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Abstract—The self-paced control paradigm enables users to
operate brain–computer interfaces (BCI) in a more natural way:
no longer is the machine in control of the timing and speed of
communication, but rather the user is. This is important to en-
hance the usability, flexibility, and response time of a BCI. In this
work, we show how subjects, after performing cue-based feed-
back training (smiley paradigm), learned to navigate self-paced
through the “freeSpace” virtual environment (VE). Similar to
computer games, subjects had the task of picking up items by
using the following navigation commands: rotate left, rotate right,
and move forward ( three classes). Since the self-paced control
paradigm allows subjects to make voluntary decisions on time,
type, and duration of mental activity, no cues or routing directives
were presented. The BCI was based only on three bipolar elec-
troencephalogram channels and operated by motor imagery. Eye
movements (electrooculogram) and electromyographic artifacts
were reduced and detected online. The results of three able-bodied
subjects are reported and problems emerging from self-paced
control are discussed.

Index Terms—Brain–computer interface (BCI), classification,
electroencephalogram (EEG), motor imagery, self-paced opera-
tion mode, virtual reality (VR).

I. INTRODUCTION

F
OR severely paralyzed people, or patients in a “locked-in”

state, direct brain–computer interaction provides one

method of reestablishing communication. A brain-computer

interface (BCI) recognizes voluntary changes in ongoing brain

activity and translates different mental states into appropriate

commands for communication and control. For a review on

BCI technology see, for example, [1]; for taxonomy, see [2].

The majority of BCIs used these days are designed for syn-

chronized (or cue-based) operation which means that the timing

and speed of communication are preset by the paradigm. This,
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however, does not represent a natural way of interaction. In fact,

a BCI should be able to detect if the user 1) intentionally decides

to start and stop performing specific mental tasks [intentional

control (IC)] or is 2) not generating commands [noncontrol state

(NC)] (e.g., periods of thinking, daydreaming, or reading). Such

self-paced BCIs are constantly classifying the ongoing brain

activity and are therefore always available for control [3]. Re-

cently, an increasing number of papers started to address this

type of operation paradigm [4]–[9].

In this work, we present the new two-classifier integrated

three-class motor-imagery (MI)-based Graz–BCI [10], de-

signed for self-paced operation and controlled by analyzing

three bipolar electroencephalogram (EEG) channels only. With

the combination of two classifiers, classifier CFR1 is set up to

discriminate between different MI tasks and classifier CFR2 is

trained to detect any MI-related brain activity in the ongoing

EEG, we create a system that is able to discriminate between

several MI-modulated mental states (IC) and NC.

II. METHODS

A. Toward Self-Paced Operation: Training Procedure

1) cue-based training without feedback. Evaluation of sub-

ject-specific brain patterns by collecting 22 monopolar

channel EEG of left-hand, right-hand, foot, and tongue MI

trials;

2) selection of three bipolar channels, three MI tasks, and

setup of classifier CFR1;

3) cue-based three-class feedback training using CFR1 until

the online classification accuracy was 75%;

4) setup of classifier CFR2 (MI versus NC) after identifying

relevant EEG features;

5) cue-based feedback training with longer intertrial intervals

(longer periods of NC);

6) self-paced feedback training and evaluation.

B. Subjects and Data Acquisition

Based on data sets of eight subjects, which took part in the

training without feedback experiment, those three subjects with

the visually most discriminative event-related (de)synchroniza-

tion (ERD/ERS) time–frequency patterns [24] were selected to

continue feedback experiments. The selected subjects v4, v9,

and x6 (2 male, 1 female, right handed, age 24 1.9 yr) pre-

viously participated in [11] and learned, after three feedback

training sessions, to operate a cue-based two-class BCI with

a classification accuracy of 71.4%, 82.8%, and 86.4%, respec-

tively.

0018-9294/$25.00 © 2008 IEEE
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Fig. 1. EEG and EOG electrode placement. For both, reference was placed on
the left and ground on the right mastoid. The arrows between EEG electrodes
show the analyzed bipolar derivations (� ! 	).

Two different electrode arrangements were used. For the

training without feedback, 22 monopolar EEG channels

(Ag–AgCl electrodes, extended 10–20 system, reference left

mastoid, ground right mastoid) were recorded; Feedback ex-

periments were performed using three bipolar EEG channels

only (ground Fz). In addition, three electrooculogram (EOG)

channels were acquired (Fig. 1). The signals were amplified,

analog filtered between 0.5 and 100 Hz, and recorded with a

sample rate of 250 Hz.

C. Signal Processing

1) Graz–BCI: Band-power (BP) features were estimated

from the ongoing EEG by digital bandpass filtering (fifth-order

Butterworth), squaring, and averaging (moving average) the

samples over the last second. For classification, Fishers linear

discriminant analysis (LDA) was applied to the logarithm of

the BP estimates. Feature extraction and classification were

computed at the rate of data acquisition (sample-by-sample).

Visual feedback was updated at 25 Hz.

The fully automated correction method introduced in [12]

was used to reduce the influence of EOG artifacts. EMG activity

was detected by applying the inverse filtering method [13]. Each

time the root mean square (rms) of the inversely filtered process

exceeded the detection threshold of from artifact-free

EEG, a warning was presented on the screen for 1 s [Fig. 2(B)].

Subjects were instructed to relax (loosen the musculature) and

make the warning disappear in order to continue with the task.

A time-invariant autoregressive model (model order 11), whose

parameters are the coefficients of a digital filter, was used to

model artifact-free EEG. Therefore, 2 min of artifact-free EEG

was recorded at the beginning of each feedback session during

which subjects were instructed to sit relaxed and not move.

2) Feature Selection: Distinction sensitive learning vector

quantization (DSLVQ), an extended version of Kohonen’s

learning vector quantization algorithm (LVQ), was used to

identify the most informative features [14]. LVQ uses a reduced

number of labeled reference vectors (codebook) to approxi-

mate the optimal Bayesian decision borders between different

classes. Each sample is classified according to the label of its

closest codebook vector according to a distance function; the

influence of each feature on the distance function is equal.

DSLVQ introduces a weighted distance function which rates

Fig. 2. (A) Cue-based training without feedback paradigm. (B) Cue-based
feedback training paradigm. (C) Switch between intentional control (IC) and
noncontrol (NC). (D) Screenshot of the “freeSpace” virtual environment. A
tree, some hedges, and a coin (to collect) are visible. The big arrow shows
the chosen navigation command (detected MI pattern); here, it is forward
movement. During NC, the three arrows had the same (small) size.

the influence of the features for classification: the most infor-

mative features are upgraded while features that contribute to

misclassification are discarded. The LVQ codebook splits the

classification problem into subproblems. By finding an optimal

linear approximation for the subproblems, the relevance of

the features, which determines the correct classification, is

analyzed. The major advantage of DSLVQ is that it does not

require expertise nor any a priori knowledge or assumption

about the distribution of the data. Furthermore, not only are

relevant features identified, but feature combinations are also

[14].

In order to obtain a reliable feature relevance [14], the

DSLVQ method was repeated 100 times (three codebook per

class, type C training, 10 000 iterations, learning rate decreased

from to and ). For each

repetition, randomly selected 50% of the BP features were used

for training and the remaining 50% were kept to test the DSLVQ

classifier.

D. Classifier CFR1: Design and Customization

The three-class problem (number of classes ) was

solved by applying majority voting to three pairwise-trained

LDAs (see [6] for details). In contrast to [6], however, only the

sign of the LDA output was considered ( class 1, class
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2). The class with the highest frequency of occurrence

within the past subject-specific N samples (maximum N=75 or

250 ms) was selected and a normalized distance was com-

puted

This normalization prevents quick changes of the classifica-

tion result and enables a smooth transition (“zero’” crossing)

between class-specific feedback. The disadvantage is the intro-

duction of an additional feedback delay.

1) Training Without Feedback: The 22 monopolar EEG

channel setup was used (Fig. 1). Subjects were instructed to

perform continuous kinesthetic [15] left-hand, right-hand,

foot, or tongue MI according to the instructions presented on

the screen. The kind of movement was chosen by the subject

depending on his/her preferences (e.g., playing a piano or

swimming) and fixed before the recording started. Two sessions

were recorded for each subject on different days. Each session

consisted of six runs with 48 trials each (12 trials per class per

run). Subjects had to perform the task of randomly selected

MI for 4 s. The intertrial interval was about 5 s. Fig. 2(A)

summarizes the paradigm timing.

2) Feature Selection: For each subject, individual 4-class

DSLVQ analyses were performed with BP features extracted

with the same time lag to cue presentation (

s). For each from each trial and each of the exam-

ined 23 bipolar channel derivations (Fig. 1), 15 nonoverlapping

BP features between 6–36 Hz with a bandwidth of 2 Hz were

computed. The selected frequency range is relevant for the clas-

sification of MI [16]. By selecting 2-Hz frequency bands, the

resulting temporal delay (blur) and spectral resolution is accept-

able. At the same time, the total number of features was limited

in order to avoid overfitting effects.

The most relevant BP features were selected by evaluating the

values from the DSLVQ analysis at with the highest

classification accuracy. BP features were selected manually ac-

cording to the following criteria: 1) large mean value and

small variance, 2) maximum number of bipolar channels ,

3) maximum number of BP features , and 4) symmetrically

arrangement over sensorimotor areas (hemisphere). Two adja-

cent BP features were combined to one 4-Hz BP feature (e.g.,

10–12 Hz and 12–14 Hz to 10–14 Hz).

With the features identified for each three-class MI combina-

tion, an independent CFR1 was trained and a sample-by-sample

online simulation was computed (10 10 cross-validation). The

three MI tasks with the best classification accuracies within the

feedback period were selected for online experiments.

3) Feedback Training: Online experiments were realized

using the three subject-specific bipolar EEG derivations. Each

session started with unguided practice (free training) that lasted

for about 5 min. During this period, subjects could test the

classifier (continuous feedback) and the smoothing parameter

N (for ) was adjusted according to the subjects’ preference

(slow or fast reaction time). The feedback presented to the

subjects was a smiley [see Fig. 2(B)]. Five (subjects v4 and x6)

and seven (v9) feedback sessions were recorded with at least

four (max. 6) runs of 30 trials each (ten per class). Subjects

were given the task of moving the gray-colored smiley, initially

positioned in the center of the screen, according to the cue to the

left/right/down(up) by performing left-hand, right-hand, or foot

(tongue) MI, respectively [see Fig. 2(B)]. The smiley changed

to color green and was happy when moved to the correct

direction; otherwise, the smiley was red and sad [Fig. 2(B)].

After each session, feature selection was performed and the

classifier was updated. Each time, the accuracy of the updated

classifier was higher than the online result, subjects tested the

new classifier during the unguided practice period of the next

session. When subjects achieved better BCI control, the updated

classifier was used for feedback experiments.

E. Classifier CFR2: Design and Customization

One single LDA function was trained to discriminate between

IC (three MI tasks merged) and NC.

1) Feature Selection: In order to obtain a more detailed spec-

tral representation, 31 BP features (1-Hz overlap) between 6–36

Hz with a bandwidth of 2 Hz were extracted from each channel

and analyzed by DSLVQ. The six most relevant features were

selected to set up the LDA.

From each trial of the last cue-based feedback training session

(four runs with 30 trials), two BP feature vectors were extracted

from the feedback interval around the best online classification

accuracy (e.g., best classification at s; BP extracted at

s and s) The resulting runs trials

BP samples were defined as IC. NC consisted of

120 BP samples extracted equidistantly from the 2-min EEG

block used to set up the EMG detection algorithm. Furthermore,

120 feature samples were extracted from each trial at

s (before cue presentation). The latter time was selected with

the intention to detect only MI specific patterns during feedback

(after cue presentation) and not unspecific activations (e.g., ex-

pectation) induced by the appearance of the fixation cross.

To make the CFR2 more robust and reliable, considering

the nonstationarity and inherent variability of brain signals,

one threshold and two transition periods, one for the

state switch NC to IC and one for IC to NC , were

introduced. Each time the distance between the BP features

to classify and the optimal LDA hyperplane was higher than

for , the IC state was detected. Whenever the LDA

distance did fall below for , NC was detected [see

Fig. 2(C)]. The BCI reaction time was modified by and

; changing meant moving the decision hyperplane

toward IC or NC. The initial used for the feedback

experiment was computed by receiver operator characteristic

(ROC) analysis. The value which maximizes the number of TP

detections within the feedback period and, at the same time,

minimizes the number of FP detections anywhere else was

selected (sample by sample).

The output of the BCI was triggered by CFR2. Each time IC

was detected, the classification result of CFR1 was feed through.

Otherwise, the output was “zero.”

2) Feedback Training With Longer Intertrial Intervals: Two

sessions with five feedback training runs (ten trials per class)
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were performed. The first two runs consisted of feedback

training with CFR1 only (Section II-D3) to monitor the sub-

jects’ actual performance. Thereafter, subjects underwent an

unguided practice lasting about 10 min to determine ,

and . Depending on the statements of the subjects,

was gradually increased or decreased. The criteria was that

subjects were able to control the smiley but, at the same time,

the number of FP detections was at a minimum. The transition

times were set to 500 ms and also gradually adapted if required.

A maximum period of 1 s was chosen for and . Subjects

had to identify these values by themselves empirically. The

values found were fixed and remained unchanged during the

remaining experiments of each session.

To train subjects to gain self-paced control, the feedback

smiley paradigm from Section II-D3 was modified. The feed-

back smiley was presented and reactive during the whole run.

Each run consisted of 30 trials (ten per class). From s

to s, the cue was presented and subjects were given the

task of stirring the smiley in the indicated direction. After this

period, a random intertrial period between 7.0 s and 17.0 s was

presented (NC). At the beginning, a gray smiley was positioned

in the middle of the screen. During the transition times or

, the color of the smiley changed gradually from gray to

green or green to gray, respectively. In addition, the smiley

moved according to CFR1 with the distance weighted by the

normalized transition time (from 0 to 1). In this way, subjects

were informed of a forthcoming state switch.

After the first session, an additional DSLVQ analysis was per-

formed for CFR2. Subjects tried the new CFR2 during the un-

guided practice period of session two and if the performance

increased, the new classifier was used.

F. Evaluating Self-Paced Control of CFR1 and CFR2

1) “Freespace” Virtual Environment: The virtual envi-

ronment (VE) was created using the 3-D modelling software

package Maya (Alias Wavefront, Toronto, ON, Canada). Fur-

thermore, it was animated (collision detection) and visualized

by the Qt application framework (Trolltech, Oslo, Norway).

The virtual park, size 30 30 units, consisted of a flat meadow,

several hedges, and a tree placed in the middle for orienta-

tion. Three items (coins) were positioned on fixed predefined

locations inside the park. Three navigation commands were

implemented: rotate left, rotate right (angular velocity ),

and move forward (speed 1 unit/s). With this control, each part

of the park could be reached. To help subjects not get lost and

facilitate locating the coins, a map of the VE, showing the actual

position, was presented [see Fig. 2(D)]. Interaction with each

existing virtual object was possible. A sphere, representing the

user in the VE, was used for collision detection. Each time the

surfaces of two objects intersected, an event was generated:

Coins were collected and hedges or the tree had to be bypassed.

2) Experimental Paradigm: Two sessions were recorded on

two different days. Each session started with about 20 min of

unguided practice (free training). Subjects could get familiar

with the freeSpace VE and the navigation mechanism.

was adapted and fixated if required.

The VE was presented to the subjects in the first-person-view

on a conventional computer screen [Fig. 2(D)]. Subjects were

TABLE I
DSLVQ ANALYSIS. FOR EACH SUBJECT (ID), THE IDENTIFIED MOTOR

IMAGERY (MI) TASKS, BIPOLAR CHANNELS (BIPCH), AND BAND POWER

FEATURES (IN HERTZ) FOR CFR1 AND CFR2 ARE PRESENTED

assigned the task of picking up the three coins within 3 min.

From a randomly selected starting point (different positions for

each run but the same positions for all subjects), subjects could

explore the park in the following way: left-/right-hand MI re-

sulted in a rotation to the left/right whereas foot or tongue MI

resulted in a forward motion. No action was performed when-

ever NC was detected.

Six self-paced feedback training runs of 3 min each were per-

formed. The first three runs served as training, runs four to six

were used to evaluate the performance. For each subject, the

distance covered and resulting path depended on the individual

routing strategy (e.g., pickup order) and the ability to operate the

BCI. At the end of each session, subjects were asked to self-re-

port on the BCI performance.

III. RESULTS

The results presented in this work are sample-by-sample

based. For each subject, the percentage of samples classified

as an EMG artifact was less than 0.9%. In addition, power

spectral densities were computed for each channel and checked

for muscle activity.

As expected, the band substantially contributes to CFR1

(Table I). The achieved online performance is shown in

Fig. 3(A). The curves show the mean classification accuracy

of the four runs recorded at the beginning of the two feed-

back training sessions with longer intertrial intervals (see

Section II-E2). The maximum classification accuracy (mutual

information in bit [17]) was 83% (1.07), 88% (1.54), and 80%

(0.87) for subject v4, v9, and x6, respectively.

A. Classifier CFR2

Column CFR2 in Table I lists the BP features found by

DSLVQ which most discriminate between IC (left hand, right

hand, and foot or tongue pooled together) and NC. Offline clas-

sification accuracies of 77%, 84%, and 78% for subject v4, v9,

and x6, respectively, were computed (10 10 cross-validation).

The classification performance for CFR1 and CFR2 during

the feedback training with longer intertrial intervals days is

presented independently. The mean classification accuracy of

CFR1 during the active period is shown in Fig. 3(B). Compared

with the results in Fig. 3(A), similar characteristics can be

observed. The mean latency from cue presentation to a classi-

fication performance of better than random was about 2 s. For

subject v4 and x6, the mean classification accuracies were 75%
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Fig. 3. (A) Mean CFR1 classification accuracy. (B) Mean CFR1 classification
accuracy of cue-based feedback training with longer intertrial intervals (ITI).
(C) Map of the freeSpace virtual environment showing the best performance
(route) for each subject. Subject v9 and x6 successfully collected each of the
three coins; Subject v4 collected only 2 coins. (D) BCI classification output for
the routes shown in B. (L = r rotate left,R = rotate right,F = move forward,
NC = noncontrol.

and 80%, respectively; for v9, the mean classification accuracy

was 60%.

As performance measures true positive (TP) and false posi-

tive (FP), rates were computed for CFR2. The evaluation criteria

for TP and FP were very strict: According to the feedback par-

adigm, samples from s to s, the period of cue

presentation, were defined as IC and labeled as class 1. The re-

maining samples were NC labeled as class 2. Since cognitive

processes (e.g., processing the visual cue, motor preparation,

decision making) as well as digital signal processing requires

time, and according to the time latency of about 2.0 s, an addi-

tional evaluation with TP defined from s to

s was computed. The TP/FP rates were computed by dividing

the number of correctly classified samples within the TP/FP in-

tervals by the total number of samples belonging to the TP/FP

class. Table II summarizes these results. Mean FP rates (over

subjects and sessions 2-h NC and 1-h IC) of 19.1% or 16.9%

could be achieved. The mean TP rates for the 8-s action period

were 25.1% or 28.4%. Column in Table II shows the number

of transitions from NC to IC during the cue presentation. Sub-

jects succeeded in 18.6 of 30 trials to switch from NC to IC. The

TABLE II
CFR2 PERFORMANCE. THE DURATION IN SECONDS (DUR.), THE NUMBER OF

TRANSITIONS FROM NC TO IC (T , MAX. 30/RUN), AND TP/FP DETECTION

RATES FOR EACH SESSION AND RUN (S-R) AND SUBJECT (ID) ARE LISTED.
FURTHERMORE, SESSION MEANS s AND s ARE REPORTED

last column of Table II shows the time in seconds of NC for each

run.

B. “FreeSpace” Paradigm

The “freeSpace” experiment performance is summarized in

Table III (best results are emphasized). The distance covered,

number of collected items, and pickup times are shown for each

of the 3 runs and 2 sessions. Subject v9 and x6 were able to

collect the three items within the 3-min time limit. Subject v4

was able to collect only two out of the three coins. While v4

and v9 could improve their performance (distance and collected

items), the results of session two for x6 were poor compared to

the first.

The routes of the best run for each subject are presented in

Fig. 3(C). The best results were achieved from each subject in-

dependently when starting from the same initial position. The

paths show that each subject chose a different way to collect the

coins. Fig. 3(D) shows the corresponding BCI classifier output

(navigation commands) sent to the VE. The distribution of the

BCI classification output is summarized in Table IV. Since sub-

jects were not instructed to self-report erroneous navigation con-

trol signals (lucky errors) detected by the BCI which contribute

to the collection of the coins, a “random walk” navigation was

simulated to estimate the influence of randomness. When be-

ginning from the starting position in Fig. 3(C) and randomly

sending MI states or NC to the VE, we obtained a zig-zag-

shaped route. The resulting course, however, is unidirectional.

Accordingly, it was impossible to collect all three coins within

the selected time limit without IC. The same results were ob-

tained by increasing the frequency of occurrence of foot MI.
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TABLE III
“FREESPACE” PERFORMANCE. FOR EACH SUBJECT (ID), RUN (R) AND

SESSION, THE DISTANCE COVERED (DIST.), AND NUMBER OF COLLECTED

ITEMS WITH PICKUP TIMES [#ITEMS (TIME)] ARE SHOWN

TABLE IV
FREQUENCY OF OCCURRENCE IN PERCENT OF DETECTED LEFT HAND

(L), RIGHT HAND (R), FOOT OR TONGUE (F/T) MOTOR IMAGERY, AND

NONCONTROL (NC) FOR EACH SUBJECT (ID), RUN (R), AND SESSION

For comparison, the shortest possible route was also computed.

With 100% classification accuracy, approximately 110 s were

necessary to collect the three items.

The navigation strategy that is selected required that subjects

were able to control at least two mental states: Either left or right

for rotation and foot/tongue to move forward. The BCI classifi-

cation output in Fig. 3(D) and the distribution in Table IV, how-

ever, show that all four classes occurred. Interviews with the

subjects confirmed that all four mental states were deliberately

used to navigate through the freeSpace. It was necessary that no

navigation command was sent to the VE during non-MI-related

mental activity, such as, for example, orientation or routing, or

whenever subjects needed a break. For subject v4 and v9, the

percentage of navigation commands increased from session 1 to

session 2. Although subject x6 was satisfied with the achieved

BCI control during the unguided practice period of session 2, a

clear bias toward NC is visible during the evaluation.

IV. DISCUSSION

Self-paced control, artifacts processing, reliable classifica-

tion, or a fast setup are some of the key issues which con-

tribute to making BCIs become a real alternative communica-

tion channel.

Online EOG reduction and EMG detection were used for the

first time in our feedback experiments. The muscle detection al-

gorithm has been used to identify possible muscle activity in real

time. Accordingly, it is possible to use this information to avoid

the classification of artifact data. A threshold value can be used

to modify the sensitivity and specificity of the detector. An open

and interesting issue is the discussion on the desired system re-

sponse. One can think, for example, of a “system freeze” or

“pause mode.”

The feedback training results show that three bipolar chan-

nels provide enough information to control a cue-based three-

class BCI with an accuracy of 80%. Reducing the number of

EEG channels is important because of 1) an increase of the

usability (less time needed for electrode placement) and 2) a

minimization of electrode failures (e.g., exact position on the

scalp, impedance, …). Adaptation to subject-specific parame-

ters is crucial to obtain a reliable classification in a short space

of time. By default, DSLVQ was applied and features were man-

ually selected. In the future, this task should be fully automated

or adapted online (e.g., [18]).

A new type of feedback was presented to subjects during

the feedback experiments. The smiley was introduced because

of the “richer” visual feedback (colors, position, shape of the

mouth) compared to the bargraph or basket feedback [19], [20].

The expectation was increased motivation for the subjects re-

sulting in improved performance. Interviews with the subject

confirmed that the motivation to make the smiley happy was

high.

One very important issue for self-paced BCIs is the eval-

uation criteria or measure of performance. We presented TP

and FP rates computed on a sample-by-sample basis from the

data collected using a synchronized protocol with longer inter-

trial intervals. For each subject, the very first attempts of self-

paced control were evaluated. The achieved average FP rates

of 16.9%/19% (18.9/21.3 min out of 112 min of NC) were to

high and the mean TP rates of 28.4%/25.1% to low. During 18.6

out of 30 trials (62%), however, subjects succeeded in switching

from NC to IC. One can assume that the longer feedback training

period helps to increase the performance. TP/FP rates, how-

ever, depend strongly on the definition of the TP and FP in-

tervals. The fact that MI-induced changes in EEG activity are

not time-locked and have a variable duration makes a defini-

tion difficult. One problem emerging from the cue-based de-

sign might be the expectation of the next cue to come. This

expectation can unintentionally induce subjects to change the

brain activity and produce FP. Nevertheless, we are confident

that the sample-by-sample based TP/FP rates are most suited to

characterize self-paced BCI performance. To compute correct

TP/FP rates, it is necessary to assess the subjects “real” intend

and compare it with the BCI output. This information, however,

is not directly accessible. One option to obtain this information

might be an interactive experimental design, where subjects au-

tonomously determine the timing and type of MI and give im-

mediate feedback (e.g., by interview or by pressing a button,

concerning the correctness of the BCI output). When working

with severely paralyzed people, however, motor interaction may

be impossible.

Compared to CFR1, CFR2 was sensitive to the nonstation-

arity of EEG. By adapting the detection threshold , this

was taken into account. Higher values of cause a decrease

of FP; however, the motivation of the subjects might decrease

also because generating TP is more difficult. On the other hand,

small values result not only in many TPs, but in FPs as well. The

varying TP/FP rates in Table II reflect this relationship. For the
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training, this implies starting with lower values which can be

increased when subjects achieved reliable control. When doing

so, however, at the beginning of the training, poor TP perfor-

mance is achieved. Gaining BCI control is not only dependent

on machine learning, but psychological aspects also play an im-

portant role.

The “freeSpace” paradigm introduced is motivating, enter-

taining, and most important, it gives an ample scope on how to

achieve the goal. Each subject succeeded in navigating through

the VE and collecting coins. As can be seen from the distribution

of the BCI classification result (Table IV) and having emerged

from the interviews, for navigation, both MI and NC were used.

The paths in Fig. 3(A) show that each subject choose his own

way through the freeSpace. Subject v4 and v9 could improve the

performance from the first to the second session. This was not

possible for subject x6. Also, during the training, x6 had a high

variability of the performance. The overall trend, however, was

toward higher classification accuracies. At this stage, the NC

state was not explicitly tested. However, as stated by the sub-

jects, periods of NC were important. For further experiments,

the paradigm can easily be enhanced by, for example, adding

predefined periods of NC.

Although the “freeSpace” VE was implemented for three-di-

mensional (3-D), stereoscopic representation, at this stage, only

a conventional computer screen was used for visualization. One

possible option for the future is to train users to operate BCI-

based devices (e.g., wheelchair) in the virtual reality [21].

One drawback of defining IC by merging data from three MI

tasks was that CFR2 had a “preference” (bias) for certain MI

patterns. This behavior was not visible during the evaluation ex-

periments. After the first freeSpace experiments, however, sub-

jects stated that switching into the IC state was easier for cer-

tain MI patterns. Therefore, one strategy developed by subjects

was to switch into IC by performing the preferred MI first and

thereafter switching to the desired one. In Table IV as well as

in Fig. 3(D), the preference of right-hand MI of subject v4 is

visible. LDA and BP features are a good choice for the discrim-

ination between different MI tasks. The question is whether this

classifier/feature is best suited to identify MI patterns in the on-

going EEG. Finding proper methods is one important task for

future research. Wavelet-packet analysis [22] or phase relation-

ships [23] may contribute to solve this problem.

V. CONCLUSION

The methods and training procedure presented in this work

enabled selected users to gain self-paced control of a motor im-

agery-based BCI by analyzing three bipolar EEG channels only.

In order to ensure that no muscle activity was used for control,

EMG was detected and reported to subjects online; furthermore,

online EOG artifact reduction was used. Finding a proper eval-

uation method (performance measure) is still an open issue. Ac-

tually, however, the BCI community is addressing this important

topic [3].

The study showed that subjects successfully navigated

through the freeSpace VE and collected coins by autonomously

switching between different mental states. In doing so, each

subject chose the way independently. These are further steps

which help BCIs become a real alternative to standard commu-

nication channels.
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