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ABSTRACT
Internet traffic measurement and analysis has long been
used to characterize network usage and user behaviors, but
faces the problem of scalability under the explosive growth
of Internet traffic and high-speed access. Scalable Internet
traffic measurement and analysis is difficult because a large
data set requires matching computing and storage resources.
Hadoop, an open-source computing platform of MapReduce
and a distributed file system, has become a popular infras-
tructure for massive data analytics because it facilitates scal-
able data processing and storage services on a distributed
computing system consisting of commodity hardware. In
this paper, we present a Hadoop-based traffic monitoring
system that performs IP, TCP, HTTP, and NetFlow analy-
sis of multi-terabytes of Internet traffic in a scalable manner.
From experiments with a 200-node testbed, we achieved 14
Gbps throughput for 5 TB files with IP and HTTP-layer
analysis MapReduce jobs. We also explain the performance
issues related with traffic analysis MapReduce jobs.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Management, Net-
work Monitoring

Keywords
Hadoop, Hive, MapReduce, NetFlow, pcap, packet, traffic
measurement, analysis

1. INTRODUCTION
We live in an era of “big data” produced by skyrocket-

ing Internet population and extensive data-intensive appli-
cations. According to Cisco [1], for example, global IP traffic
has multiplied eightfold over the past five years and annual
global IP traffic will exceed 1.3 zettabytes by the end of
2016. It is also reported that the aggregated traffic vol-
ume in Japan has been doubling roughly every two years
since 2005 [2]. As the number of network elements, such as
routers, switches, and user devices, has increased and their
performance has improved rapidly, it has become more and
more difficult for Internet Service Providers (ISPs) to collect
and analyze efficiently a large data set of raw packet dumps,
flow records, activity logs, or SNMP MIBs for accounting,
management, and security.

To satisfy demands for the deep analysis of ever-growing
Internet traffic data, ISPs need a traffic measurement and
analysis system where the computing and storage resources
can be scaled out. Google has shown that search engines can

easily scale out with MapReduce and GFS [3, 4]. MapRe-
duce allows users to harness tens of thousands of commod-
ity machines in parallel to process massive amounts of data
in a distributed manner simply defining map and reduce
functions. Apache Hadoop [5], sponsored by Yahoo!, is an
open-source distributed computing framework implemented
in Java to provide with MapReduce as the programming
model and the Hadoop Distributed File System (HDFS) as
its distributed file system. Hadoop offers fault-tolerant com-
puting and storage mechanisms for the large-scale cluster en-
vironemt. Hadoop was orginally designed for batch-oriented
processing jobs, such as creating web page indices or analyz-
ing log data. Currently, Hadoop is widely used by Yahoo!,
Facebook, IBM, Netflix, and Twitter to develop and execute
large-scale analytics or applications for huge data sets [6].

Generally, it is not straightforward to perform network
management or business intelligence analytics on large amounts
of data: traffic classification of packet and netflow files; quick
investigation of anomalies such as global Internet worm out-
breaks or DDoS attacks; long-term network trends or user
behaviors. For instance, the volume of traffic data captured
at a 10 Gbps directional link of 50% utilization becomes
2.3 TB per hour. However, there is no analysis tool that
can afford this amount of data at once. It is then expected
that the major advantage of using Hadoop to measure In-
ternet traffic is the scale-out feature, which improves the
analysis performance and storage capacity in proportion to
the computing and storage resources with commodity hard-
ware. Hadoop for its scalability in storage and computing
power is a suitable platform for Internet traffic measurement
and analysis but brings about several research issues.

In this work we develop a Hadoop-based scalable Inter-
net traffic measurement and analysis system that can man-
age packets and NetFlow data on HDFS. The challenges
of applying Hadoop to Internet measurement and analysis
are 1) to parallelize MapReduce I/O of packet dumps and
netflow records in HDFS-aware manner, 2) to devise traf-
fic analysis algorithms especially for TCP flows dispersed
in HDFS, and 3) to design and implementation an inte-
grated Hadoop-based Internet traffic monitoring and anal-
ysis system practically useful to operators and researchers.
To this end, we propose a binary input format for reading
packet and NetFlow records concurrently in HDFS. Then,
we present MapReduce analysis algorithms for NetFlow, IP,
TCP, and HTTP traffic. In particular, we elucidate how to
analyze efficiently the TCP performance metrics in MapRe-
duce in the distributed computing environment. Finally,
we create a web-based agile traffic warehousing system us-

ACM SIGCOMM Computer Communication Review 6 Volume 43, Number 1, January 2013



ing Hive [7] which is useful for creating versatile operational
analysis queries on massive amounts of Internet traffic data.
We also explain how to increase the performance of Hadoop
when running traffic analysis MapReduce jobs on a large-
scale cluster. From experiments on a large-scale Hadoop
testbed consisting of 200 nodes, we have achieved 14 Gbps
throughput for 5 TB packet files with IP and HTTP-layer
analysis MapReduce jobs.

The main contribution of our work is twofold. First, this
work presents a Hadoop-based tool that offers not only In-
ternet traffic measurement utilities to network reseachers
and operators but also various analysis capabilities on a
huge amount of packet data to network researchers and
analysts. Second, this work establishes a guideline for re-
searchers on how to write network measurement applications
with MapReduce and adopt high-level data flow language,
such as Hive and Pig.

The paper is organized as follows. In Section 2, we de-
scribe the related work on traffic measurement and analysis.
The Hadoop-based traffic measurement and analysis system
is explained in Section 3, and the experimental results are
presented in Section 4. Finally, Section 5 concludes this
paper.

2. RELATED WORK
Over the past few decades, a lot of tools have been devel-

oped and widely used for Internet traffic monitoring. Tcp-
dump [8] is the most popular tool for capturing and ana-
lyzing packet traces with libpcap. Wireshark [9] is a pop-
ular traffic analyzer that offers user-friendly graphic inter-
faces and statistics functions. CoralReef [10], developed by
CAIDA, provides flexible traffic capture, analysis, and re-
port functions. Snort [11] is an open source signature-based
intrusion detection tool designed to support real-time analy-
sis. Bro [12], which is a network security monitoring system,
has been extended to support the cluster environment [13].
However, it provides only independent packet processing at
each node for live packet streaming, so it cannot analyze a
large file in the cluster filesystem. Tstat [14] is a passive
analysis tool which elaborates tcptrace, and it offers var-
ious analysis capabilities with regard to TCP performance
metrics, application classification, and VoIP characteristics.
On the other hand, Cisco NetFlow [15] is a well-known flow
monitoring format for observing traffic through routers or
switches. Many open-source or commercial flow analyzing
tools exist, including flow-tools [16], flowscan [17], argus [18],
and Peakflow [19]. Yet, in general, the majority Internet
traffic measurement and analysis tools run on a single server
and they are not capable of coping with a large amount of
traffic captured at high-speed links of routers in a scalable
manner.

Most MapReduce applications on Hadoop are developed
to analyze large text, web, or log files. In our prelimi-
nary work [20], we have devised the first packet process-
ing method for Hadoop that analyzes packet trace files in
a parallel manner by reading packets across multiple HDFS
blocks. Recently, RIPE [21] has announced a similar packet
library for Hadoop, but it does not consider the parallel-
processing capability of reading packet records from HDFS
blocks of a file so that its performance is not scalable and its
recovery capability against task failures is not efficient. In
this paper, we present a comprehensive Internet traffic anal-
ysis system with Hadoop that can quickly process IP packets

as well as NetFlow data through scalable MapReduce-based
analysis algorithms for large IP, TCP, and HTTP data. We
also show that the data warehousing tool Hive is useful for
providing an agile and elastic traffic analysis framework.

3. TRAFFIC MEASUREMENT AND ANAL-
YSIS SYSTEM WITH HADOOP

In this section, we describe the components of the traffic
measurement and analysis system with Hadoop and traf-
fic analysis MapReduce algorithms. As shown in Fig. 1,
our system1 consists of a traffic collector; new packet in-
put formats; MapReduce analysis algorithms for NetFlow,
IP, TCP, and HTTP traffic; and a web-based interface with
Hive. Additional user-defined MapReduce algorithms and
queries can be extended.

3.1 Traffic collector
The traffic collector receives either IP packet and Net-

Flow data from probes or trace files on the disk, and writes
them to HDFS. NetFlow exported in UDP datagram can be
considered as IP packet data. Traffic collection is carried
out by a load balancer and HDFS DataNodes. In online
traffic monitoring, the load balancer probes packet streams
using a high-speed packet capture driver, such as PF RING
and TNAPI [22], and it forwards packets to multiple DataN-
odes evenly with a flow-level hashing function. Then, HDFS
DataNodes capture forwarded packets and write them to
HDFS files concurrently. Since disk I/O performance may
be a bottleneck to a Hadoop cluster, each DataNode uses
a parallel disk I/O function, such as RAID0 (data striping
mode), to boost the overall performance of HDFS. Due to
the distributed traffic collecting architecture, a traffic collec-
tor can achieve the scale-out feature for storing the increased
input traffic volume. However, we focus on the offline traffic
collection and analysis system because our system currently
does not guarantee the end-to-end performance from online
traffic collection to real-time traffic analysis, which requires
a job scheduling discipline capable of provisioning cluster
resources for the given traffic analysis load.

3.2 IP packet and NetFlow reader in Hadoop
In Hadoop, text files are common as an input format be-

cause data mining of text files such as web documents or log
files is popular. IP packets and NetFlow data are usually
stored in the binary format of libpcap. Hadoop in itself sup-
ports a built-in sequence file format for binary input/output.
In order to upload the packet trace files captured by exist-
ing probes to HDFS, however, we have to convert them into
HDFS-specific sequence files. This procedure will result in
the computation overhead of reading every packet record se-
quentially from a packet trace file and saving each one in the
format of the sequence file. Though the sequence file format
can be used for online packet collection, it will incur the
additional space requirements for the header, sync, record
length, and key length fields. Moreover, this sequence file
format in HDFS is not compatible with widely used libpcap

tools, which causes the data lock-in problem. Therefore, it is
not efficient to use the built-in sequence file format of HDFS
for handling NetFlow and packet trace files. In this work,
we developed new Hadoop APIs that can read or write IP
packets and NetFlow v5 data in the native libpcap format

1The source code of our tool is available in [24]
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Figure 1: Overview of the traffic measurement and analysis architecture with Hadoop.

on HDFS. The new Hadoop API makes it possible to di-
rectly save the libpcap streams or files to HDFS and run
MapReduce analysis jobs on the given libpcap files.

Figure 2: Reading packet records in libpcap on
HDFS blocks for parallel processing.

When a MapReduce job runs on libpcap files in HDFS,
each map task reads its assigned HDFS block to parse packet
records independently, which is imperative for parallel pro-
cessing. Since an HDFS block is chunked in a fixed size
(e.g., 64MB), a variable-sized packet record is usually lo-
cated across two consecutive HDFS blocks. In addition, in
contrast to the text file including a carriage-return character
at the end of each line, there is no distinct mark between
two packet records in a libpcap file. Therefore, it is difficult
for a map task to parse packet records from its HDFS block
because of the variable packet size and no explicit packet
separator. In this case, a single map task can process a
whole libpcap file consisting of multiple HDFS blocks in a
sequential way, but this file-based processing method, used
in RIPE pcap [21], is not appropriate for parallel comput-
ing. With RIPE pcap, each trace should be saved in a suf-
ficiently fine-grained size to fully utilize the map task slots
of all cluster nodes. Otherwise, the overall performance will
be degraded due to the large file size. Moreover, if a map
or reduce task fails, the file-based MapReduce job will roll
back to the beginning of a file.

In order for multiple map tasks to read packet records
of HDFS blocks in parallel, we propose a heuristic algo-
rithm [20] that can process packet records per block by us-
ing the timestamp-based bit pattern of a packet header in
libpcap. Figure 2 shows how each map task delineates the
boundary of a packet record in HDFS. Our assumption is
that the timestamp fields of two continuous packets stored
in the libpcap trace file are similar. When a MapReduce
job begins, it invokes multiple map tasks to process their
allocated HDFS blocks. Each map task equipped with the
packet record-search algorithm considers the first 16 bytes
as a candidate for a libpcap packet header, reads the re-
lated fields of two packets using the caplen field, and ver-
ifies each field value of the two packet records. First, the
timestamp value should be within the time duration of the
captured packet traces. Then, we look into the integrity
of the captured length and the wired length values of a
packet header, which should be less than the maximum
packet length. Third, the timestamp difference between
two contiguous packet records should be less than thresh-
old. The packet-record search algorithm moves a fixed-size
(e.g., 2× maximum packet size) window by a single byte to
find a packet. On top of the heuristic algorithm, we have
implemented PcapInputFormat as the packet input module
in Hadoop, which can manipulate IP packets and NetFlow
v5 data in a native manner in HDFS. BinaryInputFormat is
the input module for managing binary records such as flows
and calculating flow statistics from IP packets.

3.3 Network-layer analysis in MapReduce
For network-layer analysis, we have developed IP flow

statistics tools in MapReduce, as shown in Fig. 3. Comput-
ing IP flow statistics certainly fits the MapReduce frame-
work because it is a simple counting job for the given key
and it can be independently performed per HDFS block.
With this tool, we can retrieve IP packet and flow records
and determine IP flow statistics that are similarly provided
by well-known tools [10, 16]. For the packet trace file, we
can tally the IP packet statistics, such as byte/packet/IP
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Figure 3: Overview of IP and NetFlow analysis tools
in MapReduce.

flow counting, IP flow statistics, periodic traffic statistics,
and top N , as shown in Fig. 3. The IP analysis is mostly an
aggregation work that summarizes the corresponding count
values associated with IP addresses and port numbers.
PcapTotalFlowStats periodically calculates flow informa-
tion, which consists of IP addresses and ports from packet
trace files. This analysis requires two MapReduce jobs for
flow statistics and aggregated flow information, respectively.
PcapStats tallies the total byte/packet and bit/packet rate
per time window for the given packet trace files. PcapCountUp
summarizes the total byte/packet count for given packet
trace files regardless of any time window. TopN finds the
most popular statistics, such as top 10 IP or TCP flow in-
formation.

3.4 Transport-layer analysis in MapReduce
In contrast to IP analysis, TCP performance metrics such

as round-trip time (RTT), retransmission rate, and out-of-
order cannot be computed per HDFS block, because the
computation of these metrics is not commutative and asso-
ciative across TCP flow parts on several HDFS blocks. In
TCP analysis with MapReduce, we face two challenges: con-
structing a TCP connection by stitching directional TCP
flow parts spread out across multiple HDFS blocks; op-
timizing the TCP performance metric calculation work in
MapReduce.

3.4.1 Constructing a TCP connection by stitching flow
parts

Before performing TCP-layer analysis in MapReduce, we
have to extract a full TCP connection containing both client-
server (C2S) and server-client (S2C) directional flows that
are often stored across several HDFS blocks. In order to
find a TCP connection, we have to map multiple C2S and

Figure 4: Two directional TCP flows, that belong to
a single TCP connection: two flows of TCP connec-
tion 1© are mapped to different reducers; two flows
of TCP connection 2© and 3© are mapped to a single
reducer due to C2S and S2C flow classification.

S2C directional TCP flow parts on different HDFS blocks
into the same reduce task. Each map task associated with
a HDFS block pulls out the packet streams of a single TCP
connection and passes them to a reduce task that will merge
flow parts into a TCP connection and will compute the TCP
performance metrics. Figure 4 illustrates how two C2S and
S2C directional TCP flows that belong to a single TCP con-
nection, are assigned to the same reducer. If a map task
uses a key of five tuples, two directional TCP flows of a
TCP connection 1© may be mapped to different reduce tasks
( 1©’) because the hashing function will assign sourcedestina-
tion or destinationsource flows to different domains. Then,
neither of the two reduce tasks can carry out accurate TCP
performance analysis.

This problem has been solved using a simple rule for clas-
sifying two directional IP flows of a single TCP connection
into C2S or S2C flows with the port number comparison.
If a packet contains a source port number smaller than the
destination port number, it is classified into a S2C flow.
Otherwise, packets with the larger source port number will
be categorized into a C2S flow. After classifying IP flows, a
map task can emit two directional TCP flow parts ( 2©) to
the same reduce task. In addition, multiple map tasks on
different HDFS blocks can emit their own parts of a TCP
connection to the same reduce task by using the client-server
flow classification function with the port number compari-
son. For example, in Fig. 4, C2S and S2C TCP flows ( 3©) on
HDFS block 2 and 3 will be recognized for the same TCP
connection with the port number comparison. Then, two
map tasks processing TCP flow parts on their HDFS blocks
emit the packets of both C2S and S2C TCP flows to the
same reduce task ( 3©’).

3.4.2 Optimizing TCP metric calculation at the re-
duce task

After pulling packet streams of a TCP connection from
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multiple map tasks, a reduce task computes the performance
metrics for a TCP connection. For example, when calculat-
ing the RTT values of a TCP connection, a reduce task has
to find a pair of a TCP segment and its corresponding ACK
from a series of unsorted packet records. In this case, a lot
of packet records may be kept at the heap space of a reduce
task, which often results in the failure of the MapReduce job.
Particularly, a reduce task processing a long fat TCP flow
cannot maintain many packet records at the heap memory
to traverse unsorted TCP segments and their corresponding
ACKs.

To solve this problem, we have simplified the computa-
tion process at the reduce task by sending a TCP segment
and its corresponding ACK together from the map task.
That is, a map task extracts a TCP segment from a packet
and couples it with the corresponding ACK with the key of
TCP sequence and ACK numbers. This coupling process is
also applied to ACK segments. Since both a TCP segment
and its corresponding ACK use the same key, they will be
grouped during the shuffle and sort phase of MapReduce.
Then, a reduce task can sequentially compute RTT, retrans-
mission rate, and out-of-order from a coupled pair of a TCP
segment and its corresponding ACK, which are sorted with
the TCP sequence number. In the reduce task, we can add
up various TCP metrics according to the analysis purposes.
In this paper, we considered four representative metrics of
throughput, RTT, retransmission rate, and out-of-order for
each TCP connection, as shown in Fig. 3.

3.5 Application-layer analysis in MapReduce
libpcap input format in HDFS makes it possible to build

up application-specific analysis MapReduce modules for web,
multimedia, file sharing, and anomalies. In this work, we fo-
cus on the HTTP-based application analysis in MapReduce,
because HTTP is popular in many Internet applications.

3.5.1 Web traffic analysis
For web traffic analysis, we have developed a MapReduce

algorithm that can investigate website popularity and user
behavior by examining HTTP packets. We look into the
header information of the first N (e.g., 3) HTTP packets be-
cause we are interested only in the header fields, not the user
content. In the MapReduce algorithm, first, the map task
extracts several fields out from the header of a HTTP re-
quest message, such as a Uniform Resource Identifier (URI),
content-related fields, user agent, and host values. Then, the
reduce task summarizes the statistics or popularity per web-
site (or domain/host), webpage (or URL), content URI, or
user. A website is considered as a unique host name field
at the HTTP message. Each web page, specified as a URL,
consists of several content URIs that share the same refer-
rer field. For web traffic analysis, we have implemented two
MapReduce jobs: the first job sorts the URL list accessed
by each user; the second job summarizes the user and view
counts per host and URL. HTTP analysis can be easily ex-
tended to other Internet applications, such as SIP for video
or VoIP, file-sharing, and anomalies.

3.5.2 DDoS traffic analysis
In order to show the effectiveness of MapReduce-based

application-layer traffic analysis, we present a HTTP-based
distributed denial-of-service (DDoS) attack detection method
implemented in MapReduce. We employ a counter-based

DDoS detection algorithm in MapReduce [23]. The map
task generates keys to classify the requests and response
HTTP messages. Then, the reduce task summarizes the
HTTP request messages and marks the abnormal traffic load
by comparing it with the threshold. Though the DDoS traf-
fic analysis MapReduce algorithm is used for offline forensic
analysis, it can be extended to real-time analysis.

Figure 5: Web user interface supporting Hive
queries on NetFlow data.

3.6 Interactive query interface with Hive
Since the MapReduce framework is useful for processing

a large amount of IP packets and NetFlow data in paral-
lel, researchers capable of developing the measurement and
analysis function can invent their own MapReduce mod-
ules for fast response time. However, it may take long time
for analysts to write application-specific analysis programs
in MapReduce, though analysis modules implemented in
MapReduce can bring a better throughput. Therefore, a
simple query interface is more convenient than MapReduce
programming to users interested in agile traffic analysis.
Moreover, it is more expressive and extensive for users to
ask versatile questions on the traffic data through the query
interface. Hive provides the ability to generate MapReduce
codes through the SQL-like query interface, Hive Query Lan-
guage (HiveQL). Therefore, we harness the Hive query in-
terface for easy operational Internet traffic analysis.

We implemented a NetFlow monitoring system with our
MapReduce flow analysis algorithms and Hive, as shown in
Fig. 5. The traffic collector receives the NetFlow streams
from a router and writes them to a single HDFS file every
five minutes. After a NetFlow file is closed every five min-
utes, the job scheduler invokes IP analysis MapReduce jobs
to process NetFlow data and uploads flow records and IP
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statistics to Hive tables. Then, operators can issue user-
defined queries to the Hive table over the characteristics of
IP flow data. For example, users can monitor anomalous
flows related with spoofed IP addresses, scanning, or heavy
users with the HiveQL, as shown in Fig. 5. Since the queries
will be translated into MapReduce codes, their performance
depends on query optimization and the Hive platform.

4. EXPERIMENTS

4.1 Hadoop testbed
For the experiments, we used two local Hadoop testbeds2.

As shown in Table 1, the first testbed is a high-performance
30-node cluster in a single rack where 30 nodes are con-
nected in 1 GE, and the second is a large-scale 200-node
cluster where nodes are connected in 1 GE and six racks
are interconnected with 4 Gbps links. The 30-node cluster
is configured with the Hadoop 1.0.3 version with an HDFS
block size of 128 MB and a replication of two, and the 200-
node cluster with Hadoop 0.20.203 version with a block size
of 64 MB and a replication of two.

Table 1: Hadoop testbed
Nodes CPU RAM HDD

30 2.93 GHz (8 core) 16GB 4TB
200 2.66 GHz (2 core) 2GB 0.5TB

4.2 Accuracy
Before performing the scalability experiments, we inves-

tigated the accuracy of the packet search algorithm to find
a packet record from a HDFS block. While we can achieve
the ability of accessing packet records fast in parallel, we
may experience packet losses because timestamp values in
libpcap used by the pattern matching algorithm might ap-
pear at other fields. From 10 GB to 1 TB input data, we
examined the accuracy using CoralReef, an IP-layer analysis
tool, by comparing our IP analysis command and observed
100% of packet processing.

4.3 Scalability
For the scalability test, we probed the performance of IP,

TCP, and HTTP-layer analysis MapReduce jobs for 1 TB
libpcap files on the 30-node Hadoop testbed as the num-
ber of Hadoop worker nodes varies. Figure 6 shows how
the job completion time and the throughput are enhanced
when we add five nodes to the Hadoop cluster. From five
to 30 Hadoop worker nodes, it is apparently observed that
resource-proportional performance improvement is possible.
For example, the job completion time of IP analysis
(PcapTotalStats) is decreased from 71 minutes with five
nodes to 11 minutes with 30 nodes. The throughput of

2Though Amazon Web Service (AWS) of EC2 is a good
candidate for a large experimental cluster, it is not easy to
move multi-tera bytes of data to the Amazon datacenter
(“Amazon Import service” is usually used for transferring
a large amount of data on the physical HDD by FedEx.).
Running many high-performance AWS EC2 “Extra Large”
machines is not cheap. In addition, we are not aware of
the physical environment of the AWS EC2 virtual machines.
Therefore, we have used local Hadoop testbeds.
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Figure 6: Completion time and throughput of traffic
analysis MapReduce jobs on the 30-node Hadoop
testbed for 1 TB libpcap files.

IP analysis was 1.9 Gbps on five nodes and 12.8 Gbps on
30 nodes (6.7× improvement). The most complicated TCP
analysis job was finished within 121 minutes on 5 nodes and
15 minutes on 30 nodes Ṫhe throughput of TCP analysis
was enhanced from 1.1 Gbps on five nodes to 8.8 Gbps on
30 nodes (8× increase). As TCP analysis MapReduce job
is complicated, the performance of TCP analysis is worse
than that of IP and HTTP analysis. TCP analysis map
and reduce tasks require more CPU, storage, and network
resources to reassemble TCP connections and to compute
metrics per TCP connection.
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Figure 7: Size-up of traffic analysis MapReduce jobs
on the 30-node Hadoop testbed for 1 - 5 TB libpcap

files.

In order to examine the influence of the varying input file
size, we executed IP, TCP, and HTTP analysis jobs under
1 to 5 TB packet trace files on the 30-node Hadoop testbed.
Figure 7 shows the performance results of analysis jobs as
the input file increases from 1 to 5 TB. The IP analysis
job (PcapTotalStats) achieves the improved throughput of
14.0 Gbps for 5 TB. However, TCP/HTTP (WebPopularity)
analysis jobs show a slightly decreased throughput of 5.8/8.7
for 5 TB from 8.8/10.6 for 1 TB because they cannot use
the combiner to aggregate the intermediate data, which re-
sults in the overhead at reduce tasks. When we used the
200-node testbed for the size-up experiment, it is seen in
Fig. 8 that our tool maintains the high throughput with
the rising pattern for the increased file size. In particu-
lar, IP/TCP/HTTP(WebPopularity) analysis jobs accom-
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plish 14.6/8.5/9.7 Gbps for 5 TB. In the 200-node testbed,
the increased number of total reduce tasks has mitigated
the overhead of processing the non-aggregated intermediate
data from map tasks.
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Figure 8: Size-up of traffic analysis MapReduce jobs
on the 200-node Hadoop testbed for 1 - 5 TB libpcap

files.

4.4 Comparison with CoralReef and RIPE’s
Pcap

We have compared our tool with the well-known Coral-
Reef tool on a single server to explain how the parallel com-
putation on a cluster improves job performance in propor-
tion to cluster size. As shown in Fig. 9, the IP-layer analysis
job (PcapTotalStats) on the 30-node cluster achieves up to
20.3× increased throughput for 1 TB. In CoralReef, the lim-
ited number of input files also hinders the aggregation job
of processing many packet trace files.
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Figure 9: Speed-up of traffic analysis MapReduce
jobs vs. CoralReef and vs. RIPE pcap on the 30-
node Hadoop testbed for 1 TB libpcap files.

We then evaluated how our packet-search algorithm for
reading libpcap files on HDFS enhances the performance of
MapReduce jobs. Our PcapInputFormat supports the par-
allel processing capability per HDFS block, whereas RIPE’s
packet library [21] employs the file-based parallel processing
approach. As shown in Fig. 9, our PcapInputFormat out-
performs RIPE’s one by 3.5× for 1 TB on 30 nodes (1.8× on
five nodes). The file-based processing method cannot use the
advantage of data locality in Hadoop, because DataNodes
often have to receive remote HDFS blocks. In the case of

task failures, the overall performance of a file-based MapRe-
duce job will be deteriorated. When map/reduce tasks failed
during the experiment, our tool shows 3.9/4.3× improved
performance on 30 nodes. In order to emulate our block-
based MapReduce job, the input file should be chunked by
the HDFS block size (e.g., 64 MB) in advance.

4.5 Breakdown of performance bottlenecks
When running traffic analysis MapReduce jobs in Hadoop,

we are confronted with several performance bottlenecks of
Hadoop components: one issue is related with hardware such
as CPU, memory, hard disk, and network, and the other
with MapReduce algorithm optimization.

In Hadoop, map and reduce tasks share CPU resources
together. When the maximum number of tasks are assigned
and run, CPU-intensive jobs may experience performance
saturation. In our case, the TCP-analysis MapReduce job is
extremely CPU-bound so that its performance improvement
is eminent as the number of CPU cores is increased thanks to
the scale-out feature of Hadoop. We might meet the memory
issue of the master node when many files are loaded to HDFS
because the master node of HDFS should retain the location
information regarding a file and its related HDFS blocks at
the memory3. In a large-scale Hadoop testbed, the network
among worker nodes is also a critical bottleneck. The inter-
rack link may experience congestion if its bandwidth is not
provisioned to satisfy the inter-rack traffic load.

Another performance issue is related with the hard disk.
Map tasks of the traffic analysis job write the intermedi-
ate results to the local disk, and reduce tasks pull the data
by RPC. As the volume of the input traffic file increases,
the hard disk capacity should be large enough to accommo-
date the temporary data from map tasks. By default, the
HDFS replicated each block three times for backup, which
requires more storage. The TCP analysis MapReduce job re-
quires additional capacity for the intermediate data because
its map task has to emit each TCP segment information per
connection to the reduce task without using the combiner
to reduce the intermediate data. Though high-speed access
to large data with an expensive solid-state disk (SSD) is
possible, this should be determined by considering the cost-
performance tradeoff or return-on-investment (ROI) on a
large-scale cluster. A popular solution to improve the hard
disk access speed is to use multiple hard disks in RAID0
(data striping mode), which normally increases I/O perfor-
mance in proportion to the number of hard disks.

The software issue is related to the MapReduce algorithm
optimization. In MapReduce algorithms, the combiner is
useful for diminishing the traffic between map and reduce
tasks as well as the computation overhead at the reduce task.
Applying the combiner helps the reduce task relieved of fre-
quent disk I/O’s. In IP analysis MapReduce algorithms, the
value lists for the same key of five tuples can be merged by
the combiner. In TCP analysis, however, the reduce task has
to search every TCP segment and its corresponding ACK for
the performance metrics such as RTT, retransmissions, and
out-of-order. This prevents the MapReduce job from using
the combiner at the map task, so that a TCP analysis job
causes a large overhead in memory, network, and disk. That
is, a TCP analysis reduce task requires a large amount of

3In [6], as a rule of thumb, it is reported that the metadata
for a file in HDFS takes 150 bytes and 1 million files will
take 300 MB of memory on the name node.
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memory to contain the TCP records, and CPU resources to
search the TCP segments and their corresponding ACKs.
Thus, we have optimized the TCP analysis MapReduce job
by emitting a group of a TCP segment and its correspond-
ing ACK information to the reduce task, which decreases the
running time of the TCP analysis MapReduce algorithm by
3.2 times without errors of memory shortage.

There are many tuning parameters in Hadoop for perfor-
mance improvement, such as the number of map or reduce
tasks and buffer size. Since map and reduce tasks share CPU
resources, the maximum number of tasks in execution should
be deliberately configured. Though the maximum number
of map tasks are usually two times more than that of reduce
tasks, increasing the number of reduce tasks often improves
the performance of reduce-side complex computation. The
I/O buffer to sequence files is also an important factor in
delivering the intermediate data between two MapReduce
jobs, like in the website popularity analysis. In HTTP anal-
ysis, we enhanced the job completion time by 40% by setting
4 KB of the default I/O buffer size to 1 MB.

5. CONCLUSION
In this paper, we presented a scalable Internet traffic mea-

surement and analysis scheme with Hadoop that can process
multi-terabytes of libpcap files. Based on the distributed
computing platform, Hadoop, we have devised IP, TCP, and
HTTP traffic analysis MapReduce algorithms with a new
input format capable of manipulating libpcap files in par-
allel. Moreover, for the agile operation of large data, we
have added the web-based query interface to our tool with
Hive. From experiments on large-scale Hadoop testbeds
with 30 and 200 nodes, we have demonstrated that the
MapReduce-based traffic analysis method achieves up to 14
Gbps of throughput for 5 TB input files. We believe our ap-
proach to the distributed traffic measurement and analysis
with Hadoop can provide the scale-out feature for handling
the skyrocketing traffic data. In future work, we plan to
support real-time traffic monitoring in high-speed networks.
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