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Abstract. Land surface and hydrologic models (LSMs/HMs)
are used at diverse spatial resolutions ranging from
catchment-scale (1–10 km) to global-scale (over 50 km) ap-
plications. Applying the same model structure at different
spatial scales requires that the model estimates similar fluxes
independent of the chosen resolution, i.e., fulfills a flux-
matching condition across scales. An analysis of state-of-the-
art LSMs and HMs reveals that most do not have consistent
hydrologic parameter fields. Multiple experiments with the
mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models
demonstrate the pitfalls of deficient parameterization prac-
tices currently used in most operational models, which are
insufficient to satisfy the flux-matching condition. These ex-
amples demonstrate that J. Dooge’s 1982 statement on the
unsolved problem of parameterization in these models re-
mains true. Based on a review of existing parameter region-
alization techniques, we postulate that the multiscale param-
eter regionalization (MPR) technique offers a practical and
robust method that provides consistent (seamless) parame-
ter and flux fields across scales. Herein, we develop a gen-
eral model protocol to describe how MPR can be applied to
a particular model and present an example application us-
ing the PCR-GLOBWB model. Finally, we discuss potential
advantages and limitations of MPR in obtaining the seam-
less prediction of hydrological fluxes and states across spatial
scales.

1 Introduction

“If it disagrees with experiment, it’s wrong”.
Richard P. Feynman

Land surface and hydrologic models (LSMs/HMs) are cur-
rently used at diverse spatial resolutions ranging from 1 to
10 km in catchment-scale impact analysis and forecasting
(Christensen and Lettenmaier, 2007; Addor et al., 2014) to
over 50 km in global-scale climate change simulations to es-
timate land surface boundary conditions of key state vari-
ables (Haddeland et al., 2011; Bierkens, 2015; Wanders and
Wada, 2015). The fundamental conditions behind the appli-
cability of the same LSM/HM model structure at different
spatial scales requires that the model parameterizations are
scale invariant and that the model estimates similar fluxes
across a range of spatial resolutions. In other words, it must
fulfill the flux-matching condition across scales so that the
mass conservation principle can be ensured (Wood, 1997).

A parameterization is a simplified and idealized represen-
tation of subgrid physical phenomenon that is either “too
small, too brief, too complex, or too poorly understood” to be
explicitly represented by a model at a given resolution (Ed-
wards, 2010). Parameterizations require variables called pre-
dictors, effective parameters and constants also called trans-
fer, global, or super parameters (Pokhrel and Gupta, 2010).
Super parameters are often parameters in empirical relation-
ships that have been found with measurements in the field or
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in the laboratory, e.g., regression parameters in pedotransfer
functions (Cosby et al., 1984). They are often tuned to repre-
sent observed variables and often have no physical meaning.
These parameters constitute simplified surrogates to com-
pensate for the missing subgrid processes that are not ac-
counted for within a modeling system (Brynjarsdottir and
O’Hagan, 2014).

Effective parameters of LSMs/HMs are usually obtained
by ad hoc procedures (e.g., automatic calibration) at a
given spatial resolution for a given modeling domain. As
a consequence of this standard practice, parameter fields
of LSMs/HMs often exhibit artificial spatial “discontinu-
ities” such as calibration imprints circumscribing river basin
boundaries, and consequently they are not seamless (Merz
and Blöschl, 2004; Li et al., 2012). Inconsistent patterns
of effective parameter fields for land surface geophysical
properties across spatial scales constitute a clear indication
that their parameterizations are not scale invariant. There are
several reasons explaining this parameterization deficiency.
With the advent of electronic computers, the performance of
general circulation models (GCMs), numerical weather pre-
diction (NWP) models (Pielke Sr, 2013), land surface mod-
els (Liang et al., 1994; Sellers et al., 1997; Niu et al., 2011),
and hydrologic models (Batjes, 1996; Lindstrom et al., 1997;
van Beek et al., 2011; Samaniego et al., 2010b) has been in-
creased mainly by improving model conceptualization (i.e.,
the number of process descriptions) and/or spatial resolution
since the storage capacity and computational power allowed
for it (Le Treut et al., 2007; Wood et al., 2011; Bierkens et al.,
2014). As a result, parameterizations in LSMs have also in-
creased in their complexity during the past decades (Sellers
et al., 1997; Fisher et al., 2014). The procedures to estimate
effective parameters required for the parameterizations, how-
ever, remained unchanged. For example, LSMs evolved from
simple aerodynamic bulk transfer schemes with uniform de-
scription of surface parameters during the 1970s to detailed
LSMs having a consistent description of the exchange of en-
ergy and matter between the atmosphere, the vegetation, and
the land surface (Sellers et al., 1997). State-of-the-art LSMs,
such as the Community Land Model version 4 (Bonan et al.,
2011) and Noah-MP (Niu et al., 2011), however, still use
quite simple pedotransfer functions based on work of Clapp
and Hornberger (1978) and Cosby et al. (1984) to estimate
fundamental soil properties such as porosity (Oleson et al.,
2013).

Further reasons that have prevented the improvement of
parameterization techniques are

– the lack of procedures and theories for linking physi-
cal properties (e.g., soil porosity) that can be measured
at the field scale with “effective” parameter values that
represent the aggregate behavior of the land characteris-
tics at the scale of a grid cell required in LSMs or HMs,

– poor understanding of the scaling of parameters
(Dooge, 1982) and its influence on the hydrological re-
sponse of the system (Wood, 1997; Wood et al., 1988),

– limited inclusion of subgrid heterogeneity in hydrolog-
ical parameterizations and multiscale modeling of hy-
drologically relevant variables as suggested by Famigli-
etti and Wood (1995, 1994); Liang et al. (1996),

– lack of significant progress on the applicability of sem-
inal upscaling theories (Miller and Miller, 1956; Da-
gan, 1989; Gelhar, 1993; Neuman, 2010; Kitanidis and
Vomvoris, 2010) developed for subsurface hydrologic
problems into LSMs/HMs, and

– lack of transparency in most of the existing LSM/HM
source codes with respect to the meaning, origin, and
uncertainty associated with the hard-coded numerical
values (i.e., parameters) either in the code or in the look-
up tables (Mendoza et al., 2015; Cuntz et al., 2016).

Consequently, it is possible to assert that model parameter-
ization is an old, ubiquitous, and recurring problem in land
surface and hydrologic modeling. Considering this lack of
coherent development during the past decades, we can still
concur with Dooge (1982, p. 269) and say that the “parame-
terization of hydrologic processes to the grid scale of general
circulation models is a problem that has not been approached,
let alone solved.”

There are potential methods available in the literature that
may lead toward coherent parameterizations and prediction
of water and energy fluxes in LSMs/HMs. For example,
(1) sidestepping the scaling problem of key model param-
eters by assuming scale-independent distribution functions
with regionalized distribution parameters (Intsiful and Kun-
stmann, 2008), (2) finding strong links between model pa-
rameters to mapped geophysical attributes via regularization
procedures (Pokhrel and Gupta, 2010), and (3) finding strong
links between of observed functional responses of hydrolog-
ical systems and geophysical characteristics (Yadav et al.,
2007). These methods, however, alone may not satisfy the
flux-matching criteria.

In contrast to these existing methods, we argue that
the multiscale parameter parameterization (MPR) technique
(Samaniego et al., 2010b) offers a framework to link the field
scale (observations) with the catchment scale (Dooge, 1982).
MPR also accounts for the effect of the spatial variability and
non-linearity of geophysical characteristics in the parameter-
ization of hydrologic processes that operate at a range of spa-
tial resolutions (Dooge, 1982; Wood et al., 1988). Depend-
ing on the conditions imposed on the parameter estimation
technique, MPR can lead to parameterizations that satisfy
the flux-matching criteria and hence contributes to obtain-
ing seamless parameter and water flux fields. Because MPR
relies on empirical transfer functions and upscaling operators
to link geophysical properties with model parameters, it pro-
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vides a very effective procedure to transfer “global param-
eters” to scales and locations other than those used in cal-
ibration (Samaniego et al., 2010a, b; Kumar et al., 2013b).
This dependency on several transferable coefficients also
contributes to minimizing a serious drawback of spatially ex-
plicit models called “overparameterization” (Beven, 1995).

In this study, we analyze to which extent existing
LSM/HM parameterizations are limited to obtain seamless
predictions of water fluxes and states across multiple spa-
tial resolutions. Through several modeling experiments ad-
dressing Wood (1990)’s query (i.e., “What modeling exper-
iments need to be performed to resolve the scale question
. . . ”), we demonstrate that a large portion of the predictive
uncertainty in existing LSMs/HMs originates from the de-
ficient estimation of effective parameters, which leads to a
lack of scale invariance and thus to their poor transferabil-
ity across scales and locations. These experiments also aim
to help the modeler to reveal poor-performing parameteri-
zations, i.e., those that exhibit non-seamless fields. Finally,
based on our past experiences and aiming to address the chal-
lenges stated above, we develop a protocol that systematizes
the application of the MPR technique for any LSM/HM and
demonstrate its effectiveness by implementing it into the
PCR-GLOBWB model.

2 Current parameterization techniques

2.1 The state of the art

The most common parameterization techniques found in the
literature are (1) look-up tables (LUTs), (2) manual or au-
tomatic calibration, (3) hydrologic response units (HRUs),
(4) representative elementary watersheds (REWs), (5) a
priori regularization functions, (6) simultaneous regional-
ization/regularization functions, and (7) dissimilarity-based
metrics to transfer model parameters.

The simplest technique to assign a parameter value to
a modeling unit (e.g., grid cell, HRU, or subcatchment) is
based on a LUT. In this case, a categorical index associated
with a modeling unit links it with information taken from an
external reference file (i.e., the LUT) which maps this index
with parameter values that are usually taken from the litera-
ture. This technique is commonly used in most of the (oper-
ational) LSMs such as CABLE, CHTESSEL, CLM, JULES,
and Noah-MP (Kowalczyk et al., 2006; Viterbo and Beljaars,
1995; ECMWF, 2016; Oleson et al., 2013; Best et al., 2011;
Niu, 2011). A disadvantage of this method is the difficulty to
perform sensitivity analysis (Cuntz et al., 2016). Moreover,
the number of classes defined in LUT is often limited to a few
(e.g., 13 soil classes in Noah-MP) resulting in non-seamless
parameter fields that are not continuous.

Manual or automatic calibration is a commonly used tech-
nique to parameterize spatially lumped hydrologic models
(e.g., Crawford and Linsley, 1966; Burnash et al., 1973;

Lindstrom et al., 1997; Edijatno et al., 1999; Fenicia et al.,
2011; Martina et al., 2011; Andréassian et al., 2014; Singh
et al., 2014) and semi-distributed hydrologic models (e.g.,
Leavesley et al., 1983; Kavetski et al., 2003; Lindström et al.,
2010; Hundecha and Bárdossy, 2004; Merz and Blöschl,
2004; Hundecha et al., 2016). The aim is to minimize the
disagreement between model simulations and observations.
In the majority of the cases, the target variable is stream-
flow. The main drawback of this parameterization technique
is that the parameter fields, which are obtained by colocat-
ing lumped model parameters from sub-basins, are doubtful
because they exhibit sharp discontinuities along individually
calibrated sub-basin boundaries despite having spatial con-
tinuity in basin physical attributes like soil, vegetation, and
geological properties that govern spatial dynamics of hydro-
logical processes (Merz and Blöschl, 2004; Li et al., 2012;
Blöschl et al., 2013). In addition, the “patchwork quilt” pa-
rameter fields shown in these references exhibit significant
sensitivity to the calibration conditions as demonstrated by
Merz and Blöschl (2004). Thus, models that are parameter-
ized with this technique may exhibit (1) poor predictability of
state variables and fluxes at locations and periods not consid-
ered in calibration and (2) sharp discontinuities along sub-
basin boundaries in state, flux, and parameter fields (e.g.,
Merz and Blöschl, 2004; Lindström et al., 2010). Parame-
ter fields derived from basin-wise “calibrated” lumped mod-
els lack spatial seamlessness and thus are “inadequate repre-
sentations of real-world systems” (Savenije and Hrachowitz,
2017). Moreover, excessive reliance on parameter calibration
leads to deficient performance at interior points of the basin
or at other locations at which the model was not calibrated
(Pokhrel and Gupta, 2010; Lerat et al., 2012; Brynjarsdottir
and O’Hagan, 2014).

There have been many attempts to improve the parameteri-
zation of lumped and semi-distributed models by further dis-
cretizing the sub-basins into a given number of regions that
exhibit nearly similar hydrologic behavior, i.e., the so-called
HRU concept initially proposed by Leavesley et al. (1983)
and further developed by others (e.g., Flügel, 1995; Beldring
et al., 2003; Blöschl et al., 2008; Viviroli et al., 2009; Zehe
et al., 2014). Unfortunately, results obtained in these param-
eterization attempts have not been very successful in realisti-
cally representing the spatial variability of model parameters,
states, and fluxes because of the lack of regionalized param-
eters and the unabridged reliance on parameter calibration
to improve model performance (Kumar et al., 2010). Com-
monly, the effective parameters estimated for the HRUs are
found by automatic calibration. Efforts have been made to
enforce continuity on parameter fields (Gotzinger and Bár-
dossy, 2007; Singh et al., 2012) but with somewhat lim-
ited success during the transferability of parameters across
scales and locations. In addition, models parameterized using
HRUs do not lead to mass conservation of water fluxes (i.e.,
flux-matching) when applied to scales other than those used
for calibration (Kumar et al., 2010, 2013b). Recent attempts
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have been made to improve the HRU concept to increase
the seamless representation of parameters, states, and fluxes
(Chaney et al., 2016a). However, this concept has not been
tested for scalability and seamlessness of the estimated fields
at coarse resolutions. Lately, a thermodynamic reinterpreta-
tion of the HRU concept was proposed by Zehe et al. (2014),
but to date, the implementation of this approach has not
found its way into meso-scale to macro-scale LSMs/HMs.

The representative elementary watershed approach (Reg-
giani et al., 1998) is an interesting theoretical concept, which
scales mass and momentum balance equations. Unfortu-
nately, to the best of our knowledge, it has not been used to
estimate effective parameters at meso- and regional scales.

A priori regularization functions (e.g., pedotransfer func-
tions) were introduced by Koren et al. (2013) to ensure the
“inappropriate randomness in the spatial patterns of model
parameters”, i.e., the lack of seamlessness. Unfortunately, in
this case, the parameters (or coefficients) of regularization
functions were not subject to parameter estimation or to the
verification of their ability to predict fluxes and states across
various scales. The use of empirical point-scale-based rela-
tionships to link geophysical characteristics with LSM/HM
parameters and the assumption that their coefficients are uni-
versally applicable with certainty (e.g., the coefficients in the
Clapp and Hornberger (1978) pedotransfer functions) are the
major reasons for the proliferation of hidden parameters in
LSM/HM code (Mendoza et al., 2015; Cuntz et al., 2016). It
is of pivotal importance to understand that these point-scale
relationships should not be applied beyond the scale at which
they were derived.

Many types of regionalization (or regularization)
approaches have been tested for semi-distributed and
distributed models. According to Samaniego et al.
(2010b), these approaches can be broadly classified
into post-regionalization and simultaneous regionalization
approaches, depending on if the regionalization function
parameters (or global parameters) are estimated after
(Abdulla and Lettenmaier, 1997; Seibert, 1999; Wagener
and Wheater, 2006; Livneh and Lettenmaier, 2013) or
during the model calibration (Fernandez et al., 2000;
Hundecha and Bárdossy, 2004; Gotzinger and Bárdossy,
2007; Pokhrel and Gupta, 2010). None of these procedures
consider the subgrid variability of the model parameters or
geophysical characteristics. Livneh and Lettenmaier (2013)
noted that most of these regionalization procedures exhibit
limited transferability because of the use of discrete soil
texture classes as predictors, and very likely discontinuous
parameter fields.

Recently, a dissimilarity-based regionalization technique
was used by Beck et al. (2016) to generate an ensemble
of global parameters of the Hydrologiska Byråns Vattenbal-
ansavdelning (HBV) model at a 0.5◦ resolution for global-
scale hydrological modeling. A shortcoming of this approach
is the use of ad hoc nearest-neighbor interpolation of param-
eter fields to fill gaps where no donor basins are available

in (geographically) surrounding regions. Following a similar
concept of that of Beck et al. (2016), the parameterization
method proposed by Bock et al. (2016) for the contiguous
United States (CONUS) will likely lead to discontinuous pa-
rameter fields for reasons similar to those mentioned above.

Many attempts have been made in the land surface mod-
eling community to address Dooge’s challenges, especially
with respect to the transferability of model parameters across
locations and scales, and to obtain seamless parameter fields.
One of the earliest prominent experiments was conducted in
the Project for Intercomparison of Land-surface Parameter-
izations (PILPS) (Wood et al., 1998). In this project, cali-
brated LSM parameters were transferred from small catch-
ments to their nearest computational grid cells. The results
indicated that LSMs exhibited poor transferability across
space, leading to significant differences in the partitioning
of water and energy fluxes. For instance, Troy et al. (2008)
used calibrated variable infiltration capacity (VIC) model pa-
rameters from small basins to generate parameter fields for
continental-scale land surface modeling by “linearly interpo-
lating to fill in those grid cell not calibrated” on a sparse grid.
As noted by Samaniego et al. (2010b), this type of regional-
ization is inadequate because of the nonlinearity of soil and
geological formations. The spatial patterns of model parame-
ters that would be obtained by ad hoc extrapolations based on
calibrated parameters from small basins or grid cells would
most likely lead to unrealistic parameter fields with spatial
discontinuities circumscribing river basins, as shown in re-
cent studies by Wood and Mizukami (2014) and Mizukami
et al. (2017) for the VIC model parameters.

Recent community-driven efforts, such as the Protocol
for the Analysis of Land Surface Models (PALS) and
the Land Surface Model Benchmarking Evaluation Project
(PLUMBER) (Haughton et al., 2016), indicate that the hur-
dles noted in PILPS have not been overcome. Thus, it is
required to gain understanding on whether the inferior pre-
dictability of many LSMs evaluated with empirical bench-
marks in the PLUMBER project (e.g., CABLE, CHTESSEL,
JULES, Noah) may be the result of deficient parameteriza-
tions, among other factors.

2.2 Parameterization of soil porosity and available

water capacity in selected LSMs/HMs

The above-mentioned challenges that we face in estimating
key physical parameters in LSMs/HMs have been intensively
discussed in many studies (Gupta et al., 2014; Bierkens et al.,
2014; Bierkens, 2015; Clark et al., 2016, 2017; Mizukami
et al., 2017; Peters-Lidard et al., 2017). To further visualize
the problems and to understand the deficiencies of current pa-
rameterization techniques, we selected a representative sam-
ple of LSMs/HMs used for research and/or operational pur-
poses, namely CABLE, CLM, JULES, LISFLOOD, Noah-
MP, mHM, PCR-GLOBWB, WaterGAP2 (30 arcmin), Wa-
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terGAP3 (5 arcmin), CHTESSEL, and HBV. These models
vary in process complexity and spatial resolution.

We selected soil porosity as an example to visualize ex-
isting shortcomings because it is one of the most common
parameters in many LSMs/HMs. This parameter controls the
dynamic of several state variables and fluxes such as soil
moisture, latent heat, and soil temperature, and its sensitiv-
ity has been demonstrated in various studies (Goehler et al.,
2013; Cuntz et al., 2015; Mendoza et al., 2015; Cuntz et al.,
2016). A representation of the porosity of the top 2 m soil
column in these models over the Pan-European domain (Pan-
EU) is shown in Fig. 1. The Pan-EU domain was selected for
depiction, but we note that the problem is general and persis-
tent across other domains (Mizukami et al., 2017). For cases
in which a HM does not use this parameter, the “available wa-
ter capacity” (WaterGAP) or the “field capacity” (HBV) were
selected as a surrogate due to their similarity with poros-
ity. Both surrogate fields are normalized (in space) to ease
their comparison with the porosity fields. Soil porosity is ex-
pressed in m3 m−3 to ease the comparison among different
models.

The following lessons can be learned from Figure 1:

– There is a large variability in the parameterization of
this key physical parameter because none of the ana-
lyzed models have comparable spatial patterns or com-
parable estimates at a given location. It should be noted
that the definition of the selected parameter is rather
simple: it represents the ratio of the volume of voids
to the total volume in the soil column. One can now
wonder how large the uncertainty of other parameters
would be (e.g., hydraulic conductivity) whose relation-
ship with soil properties is very nonlinear.

– The degree of seamlessness strongly depends on the
level of aggregation and the upscaling of underlying
soil texture fields. For example, the proxy of porosity
for WaterGAP is substantially different in spatial pat-
tern and magnitude for 30 arcmin and 5 arcmin simula-
tions. On the contrary, the spatial pattern and magnitude
for porosity used in mHM remain almost unchanged for
application at 30 and 5 arcmin resolution.

– A parameter field becomes highly discontinuous and
patchy when, for a given model, the parameter is cal-
ibrated in a limited domain (or basins) and then extrap-
olated to other regions (e.g., as shown in the panel cor-
responding to the HBV).

– These experimental results confirm the postulation of
Dooge (1982) that the parameterization of the exist-
ing state-of-the-art LSMs/HMs at large and continental
scales is still an unsolved problem.

The analysis of current parameterization techniques allow us
to put forward the following questions:

– Why are there such large differences between models in
estimating a parameter that has a physical meaning?

– What are the consequences of poor parameterizations
on the spatiotemporal dynamics of state variables and
fluxes?

– What are the consequences of model calibration on pa-
rameter fields?

– Are current model parameterizations scale invariant?

– Do the fluxes estimated with these models at various
scales satisfy the fundamental mass conservation crite-
rion (hereafter denoted as the flux-matching test)?

3 Seamless parameterization framework

3.1 The flux-matching postulation

The key postulation aiming at obtaining scalable (global)
parameters that are transferable across locations and scales
was proposed by Samaniego et al. (2010b) and further tested
in Kumar et al. (2013a, b) and Rakovec et al. (2016b). We
hypothesize that flux matching across scales leads to quasi-
scale-invariant global parameters γ̂ ; thus,

∑
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∑
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∣

∣

∣
Wi(γ̂ , t)ai −

∑

k∈i
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∣
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→ 0, ∀i ∈ �. (1)

Here, k denotes the subgrid elements constituting a given
modeling cell i with area ak . i denotes a modeling grid cell
i with area ai . Wi and wk denote fluxes at two modeling

scales ℓ1 and ℓ′
1, respectively, with

(

ℓ1
ℓ′

1

)2
= ai

ak
. � denotes

the modeling domain, e.g., a river basin, and t a point in
time. It should be noted that the topology of the cells at ei-
ther level is not specified. Normally, rectangular grid cells
are used for convenience, but this is not a necessary condi-
tion. This strong flux-matching condition can be used as a
penalty function or as an additional test to discriminate pa-
rameter sets obtained with conventional parameter estima-
tion approaches.

3.2 The MPR approach

MPR, proposed by Samaniego et al. (2010b), aims to esti-
mate model parameters that are seamless across scales, sat-
isfy the flux-matching conditions (see Sect. 3.1), and enable
the transferability of global or transfer-function parameters
across scales and locations (Samaniego et al., 2010a, b; Ku-
mar et al., 2013a; Wöhling et al., 2013; Livneh et al., 2015;
Rakovec et al., 2016a). The development of MPR is ongo-
ing. Regionalization functions used in MPR for the mHM
model (www.ufz.de/mhm) by Samaniego et al. (2010a) were
further improved by Kumar et al. (2013b). More recently, a
model-agnostic implementation of MPR has been proposed
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Figure 1. Porosity fields (top 2 m) of typical LSM/HM over Pan-EU at various resolutions: CABLE (1◦), CLM (1◦), CHTESSEL (0.11◦),
JULES (35 km), LISFLOOD (EFAS, 5 km), mHM (EDgE-C3S, 5 km), Noah-MP (CORDEX-EU, 0.11◦), and PCR-GLOBWB (EDgE-C3S,
5 km). Normalized available water capacity of WaterGAP2 (HyperHydro, 30 arcmin), [3, 536] mm, WaterGAP3 (HyperHydro, 5 arcmin), [1,
960] mm, and HBV [50, 698] mm. In brackets, the normalization values, denoted as [min, max], are provided only for HBV and WaterGAP.
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by Mizukami et al. (2017) and tested in the VIC model in
over 500+ basins in the CONUS. The study of Mizukami
et al. (2017), in contrast to the present study, does not in-
clude flux-matching tests nor the evaluation of model skill
across different spatial scales.

The scaling problem in MPR is addressed by using
process-specific representative elementary areas (REAs) that
determine the minimum computational grid size ℓ1 at which
the continuum assumptions can be used without explicit
knowledge of the actual patterns of the topography, soil, or
rainfall fields (Wood et al., 1988). The REA of a specific pro-
cess, such as streamflow, can be determined by conducting
a careful sensitivity analysis as shown by Samaniego et al.
(2010b). To estimate an “effective” model parameter (e.g.,
total soil porosity) at the selected modeling scale, it is first
necessary to estimate its variability at a much finer scale
ℓ0 ≪ ℓ1 such that the effects of its spatial heterogeneity can
be adequately represented. In other words, the parameter at
the fine scale ℓ0 represents the minimum support at which the
proposed equations are still valid. Barrios and Francés (2011)
indicated that a suitable estimate of ℓ0 for a given parameter
could be near its correlation length. The subgrid variability
of a parameter β0 depends, in turn, on the spatial hetero-
geneity of geophysical and biophysical characteristics (u0),
such as terrain elevation, slope and aspect, soil texture, geo-
logical formation, and land cover, which are now available at
hyper-resolution for the entire globe. The mathematical re-
lationships that link model parameters with these character-
istics at the finer resolution are called pedotransfer, regional-
ization, or regularization functions f (Clapp and Hornberger,
1978; Cosby et al., 1984; Wösten et al., 2001). The constants
required in these functions are usually denoted as global pa-
rameters γ̂ ; thus, β0 = f

(

u0, γ̂
)

. Note that the fields β0 and
u0 are dependent on space and time, but the vector γ̂ is not.

Regularization functions are commonly used in mathemat-
ics and statistics to solve ill-posed problems (which is the
case when the parameters of a distributed LSM/HM are de-
termined by calibration) and/or to prevent overfitting. The
direct consequence of the regularization is the substantial de-
crease in degrees of freedom of the optimization problem be-
cause the cardinality of the gridded parameter fields #{β0}

is orders of magnitude larger than that of the vector of the
global parameters #{γ̂ }. Hence, MPR is a parsimonious pa-
rameterization technique that offers spatially continuous pa-
rameter fields and removes spatial discontinuities in water
fluxes and states, as observed by Gotzinger and Bárdossy
(2007) and discussed by Mizukami et al. (2017). From the
Bayesian point of view, the regularization functions impose
a prior distribution on the model parameters. Consequently,
greater care should be taken in their selection.

The second step of the MPR approach consists of upscal-
ing the subgrid distribution of a regionalized parameter to the
modeling scale. In other words, β1 = 〈β0〉. Here, the symbol
〈·〉 represents an averaging or scaling operator that is param-
eter specific, and thus β1 denotes the upscaled effective pa-

rameter field. It is important to note that this scaling operator
is not necessarily the arithmetic mean.

A schematic representation of the MPR procedure can be
seen in Fig. 2. In short, the motto of MPR is “estimate first,
then average”, whereas other existing regionalization meth-
ods follow the opposite approach of “average first, then esti-
mate.” Because the processes in LSMs/HMs are highly non-
linear, this sequence of operations does not commute. The
consequences can be dramatic (to be shown in the results
section). The latter, which is the standard approach, does
not preserve fluxes/states across scales, whereas MPR does
to a considerable extent. The key question here is in finding
the right scaling rule for the model parameters such that the
fluxes/states are preserved across a range of spatial scales.

Model parameters at the ℓ1 scale (i.e., 1 to 100 km) are
called “effective” parameters because they cannot be mea-
sured by physical means at this resolution and can only be
inferred by heuristic relationships f (·). Thus, it is essential
that the inequality ℓ0 ≪ ℓ1 is fulfilled so that the law of large
numbers leads to stable estimates of the effective parameter
β1 having low uncertainty. Since every LSM/HM (e.g., those
mentioned in Sect. 2) contains “effective” model parame-
ters, depending on heuristic relationships (that are hidden in
the source code in many cases; Mendoza et al., 2015; Cuntz
et al., 2016), it is logical that existing LSMs/HMs are sub-
ject to parameter uncertainty. These models can be treated as
stochastic models, even though their governing equations are
deterministic in nature and based on physical principles such
as the conservation of mass and energy (Clark et al., 2015;
Nearing et al., 2016). Effective parameters should not be the
pure result of a blind calibration algorithm. MPR varies from
other regionalization approaches in that the introduced rela-
tionships may lead to seamless parameter fields and model
simulations fulfilling the flux-matching condition.

Currently, MPR is the only method that consistently and
simultaneously addresses the scale, nonlinearity, and overpa-
rameterization issues if global parameters are estimated si-
multaneously at multiple locations (i.e., basins). The MPR
approach also addresses the principle of scale-dependent
subgrid parameterization (i.e., “net fluxes must satisfy the
conservation of mass” proposed by Beven, 1995) but does
not adhere to Beven’s other principles, such as that subgrid
parameterizations may be data and scale dependent (princi-
ples 3 and 4 in Beven, 1995), because exhaustive tests re-
ported in the above-mentioned references carried out over
hundreds of river basins do not appear to support them. We
find MPR to be a robust technique that has the ability to
provide “effective parameters” and is capable of address-
ing the scaling problem; in this sense, it diverges from the
Beven’s view (Beven, 1995, p. 507) that these “effective pa-
rameters” are an “inadequate approach to the scale problem”.
Furthermore, MPR differs on the regionalization and aggre-
gation scheme (i.e., patch model areal weighting) proposed
by Beven (1995, p. 520).
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MPR 

Parameter estimation

Flux-matching condition

Sensitivity
analysis

Seamless predictions

Figure 2. Schematic representation of the proposed seamless prediction framework based on Rakovec et al. (2016b). It includes a preliminary
sensitivity analysis, MPR estimation, global-parameter estimation, a flux-matching test, and multiscale seamless prediction. Wi and wk are
the fluxes at the i and k cells of the 1/2◦ and 1/4◦ resolutions, respectively (as an example). Qobs and Sobs are the observed time series of
streamflow and soil moisture, respectively. The operator |·| is a compromise dissimilarity metric composed of many independent observations
at various scales.

The selection of regionalization functions and scaling
operators is fundamental to ensuring the transferability of
global parameters across scales and to guarantee the seam-
lessness of parameter fields across scales, e.g., from ℓ1 to
2ℓ1 and so on. Samaniego et al. (2010b) proposed that the
key to determining them is the flux-matching condition men-
tioned above. A seamless parameter field β1 can be inter-
preted as the corollary of the flux-matching condition. More-
over, MPR employs geophysical properties at ℓ0 that allow
for a representative sample at the hyper-resolution promoted
by Wood et al. (2011) and Bierkens et al. (2014).

3.3 Protocol for implementing the MPR approach

The development of LSMs/HMs and their parameterizations
should be guided by a strict hypothesis-driven framework
(Nearing et al., 2016) that aims at finding parsimonious and
robust parameter sets that fulfill the flux-matching condition
and a number of efficiency metrics that are not used dur-
ing the parameter estimation phase. A multivariate, multi-
scale evaluation assessing the reliability of model simula-
tions should follow the scheme presented in Rakovec et al.
(2016a). Based on our previous experiences, we synthesize
a formalized scheme (i.e., protocol) for systematically im-
plementing the MPR technique in other LSMs/HMs with
the aim to obtain a robust and seamless parameterization. A
graphical depiction of the estimation procedure at multiple
scales is shown in Fig. 2.

1. Retrofit the source code of an LSM/HM so that all
model parameters are exposed to analysis algorithms.
Parameters are the values of a model that can be con-
sidered random variables, i.e., those that are subject to

various outcomes and can be fully defined by a probabil-
ity density function. Parameters should not be confused
with numerical or physical constants.

2. Determine a set of the most sensitive model parame-
ters through a sensitivity analysis (SA). For computa-
tionally expensive LSMs such as CLM or Noah-MP,
computationally frugal methods such as the elemen-
tary effects method (Morris, 1991), its enhanced ver-
sion such as that proposed by Cuntz et al. (2015), or
the distributed evaluation of local sensitivity analysis
(DELSA; Rakovec et al., 2014; Mendoza et al., 2015)
are of particular interest because use of the popular stan-
dard Sobol’ method (Sobol’, 2001) can be computa-
tionally expensive although still possible (Cuntz et al.,
2016).

3. Regionalize sensitive model parameters that exhibit
marked spatial variabilities. The selection of the region-
alization function f (·) can be guided by existing litera-
ture or by step-wise methods (e.g., Samaniego and Bár-
dossy, 2005). This regularization step should be con-
ducted at the highest available spatial resolution for all
predictor fields. This resolution is denoted as level ℓ0.
The output of the regularization is the parameter field
β0.

4. Estimate effective parameter fields β1 using upscaling
operators based on the underlying subgrid variability
β0. The scale ℓ1 is determined by synthetic experiments
aimed at finding the optimal REA for processes related
to the parameter in question (Samaniego et al., 2010b;
Kumar et al., 2013b).
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5. Estimate the global parameters γ̂ using standard op-
timization algorithms (simulated annealing, shuffled
complex evolution (SCE), dynamically dimensioned
search (DDS)) by minimizing a compromise metric that
includes observations at multiple scales and locations
(Duckstein and Opricovic, 1980; Rakovec et al., 2016a).
The compromise metric could also include hydrologic
signatures to extract as much information from a time
series as possible (Nijzink et al., 2016).

6. Perform multi-basin, multiscale, multivariate cross-
validation tests to evaluate the robustness of the region-
alization functions, scaling operators, and global param-
eters (Rakovec et al., 2016a).

7. Evaluate the parameter seamlessness and the preserva-
tion of the statistical moments of fluxes and states across
scales (seamless prediction step in Fig. 2).

8. If the cross-validation tests provide satisfactory results
(e.g., Kling–Gupta efficiency (KGE) of the compromise
solution > 0.6), then evaluate the flux-matching condi-
tion given by Eq. (1). If the total error is too large to be
tolerated, repeat steps 3 to 8.

It should be noted that any of the steps above can
be tested within a sequential hypothesis-testing framework
(Clark et al., 2016). A substantial difference from a standard
model optimization exercise is that the transfer function f (·)

(step 3) and the upscaling operator (step 4) can also be mod-
ified in the modeling protocol.

Failure to satisfy the imposed condition, such as the flux-
matching test, after exhaustively testing the options in steps
3 to 6 may indicate deficits in process understanding and/or
poor data. Consequently, the evaluation step should also pro-
vide guidance on detecting and separating the errors stem-
ming from process conceptualization (modeling) and input
data.

3.4 Seamless parameter fields across multiple scales

using MPR

In Sect. 3.2, it was postulated that the MPR technique aims
at estimating seamless parameter fields across scales which
minimize the occurrence of artificial discontinuities and ease
the transferability of model parameters across scales and lo-
cations. The latter has been tested and reported in many stud-
ies in Europe, USA, and other basins worldwide (Samaniego
et al., 2011; Kumar et al., 2013a, b; Rakovec et al., 2016a,
b). In this study, we provide evidence in favor of the former
postulation.

To achieve this goal, the mHM model is parameterized us-
ing MPR (Samaniego et al., 2010b) with hyper-resolution
fields of geophysical characteristics at ℓ0 = 500 m resolu-
tion as input. Among them, the land cover data were ob-
tained from the Corine datasets (http://land.copernicus.eu/

pan-european/corine-land-cover), and the soil texture infor-
mation was derived from SoilGrids (soilgrids.org). These
very detailed and homogenized soil texture fields provide the
fractions of clay and sand, mineral bulk density, and frac-
tion of organic matter for six soil horizons up to 2 m deep. A
hyper-resolution digital elevation model (DEM) over Europe
(approximately 30 m) from the GMES RDA project (EU-
DEM; www.eea.europa.eu/data-and-maps/data/eu-dem) was
used to derive terrain characteristics such as slope, aspect,
and flow direction. The underlying hydrogeological char-
acteristics are based on the International Hydrogeological
Map of Europe (IHME; www.bgr.bund.de/ihme1500), avail-
able at a 1 : 1 500 000 scale. Details on the pedotransfer
function used for these simulations can be found in Livneh
et al. (2015). mHM global parameters were obtained by clos-
ing the water balance over selected river basins in Europe
(Rakovec et al., 2016a).

Based on these settings, which constitute the basis for
the EDgE project (edge.climate.copernicus.eu), we estimated
porosity fields at three modeling resolutions of ℓ1= 5, 10, and
25 km, based on the same ℓ0 support information. Following
the MPR procedure depicted in Fig. 2, the parameter fields
for the mHM model at these three resolutions can be esti-
mated. Results are shown in Fig. 3.

The results illustrate that the MPR approach can preserve
the spatial pattern of the porosity fields (see Fig. 3a, b, and
c) and the first and second moments of its probability den-
sity function shown in Fig. 3e–g. Two-sample Kolmogorov–
Smirnov tests indicate that there is insufficient evidence to re-
ject the null hypothesis that any of the three possible pairs of
empirical distributions were drawn from the same unknown
distribution. This highlights that the MPR approach leads to
consistent parameter fields across scales. In this case, the
mean porosity is estimated to be 0.42 m3 m−3 independent
of the scale.

3.5 Limitations of the MPR approach

The MPR approach, as any method, has some limitations.
One of the crucial aspects of MPR is the selection of trans-
fer functions and upscaling operators. Existing theories could
be the first guess, but in the event that nothing is available,
the protocol proposed in Sect. 3.3 could be used to guide
the search of robust transfer functions. Testing the model pa-
rameterization for flux-matching conditions across a range of
basin and spatial scales may help to identify adequate upscal-
ing operators. This procedure, although tedious, is the only
solution for the moment.

In the event that some state variables change over time
(e.g., land cover/use), or during parameter estimation, the
MPR algorithm has to be linked to the model because ev-
ery time a global parameter (γ̂ ) is re-estimated, all related
model parameters (β1) have to be updated as illustrated in
Fig. 2. The computational cost of performing MPR is there-
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Figure 3. Seamless soil porosity (top 2 m) fields obtained using MPR at three spatial resolutions ℓ1: (a) 5 km, (b) 10 km, and (c) 25 km,
respectively. Lower panels (d)–(f) show the empirical distribution function of porosity at the respective resolution and method.

fore larger than other parameterization method discussed be-
fore.

Another limitation of the applicability of the MPR tech-
nique until recently was its availability only as an intrinsic
module of the mHM model (www.ufz.de/mhm). This im-
plies that tailored algorithms (i.e., source code) to perform
the regionalization and upscaling of parameters for a target
LSM/HM have to be developed from scratch, as it is demon-
strated here as a case study for the PCR-GLOBWB model.
This activity is of course time-consuming and not pleas-
ing due to its complexity. For this reason, Mizukami et al.
(2017) have started a community effort to develop a model-
agnostic MPR implementation (MPR-flex), which has been
so far evaluated for the VIC model.

The availability of high-resolution biophysical character-
istics at the spatial scale ℓ0 constitutes another limitation of
the applicability of MPR. Since the subgrid variability is fun-
damental to estimating robust effective parameter values at
coarser scales, the minimum scale at which a model can be
applied (ℓ1) is strongly determined by the data availability.
For example, if the soil data are available for the Pan-EU do-
main at ℓ0 = 250 m, the ℓ1 should not be lower than 1000 m,
so that each modeling cell (ℓ1) has a representative number
of underlying subgrid cells (ℓ0).

MPR has been mainly developed for a hydrologic model
representing the water cycle. However, land surface mod-

els also include the energy and carbon cycles and thus have
greater complexity. In particular, they have more detailed
representation of vegetation. It is a topic for future research
to develop a MPR approach (i.e., transfer functions and up-
scaling operators) for plant functional-type-specific param-
eters such as carboxylation rate and the slope of the Ball–
Berry equation for stomatal conductance (Ball et al., 1987),
which are required for a successful implementation of MPR
in LSMs.

Finally, the computational effort for MPR is also consider-
ably larger in comparison with other methods, because of its
requirement to estimate model parameters (β0) at the highest
resolution at which the biophysical characteristics are avail-
able. The computational time, however, could be substan-
tially reduced by using a restart file (i.e., a dataset contain-
ing a copy of all parameters, state variables, and fluxes of a
model at a given point in time). If this capability is available,
the MPR estimation can be greatly reduced for operational
simulations because the effective parameter fields and past
modeled states do not need to be estimated often.
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www.ufz.de/mhm


L. Samaniego et al.: Towards seamless predictions 4333

(a) (b)

Figure 4. mHM simulations of soil moisture as the fraction from saturation θ
θs

for a day in August 2005 conducted with (a) basin-wise
parameter estimation and (b) seamless parameter estimation. Panel (b) shows a seamless soil moisture field.

4 Experiments to reveal non-seamless

parameterizations

In this section, we perform four modeling experiments, in-
spired by Wood (1990)’s recommendation to investigate

– the effects of the overcalibration of global parameters
on the spatial patterns of modeled state variables,

– the effects of a parameterization technique on the spatial
pattern of effective parameters,

– the effects of a parameterization technique on the dy-
namics of a state variable, and

– the effects of not satisfying the flux-matching condition
on simulated flux across different spatial scales. In these
experiments, four models are employed: mHM, Noah-
MP, PCR-GLOBWB, and WaterGAP.

4.1 Effects of on-site model calibration

As noted in the introduction, on-site (basin-specific) param-
eter estimation based on HRU or similar techniques (such as
clustering grid cells or sub-basins into regions that exhibit
quasi-similar hydrological behavior) leads to non-seamless
parameter fields such as those reported in Merz and Blöschl
(2004). Here, we go one step further to show the conse-
quences of this common practice on state variables such as
soil moisture. Our postulation is that an on-site calibration
of global parameters γ̂ leads to biased state variables even
with regularization techniques such as MPR. To falsify this
postulation, we performed two model simulations denoted
“on-site” and “multisite” calibration schemes. In both cases,
we used the mHM setup described in Rakovec et al. (2016b)
over the Pan-EU domain at a 0.25◦ resolution.

In the first simulation, we perform on-site calibrations at
400 river basins in the Pan-European domain. Subsequently,
the respective optimized parameter sets are used in each cor-
responding basin to generate the target variable, in this case,

the daily soil moisture of the top 1 m soil column. Lastly,
daily soil moisture fields are assembled using the indepen-
dent basin simulations for the entire Pan-EU domain. The
results of this experiment are shown in Fig. 4a for a day in
August 2005. In the second simulation, the global parameters
γ̂ are estimated simultaneously for a set of 13 basins cov-
ering various hydroclimatic regimes in the Pan-EU domain.
The corresponding soil moisture field for the same point in
time is depicted in Fig. 4b.

The first simulation shows clear evidence of strong spatial
imprint in the soil moisture fields that is easily identifiable
because the shapes of the constituent river basins (Fig. 4a) are
apparent. Another interesting feature is a strong wet bias in a
basin located in center of the Iberian Peninsula compared to
its neighboring regions. Wet soils during this period are very
unlikely because the entire region was enduring a prolonged
and extreme drought. Moderate dry bias is apparent in basins
in southwest Germany, and a strong dry bias was detected in
basins in west Croatia, south Lithuania, south Hungary, and
north Bosnia and Herzegovina. Conversely, the soil moisture
field obtained with the multi-basin parameter estimation does
not exhibit these nuisances and thus can be regarded as a
spatially seamless field. In this case, parameter estimation
with a large sample of geophysical characteristics and many
streamflow time series to estimate efficiency measures leads
to a well-posed parameter estimation problem.

Based on these results, it can be concluded that parame-
ter sets obtained using the on-site parameter estimation tech-
nique do not lead to seamless parameter fields or state vari-
ables. Moreover, automatic optimization algorithms, such as
SCE or DDS, tend to overlearn from time series with large
observational errors, which in turn leads to poor identifiabil-
ity of parameters (Brynjarsdottir and O’Hagan, 2014) and bi-
ased simulations, as demonstrated above. Consequently, pa-
rameter estimation should be performed with a representa-
tive sample of basins that adequately cover the variability of
hydrological regimes and geophysical properties (e.g., soil
types) (Kumar et al., 2015). It is worth noting that if the pa-
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Figure 5. Porosity fields obtained using the majority upscale operator for spatial resolutions of (a) 5 km and (b) 12 km with the Noah-MP
model used in the EDgE and EURO-CORDEX projects, respectively. Lower panels (c)–(d) show the empirical distribution function of
porosity at the respective resolution and method.

rameters of a model are estimated in a small basin with very
few soil types, a single geological formation, or very flat ter-
rain, then it is very likely that some parameters cannot be
constrained during calibration. The obtained parameter set is
biased to the specific basin in which it has been estimated,
and hence it is not skillful for seamless and continental-scale
simulations.

4.2 Effects of a parameterization technique on spatial

patterns of effective parameters

The effects of the commonly used parameterization tech-
niques to generate the porosity fields of LSMs (such as CHT-
ESSEL and Noah-MP depicted in Fig. 1) are important to
investigate. These fields are obtained by combining the ma-
jority (or dominant) upscaling operator and a look-up table
containing categorical values of model parameters tabulated
for a limited set of dominant soil types (e.g., Niu, 2011,
p. 20., ECMWF, 2016, p. 137). The majority-based operator
is mostly used for estimating grid-specific vegetation classes
in LSMs (Li et al., 2013).

The porosity field, based on a majority upscaling for
the Noah-MP model used in EURO-CORDEX (www.
euro-cordex.net) at an approximately 12 km resolution, is
depicted in Fig. 1. Compared with the other model-derived
porosity fields, the Noah-MP field appears to be most homo-
geneously distributed in space. It is very likely that the spatial
heterogeneity is underrepresented in this case as the default
soil LUT contains only 13 soil classes. It should be noted
that a model such as CABLE that uses a porosity field with
an approximately 100 km resolution has a larger variability
than that of Noah-MP at 12 km.

The following experiment is carried out to evaluate
whether the variability of the soil map or the upscaling
operator has a larger effect on the derived porosity field.
The highest resolution soil map available for Europe is
used and applied in the same manner to derive porosity
fields as described above. The texture field is provided by
the SoilGrids dataset (http://soilgrids.org) at 1000 m reso-
lution (level-0). The upscaled porosity field is generated
at 5 km for the EDgE project. The soil characteristics for
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Noah-MP are estimated using the same look-up table as
in the EURO-CORDEX–Noah-MP case. The comparison
of both parameter fields (i.e., EDgE–Noah-MP and EURO-
CORDEX–Noah-MP) and the main statistical moments de-
scribing the spatial variability of the porosity fields are shown
in Fig. 5. The results clearly indicate the inappropriateness of
the majority-based upscaling operator for this parameter in
both cases. It leads to reduction of the variance of the poros-
ity field and thus can be considered the least sensitive oper-
ator. This means that the informational content of the hyper-
resolution soil maps, commonly available globally, is almost
lost.

Notably, although the overall mean of the porosity es-
timated using MPR over the Pan-EU domain for mHM
(Fig. 3a) is only 6.6 % lower than that calculated using the
majority-based approach for Noah-MP (Fig. 5a), the spatial
patterns obtained by both models are very different. The ev-
idence of this remarkable dissimilarity can also be visual-
ized by comparing the empirical density functions shown in
Figs. 3d and 5c, both corresponding to a field at ℓ1 = 5 km
and with the same input data. A detailed evaluation con-
ducted by Samaniego et al. (2012) in Germany showed that
large porosity values estimated with the majority-based ap-
proach could overestimate those obtained with MPR by up
to 40 %, whereas in other locations, underestimation up to
15 % from those estimated by MPR can be found.

Other upscaling operators, such as the weighted arithmetic
mean, are commonly used in LSMs in combination with the
mosaic approach. For example, in CLM (Oleson et al., 2013,
see p. 160), the texture class of the subunits of the cell, called
tiles, are provided in a look-up table. The upscaled porosity
field obtained using this approach is shown in Fig. 1 at a
1◦ (100 km) resolution. Methods based on the majority and
weighted arithmetic mean operators exhibit some similarity
and lack spatial variability. In both cases, the spatial mean is
approximately 0.43 m3 m−3.

Hydrologic models that do not use soil porosity tend to use
a similar conceptualization and values denoted as the total
available water capacity (TAWC; WaterGAP versions 2 and
3) and field capacity (FC; HBV). For these types of concep-
tual models, normalized values of these parameters are used
as surrogates for soil porosity. The consistency of the spa-
tial patterns of TAWC and FC are compared here instead of
their actual values. A distinctive difference in the patterns can
be observed. For example, WaterGAP3 exhibits lower values
than WaterGAP2, whereas the pattern of the normalized FC
in HBV is the opposite in many locations (e.g., Spain, Ger-
many, and Scandinavia).

Details of the parameterization schemes used to estimate
TAWC and FC are beyond the scope of this study. Interested
readers may refer to Müller Schmied et al. (2014) or Beck
et al. (2016), respectively. However, the TAWC in WaterGAP
is obtained by linking the soil type provided by the FAO soil
map with available water capacity values estimated by Batjes
(1996). Thus, no scaling rule or form of regularization is used

in this case. The field capacity parameters used in HBV were
determined using an ad hoc nearest-neighbor interpolation
technique that relies on calibrated parameters from nearby
similar donor basins that might exhibit very different geo-
physical characteristics. The parameter fields obtained for
two versions of WaterGAP (30 and 5 arcmin) and HBV are
depicted in Fig. 1. It can be concluded that the parameteri-
zation technique employed is not scale invariant as revealed
by distinct parameter sets from WaterGAP model versions,
which are operated at different resolutions. The regionaliza-
tion proposed by Beck et al. (2016) leads to a patchwork-
quilt field that does not resemble to any other field presented.
Evident from Fig. 1, the HBV field lacks seamlessness that
may result in non-seamless fields of water fluxes and states.

4.3 Effects of a parameterization technique on the

dynamics of a state variable

There is a complex interplay between soil moisture (SM) and
latent heat (LH) in LSMs/HMs. Improving our understanding
of soil–land–atmosphere feedback is fundamental for mak-
ing reliable predictions of water and energy fluxes. In this
context, we carry out a sensitivity experiment to investigate
the effects of soil-related parameterizations (e.g., soil poros-
ity) on latent heat and soil moisture. Two contrasting model-
ing paradigms (Noah-MP and mHM) are employed.

The WRF/Noah-MP system is forced with ERA-Interim
at the boundaries of the rotated CORDEX grid (www.meteo.
unican.es/wiki/cordexwrf) at a spatial resolution of 0.11◦

covering Europe from 1989 to 2009. To ease the compar-
ison, the process-based hydrological model mHM (www.
ufz.de/mhm) is driven with daily precipitation and temper-
ature fields generated by the WRF/Noah-MP system dur-
ing the same period. The spatial resolution of mHM is
fixed at 5 × 5 km2. The main geophysical characteristics
in WRF/Noah-MP of land cover and soil texture are rep-
resented with a 1 × 1 km2 MODIS and a single-horizon,
coarse-resolution FAO soil map with 16 soil texture classes,
respectively. The porosity field of Noah-MP is estimated by
applying a majority-based operator to values for different soil
classes, as shown in Fig. 5b.

The settings of the mHM model used in this experiment
are described in Sect. 3.4. In contrast to those of Noah-MP,
the global parameters of mHM estimated using the MPR
technique are obtained by closing the water balance over se-
lected river basins in Europe (Rakovec et al., 2016a). The
porosity fields obtained for mHM over the Pan-EU are de-
picted in Fig. 3.

The phase diagrams of the monthly fraction of soil wa-
ter saturation fSM = θ

θs
(i.e., plots of monthly fSM(t) vs.

fSM(t + 1)) are subsequently investigated to understand the
effect of differences in porosity estimates of the top 2 m soil
column on the soil moisture dynamics (Fig. 6). Two loca-
tions in Germany are selected in which Noah-MP system-
atically over- or underestimated the latent heat fluxes with
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(a) (b)

ET overestimated ET underestimated

Figure 6. Phase diagrams of monthly soil moisture fraction for two locations in Germany, (a) 54◦ N, 10◦ E and (b) 51◦ N, 7◦ E, in which the
latent heat estimated by Noah-MP is over- or underestimated with respect to corresponding estimates of mHM. The models have identical
forcings.

respect to mHM (the latitude and longitude coordinates of
the center of the selected Noah-MP grids are A (54◦ N,
10◦ E) and B (51◦ N, 7◦ E), respectively). At location A,
the majority-based approach underestimates the MPR soil
porosity by −10 %, whereas in location B, it overestimates
it by 40 %. This experiment unambiguously shows that, at
locations where Noah-MP overestimates latent heat with re-
spect to mHM, the temporal variance (i.e., dynamic) of the
monthly SM time series simulated by Noah-MP is almost
doubled compared to that of mHM, leading to much lower
soil moisture values (Fig. 6a). Conversely, underestimation
of latent heat greatly reduces the variance of the soil mois-
ture dynamics (Fig. 6b).

4.4 Effects of not satisfying the flux-matching condition

In Sect. 2, we postulated that ad hoc parameterization
schemes do not necessarily fulfill the flux-matching test per-
formed with a flux simulated by a given model at two mod-
eling resolutions (ℓ1 = 5 and 30 arcmin). A detailed descrip-
tion of how to perform this test is provided in Samaniego
et al. (2010b). The following experiment is conducted with
three models (mHM, PCR-GLOBWB, and WaterGAP) in
an attempt to falsify the above postulation. All models use
the same forcings and geophysical information. The simula-
tions are conducted in the Rhine River upstream of the Lobith
gauging station. All three models are driven by daily forcing
with a spatial resolution of 5 km, which was kindly provided
by the EFAS team at JRC (www.eea.europa.eu). Additional
details of the modeling settings of this experiment are pro-
vided in Sutanudjaja et al. (2015) and at www.hyperhydro.
org/. The KGE and bias values of these three models ob-
tained for both scales at the Lobith station during 2003 are
reported in Table 2. The daily streamflow time series during
this year is selected for evaluation because it exhibits strong

temporal dynamics, with wet conditions in the beginning of
the year followed by a drought during the summer and fall
seasons. The performances obtained for the three models are
satisfactorily, but the results shown in Table 2 indicate that
mHM is the only model that can have higher KGE values
regardless of the spatial modeling resolution.

The flux-matching test presented in Sect. 3.1 is performed
with simulated evapotranspiration (ET) because it is the
largest flux in the water cycle besides precipitation, and is
prone to the largest predictive uncertainties (Mueller et al.,
2013). To ease the comparison, collocated grids are em-
ployed for every model such that every coarser scale grid cell
has exactly the same number of underlying cells at finer reso-
lution (5 arcmin). The results of this test are shown in Fig. 7a,
b. They reveal that mHM exhibits the best flux-matching be-
tween these two scales. This experiment also shows that the
MPR technique implemented in mHM leads to ET fields that
are of similar magnitude at both scales, indicating a close
conservation of mass leading to the lowest relative errors
(Fig. 7c) among the three models.

The PCR-GLOBWB and WaterGAP models reveal large
inconsistencies in preserving the spatial pattern of annual ET
across two modeling scales, although the streamflow per-
formance at the outlet is good (greater than 0.83 in both
cases). PCR-GLOBWB at coarse resolution tends to under-
estimate ET (up to 50 %) compared with those at finer resolu-
tion (Fig. 7f). Conversely, the coarser version of WaterGAP
tends to overestimate ET (up to 60 %) compared with those
at the finer resolution (Fig. 7i). Interestingly, it can be ob-
served that changes in model resolution affect the dynamic
of water fluxes in those models that do not use any consistent
scaling rules for model parameterization. These results also
confirm the postulation that “streamflow-related metrics are
a necessary but not sufficient condition to warrant the proper
partitioning of incoming precipitation P into various spatially
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(a) (b) (c)

mHM

(d) (e) (f)

PCR-GLOBWB

(g) (h) (i)

WaterGAP

5 arcmin 30 arcmin Rel. error [%]

Figure 7. Multiscale simulation of annual ET for the Rhine River in 2003 with mHM, PCR-GLOBWB, and WaterGAP (versions 3 and 2) at
spatial resolutions ℓ1 of 5 and 30 arcmin, respectively. The relative errors in percentage of the coarse field estimates with respect to the finer
ones (aggregated to the coarser level) for mHM, PCR-GLOBWB, and WaterGAP are shown in panels (c), (f), and (i), respectively.

distributed water storage components (e.g., SM) and fluxes
(e.g., ET)” (Rakovec et al., 2016b). Because all models are
forced with the same forcings, share the same geophysical
information, and have almost similar hydrological process
descriptions, it can be safely concluded that the parameter-
ization method used in the models caused the ET mismatch.
To falsify this postulation, the MPR parameterization proto-
col proposed in Sect. 3.3 is next applied to PCR-GLOBWB.

5 Implementation of the parameterization protocol in

PCR-GLOBWB

To evaluate the consistency of land surface fluxes before
and after MPR implementation, we analyze the impact of
MPR on evaporative fluxes and soil moisture content in PCR-
GLOBWB (van Beek et al., 2011; Wada and Bierkens, 2014;
Sutanudjaja et al., 2016) over the Rhine River basin during
2003. The model is used to simulate the hydrological states at
two different spatial resolutions (ℓ1 = 5 and 30 arcmin), and
the sensitivity to MPR implementation is evaluated using a
field difference method (in line with Eq. 1):

www.hydrol-earth-syst-sci.net/21/4323/2017/ Hydrol. Earth Syst. Sci., 21, 4323–4346, 2017
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Table 1. Data sources and parameterization methods used by models used in this study.

Model Parameterization
method

References Source code and projects

CABLE Pedotransfer functions,
look-up table, dominant
soil type

Kowalczyk et al. (2006) http://www.cawcr.gov.au/technical-reports/
CTR_057.pdf

CLM Pedotransfer functions,
look-up table, mosaic
approach

Oleson et al. (2013) www.cesm.ucar.edu/models/cesm1.2/clm/

CHTESSEL Look-up table, domi-
nant soil type

Viterbo and Beljaars
(1995); ECMWF (2016)

www.ecmwf.int/search/elibrary

HBV k-NN interpolation,
calibrated parameter

Beck et al. (2016) www.gloh2o.org/hbv-simreg/

JULES Look-up table, domi-
nant soil type

Best et al. (2011) http://jules.jchmr.org

LISFLOOD Pedotransfer functions,
mosaic approach, arith-
metic mean

De Roo and Wesseling
(2000)

http://publications.jrc.ec.europa.eu/repository/
bitstream/JRC78917/lisflood_2013_online.pdf

mHM MPR Samaniego et al. (2010b) http://edge.climate.copernicus.eu
www.ufz.de/mhm

Noah-MP Look-up table, domi-
nant soil type

Niu (2011) www.jsg.utexas.edu/noah-mp www.meteo.
unican.es/wiki/cordexwrf

PCR-GLOBWB (Original) pedotransfer
functions with averaged
predictors

van Beek et al. (2011);
Wada and Bierkens (2014)

http://pcraster.geo.uu.nl/projects/applications/
pcrglobwb/

(New) MPR Samaniego et al. (2010b)

WaterGAP (v.2, v.3) Look-up tables Müller Schmied et al.
(2014); Batjes (1996)

www.uni-kassel.de/einrichtungen/en/cesr/
research/projects/active/watergap.html
www.uni-frankfurt.de/45218063/WaterGAP

Table 2. Efficiency of mHM, PCR-GLOBWB (Ludovicus et al., 2017), and WaterGAP obtained for the Rhine Basin at the Lobith station
during 2003 for spatial resolutions of 5 and 30 arcmin.

Model
5 arcmin 30 arcmin

KGE Bias (m3s−1) KGE Bias (m3s−1)

mHM 0.96 61.19 0.96 21.74
PCR-GLOBWB 0.93 −20.61 0.86 248.09
WaterGAP (v.3, v.2) 0.83 143.02 0.90 −41.99

1 =

√

√

√

√

1
T

T
∑

t=1

(

100
W(t) − w(t)

w(t)

)2

, (2)

where W and w are the coarse and fine resolution simula-
tions of variable W , respectively, and T is the total time se-
ries length.

The original PCR-GLOBWB parameterization does not
include consistency in upscaling as enforced by MPR, lead-

ing to a larger difference in soil properties. Figure 8 depicts
the porosity fields of this model before and after the imple-
mentation of MPR. Figure 8a and b clearly show the prob-
lems mentioned in Sect. 2, for example, lack of coherence in
spatial patterns and the existence of spatial discontinuities of
parameter fields at two scales. The porosity fields obtained
with the MPR technique shown in Fig. 8c and d, on the con-
trary, exhibit a typical seamless spatial structure in which the
main features of the field can be distinguished across scales.
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(a) (b)

Original

(c) (d)

MPR

5 arcmin 30 arcmin

Figure 8. Porosity fields of PCR-GLOBWB before (a, b) and after implementing MPR (c, d) for two spatial resolutions of 5 and 30 arcmin.
Dotted lines denote the Rhine Basin and the continuous line is the main EU river basin network.

It is worth noting that differences seen between Fig. 8a and
c are not only due to the improved upscaling procedure, but
also due to a modified pedotransfer function. The parameters
of the pedotransfer function have also been included in the
calibration within the MPR approach.

These differences in soil hydraulic properties influence the
derived hydrological properties, leading to changes in sat-
urated conductivity and storage capacity in the unsaturated
zone. The considerable differences in ET fluxes are shown in
Fig. 9a and b, and are the result of these changes. When MPR
is employed, we observe that the difference in actual aver-
age Rhine Basin evapotranspiration between the two scales
1 drops from 29 to 9.4 % (Fig. 9d, e). For the total column
soil moisture, we find a stronger decrease in 1 from 25 to
6.9 %, clearly indicating the benefits of MPR implementa-
tion. The error fields in Fig. 9c and f show a clear bene-
fit of implementing MPR in PCR-GLOBWB. It should be
noted, however, that the improvements are not as high as
those obtained for mHM as shown in Fig. 7c. This is re-
lated to the fact that all effective parameters related to the

evaporation and soil dynamic processes have been scaled
with MPR in mHM, whereas in PCR-GLOBWB, only soil
porosity has been scaled with this technique. Nevertheless,
it is remarkable to see the improvements in flux matching
(Fig. 9f) by scaling a single parameter of PCR-GLOBWB
using MPR. We also observe a slight increase in the dis-
charge performance (KGE) at Lobith. The original KGEs
are 0.86 (ℓ1 = 5 arcmin) and 0.93 (ℓ1 = 30 arcmin), whereas
the KGEs with MPR implementation are 0.91 and 0.93, re-
spectively. Another advantage is that PCR-GLOBWB is cal-
ibrated at a coarser resolution, whereas this model is cali-
brated for each spatial resolution individually in the original
setup and with lower consistency in the discharge simulation.

From these evaluations, we conclude that MPR implemen-
tation leads to significant improvement in the flux-matching
and discharge simulations across scales, allowing for more
consistency across scales for hydrological model simula-
tions. Notably, additional parameters in PCR-GLOBWB still
need to be regionalized within the MPR framework, which
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(a) (b) (c)

Original
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Figure 9. Annual ET fields in 2003 of PCR-GLOBWB before (a, b) and after implementing MPR (c, d) for two spatial resolutions of 5 and
30 arcmin. Dotted lines denote the Rhine Basin and the continuous line is the main EU river basin network. The relative errors in percentage
of the coarse field estimates with respect to the finer ones are shown in panels (c) and (f), respectively.

could potentially lead to better performance and transferabil-
ity.

6 Conclusions

Hyper-resolution modeling initiatives (Wood et al., 2011;
Bierkens et al., 2014) challenge the hydrological commu-
nity to intensify efforts to make water (quantity and qual-
ity) and energy flux predictions “everywhere” and for these
predictions to be “locally relevant.” The predictions should
have small uncertainties to be useful for the end users. These
grand challenges also imply that the next generation of land
surface and hydrologic models must incorporate probabilis-
tic descriptions of the subgrid variability of geophysical land
surface properties – such as POLARIS (Chaney et al., 2016b)
and SoilGrids (Hengl et al., 2017) – to cope with the large
uncertainties that characterize the related process below the
representative elementary area (REA) scale. Consequently,
great efforts should be made in hyper-resolution monitoring
at the global scale in improving the computational efficiency
of LSMs/HMs and in the development of scale-invariant
parameterizations for these models. In this study, we have
shown that the state-of-the-art parameterizations need to be

improved to address this grand challenge, especially with re-
spect to better fulfill the flux-matching condition.

We revisited a technique called MPR (Samaniego et al.,
2010b), originally available only in mHM but recently imple-
mented in PCR-GLOBWB as a part of this study. Moreover,
we proposed a “parameterization protocol” as a guideline to
apply MPR and to retrofit existing LSMs/HMs to ease the
implementation of MPR in the latter. We also discuss the ad-
vantages and limitations of MPR which should be considered
while applying this concept to other LSMs/HMs.

This study has shown that two models that use ad hoc pa-
rameterizations can have reasonable efficiency with respect
to simulated streamflow but poor performance with respect
to distributed fluxes such as evapotranspiration. The imple-
mentation of this protocol in PCR-GLOBWB in this study
increased the model efficiency by almost 6 % and improved
the consistency of simulated ET fields across scales. For ex-
ample, the estimation of evapotranspiration without MPR at
5 and 30 arcmin spatial resolutions for the Rhine River basin
resulted in a difference of approximately 29 %. Applying
MPR reduced this difference to 9 %. For total soil water, the
differences without and with MPR are 25 and 7 %, respec-
tively. We have also shown that the PCR-GLOBWB global

Hydrol. Earth Syst. Sci., 21, 4323–4346, 2017 www.hydrol-earth-syst-sci.net/21/4323/2017/



L. Samaniego et al.: Towards seamless predictions 4341

parameters can be transferred across scales with consistent
ET patterns and model efficiency.

In general, it can be concluded that the estimation of
global parameters is feasible with MPR and that these scalars
are transferable across scales and locations. The success-
ful application of MPR implies that the averaging proce-
dure of geophysical properties matters and that having the
right physics with incorrect “effective” parameters leads
to inconsistent fluxes and states. Consequently, MPR is a
step forward to quasi-scale-invariant parameterizations and
is feasible to implement in existing LSMs/HMs whose goal
should be seamless parameter fields across scales that do
not exhibit artificial spatial “discontinuities” such as calibra-
tion imprints, and that lead to consistent predictions across
scales. We consider that this feature is the key for the next
generation of LSM and NWP models such as the model
for prediction across scales (MPAS) (www.mmm.ucar.edu)
and the nested-domain ICON (www.earthsystemcog.org/
projects/dcmip-2012/icon-mpi-dwd). Furthermore, a proper
implementation of MPR in process-based (conceptual) mod-
els may contribute to recent efforts towards identifying their
“effective” parameters through observational datasets at the
scale of interest (Savenije and Hrachowitz, 2017).

Finally, we would like to reiterate that a flux obtained from
a land surface/hydrologic model should always be evaluated
with local observations when available and across scales. If
“it disagrees with the experiment, it’s wrong.”
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Wright, M. N., Geng, X., Bauer-Marschallinger, B., Gue-
vara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H.,
Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S.,
and Kempen, B.: SoilGrids250m: Global gridded soil infor-
mation based on machine learning, PLOS ONE, 12, 1–40,
https://doi.org/10.1371/journal.pone.0169748, 2017.

Hundecha, Y. and Bárdossy, A.: Modeling of the effect of land use
changes on the runoff generation of a river basin through pa-
rameter regionalization of a watershed model, J. Hydrol., 292,
281–295, 2004.

Hundecha, Y., Arheimer, B., Donnelly, C., and Pechlivanidis, I.: A
regional parameter estimation scheme for a pan-European multi-
basin model, J. Hydrol. Regional Studies, 6, 90–111, 2016.

Intsiful, J. and Kunstmann, H.: Upscaling of Land-Surface Param-
eters Through Inverse Stochastic SVAT-Modelling, Bound.-Lay.
Meteorol., 129, 137–158, 2008.

Kavetski, D., Kuczera, G., and Franks, S. W.: Semidis-
tributed hydrological modeling: A “saturation path” perspec-
tive on TOPMODEL and VIC, Water Resour. Res., 39, 1246,
https://doi.org/10.1029/2003WR002122, 2003.

Kitanidis, P. K. and Vomvoris, E. G.: A geostatistical approach to
the inverse problem in groundwater modeling (steady state) and
one-dimensional simulations, Water Resour. Res., 19, 677–690,
2010.

Koren, V., Smith, M., and Duan, Q.: Use of a Priori Parameter Es-
timates in the Derivation of Spatially Consistent Parameter Sets
of Rainfall-Runoff Models, American Geophysical Union, 239–
254, https://doi.org/10.1002/9781118665671.ch18, 2013.

Kowalczyk, E. A., Wang, Y. P., and Law, R. M.: The CSIRO At-
mosphere Biosphere Land Exchange (CABLE) model for use in
climate models and as an offline model, CSIRO. Marine and At-
mospheric Research, 13, 1–37, http://www.cmar.csiro.au/e-print/
open/kowalczykea_2006a.pdf (last access: August 2017) 2006.

Kumar, R., Samaniego, L., and Attinger, S.: The effects of spatial
discretization and model parameterization on the prediction of
extreme runoff characteristics, J. Hydrol., 392, 54–69, 2010.

Kumar, R., Livneh, B., and Samaniego, L.: Toward computation-
ally efficient large-scale hydrologic predictions with a multi-
scale regionalization scheme, Water Resour. Res., 49, 5700–
5714, 2013a.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of dis-
tributed hydrologic model parameterization on water fluxes at
multiple scales and locations, Water Resour. Res., 49, 360–379,
2013b.

Kumar, R., Mai, J., Rakovec, O., Cuntz, M., Thober, S., Zink, M.,
Attinger, S., Schaefer, D., Schrön, M., and Samaniego, L. E.: Re-
gionalized Hydrologic Parameters Estimates for a Seamless Pre-
diction of Continental scale Water Fluxes and States, AGU Fall
Meeting Abstracts, 2015.

Le Treut, H., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C.,
Mokssit, A., Peterson, T., and Prather, M.: Historical Overview
of Climate Change, in: Climate Change 2007: The Physical
Science Basis, Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z.,
Marquis, M., Averyt, K., Tignor, M., and Miller, H. L., chap. 1,
Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA, 1–36, 2007.

Leavesley, G. H., Lichty, R. W., Troutman, B. M., and Saindon,
L. G.: Precipitation-Runoff Modeling System: User’s Manual,
U.S. Geological Survey Water-Resources Investigations, Denver,
Colorado, 83-4238 Edn., 1983.

Lerat, J., Andréassian, V., Perrin, C., Vaze, J., Perraud, J.-M., Rib-
stein, P., and Loumagne, C.: Do internal flow measurements im-
prove the calibration of rainfall-runoff models?, Water Resour.
Res., 48, W02511, https://doi.org/10.1029/2010WR010179,
2012.

Li, D., Bou-Zeid, E., Barlage, M., Chen, F., and Smith, J. A.: Devel-
opment and evaluation of a mosaic approach in the WRF-Noah
framework, J. Geophys. Res.-Atmos., 118, 11918–11935, 2013.

Li, H., Sivapalan, M., and Tian, F.: Comparative diagnostic analysis
of runoff generation processes in Oklahoma DMIP2 basins: The
Blue River and the Illinois River, J. Hydrol., 418–419, 90–109,
2012.

www.hydrol-earth-syst-sci.net/21/4323/2017/ Hydrol. Earth Syst. Sci., 21, 4323–4346, 2017

https://doi.org/10.1029/2010WR010174
https://doi.org/10.5194/hess-18-463-2014
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1029/2003WR002122
https://doi.org/10.1002/9781118665671.ch18
http://www.cmar.csiro.au/e-print/open/kowalczykea_2006a.pdf
http://www.cmar.csiro.au/e-print/open/kowalczykea_2006a.pdf
https://doi.org/10.1029/2010WR010179


4344 L. Samaniego et al.: Towards seamless predictions

Liang, X., Lettenmaier, D., Wood, E., and Burges, S.: A Simple
Hydrologically Based Model of Land-Surface Water and En-
ergy Fluxes for General-Circulation Models, J. Geophys. Res.-
Atmos., 99, 14415–14428, 1994.

Liang, X., Lettenmaier, D. P., and Wood, E. F.: One-dimensional
statistical dynamic representation of subgrid spatial variability of
precipitation in the two-layer variable infiltration capacity model,
J. Geophys. Res.-Atmos., 101, 21403–21422, 1996.

Lindstrom, G., Johansson, B., Persson, M., Gardelin, M., and
Bergström, S.: Development and test of the distributed HBV-96
hydrological model, J. Hydrol., 201, 272–288, 1997.

Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer,
B.: Development and testing of the HYPE (Hydrological Pre-
dictions for the Environment) water quality model for different
spatial scales, Hydrol. Res., 41, 295–26, 2010.

Livneh, B. and Lettenmaier, D. P.: Regional parameter estimation
for the unified land model, Water Resour. Res., 49, 100–114,
2013.

Livneh, B., Kumar, R., and Samaniego, L.: Influence of soil textu-
ral properties on hydrologic fluxes in the Mississippi river basin,
Hydrol. Process., 29, 4638–4655, 2015.

Ludovicus, P. H. (Rens), van Beek, Sutanudjaja, E. H., Wada, Y.,
Bosmans, J. H. C., Drost, N., de Graaf, I. E. M., de Jong,
K., Lopez Lopez, P., Pessenteiner, S., Schmitz, O., Straatsma,
M. W., Wanders, N., Wisser, D., and Bierkens, M. F. P.: PCR-
GLOBWB, https://doi.org/10.1029/2010WR009792, data avail-
able at: https://github.com/UU-Hydro/PCR-GLOBWB_model/
blob/develop/README.txt, last access: 2 August 2017.

Martina, M. L. V., Todini, E., and Liu, Z.: Preserving the dominant
physical processes in a lumped hydrological model, J. Hydrol.,
399, 121–131, 2011.

Mendoza, P. A., Clark, M. P., Barlage, M., Rajagopalan,
B., Samaniego, L., Abramowitz, G., and Gupta, H.: Are
we unnecessarily constraining the agility of complex
process-based models?, Water Resour. Res., 51, 716–728,
https://doi.org/10.1002/2014WR015820, 2015.

Merz, R. and Blöschl, G.: Regionalisation of catchment model pa-
rameters, J. Hydrol., 287, 95–123, 2004.

Miller, E. E. and Miller, R. D.: Physical Theory for Capillary Flow
Phenomena, J. Appl. Phys., 27, 324–332, 1956.

Mizukami, N., Clark, M., Newman, A. J., Wood, A. W.,
Gutmann, E., Nijssen, B., Rakovec, O., and Samaniego,
L.: Towards seamless large domain parameter estima-
tion for hydrologic models, Water Resour. Res., accepted,
https://doi.org/10.1002/2017WR020401, 2017.

Morris, M. D.: Factorial Sampling Plans for Preliminary Computa-
tional Experiments, Technometrics, 33, 161–174, 1991.

Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A.,
Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan,
F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield,
J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S.
I.: Benchmark products for land evapotranspiration: LandFlux-
EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17,
3707–3720, https://doi.org/10.5194/hess-17-3707-2013, 2013.

Müller Schmied, H., Eisner, S., Franz, D., Wattenbach, M.,
Portmann, F. T., Flörke, M., and Döll, P.: Sensitivity of
simulated global-scale freshwater fluxes and storages to in-
put data, hydrological model structure, human water use

and calibration, Hydrol. Earth Syst. Sci., 18, 3511–3538,
https://doi.org/10.5194/hess-18-3511-2014, 2014.

Nearing, G. S., Tian, Y., Gupta, H. V., Clark, M. P., Harrison, K. W.,
and Weijs, S. V.: A philosophical basis for hydrological uncer-
tainty, Hydrolog. Sci. J., 61, 1666–1678, 2016.

Neuman, S. P.: Universal scaling of hydraulic conductivities and
dispersivities in geologic media, Water Resour. Res., 26, 1749–
1758, 2010.

Nijzink, R. C., Samaniego, L., Mai, J., Kumar, R., Thober, S.,
Zink, M., Schäfer, D., Savenije, H. H. G., and Hrachowitz, M.:
The importance of topography-controlled sub-grid process het-
erogeneity and semi-quantitative prior constraints in distributed
hydrological models, Hydrol. Earth Syst. Sci., 20, 1151–1176,
https://doi.org/10.5194/hess-20-1151-2016, 2016.

Niu, G.-Y.: THE COMMUNITY NOAH LAND-SURFACE
MODEL (LSM) WITH MULTI-PHYSICS OPTIONS, Tech.
rep., National Centers for Environmental Prediction (NCEP),
Oregon State University, Air Force, and Hydrology Lab – NWS,
https://www.jsg.utexas.edu/noah-mp/users-guide/, (last access:
2 February 2017), 2011.

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek,
M. B., Barlage, M., Kumar, A., Manning, K., Niyogi,
D., Rosero, E., Tewari, M., and Xia, Y.: The community
Noah land surface model with multiparameterization options
(Noah-MP): 1. Model description and evaluation with local-
scale measurements, J. Geophys. Res.-Atmos., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.

Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M.,
Koven, C., Levis, S., Li, F., Riley, W., Subin, Z., Swenson, S.,
Thornton, P., Bozbiyik, A., Fisher, R., Kluzek, E., Lamarque, J.-
F., Lawrence, P., Leung, L., Lipscomb, W., Muszala, S., Ricci-
uto, D., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Techni-
cal Description of version 4.5 of the Community Land Model
(CLM), Tech. rep., Ncar Technical Note NCAR/TN-503+STR,
National Center for Atmospheric Research, Boulder, CO, http://
www.cesm.ucar.edu/models/cesm1.2/clm/, (last access: 2 Febru-
ary 2017), 2013.

Peters-Lidard, C. D., Clark, M., Samaniego, L., Verhoest, N.
E. C., van Emmerik, T., Uijlenhoet, R., Achieng, K., Franz,
T. E., and Woods, R.: Scaling, similarity, and the fourth
paradigm for hydrology, Hydrol. Earth Syst. Sci., 21, 3701–3713,
https://doi.org/10.5194/hess-21-3701-2017, 2017.

Pielke Sr., R.: Mesoscale meteorological modeling, Academic
Press, Elsevier, International Geophysics, 3 Rev Edn., 2013.

Pokhrel, P. and Gupta, H. V.: On the use of spatial regu-
larization strategies to improve calibration of distributed
watershed models, Water Resour. Res., 46, W01505,
https://doi.org/10.1029/2009WR008066, 2010.

Rakovec, O., Hill, M. C., Clark, M. P., Weerts, A. H.,
Teuling, A. J., and Uijlenhoet, R.: Distributed Evalua-
tion of Local Sensitivity Analysis (DELSA), with applica-
tion to hydrologic models, Water Resour. Res., 50, 1–18,
https://doi.org/10.1002/2013WR014063, 2014.

Rakovec, O., Kumar, R., Attinger, S., and Samaniego, L.: Improving
the realism of hydrologic model functioning through multivari-
ate parameter estimation, Water Resour. Res., 52, 7779–7792,
2016a.

Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M.,
Attinger, S., Schäfer, D., Schrön, M., and Samaniego, L.: Mul-

Hydrol. Earth Syst. Sci., 21, 4323–4346, 2017 www.hydrol-earth-syst-sci.net/21/4323/2017/

https://doi.org/10.1029/2010WR009792
https://github.com/UU-Hydro/PCR-GLOBWB_model/blob/develop/README.txt
https://github.com/UU-Hydro/PCR-GLOBWB_model/blob/develop/README.txt
https://doi.org/10.1002/2014WR015820
https://doi.org/10.1002/2017WR020401
https://doi.org/10.5194/hess-17-3707-2013
https://doi.org/10.5194/hess-18-3511-2014
https://doi.org/10.5194/hess-20-1151-2016
https://www.jsg.utexas.edu/noah-mp/users-guide/
https://doi.org/10.1029/2010JD015139
http://www.cesm.ucar.edu/models/cesm1.2/clm/
http://www.cesm.ucar.edu/models/cesm1.2/clm/
https://doi.org/10.5194/hess-21-3701-2017
https://doi.org/10.1029/2009WR008066
https://doi.org/10.1002/2013WR014063


L. Samaniego et al.: Towards seamless predictions 4345

tiscale and Multivariate Evaluation of Water Fluxes and States
over European River Basins, J. Hydrometeorol., 17, 287–307,
2016b.

Reggiani, P., Sivapalan, M., and Majid Hassanizadeh, S.: A uni-
fying framework for watershed thermodynamics: balance equa-
tions for mass, momentum, energy and entropy, and the second
law of thermodynamics, Adv. Water Resour., 22, 367–398, 1998.

Samaniego, L. and Bárdossy, A.: Robust parametric models of
runoff characteristics at the mesoscale, J. Hydrol., 303, 136–151,
2005.

Samaniego, L., Bárdossy, A., and Kumar, R.: Streamflow
prediction in ungauged catchments using copula-based
dissimilarity measures, Water Resour. Res., 46, W02506,
https://doi.org/10.1029/2008WR007695, 2010a.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale pa-
rameter regionalization of a grid-based hydrologic model
at the mesoscale, Water Resour. Res., 46, W05523,
https://doi.org/10.1029/2008WR007327, 2010b.

Samaniego, L., Kumar, R., and Jackisch, C.: Predictions in a data-
sparse region using a regionalized grid-based hydrologic model
driven by remotely sensed data, Hydrol. Res., 42, 338–355, 2011.

Samaniego, L. E., Warrach-Sagi, K., Zink, M., and Wulfmeyer, V.:
Verification of High Resolution Soil Moisture and Latent Heat
in Germany, AGU Fall Meeting Abstracts, http://adsabs.harvard.
edu/abs/2012AGUFM.H23G..02S, last access: 2 August 2017,
provided by the SAO/NASA Astrophysics Data System, 2012.

Samaniego, L., Brenner, J., Cuntz, M., Demirel, C. M., Ku-
mar, R., Langenberg, B., Mai, J., Rakovec, O., Schäfer, D.,
Schrön, M., Stisen, S., Thober, S., and Zink, M.: mHM,
https://doi.org/10.1029/2008WR007327, data available at: http:
//www.ufz.de/index.php?en=40114, last access: 2 August 2017.

Savenije, H. H. G. and Hrachowitz, M.: HESS Opinions “Catch-
ments as meta-organisms – a new blueprint for hydrolog-
ical modelling”, Hydrol. Earth Syst. Sci., 21, 1107–1116,
https://doi.org/10.5194/hess-21-1107-2017, 2017.

Seibert, J.: Regionalisation of parameters for a conceptual rainfall-
runoff model, Agr. Forest Meteorol., 98–99, 279–293, 1999.

Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall,
F. G., Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A.,
Nobre, C. A., Sato, N., Field, C. B., and Henderson-Sellers, A.:
Modeling the exchanges of energy, water, and carbon between
continents and the atmosphere, Science, 275, 502–509, 1997.

Singh, R., Archfield, S. A., and Wagener, T.: Identifying dominant
controls on hydrologic parameter transfer from gauged to un-
gauged catchments – A comparative hydrology approach, J. Hy-
drol., 517, 985–996, 2014.

Singh, S. K., Bárdossy, A., Götzinger, J., and Sudheer, K. P.: Effect
of spatial resolution on regionalization of hydrological model pa-
rameters, Hydrol. Process., 26, 3499–3509, 2012.

Sobol’, I. M.: Global sensitivity indices for nonlinear math-
ematical models and their Monte Carlo estimates, Math.
Comput. Simulat., 55, 271–280, https://doi.org/10.1016/S0378-
4754(00)00270-6, 2001.

Sutanudjaja, E., Bosmans, J., Chaney, N., Clark, M. P., Condon,
L. E., David, C. H., De Roo, A. P. J., Doll, P. M., Drost, N.,
Eisner, S., Famiglietti, J. S., Floerke, M., Gilbert, J. M., Gochis,
D. J., Hut, R., Keune, J., Kollet, S. J., Maxwell, R. M., Pan,
M., Rakovec, O., Reager, II, J. T., Samaniego, L. E., Mueller
Schmied, H., Trautmann, T., Van Beek, L. P., Van De Giesen,

N., Wood, E. F., Bierkens, M. F., and Kumar, R.: The HyperHy-
dro (H^2) experiment for comparing different large-scale mod-
els at various resolutions, AGU Fall Meeting Abstracts, http:
//adsabs.harvard.edu/abs/2015AGUFM.H23E1622S (last access:
2 August 2017), 2015.

Sutanudjaja, E., van Beek, R., Wada, Y., Bosmans, J., Drost,
N., de Graaf, I., de Jong, K., Lopez Lopez, P., Pessenteiner,
S., Schmitz, O., Straatsma, M., Wanders, N., Wisser, D., and
Bierkens, M.: PCR-GLOBWB_model: PCR-GLOBWB version
v2.1.0_alpha, https://doi.org/10.5281/zenodo.60764, 2016.

Troy, T. J., Wood, E. F., and Sheffield, J.: An effi-
cient calibration method for continental-scale land
surface modeling, Water Resour. Res., 44, W09411,
https://doi.org/10.1029/2007WR006513, 2008.

van Beek, L. P. H., Wada, Y., and Bierkens, M. F. P.:
Global monthly water stress: 1. Water balance and
water availability, Water Resour. Res., 47, W07517,
https://doi.org/10.1029/2010WR009791, 2011.

Viterbo, P. and Beljaars, C. M.: An improved land surface param-
eterization scheme in the ECMWF model and its validation, J.
Climate, 8, 2716–2748, 1995.

Viviroli, D., Zappa, M., Gurtz, J., and Weingartner, R.: An introduc-
tion to the hydrological modelling system PREVAH and its pre-
and post-processing-tools, Environ. Modell. Softw., 24, 1209–
1222, 2009.

Wada, Y. and Bierkens, M. F. P.: Sustainability of global water use:
past reconstruction and future projections, Environ. Res. Lett., 9,
104003, https://doi.org/10.1088/1748-9326/9/10/104003, 2014.

Wagener, T. and Wheater, H. S.: Parameter estimation and region-
alization for continuous rainfall-runoff models including uncer-
tainty, J. Hydrol., 320, 132–154, 2006.

Wanders, N. and Wada, Y.: Human and climate impacts on the 21st
century hydrological drought, J. Hydrol., 526, 208–220, 2015.

Wöhling, T., Samaniego, L., and Kumar, R.: Evaluating multi-
ple performance criteria to calibrate the distributed hydrological
model of the upper Neckar catchment, Environmental Earth Sci-
ences, 69, 453–468, 2013.

Wood, A. and Mizukami, N.: Project Summary Report: CMIP5 1/8
Degree Daily Weather and VIC Hydrology Datasets for CONUS,
Tech. rep., B. o. R. U.S. Department of the Interior, Technical
Services Center, Denver, Colorado, http://www.corpsclimate.
us/docs/cmip5.hydrology.2014.final.re%port.pdf (last access:
24 Januar 2017), 2014.

Wood, E. (Ed.): Land Surface, atmosphere interactions for climate
modelling: observations. models, and analysis, Kluwer, 1990.

Wood, E.: Effects of soil moisture aggregation on surface evapora-
tive fluxes, J. Hydrol., 190, 397–412, 1997.

Wood, E. F., Sivapalan, M., Beven, K., and Band, L.: Effects of Spa-
tial Variability and Scale with Implications to Hydrologic Mod-
eling, J. Hydrol., 102, 29–47, 1988.

Wood, E. F., Lettenmaier, D. P., Liang, X., Lohmann, D., Boone,
A., Chang, S., Chen, F., Dai, Y., Dickinson, R. E., Duan, Q., Ek,
M., Gusev, Y. M., Habets, F., Irannejad, P., Koster, R., Mitchel,
K. E., Nasonova, O. N., Noilhan, J., Schaake, J., Schlosser, A.,
Shao, Y., Shmakin, A. B., Verseghy, D., Warrach, K., Wetzel, P.,
Xue, Y., Yang, Z.-L., and Zeng, Q. C.: The project for intercom-
parison of land-surface parameterization schemes (PILPS) phase
2(c) Red-Arkansas River basin experiment: 1. Experiment de-

www.hydrol-earth-syst-sci.net/21/4323/2017/ Hydrol. Earth Syst. Sci., 21, 4323–4346, 2017

https://doi.org/10.1029/2008WR007695
https://doi.org/10.1029/2008WR007327
http://adsabs.harvard.edu/abs/2012AGUFM.H23G..02S
http://adsabs.harvard.edu/abs/2012AGUFM.H23G..02S
https://doi.org/10.1029/2008WR007327
http://www.ufz.de/index.php?en=40114
http://www.ufz.de/index.php?en=40114
https://doi.org/10.5194/hess-21-1107-2017
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/S0378-4754(00)00270-6
http://adsabs.harvard.edu/abs/2015AGUFM.H23E1622S
http://adsabs.harvard.edu/abs/2015AGUFM.H23E1622S
https://doi.org/10.5281/zenodo.60764
https://doi.org/10.1029/2007WR006513
https://doi.org/10.1029/2010WR009791
https://doi.org/10.1088/1748-9326/9/10/104003
http://www.corpsclimate.us/docs/cmip5.hydrology.2014.final.re% port.pdf
http://www.corpsclimate.us/docs/cmip5.hydrology.2014.final.re% port.pdf


4346 L. Samaniego et al.: Towards seamless predictions

scription and summary intercomparisons, Global Planet. Change,
19, 115–135, 1998.

Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens,
M. F. P., Blyth, E., de Roo, A., Doell, P., Ek, M., Famiglietti,
J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. R., Kol-
let, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Siva-
palan, M., Sheffield, J., Wade, A., and Whitehead, P.: Hyperres-
olution global land surface modeling: Meeting a grand challenge
for monitoring Earth’s terrestrial water, Water Resour. Res., 47,
W05301, https://doi.org/10.1029/2010WR010090, 2011.

Wösten, J. H. M., Pachepsky, Y. A., and Rawls, W. J.: Pedotransfer
functions: bridging the gap between available basic soil data and
missing soil hydraulic characteristics, J. Hydrol., 251, 123–150,
2001.

Yadav, M., Wagener, T., and Gupta, H.: Regionalization of con-
straints on expected watershed response behavior for improved
predictions in ungauged basins, Adv. Water Res., 30, 1756–1774,
2007.

Zink, M., Kumar, R., Cuntz, M., and Samaniego, L.: German data
set, https://doi.org/10.5194/hess-21-1769-2017, data available
at: https://www.ufz.de/drp/de/index.php?drp_data%5Bmvc%
5D=Search%2Fsearch&drp_data%5Bfilter%5D%5Barchive%
5D=on&drp_data%5Bkeywords%5D=Water+fluxes+and+
states+dataset+for+Germany+from+1951+to+2010), last ac-
cess: 2 August 2017.

Zehe, E., Ehret, U., Pfister, L., Blume, T., Schröder, B., Westhoff,
M., Jackisch, C., Schymanski, S. J., Weiler, M., Schulz, K., All-
roggen, N., Tronicke, J., van Schaik, L., Dietrich, P., Scherer,
U., Eccard, J., Wulfmeyer, V., and Kleidon, A.: HESS Opinions:
From response units to functional units: a thermodynamic rein-
terpretation of the HRU concept to link spatial organization and
functioning of intermediate scale catchments, Hydrol. Earth Syst.
Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014,
2014.

Hydrol. Earth Syst. Sci., 21, 4323–4346, 2017 www.hydrol-earth-syst-sci.net/21/4323/2017/

https://doi.org/10.1029/2010WR010090
https://doi.org/10.5194/hess-21-1769-2017
https://www.ufz.de/drp/de/index.php?drp_data% 5Bmvc% 5D=Search% 2Fsearch&drp_data% 5Bfilter% 5D% 5Barchive% 5D=on&drp_data% 5Bkeywords% 5D=Water+fluxes+and+states+dataset+for+Germany+from+1951+to+2010
https://www.ufz.de/drp/de/index.php?drp_data% 5Bmvc% 5D=Search% 2Fsearch&drp_data% 5Bfilter% 5D% 5Barchive% 5D=on&drp_data% 5Bkeywords% 5D=Water+fluxes+and+states+dataset+for+Germany+from+1951+to+2010
https://www.ufz.de/drp/de/index.php?drp_data% 5Bmvc% 5D=Search% 2Fsearch&drp_data% 5Bfilter% 5D% 5Barchive% 5D=on&drp_data% 5Bkeywords% 5D=Water+fluxes+and+states+dataset+for+Germany+from+1951+to+2010
https://www.ufz.de/drp/de/index.php?drp_data% 5Bmvc% 5D=Search% 2Fsearch&drp_data% 5Bfilter% 5D% 5Barchive% 5D=on&drp_data% 5Bkeywords% 5D=Water+fluxes+and+states+dataset+for+Germany+from+1951+to+2010
https://doi.org/10.5194/hess-18-4635-2014

	Abstract
	Introduction
	Current parameterization techniques
	The state of the art
	Parameterization of soil porosity and available water capacity in selected LSMs/HMs

	Seamless parameterization framework
	The flux-matching postulation
	The MPR approach
	Protocol for implementing the MPR approach
	Seamless parameter fields across multiple scales using MPR
	Limitations of the MPR approach

	Experiments to reveal non-seamless parameterizations
	Effects of on-site model calibration
	Effects of a parameterization technique on spatial patterns of effective parameters
	Effects of a parameterization technique on the dynamics of a state variable
	Effects of not satisfying the flux-matching condition

	Implementation of the parameterization protocol in PCR-GLOBWB
	Conclusions
	Data availability
	Competing interests
	Special issue statement
	Acknowledgements
	References

