours on CNGrid, supported by Chinese Academy of
Sciences (http://cscgrid.cas.cn)). Derivations of
the ICCs and their linear mixed models were implemented
in R ad Python. As our practice in open science, we have
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Fig. 5. Measurement reliability and variability of global/nodal network metrics under the optimized pipeline. (a) Spider plots are visualized for ICCs (test-retest)
with the 95% confidence intervals (CIs, shadow bands) for the metrics of network integration, segregation, centrality and resilience. The associated symbols of the metrics
can be found in Appendix Table 1. (b) The reliability anatomy was plotted as a function of between-subject variability (Vb) and within-subject variability (Vw). (c) Ranks
of ICCs across the 360 cortical parcels and the 358 subcortical parcels in the optimal pipeline (wbCABP-718, slow-2, pos, OMST) are depicted. Ten nodal metrics are
assessed including average shortest path length Lp, nodal efficiency Enodal, local efficiency Elocal, clustering coefficient Cp, pagerank centrality Pc, degree centrality
Dc, eigenvector centrality Ec, resolvent centrality Rc, subgraph centrality Sc and betweeness centrality Bc.

started to provide an online platform on the reliability assess-
ments (ADD URL). Detailed documentation can be found
at the online website (ADD URL). The big reliability data
were designed into an online database for providing the com-
munity a resource to search reliable choices and help the fi-
nal decision-making. More details of the database use can
be found from the online documentation (ADD URL). We
shared all the codes and figures as well as other resources via
(ADD URL) for reliable functional network neuroscience.

Discussions

This study examined the series of processing and analysis
decisions in constructing graphical representations of brains.
The focus, here, was on identifying the pipeline that gener-
ated reliable, individualized networks and network metrics.
The results of our study suggest that to derive reliable global
network metrics with higher inter-individual variances and
lower inner-individual variances, one should use whole-brain
parcellations to define network nodes, focus on higher fre-
quencies in the slow band for time-series filtering to derive
the connectivity, and use topology-based methods for edge
filtering to construct sparse graphs. Regarding network met-
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rics, multi-level or multi-modal metrics appear more reliable
than single-level or single-model metrics. Derive reliable
measurements is critical in network neuroscience, especially
for translating network neuroscience into clinical practice,
which requires precise and specific biomarkers. Based on
these results, we provide four principles of reliable functional
connectomics which we discuss further in this section.

Principle I: Use a whole brain parcellation to define
network nodes. The basic unit of a graph is the node. How-
ever, variability across brain parcellations can yield dissim-
ilar graphs, distorting network metrics and making it diffi-
cult to compare findings across studies(25, 44, 45) (46). In
many clinical applications (13, 20), researchers aim to iden-
tify disease-specific connectivity profiles of the whole brain,
including cortical and subcortical structures, as well as cere-
bellum. A recent review has raised the concern that many
studies have focused on restricted sets of nodes, e.g. cortex
only, called a field standard for the best practices in clini-
cal network neuroscience (23), which requires almost per-
fectly reliable measurements (14, 47). Our meta-reliability
assessments revealed high reliability of measurements made
involving functional brain networks can be achieved, namely
through the inclusion of high-resolution subcortical nodes.
This provides strong evidences that the whole-brain node use
should be part of the standard analysis pipeline for network
neuroscience applications. These improvements of reliabil-
ity can be attributed to increases in between-subject vari-
ability coupled with reductions in within-subject variability
relative to networks of cortical regions alone. One possible
neuroanatomical explanation is that distant areas of cerebral
cortex are interconnected by the basal ganglia and thalamus
(48) while also communicating with different regions of the
cerebellum via polysynaptic circuits (49, 50), forming an in-
tegrated connectome. These subcortical structures have been
suggested to play a role in both primary (e.g., motor) as well
as higher-order function (e.g., learning and memory (51)).
Studies using rfMRI have delineated the resting-state func-
tional connectivity (RSFC) maps between these subcortical
structures and cortical networks of both primary and high-
order functions (52–54). A recent work revealed that inter-
individual variance in cerebellar RSFC networks exceeds that
of cortex (55). Meanwhile, these RSFC maps are highly in-
dividualized and stable within individuals (56–58), indicat-
ing that they possess reliable characteristics. In line with
our observations, we argue that inclusion of the subcortical
structures as network nodes can enhance the between-subject
variability and stabilize the within-subject variability by pro-
viding a more comprehensive measurements on the entirety
of the brain connectivity. Larger between-subject variability
implies that the associated measurements are more recogniz-
able between different subjects, leading to improved subject
discrimination, a finding that has been demonstrated (59, 60).

Principle II: Generate functional networks using spon-
taneous brain activity in multiple slow bands. It has
been a common practice in RSFC research area to estimate
the RSFC profile based on the low-frequency (0.01 - 0.1 Hz

or 0.01 - 0.08 Hz) fMRI time series (5). However, the test-
retest reliability of measurements made based on this fre-
quency band has been limited, with ICCs less than 0.4 (see
(21, 22) for systematic reviews). Other applications, how-
ever, have advocated adopting a multi-frequency perspective
to examine the amplitude of brain activity at rest (61) and
its network properties (62). This approach has been spurred
along by recent advances in multi-banded acquisitions and
fast imaging protocols, offering fMRI studies a way to exam-
ine resting-state brain activity at relatively higher frequen-
cies that may contain neurobiologically meaningful signals
(37, 63). Our study provides strong evidence of highly reli-
able signals across higher slow-frequency bands, which are
derived with the hierarchical frequency band theory of neu-
ronal oscillation system (33). Specifically, a spectrum of re-
liability increases was evident from slow bands to fast bands.
This reflects greater variability of the network measurements
between subjects and less measurement variability within
subject between the higher and lower bands of the slow fre-
quencies. In theory, each frequency band has an independent
role in supporting brain function. Lower frequency bands
are thought to support more general or global computation
with long-distance connections to integrate specific or local
computation, which are driven by higher slow bands based on
short-distance connections (35). Our findings of high reliabil-
ity (inter-individual differences) are perfectly consistent with
this theory from a perspective of individual variability. Previ-
ous findings have found that high-order associative (e.g., de-
fault mode and cognitive control) networks are more reliable
than the primary (e.g., somatomotor and visual) networks
(15, 21, 22). Our findings offer a novel frequency-based per-
spective on these network-level individual differences.

Principle III: Optimize topological economy to con-
struct network connections at individual level. There
is no gold standard on for human functional connectomes,
leading to plurality of approaches for inferring and construct-
ing brain network connections. Threshold-based methods fo-
cus on the absolute strength of connectivity, retaining con-
nections that are above some user-defined threshold and of-
tentimes involve applying the same threshold to all subjects.
Although this approach mitigate potential biases in network
metrics associated with differences in network density, it may
inadvertently also lead to decreased variability between sub-
jects. This is supported by our result finding that threshold-
based method yield low reliability of network measurements.
On the other hand, the human brain is a complex network that
is also near-optimal in terms of connectional economy, bal-
ancing tradeoffs of cost with functionality (64). In line with
this view, certain classes of topology-based methods for con-
nection definition may hold promise for individualized net-
work construction. Specifically, each individual brain opti-
mizes its economic wiring in terms of cost and efficiency,
reaching a trade-off between minimizing costs and allowing
the emergence of adaptive topology. Our results demonstrate
that such highly individualized functional connectomes gen-
erated by the topology-based methods are more reliable than
those by the threshold-methods. This reflects the increases
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of individual differences in functional connectomes attribut-
ing to the optimal wiring economics at individual level. The
topological optimization also brings other benefits such as
ensuring that a graph forms a single connected component
and preserving weak connections. Indeed ,there is increasing
evidence supporting the hypothesis that weak connections are
neurobiologically meaningful and explain individual differ-
ences in mind, behavior and demographics as well as disor-
ders (65–67). Weak connections in a graph may be consistent
across datasets and reproducible within the same individual
over multiple scan sessions and therefore be reliable. Weak
connections might also play non-trivial roles in transformed
versions of the original brain network, e.g. so-called “edge-
based functional connectivity” (68). Among these topology-
based methods, MST is the simplest and promising filtering
method if computational efficiency is the priority. MST can
obtain a graph with the same number of nodes and edges, and
it is not sensitive to scaling effects, because its structure only
depends on the order rather than the absolute values of the
edges (69). Although MST loses some local network mea-
surements due to the limited number of edges, it has some
other unique metrics that can be calculated (e.g., leaf frac-
tion, tree hierarchy). A better alternative might be TMFG
which computationally very efficient and statistically robust,
while the OMST and OTMFG are the most reliable choices
given priority to large individual differences.

Principle IV: Characterise information flow with net-
work integration and segregation metrics. Functional
connectomes reflect the outcome of communication pro-
cesses and information flows between pairs of brain regions.
How information and other signals propagate between pairs
of brain regions can be assayed using network neuroscien-
tific metrics and is essential to understanding normative con-
nectome function and its variation in clinical settings (70).
While the ground truth functional connectome is unknown
(and may not exist (71)), network models can help validate
the imaging-based reconstructions of human functional con-
nectomes (1). From a perspective of individual differences,
reliable functional connectomics is the basis of achieving
valid measurements of the individual differences in func-
tional connectomics (15). Our findings indicated that both
the brain network segregation and integration could be reli-
ably measured with functional connectomics using rfMRI by
the optimized pipelines. At the global level, measures of in-
formation integration, e.g. characteristic path length and ef-
ficiency, were more reliable than those of information segre-
gation, e.g. modularity and clustering coefficient. Our results
also revealed that measures of integration were more sta-
ble across different scan sessions (i.e., the test-retest) for an
individual subject than the segregation measurements while
the inter-individual variability are measured at the similar
level for both integration and segregation metrics. At nodal
level, mapping reliability of the network measurements re-
vealed interesting spatial patterns. Specifically, we found
that cortical areas were generally associated with more reli-
able local measurements compared to subcortical areas. This
may reflect different functional roles for human cortex and

subcortex. For example, the differences in reliability of
path-based metrics might reflect the fact that there are more
within-community paths in cortex while between-community
paths are more common in subcortex. Beyond this cortical-
subcortical gradient, reliability of the nodal information flow
also fit the left-right asymmetry and dorsal-ventral as well
as posterior-anterior gradient, implying the potential valid-
ity of individual differences in information flow attributing
to evolutionary, genetic and anatomical factors (72–75). To
facilitate the utility of reliable network integration and segre-
gation metrics in functional connectomics, we integrated all
the reliability resources into an online platform (ADD URL)
for reliability queries on specific metrics of information flow
integration and segregation.

Conclusion, limitations and future. Here, we adopt a big
data approach to systematically explore the reliability of
functional brain networks by richly sampling the parame-
ters of various steps in the network construction and analysis
pipeline. The results of this analysis provided robust experi-
mental evidence supporting four key principles that will sup-
port reliable network neuroscience measurements and appli-
cations. These principles can serve as the base for building
guidelines on the use of network neuroscience with rfMRI
to map individual differences. Standard guidelines are es-
sential for improvements of reproducibility in the research
practice, and our findings provide experimental resources for
such standardization in future network neuroscience applica-
tions. We note, however, that while our approach was exten-
sive, it was not exhaustive – the analytical sampling proce-
dure could miss many other existing choices (e.g., consensus-
based thresholding for the edge filtering stage). The process-
ing decisions that yield reliable connectomes may yield the
most reliable network statistics, but there may be another way
to process data that yields overall a higher level of reliability
in network measures. Future work can build on our study by
exploring these and other choices using the online compu-
tation and evaluation platform that accompanies the present
study. Of note, the measurement reliability is not the final
goal but the measurement validity, which must be considered
although not easily ready for a direct examination (15). Vali-
dation (through various indirect validity assessments) on the
use of the proposed principles represents a promising arena
for future studies in functional network neuroscience (4).

Materials and Methods
Using the HCP test-retest dataset, our analytic procedure im-
plemented four post-processing stages (Fig. 1a): node defini-
tion, edge construction, network measurement and reliability
assessments. Specifically, the test-retest rfMRI dataset un-
derwent the standardized preprocessing pipeline developed
by the HCP team (32). The second step defines nodes (green
box) using sets of brain areas based on 30 partitions, and then
extracts the nodal time series. During the third step (yellow
box), individual correlation matrices are first estimated based
upon the six frequency bands derived from Buzsáki’s theo-
retical framework on brain oscillations (33) along with the
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classical band widely used (0.01 - 0.08 Hz). These matrices
are then converted into adjacency matrices using 4×12 = 48
strategies on edge filtering. In the fourth step, we performed
graph analyses (blue box) by systematically calculating the
brain graph metrics at global, modular and nodal scales. Fi-
nally, test-retest reliability was evaluated (red box) as ICCs
with the linear mixed models.

Test-Retest Dataset. The WU-Minn Consortium in HCP
shared a set of test-retest multimodal MRI datasets of 46
subjects from both the S1200 release and the Retest release.
These subjects were retested using the full HCP 3T multi-
modal imaging and behavioral protocol. Each subject un-
derwent the four scans on two days (two scans per day:
REST1 versus REST2) during the first visit and returned sev-
eral months later to finish the four scans on another two days
during the second visit (Fig. 1b). The test-retest interval
ranged from 18 to 328 days (mean: 4.74 months, standard
deviation: 2.12 months). Only 41 subjects (28 females, age
range: 26-35 years; 13 males, age range: 22-33 years) had
full length rfMRI data across all the eight scans, and were
included in the subsequent analyses. As indicated in the lit-
erature (21, 32), rfMRI protocols used by HCP for scanning
and preprocessing images have been optimized for reliability.

During the scanning, participants were instructed to
keep their eyes open and to let their mind wander while fix-
ating on a cross-hair projected on a dark background. Data
were collected on the 3T Siemens Connectome Skyra MRI
scanner with a 32-channel head coil. All functional images
were acquired using a multiband gradient-echo EPI imaging
sequence [2mm isotropic voxel, 72 axial slices, TR = 720ms,
TE = 33.1ms, flip angle = 52°, field of view = 208×180 mm2,
matrix size = 104× 90 and a multiband factor of 8]. A total
of 1200 images was acquired for a duration of 14 min and 24
s. Details on the imaging protocols can be found in (76).

The protocols of rfMRI image preprocessing and
artifact-removal procedures are documented in detail else-
where and generated the minimally preprocessed HCP rfMRI
images. It is note that artifacts were removed using the Ox-
ford Center for Functional MRI of the Brain’s ICA-based X-
noiseifier (ICA + FIX) procedure, followed by MS-MAll for
inter-subject registration. The preprocessed rfMRI data were
represented as a time series of grayordinates (4D), combining
both cortical surface vertices and subcortical voxels (32).

Node Definition. A brain graph defines a node as a brain
area, which is generally derived by an element of brain par-
cellation (parcel) according to borders or landmarks of brain
anatomy, structure or function as well as an element of vol-
ume (voxel) in imaging signal acquisition or a cluster of vox-
els (77). Due to the high computational demand of voxel-
based brain graph, in this study we defined nodes as parcels
according to the following brain parcellation strategies (Fig.
2a). A surface-based approach has been demonstrated to
outperform other approaches for functional MRI analysis
(24, 78) and thus the nodes are defined in the surface space
(total 30 surface parcellation choices). We adopted a nam-
ing convention for brain parcellations as follows: ‘ParcAbbr-

NumberOfParcels’ (e.g., LGP-100 or its whole-brain version
wbLGP-458).

HCP Multi-Modal Parcellation (MMP) A cortical parcel-
lation generated from multi-modal images of 210
adults from the HCP database, using a semi-automated
approach (79). Cortical regions are delineated with
respect to their function, connectivity, cortical archi-
tecture, and topography, as well as, expert knowledge
and meta-analysis results from the literature (79). The
HCP-MMP atlas contains 360 parcels (180 per hemi-
sphere).

Local-Global Parcellation (LGP) A gradient-weighted
Markov Random Field model integrating local gra-
dient and global similarity approaches produces the
novel parcellations (80). The final version of LGP
comes with a multi-scale cortical atlas including 100,
200, 300, 400, 500, 600, 700, 800, 900, and 1000
parcels (equal numbers across the two hemispheres).
One benefit of using LGP is to have nodes with almost
the same size, and these nodes are also assigned to the
common large-scale functional networks (38).

Brainnetome Parcellation (BNP) Both anatomical land-
marks and connectivity-driven information are em-
ployed to develop this volumetric brain parcellation
(81). Specifically, anatomical regions defined as in
(82) are parcellated into subregions using functional
and structural connectivity fingerprints from HCP
datasets. Cortical parcels are obtained by projecting
their volume space to surface space. It is noticed
that the original BNP contains both cortical (105 ar-
eas per hemisphere) and subcortical (36 areas) regions
but only the 210 cortical parcels are included for the
subsequent analyses.

Whole-Brain Parcellation (wb) Inclusion of subcortical ar-
eas has been shown unignorable influences on brain
graph analyses (22, 58), and we thus also constructed
brain graphs with subcortical structures in volume
space as nodes by adding these nodes to the corti-
cal brain graphs. To get a high-resolution subcortical
parcellation, we adopted the 358 subcortical parcels
in (83). The authors employed data of 337 unrelated
HCP healthy volunteers and extended the MMP corti-
cal network partition into subcortex. This results a set
of whole-brain parcellations by combining these sub-
cortical parcels with the aforementioned cortical par-
cellations, namely wbMMP,wbLGP and wbBNP. We
noticed that the wbMMP-718 has been named by the
authors of (83) as the Cole-Anticevic Brain-wide Net-
work Partition, and we thus renamed the wbMMP-718
as wbCABP-718 for consistency.

We finally consider a whole-brain ‘parcellation’ de-
rived by the group-level spatial independent compo-
nent analysis (ICA) using the MELODIC (84) in FSL
(wbGICAP) from 820 HCP subjects. The spatial ICA
was applied in grayordinate space (surface vertices
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plus subcortical grey matter voxels) and ran with dif-
ferent dimensionalities (15, 25, 50, 100, 200, 300),
generating the set of spatial maps, which are consid-
ered as ‘nodes’.

Edge Construction. After defining the node with each par-
cellation, in each parcel, regional mean time series were esti-
mated by averaging the vertex time series at each time point.
To construct an edge between a pair of nodes, their represen-
tative time series entered into the following steps in order:
band-pass filtering, inter-node connectivity transformation,
and edge filtering.

Band-Pass Filtering. Resting-state functional connectivity
studies have typically focused on fluctuations below 0.08
Hz or 0.1 Hz (5, 85), and assumed that only these frequen-
cies contribute significantly to inter-regional functional con-
nectivity (FC) while other frequencies are artifacts (86). In
contrast, however, other studies have found that specific fre-
quency bands of the rfMRI oscillations make unique and neu-
robiologically meaningful contributions to resting-state func-
tional connectivity (21, 87). More recently, with fast fMRI
methods, some meaningful FC patterns were reported across
much higher frequency bands (88). These observations moti-
vate exploring a range of frequency bands beyond those typ-
ically studied in resting-state functional connectivity studies,
including faster frequencies.

Buzsáki and Draguhn (33) proposed a hierarchical orga-
nization of frequency bands driven by the natural logarithm
linear law. This offers a theoretical template for partitioning
rfMRI frequency content into multiple bands (Fig. 3a). The
frequencies occupied by these bands have a relatively con-
stant relationship to each other on a natural logarithmic scale
and have a constant ratio between any given pair of neighbor-
ing frequencies (35). These different oscillations are linked
to different neural activities, including cognition, emotion
regulation, and memory (35, 62, 85). Advanced by the fast
imaging protocols offered by the HCP scanner, the short scan
interval (TR = 720ms) allows us to obtain more oscillation
classes that the traditional rfMRI method. We incorporate the
Buzsáki’s framework (33, 36) with the HCP fast-TR datasets
by using the DREAM toolbox (37) in the Connectome Com-
putation System (27). It decomposed the time series into the
six slow bands as illustrated in Fig. 3a.

Connectivity Transformation. For each scan, individual nodal
representative time series were band-pass filtered with each
of the six frequency bands, and another empirical frequency
band, slow-emp (0.01-0.08Hz). The Pearson’s correlation
rij ∈ [−1,1] between the filtered time series of each pair
of nodes i = 1, ...,N,j = 1, ...,N was calculated (N is the
number of nodes). These correlation values provided an es-
timation on the edge strengths between the two nodes, and
formed a N ×N symmetric correlation matrix R = (rij) for
each given subject, scan, parcellation, and frequency band.

Many network metrics are not well defined for neg-
atively weighted connections. In order to ensure that the
connection weights are positive only, we applied four types

of transformations to the symmetric correlation matrix: the
positive (Eq.pos), absolute (Eq.abs), exponential (Eq.exp)
and distance-inverse (Eq.div) functions, respectively. This
avoids the negative values in the inter-node connectivity
matrix W = (wij) where zij = tanh−1 (rij) is Fisher’s
z−transformation.

wij = zij + |zij |
2 ∈ [0,∞) (pos)

wij = |zij | ∈ [0,∞) (abs)

wij = ezij ∈ [0,∞) (exp)

wij = 2√
2× (1− rij)

∈ (0,∞) (div)

The connectivity matrix represents a set of the node
parcels and relational quantities between each pair of the
nodes, and will serve as the basis of following edge filtering
procedure for generation of the final brain graphs.

Edge Filtering. In a graph, edges represent a set of relevant
interactions of crucial importance to obtain parsimonious de-
scriptions of complex networks. Filtering valid edges can be
highly challenging due to the lack of ‘ground truth’ of the hu-
man brain connectome. To provide a reliable way of building
candidate edges, we sampled the following 12 schemes on
edge filtering and applied them to the connectivity matrices.

Absolute Weight Thresholding (ABS) This approach se-
lects those edges that exceed a manually defined abso-
lute threshold (e.g., correlations higher than 0.5), set-
ting all correlations smaller than 0.5 to 0 (ABS05).
This is a simple approach to reconstruct networks (89).

Proportional Thresholding (PROP) It is a common step in
the reconstruction of functional brain networks to en-
sure equal edge density across subjects (90–92). It
keeps the number of connections fixed across all in-
dividuals to rule out the influence of network density
on the computation and comparison of graph metrics
across groups. This approach includes the selection
of a fixed percentage of the strongest conncections as
edges in each individual network or brain graph. Com-
pared to ABS, PROP has been argued to reliably sep-
arate density from topological effects (28, 93) and to
result in more stable network metrics (94). This makes
it a commonly used approach for network construction
and analysis in disease-related studies. Here, we fo-
cused on two threshholds that are commonly reported
in the literature: 10% (PROP10) and 20% (PROP20).

Degree Thresholding (DEG) The structure of a graph can
be biased by the number of existing edges. Ac-
cordingly, statistical measures derived from the graph
should be compared against graphs that preserve the
same average degree, K. A threshold of the degree
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can be chosen to produce graphs with a fixed mean de-
gree (e.g., K = 5, DEG5), which is the average nodal
degrees of an individual graph from a single subject’s
scan. Many network neuroscience studies have taken
this choice for K = 5 (95–98). We also include the
DEG15 for denser graphs of the brain networks.

Global Cost Efficiency Optimization (GCE) Given a net-
work with a cost ρ, its global efficiency is a function of
the cost Eg(ρ), and its GCE is J(ρ) =Eg(ρ)−ρ. Sev-
eral studies suggested that brain networks, in partic-
ular those with small-world topology, maximize their
global-cost efficiency (43), i.e., Jmax = maxρJ(ρ).
Computationally, this scheme is implemented by loop-
ing all network costs (e.g., adding edges with weights
in order) to find the Jmax (see Fig. 2b) where the cor-
responding edge weight was determined as the thresh-
old for edge filtering. In this sense, GCE is an individu-
alised and optimised version of ABS, PROP and DEG
while the latter three are commonly employed with a
fixed threshold for all individuals.

Overall Efficiency Cost Optimization (ECO) Both global
and local efficiency are important graph features to
characterize the structure of complex systems in terms
of integration and segregation of information (99).
ECO was proposed to determine a network density
threshold for filtering out the weakest links (100). It
maximizes an extension of Jmax, the ratio between the
overall (both global and local) efficiency and its wiring
cost maxρJext(ρ) = (Eg(ρ)+Eloc(ρ))/ρwhereEloc
denotes the network local efficiency. The study (99)
also demonstrated that, to maximize J , these networks
have to be sparse with an average node degree K ' 3.

Minimum Spanning Tree (MST) This is an increasingly
popular method for identifying the smallest and most
essential set of connections while ensuring that the net-
work forms a fully connected graph (101–104). The
tenet of using MST is to summarize information and
index structure of the graph, and thus remove edges
with redundant information (39). Specifically, an MST
filtered graph will contain N nodes connected via
N − 1 connections with minimal cost and no loops.
This addresses key issues in existing topology filter-
ing schemes that rely on arbitrary and user-specified
absolute thresholds or densities.

Orthogonal Minimum Spanning Tree (OMST) This
topological filtering scheme was proposed recently
(40) to maximize the information flow over the
network versus the cost by selecting the connections
via the OMSTs. It samples the full-weighted brain
network over consecutive rounds of MST that are
orthogonal to each other (see Fig. 2b). Practically,
we extracted the 1st MST, and then we cleared their
connections and we tracked the 2nd MST from the
rest of the network connections, etc. Such an iterative

procedure (stopped by the M th MST) can get orthog-
onal MSTs and topologically filter brain network by
optimizing the GCE under the constrains by the MST,
leading to an integration of both GCE and MST

max
n∈[1,M ]

J(ρ(nMSTs)) =Eg(ρ(nMSTs))−ρ(nMSTs)

Planar Maximally Filtered Graph (PMFG) The idea un-
derneath PMFG (41) is to filter a dense matrix of
weights by retaining the largest possible subgraph
while imposing global constraints on the topology
of the resulting network. In particular, edges with
the strong connection weights are retained while con-
straining the subgraph to be a (spanning) tree globally.
Similarly, during the PMFG construction, the largest
weights are retained while constraining the subgraph
to be a planar graph globally. The PMFG algorithm
searches for the maximum weighted planar subgraph
by adding edges one by one. The resulting matrix is
sparse, with 3(N −2) edges. It starts by sorting all the
edges of a dense matrix of weights in non-increasing
order and tries to insert every edge in the PMFG. Edges
that violate the planarity constraint are discarded.

Triangulated Maximally Filtered Graph (TMFG) The
algorithm for implementing PMFG is computation-
ally expensive, and is therefore impractical when
applied to large brain networks (42). A more efficient
algorithms, TMFG, was developed that exhibited
greatly reduced computational complexity compared
to PMFG. This method captures the most relevant
information between nodes by approximating the
network connectivity matrix with the endorsement
association matrix and minimizing spurious associa-
tions. The TMFG derived network contains 3-node
(triangle) and 4-node (tetrahedron) cliques, imposing a
nested hierarchy and automatically generates a chordal
network (42, 105). Although TMFG is not widely
applied in network neuroscience studies, it as been
applied elsewhere and proven to be a suitable choice
for modeling interrelationships between psychological
constructs like personality traits (106).

Orthogonal TMF Graph (OTMFG) To combine both the
TMFG’s efficiency and OMST’s accuracy, we propose
OTMFG to maximize the information flow over the
network versus the cost by selecting the connections
of the orthogonal TMFG. It samples the full-weighted
brain network over consecutive rounds of TMFG that
are orthogonal to each other.

In summary, as illustrated in Fig. 4a, the 12 edge filter-
ing schemes transform a fully weighted matrix into a sparse
matrix to represent the corresponding brain network. They
can be categorized into two classes: threshold-based versus
topology-based schemes. ABS05, PRO10, PRO20, DEG5,
DEG15, ECO and GCE rely on a threshold for filtering and
retaining edges with higher weights than the threshold. These
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schemes normally ignore the topological structure of the en-
tire network and can result in isolated nodes. In contrast,
the topology-based methods including MST, OMST, PMFG,
TMFG and OTMFG, all consider the global network topol-
ogy in determining which edges to retain. As illustrated in
Fig. 4b, all the schemes are plotted in the ρ−Jmax plane for
their network economics.

Network Analysis. We performed graph-theory-driven net-
work analysis by calculating several common graph-based
metrics for the resulting graphs. These measures, broadly,
can be interpreted based on whether the characterize the ex-
tent to which network structure allows for integrated or seg-
regation information flow. Examples of integrative measures
include average shortest path length (Lp), global efficiency
(Eg), and pseudo diameter (D). Segregative measures in-
clude clustering coefficient (Cp), local efficiency (Elocal),
transitivity (Tr), modularity (Q), and a suite of nodal cen-
trality measures (Appendix 1). All the metrics are calculated
using functions included in the Brain Connectivity Toolbox
(107). To improve computation, we also used Graph-tool
(108) and NetworKit (109) which achieve performance com-
parable (both in memory usage and computation time) to that
of a pure C/C++ library. We treated these metrics as the net-
work measurements for subsequent reliability analysis.

Reliability Assessments. Measurement reliability is de-
fined as the extent to which measurements can be replicated
across multiple repeated measures. Test-retest reliability is
the closeness of the agreement between the results of succes-
sive measurements of the same measure and carried out under
the same conditions of measurement.

Linear mixed models. As a group-level statistic, reliability
refers to the inter-individual or between-subject variability
Vb relative to the intra-individual or within-subject variabil-
ity Vw. Both the intra- and inter-individual variances can be
estimated using linear mixed model (LMM). In this study,
given a functional graph metric φ, we considered a random
sample of P subjects with N repeated measurements of a
continuous variable in M visits. φijk (for i = 1, · · · ,N and
j = 1, · · · ,M , and k = 1, · · · ,P ) denotes the metric from the
kth subject’s jth visit and ith measurement occasions. The
three-level LMM models φijk as the following equations:

Graph metric︷︸︸︷
φijk = γ000︸︷︷︸

fixed
intercept

+ p0k︸︷︷︸
random intercepts
level 3, subjects

+ v0jk︸︷︷︸
random intercepts

level 2, visits

+ eijk︸︷︷︸
random
residuals

Where γ000 is a fixed parameter (the group mean) and p0k,
v0jk and eijk are independent random effects normally dis-
tributed with a mean of 0 and variances σ2

p0, σ2
v0, and σ2

e . The
term p0k is the subject effect, v0jk is the visit effect and eijk
is the measurement residual. Age, gender and interval(∆t)
between two visits are covariants.

ICC Estimation. These variances are used to calculate the
test-retest reliability, which is measured by the dependabil-
ity coefficient and reflects the absolute agreement of mea-
surements. The dependability coefficient is a form of the
intraclass correlation coefficient (ICC) commonly, which is
the ratio of the variances due to the object of measurement
versus sources of error. To avoid negative ICC values and
obtain more accurate estimation of the sample ICC, the vari-
ance components in model are usually estimated with the re-
stricted maximum likelihood (ReML) approach with the co-
variance structure of an unrestricted symmetrical matrix (24).

Reliability(φ) = Vb
Vb+Vw

=
σ2
p0

σ2
p0 +σ2

e

(ICC)

A metric with moderate to almost perfect test-retest re-
liability (ICC≥ 0.4) is commonly expected in practice. The
level of reliability should not be judged only based upon the
point statistical estimation of ICC but its confidence inter-
vals (CI) (110). We employed the nonparametric conditional
bootstrap method for 1000 times to estimate their 95% CIs.

Statistics Evaluation. Our analyses can produce big data of
reliability statistics including 524,160 ICCs for the global
network metrics. These ICCs are grouped into four cate-
gories (parcellation, frequency band, connectivity transfor-
mation and edge filtering scheme), each of which has differ-
ent choices. Given each choice of a category, we estimated
its density distributions of ICCs and calculated two descrip-
tive statistics: 1) mean ICC values, which measures the gen-
eral reliability under the given choice; 2) number of almost
perfect (noap) ICC values, which measures the potential re-
liability under the given choice.

We further perform Friedman rank sum test to evalu-
ate whether the location parameters of the distribution of
ICCs are the same in each choice. Once the Friedman test
is significant, we employ the pairwise Wilcoxon signed rank
test for post-hoc evaluations to compare ICCs between each
pair of the distributions under different choices. The statisti-
cal significance levels are corrected with Bonferroni method
for controlling the family wise error rate at a level of 0.05.
We develop a method to visualize and evaluate the change
of ICCs (i.e., reliability gradient) between different choices
(Fig. 1c). Specifically, the reliability can be plotted as a
function of Vb and Vw in its anatomy plane (14, 15). The
gradient of reliability between two choices is modeled by the
vector (i.e., the black arrow), and decomposed into changes
of individual variability. The systematic evaluation on the
reliability of the global network metrics determines the op-
timal network neuroscience by combining the most reliable
pipeline choices. Finally, the optimized pipeline generates
the nodal metrics as well as their reliability.
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Table 1. Brief descriptions of the network metrics examined

Level Measure Attribute Character Ref

Global

basic
degree k
number of edge ne
density d

integration

global efficiency Eg
avg shortest path length Lpa
avg nodal lp sw Lpb
pseudo diameter D

segregation

clusteringcoef btc Cpa
clusteringcoef gtool Cpb
local efficiency 1 Eloc1
local efficiency 2 Eloc2
modularity Q
transitivity bct Tra
transitivity gtool Trb

centrality

avg betweenness Bc
avg eigenvector Ec
avg pagerank Pc
avg subgraph Sc

resilience

assortativity r
scalar assortativity rs
synchronizability S
avg resolvent Rv

Nodal

integration nodal path length Lpa
local path length Lpb

segregation

clustering coeff bct Cpa
clustering coeff gtool Cpb
local efficiency 1 Eloc1
local efficiency 2 Eloc2
nodal efficiency Enodal

centrality

degree centrality Dc
betweeness centrality Bc
eigenvector centrality Ec
pagerank centrality Pc
subgraph centrality Sc
resolvent centrality Rc
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