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Abstract. Sensor networks hold the promise of truly intelligent build-
ings: buildings that adapt to the behavior of their occupants to improve
productivity, efficiency, safety, and security. To be practical, such a net-
work must be economical to manufacture, install and maintain. Simi-
larly, the methodology must be efficient and must scale well to very large
spaces. Finally, be be widely acceptable, it must be inherently privacy-
sensitive. We propose to address these requirements by employing net-
works of passive infrared (PIR) motion detectors. PIR sensors are inex-
pensive, reliable, and require very little bandwidth. They also protect
privacy since they are neither capable of directly identifying individuals
nor of capturing identifiable imagery or audio. However, with an appro-
priate analysis methodology, we show that they are capable of providing
useful contextual information. The methodology we propose supports
scalability by adopting a hierarchical framework that splits computa-
tion into localized, distributed tasks. To support our methodology we
provide theoretical justification for the method that grounds it in the
action recognition literature. We also present quantitative results on a
dataset that we have recorded from a 400 square meter wing of our labo-
ratory. Specifically, we report quantitative results that show better than
90% recognition performance for low-level activities such as walking, loi-
tering, and turning. We also present experimental results for mid-level
activities such as visiting and meeting.

1 Introduction

Buildings should be experts in the day to day activities of their inhabitants.
This would make buildings safer by providing census data during emergencies. It
would enhance security allowing the building to recognize daily patterns and flag
unusual activity. It could improve efficiency by predicting demand for heating,
lighting, and elevators. It could enrich human effort by providing presence and
availability information, or supporting social networking applications. There is
a tremendous potential benefit when buildings become experts in themselves,
experts in the activities that occur within them.
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Sensor networks have been investigated for such tasks as environmental mon-
itoring, and resource tracking[1, 2]. We present a sensor network and inference
methodology that enables buildings to sense and interpret the context of the
human occupants in a potentially economical, scalable, efficient, and privacy-
sensitive manner. Our sensor network is composed of passive infrared motion
detectors. These sensors only detect presence and movement of heat sources, so
they preserve much of the privacy of the occupants.

The system estimates the physical topology of the network and uses that
information to form context neighborhoods around each node. Loosely, a context
neighborhood is the collection of nodes that have a semantically-grounded link
to the central node. That is, nodes form a neighborhood if they are physically
near to each other, and the constraints of the space allow people to move freely
between their sensor range, so that their sensor readings are related to each other
by the dynamics of the space. These neighborhoods are the basis for portable
behavior recognition and system scalability and we will define the several specific
kinds of neighborhood in this paper.

We choose the smallest neighborhoods to be large enough to accurately detect
the atomic components of human behavior in a building. We do not require
individuals to be tracked before behavior is recognized, this allows the system
to be built with cheaper sensors, and eliminates much of the computational
overhead associated with high-fidelity tracking. By accurately detecting low-
level movement behaviors locally, we also greatly reduce the amount of data
that must be communicated outside the neighborhoods. These features support
scalability.

The neighborhoods are also defined small enough to be invariant to the larger
context of a building. This means that the detectors should be portable from
location to location. This fact reduces the overall cost by eliminating much of the
on-site calibration and engineering cost. There is no need to accurately position
the sensors, they only need to tile the space in a rough grid.

Scalability and re-usability benefits can be found by building larger neigh-
borhoods as collections of smaller neighborhoods. In this paper we will present
this hierarchical neighborhood architecture. The architecture makes sense both
from a communication efficiency point of view[3] and from a behavioral context
point of view. We will present our taxonomy of building occupant behaviors and
discuss how those behaviors map onto our sensor hierarchy.

In Section 5, we support our claims with experimental results form our test
facility. The current test facility is a 27 node network observing the hallways
and walkways of a 400 square meter wing of our building. The map in Figure 2
depicts the test area. It is occupied by 16 administrators and executives and is
a central hub of activity for all 90 employees at the site. This facility represents
the first phase of a 250-node network that will eventually cover both floors of
our 3500 square meter facility. All observations for evaluation include the real,
spontaneous, potentially multi-actor behavior of the building occupants: never
a scripted or otherwise contrived scenario.



Fig. 1. The hardware implementation of the motion detector node.

2 Related Work

Wilson and Atkeson [4] also utilize a network of motion detectors. Their system
is targeted at the home, where they assume that only a few individuals will be
present. This allows them to pursue a classic track-then-interpret methodology.
More people means more ambiguity, and more ambiguity means exponentially
more hypotheses that must be considered during tracking. Therefore, this ap-
proach is only applicable to low-census buildings, such as homes. Wilson and
Atkeson also assume strategic placement of sensors. That level of specialization
is not economical in large buildings, or where usage patterns change regularly.
We assume that our network will be built into the lights, outlets, and vents,
and that it will likely be installed by professional electricians and ventilation
engineers, rather than behavioral psychologists or eldercare specialists.

There is a significant body of literature surrounding the interpretation of hu-
man behavior in video[5–9]. A common thread in all of this work is that tracking
is the very first stage of processing. That limits the work to sensor modalities that
can provide highly accurate tracking information in the absence of any high-level
inference. In particular, the ambiguities inherent in using a motion detector net-



Fig. 2. The floor plan of the wing where experiment data was collected. In the
very center is a collection of copiers and printers. Surrounding those are a set of
cubicles. On the outside are offices. The areas observed by sensors (shaded) are
hallways.

work can be expected to introduce enough noise in the tracking results to render
most of these approaches unusable.

There are a few works that have attempted to step outside this framework[10,
11]. These systems learn task-specific state models that allow the behaviors to
be recognized directly from the sensor data, without tracking. Our work follows
this philosophy, and adapts it to the domain of sensor networks.

3 Hierarchies of Neighborhoods

Bobick[12] presents a framework for thinking about the role of time and con-
text in the interpretation of human behavior. He breaks behavior down into a
tripartite hierarchy consisting of movements, activities, and actions. The most
basic behaviors are called movements and have no link to the situational con-
text and no temporal structure. Short sequences of movements may be combined
with some temporal structure to form activities. And finally, activities may be
interpreted within the larger context of the participants and the environment to
recognize actions.
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Fig. 3. The Spatial relationship of the neighborhood hierarchy, from sensors
(L0), to clusters (L1), superclusters (L2), and finally wings (L3).

We borrow this framework, and map it onto our sensor network. Bobick de-
fines movements to be behaviors without significant temporal structure, therefore
we may recognize them with computationally light-weight models. They are also
defined as not relying on the larger context, so we may detect them using only
local information. Activities are defined as groups of movements, so they may
cover a larger area, but may still be detected locally, without the benefit of the
global context. Activities may incorporate some significant temporal structure,
so we must be careful to manage the computational resources those models may
impose on the sensor network. Finally, actions require global context to recog-
nize, and may have a complex grammar to their structure. Therefore actions
may best be recognized centrally, instead of within the sensor network. That is,
they are best recognized at the floor, or building level. Thus, we see that this
context-based hierarchy maps well onto a spatial and computation hierarchy for
the sensor network. This hierarchy is abstractly illustrated in Figure 3. The mo-
tion detectors are at the bottom of the hierarchy, providing the observations.
Successive levels tap progressively wider areas of context. Black nodes are the
cluster leader for that level, drawing information from the black and gray nodes
one level down.

The rest of this section further explores this analytical decomposition. The
next section, by contrast, will cover the implementation of the system.

3.1 Topology

We make the idea of locality concrete in the form of neighborhoods of sensor
nodes. To create the neighborhoods, we need the physical topology of the net-
work. The topology tells us both which nodes are the neighbors of each leader,
and also the ordering of the neighbors around each leader. Note that this does
not require manual calibration of the system. It has been shown that it is possi-
ble to recover the geometry of a sensor network from unconstrained motion[13].
We use a similar technique, where the unconstrained motion of building inhab-
itants is captured for a period of time and analyzed to find statistical evidence



for causal links between the nodes. The topology is inferred directly from these
links. Nodes that may be physically near each other, but are separated by a wall
barring direct pedestrian traffic between them will not be linked in this topology,
for example. That is right, since the behavior observed by those two nodes will
be independent. Typically robust topologies can be estimated from just one day
of data, but it depends on the character of the data captured.

Once the topology is known, then we can construct a neighborhood around
each node. Each node is given a look up table that maps the IDs of its neigh-
bor nodes into an ordered list. For convenience of the presentation we will say
that each neighbor is given a label such as “Top”. “Left”, “Right”, “Bottom”,
or “Center”. Note that “Top” may be arbitrarily defined to some real-world di-
rection, say West. The exact metric definition of these labels is not important.
What is important is the local relationships between the nodes is consistent: for
example that the “Top” node is both counter-clockwise from the “Right” node
and antipodal to the “Bottom” node. This insensitivity to imprecise or poorly
documented installation is an important feature of the system.

For clarity of presentation we also assume that all neighborhoods have exactly
five nodes: the center node plus the top, left, right, and bottom nodes (C, T, L,
R, B). The neighborhoods will be illustrated as idealized crosses, as in Figure 4.
In practice it is straightforward to generalize to neighborhoods with different
numbers of adjacent neighbors.

3.2 The Node

The lowest level of our hierarchy is the individual sensor node. The single mo-
tion detector is the Level 0 neighborhood, a degenerate neighborhood with only
a single member. Our sensor nodes are wireless motion detectors that detect
motion over a small area. In our case, the coverage area of each sensor is about
four square meters. The motion detectors are not very capable devices, for ex-
ample: they cannot differentiate one person from a group of several people, or
a person from an animal. However, they are a well-developed technology that is
both inexpensive and robust.

Motion detectors generate binary events in response to change in the envi-
ronment, and this is the basic unit of observation that we assume as input to the
higher layers of processing. Any sensing technology can be filtered to generate
such a stream of binary events, and so reasonably could be substituted at this
level. In the rest of the text we will call these detections motions to differentiate
them from the more interesting movements in Bobick’s taxonomy.

3.3 The Cluster

The next level of the hierarchy is the sensor cluster, or Level 1 neighborhood.
Every sensor defines a cluster: that node, plus all the nodes in the immediate
vicinity. The immediate vicinity is defined as the nodes that are one step away
in any direction in the network topology. We assume that the space is tiled with
sensors in a grid: with little or no overlap between sensor activation fields, but



Fig. 4. The neighborhood behaviors at Level 1. 1st line: canonical neighborhood
layout, and the still behavior. 2nd: passing though movements. 3rd: turning move-
ments. 4th: entering and exiting the space. 5th: some joining movements (splitting
not shown).

also with little or no gap between activation fields. If each sensor has a radius
of two meters, and the space is tiled with sensors, then a typical cluster should
consist of less than ten nodes and have a radius of approximately six meters.

The clusters are where real movement recognition occurs in our system. We
define a set of possible movements that occupants of a building might exhibit
in the small area: passing though, standing, turning, entering, leaving, joining,
and splitting. Some example movements are illustrated in Figure 4. In the illus-
trations time moves from dark to light, so the leftmost figure in the second row
represents walking though, from bottom to top. We believe that these behaviors
are so basic, and so local, that we should be able to define them, train detectors
for them, and then use those detectors in novel environments. That is, so long
as the sensors are installed in a similar configuration. the detectors for these
movements should be invariant to the context that the cluster is immersed in,
and thus can be built before installation, and reused across buildings.

The cluster leader collects the motion activations from Level 0, that is, from
its neighbor nodes. The stream of motion activations are segmented into spans
of contiguous time that contain motion. Within the spans, the leader computes a
number of simple features, such as: the total number of activations, the sequence
of neighbor activations, and which neighbors were activated first or last. These
features, which will be discussed in more detail in Section 4, are fast to compute,
and are designed to make the detectors invariant to orientation and velocity.
Since movements do not have complex temporal structure, the detectors take
the form of näıve Bayesian classifiers. The detectors are thus computationally
efficient. This is important since they are consuming motion events that are
possibly being generated several times a second.



Note that, if there are 100 sensors, then there will also be 100 clusters. Each
node leads one cluster, even while it participates in the many clusters around
it. All behaviors are defined as happening at the lead sensor in a cluster. It
is therefore necessary to have clusters at each node, to detect the movement
behaviors that happen under that node.

3.4 The Superclusters

The next level of the hierarchy, the Level 2 neighborhood, is the supercluster.
Superclusters are clusters of clusters. They consist of a lead cluster and all the
clusters in the immediate vicinity. If sensors are a couple of meters across, and
clusters are about six meters across, then superclusters are 10-15 meters across,
depending on how immediate vicinity is defined.

The supercluster leader receives movement detections from the constituent
clusters and uses this information to perform activity recognition. That is a
super cluster might infer that a meeting has occurred when its sees a sequence
of “enter enter enter”, that is, several people entering a room in secession. At
ten meters, the superclusters cover a span of hallway, or an intersection and it’s
local context, or other reusable elements of building structure. While they are
large enough to begin to incorporate elements of building context, we assert that
they still have sufficient locality to represent reusable components of behavior.

The Level 2 models must incorporate both spatial and temporal context to
recognize activities in their field of view. The models take the form of dynamic
belief networks. The results we present below include three activities: visits,
chatting, and meeting. Visiting is an activity where a person approaches a lo-
cale, dwells in that locale for a short time, and then leaves. Examples include
visiting fixed resources such as a printer or coffee pot, but also short visits to an
individual’s office. Chatting is an activity that involves two people joining in a
hallway, presumably to have a short conversation. Meeting is the activity where
several people converge on a location over a period of minutes, presumably to
participate in a scheduled meeting.

While we claim that these models are reusable across buildings, they obvi-
ously are not as universal as the movement models. These models are appropriate
to a corporate setting, and are likely portable to other collaborative environ-
ments. However, there are probably a large number of activities that could be
observed at the supercluster level. Some of these activities will have more or
less meaning depending on the context. Each class of application domain (fac-
tory, retail, office, home) would need a library of activities appropriate to that
context.

3.5 The Multi-Actor Problem

A major issue when observing multiple people is the data association problem:
what observations belong to which person? Most systems approach this problem
by assuming that individuals are accurately tracked within the space before any



interpretation is attempted. In that case, all data is associated to a track first,
and the track becomes the representation used by the recognition engine.

This approach assumes that the sensors used in the system will have sufficient
fidelity and coverage to make tracking possible. That implies either ubiquitous
camera coverage, or the presence of tracking and identification tags attached to
individual users. In situations where this assumption is valid, the prior literature
is already rich with solutions. However, we claim that these assumptions are not
currently valid in most buildings. Further, we claim that economic, ethical, and
privacy concerns surrounding ubiquitous cameras and microphones are likely to
keep many, if not most spaces from implementing such systems.

Rather than trying to distinguish individuals at the very first stage of pro-
cessing, we chose instead to first draw a distinction between independent individ-
uals and co-acting individuals, Instead of assuming that we can track individual
people, we assume that people within a certain distance of each other are not
independent, that they are, together, engaged in some recognizable movement.
Specifically, that distance in the radius of a Level 1 neighborhood. If two people
meet in a particular neighborhood, then that is recognized as a single movement:
joining.

At Level 2, we must begin to resolve the multi-actor problem. The radius of a
Level 2 neighborhood could be ten meters, so it is unreasonable to assert that the
movements of people 5-10 meters apart are significantly correlated. Such weakly
correlated actors would cause an explosion in the variability of behavior, and
therefore an explosion in the number and complexity of movement models that
we would need to consider. Our solution at Level 2 is to recognize all possible
interpretations of the observed activity. This allows us to capture recognizable
activities that might occur in the presence of distracting motions due to other
actors. The ambiguity generated by these non-exclusive detections is passed up
to the next level, to be resolved using external context.

3.6 Architectural Spaces

We find that above Level 2, we begin to naturally refer to the neighborhoods with
architectural terms: a lab, a wing, a floor, a building, a campus. We believe that
behaviors at the floor- or wing-level naturally include the notion of individuals
and places: person A left her office, visited the coffee machine, and returned.
We posit therefore, that the next level of processing will necessarily include
some form of stochastic parsing or chaining. This process will have much in
common with tracking, except that it will be based not on the similarity of signal
characteristics, but instead on the consistency of interpretations along the chain.
Because this form of processing is very different from what we’ve described so
far, and because it is well covered in the existing literature, for example see the
work of Ivanov[14], we will not discuss it further in this work.



4 Implementation

This section will cover the implementation of the sensor network: both hardware
implementation and analytic techniques.

4.1 The Node

The Level 0 detector is implemented in hardware, using passive infra-red (PIR)
motion detectors. This is the same sensing technology used in most motion-
activated lights and appliances on the market today. The sensors are inexpensive,
approximately $30 per node in quantities of 500. They also require little power:
they are able to run on a single nine volt battery for several months. Finally, what
little they actually do, they do very reliably. We have used the widely available
KC7783R sensor package from Comedia Ltd. The nodes are approximately 2cm
by 3cm by 5cm. A node is pictured in Figure 1.

As it comes from the factory, the KC7783R is only able to generate events
once every few seconds. We modified the boards to reduce the recovery time so
that events may be generated at about 1Hz. When an individual is within view
of the sensor, the moving heat source changes the thermal signature measured
by the device, and a rising voltage edge is generated. The sensor is noisy and
sometimes generates both false positive and false negative signals. However it is
insensitive to changes in visible lighting, and therefore has a distinct advantage
over cameras.

The output of the node, at the Level 0, is simply a stream of binary events.
When the motion is detected, a sensor-specific ID is broadcast over a wireless
network. In our research prototype system, the packet is associated to a global
time stamp and copied to a conventional LAN for central storage and analysis.
However, we anticipate that in a production system, the nodes would communi-
cate only locally, passing information directly between immediate neighbors to
be analyzed locally.

4.2 The Cluster

The goal of a cluster is to process the binary motion activation events from
its participant sensor nodes at level 0 and classify them into one of the 17
movements. The 17 movements to recognize are: entering, leaving, turning-
top-right, turning-top-left, turning-bottom-right, turning-bottom-left, turning-
right-bottom, turning-right-up, turning-left-bottom, turning-left-up, walking-up,
walking-down, walking-right, walking-left, still, join, split. Note that the goal is
not only to recognize if a person is ”turning” but which direction (right vs. left
and top vs bottom) the person is turning to with respect to an arbitrary refer-
ence point shared by all nodes. Furthermore, note that detecting movements at
any point in the network only requires information from the local neighborhood
or cluster (5 sensors in our case) of motion detectors.

Movement detection is accomplished in three, computationally light-weight
steps: segmentation of motion events, feature extraction, and detection. The



continuous stream of binary motion events is segmented using what we call idle
segmentation. In idle segmentation, the leader node of the cluster starts collect-
ing data as soon it receives a motion event from any of its neighbors and stops
storing events after an idle time window of 3 seconds, containing no activations.
The idle window corresponds to the average time it takes a person to walk away
from a neighborhood at normal walking speed. Note that a conventional running
window of fixed length could have been used to perform the segmentation of the
motion events, however, idle segmentation was preferred for the lower number
of false positives generated and less detections required by the system.

The features we extract are simple, yet powerful, so that they can be com-
puted using the limited computational resources available at the sensor nodes.
The first step in the feature computation is to use a look-up-table to convert
the local motion event labels into the more portable top, bottom, left, right, and
center labels that describe the local topological relationship between the nodes,
as discussed in section 3.1. The first type of feature that is computed is temporal
precedence. These features indicate the gross temporal relationship between the
sensor activations. The mean value of all the timestamps associated with the
motion events received from each sensor (T, B, L, R, C) is used to compute this
feature. The total number of precedence features is 5×5 = 25. Another feature is
the total number of motion events that comprise the segment. We also compute
binary features that indicate if the center node or one of the neighbors was the
first or the last sensor to be activated. Finally there are binary feature that in-
dicate if a particular node was activated at all. For example, during an idealized
example of the turning-bottom-left movement, The nodes B, C, L would be acti-
vated once each. The feature vector for that activity would be 30 elements with
the following non-false values: B, C, L, B ≺ C, B ≺ L, C ≺ L, neighborsF irst,
neighborsLast, and total = 3. The notation B means “the Bottom sensor was
activated.” The notation B ≺ C means “the Bottom sensor was activated before
the Center sensor.”

Note that the feature vector is not a temporal sequence, it is just single
vector that summarizes the entire observation sequence. In general, the features
are designed to be invariant to the overall execution speed of the movement.

Once the features are extracted for a segment, detection is accomplished by
using a näıve Bayesian classifier. The classifier takes the vector of 30 features and
computes the likelihood for each of the 17 movements. Previous experimental
testing has demonstrated that näıve Bayes networks are surprisingly good clas-
sifiers on some problem domains, despite their strict independence assumptions
between attributes and the class and their computational simplicity. In fact, sim-
ple näıve networks have proven comparable to much more complex algorithms,
such as the C4 decision tree algorithm [15–17]. The näıve Bayesian classifier was
trained on 3 weeks of hand-labeled data were the number of training examples
for each movement varies from 4–28. Examples of the 17 movement categories
were hand labeled by watching 7.5Hz video from 20 ceiling mounted cameras.
The examples were drawn from real data collected continuously over three weeks



from the administrative wing. The confusion matrix and classification results are
presented below,in Section 5.

4.3 Superclusters

At Level 2, the leader of a super cluster recognizes activities by segmenting and
classifying the movement detection results from its neighbor leaders at Level 1.
The activities that we recognize are chatting, meeting, and visiting. The recog-
nition of these activities requires access to a broader spatial context as well as
more detailed temporal models. The segmentation of level 1 events is performed
using idle segmentation with an idle window of 10 seconds. It is important to
notice that different idle window lengths could be used for different activities,
however, good results were obtained using the 10s window.

Because the input events at this level are discrete movement labels generated
relatively infrequently (once every several seconds), we can afford to recognize
them with discrete output Hidden Markov Models (HMMs)[18]. HMMs are para-
metric models that contain a set of states and a model of how the process tran-
sitions through those states. Each state is associated with a distinct conditional
probability distribution over the space of all possible observations. In our case,
the observations are the discrete movement detections from level 1. We compute
the optimal number of hidden states using a cross-validation procedure over the
training data and the Baum-Welch algorithm assuming a uniform prior state dis-
tribution. Since our observation variable is discrete, the observation likelihood
function is represented as a discrete set of probabilities:

bi(f i) = Pr [fi]

where fi is the vector of features at index i. The transitions are assumed to be
first-order Markov, shaped by a transition probability matrix A.

P (fi|F, λ) =
N∑

q=1

bq(fi)

[
N∑

p=1

P (F|Q = p, λ)apq

]
(1)

where apq is the element of A that specifies the probability of transitioning from
state p to state q, Q is the current state, F is the collection of prior feature
observations, and bq(f) is the probability of making the observation f while in
state q. This model incorporates information about the temporal structure of a
process in the transition matrix. It offers invariance to warping of the temporal
signal. The observation process also allows it to tolerates noise in the signal.

We recognize the activities by creating one HMM for each activity to clas-
sify and computing the likelihood over the segmented data sequence using the
forward-backward algorithm[19]. The final classification result is given by the
activity label associated with the HMM that obtains the highest likelihood over
the segment.

The training data for each activity model is usually obtained by observing
and hand labeling video sequences of the different activities. However, given the



simplicity and the ease of interpreting the features used at this level (simple
movement events), it is possible to directly write down a set of hypothetical
training examples using common sense. This is important because it means that
new activities can be hand-defined on-the-fly by the end user of the system just
by having a common sense understanding of the temporal relationships among
the movement events. In our case, we created 20 training examples composed of
five unique examples for each activity. For example, the ’meeting’ activity was
defined by these sequences of movements: ”entering entering”, ”entering entering
entering”, ”leaving leaving”, and ”leaving leaving leaving”, among others. This
allows us to identify meetings as events were at least two people consecutively
enter or leave an office or space.

5 Experimental Results

The map in Figure 2 depicts the test area. Executives occupy the offices around
the outside edge of the space. Support staff occupy the cubicles in the center. At
the very middle there are printers and copiers. The open hallways to the lower
left and right provide access to the rest of the lab. The 16 occupants of the area
form a tightly collaborative group, so there are many person-to-person behaviors
that occur completely within this relatively small space. That is one reason the
area was chosen for this pilot study. The space is also visited often by the 70
employees when they seek the services of the area occupants. During the course
of the evaluation the occupants were notified of data gathering, but were never
instructed to behave in a particular way, nor were there any artificial constraints
placed on the number of people who could be moving at any given time. The
data contains observations of the honest, natural behavior of the occupants of
this busy space.

The Level 1 detectors were trained from a pool of hand-labeled examples in
the ground-truth video sequences. We expect these models to be portable to any
Level 1 neighborhood, so the examples were collected from different points in
the space. The models were trained and tested in a leave-one-out cross-validation
framework on the segmented data. Therefore, models were always trained and
tested on data from different parts of the experimental area. The leave-one-out
methodology was chosen to make the most efficient use of the limited quantity of
hand-labeled data, which was very time consuming to generate. The confusion
matrix is shown in Table 1. Performance over the 221 segmented test examples
was 91%, with half the errors coming in the split and join movements. These
movements show the most variability, and it is possible that they should be
considered activities to be recognized at a higher level of processing. The rows of
the table indicate the result of classifying all the examples of a known type, for
example there are 28 “enter” events labeled in the test set. Numbers along the
diagonal are correct: the known label on the row matches the classifier output
on the column. Off-diagonal elements are errors: one enter event was incorrectly
classified as a “leave” event, and three were incorrectly classified into one of the
many “turn” classes.
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Table 1. Confusion matrix for Movement detection experiments

A more realistic test of the performance of the movement detectors is run
them on a long, unsegmented sequences of motion data and then compute spatial
probability models that show where certain kinds of events occur. For this paper
we ran the detectors on a 3 week long continuous stream of data, comprised of
3.84 million individual motion sensor activations. For example, Figure 5 depicts
the spatial distribution of the walking movement. All of the figures in this section
show just the walkways (shaded area) from Figure 2. The rectangles correspond
to the coverage area of individual motion detectors. The walking movement is
defined as walking though a neighborhood without stopping or turning. The
figure shows regions of high probability (dark) along the hallways in the figure.
That is, many more walking though detections were recorded along this path
than elsewhere in the space. The hallway along the bottom of the map is a very
high-traffic route connecting two wings of our building. Note also that at corners
the walk probability is very, very low (white). This is due to the fact that it is
not possible to walk at the locations: one must either turn or enter an office.

Similarly, Figure 5 shows the spatial distribution of turning movements over
the space. Areas where turns are impossible, correctly show a very low probabil-
ity (white) of witnessing a turning movement. Areas like corners and junctions,
however, have a high probability (dark) of seeing a turning movement. These
two figures, and similar plots for the other movement models, match our intu-
itions about the space very closely. This gives us confidence that the models are
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Fig. 5. Left: The spatial distribution of walking movements in the experimental
area. Right: The spatial distribution of turning movements in the experimental
area.

generalizing well across large spans of time. These plots summarize three weeks
of movement detection results.

It is very difficult to gather ground truth for 3.84 million sensor activations.
Table 1 is intended to provide precise, quantitative detail on the performance
of the classifiers: illustrating the nature of mistakes on a small, carefully ana-
lyzed section of data. On the other hand, the long sequence data is intended to
qualitatively illustrate that the classifiers do work on large streams of data, and
do produce sensible summaries of the building activity. These summaries are
consistent with the building architecture in that they do not show nonsensical
behaviors such as walking into walls They are also consistent with the intu-
itions of building occupants. For example, correctly highlighting the high-traffic
corridor within the space.

The Level 2 detectors provided a similar challenge. While going to meetings
may seem more common than we sometimes might like, they are, actually, rare
enough that compiling even two examples per week is difficult, and very time
consuming. Instead we manually generated models that described what we an-
ticipate scheduled meetings to look like: a few people entering the same room
over the course of several minutes. The inputs, the local movement detections,
are reliable and abstract enough that this seems to work. The spatial distribu-
tion of meetings, shown in Figure 6, matches our intuitions about the way the
space is used. Meetings are uncommon at most locations, but occur with higher
probability inside the offices of the lab directors. The squares in Figure 6 do not
correspond directly to doors. Some observations zones have multiple doors, and
some have no doors. The real distribution of doors can be seen in Figure 2.

Figure 6 shows the spatial distribution of the visiting activity. Visiting is an
activity where people approach a location, loiter there briefly, and then leave.
This activity is common enough that we were able to train the activity models
from real data. The result is a very clean probability map. The central spikes
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Fig. 6. Left: The spatial distribution of meeting activity in the experimental
area. Right: The spatial distribution of visiting activity in the experimental
area.

correspond to the printer and the copier. The high probability regions in the
upper left correspond to the directors’ offices, the office of human resources and
several key administrators. The high probability node in the lower right is the
office of the vice president of business development.

In almost all the plots we see spurious detections on the boundary nodes, at
the extreme bottom, left and right, of the map. These boundary nodes represent
places where the closed-world assumption is broken. The movement detectors fail
because they are blind to motion that happens in what should be part of their
local context. This is a strong argument for completely covering spaces with
sensors. Ambiguities created by incomplete coverage are very hard to resolve
through inference.

6 Applications

These results suggest that a number of context-sensitive applications may soon
be not only possible, but practical. An inexpensive sensor network could hence
building safety by tuning emergency response to an up-to-the-minute building
census. It could enhance security while preserving privacy by providing more
complete context information to monitoring systems without the invasiveness
or cost of ubiquitous cameras. Current energy saving devices such as motion
activated lights tend to be disabled by occupants because they are annoying. By
understanding more of the local context, and the habits of the users, it might
be possible to build systems that better match the expectations of the people in
the building.



7 Summary

We have shown that a network of simple motion detectors can be used to re-
cover useful information about the state of a building in an efficient, scalable,
and privacy-friendly manner. It is possible to recognize both simple movements
(walking, loitering, entering a room) and more complex activities (visiting and
meeting). We see these low- and mid-level behavior detectors as the building
blocks for high-level understanding of the context of a building. This recognition
is accomplished by adopting a hierarchical framework for interpretation that is
carefully tuned to the requirements for recognition of various the components of
human activity. The movement detectors are intentionally simple to allow mod-
est computational engines to evaluate them despite relatively high input data
rates. The movement detectors locally summarize the data, lowering the data
rate and making the more demanding activity recognition models tractable, al-
lowing us to scale up the extent of our network. We have also presented a list
of movements that appear to generalize well to novel contexts. We argue that
these low-level detectors can provide a powerful tool, enabling the analysis of
building activity without the need for significant adaptation to novel contexts.
This scalable, reusable, efficient, privacy-friendly framework for behavior under-
standing in buildings enables an enormous field of applications for the future of
responsive buildings.
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