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Speed, generalizability, and robustness are fundamental issues for building lightweight computational cameras.
Here we demonstrate generalizable image reconstruction with the simplest of hybrid machine vision systems:
linear optical preprocessors combined with no-hidden-layer, “small-brain” neural networks. Surprisingly, such
simple neural networks are capable of learning the image reconstruction from a range of coded diffraction pat-
terns using two masks. We investigate the possibility of generalized or “universal training” with these small
brains. Neural networks trained with sinusoidal or random patterns uniformly distribute errors around a recon-
structed image, whereas models trained with a combination of sharp and curved shapes (the phase pattern of
optical vortices) reconstruct edges more boldly. We illustrate variable convergence of these simple neural net-
works and relate learnability of an image to its singular value decomposition entropy of the image. We also
provide heuristic experimental results. With thresholding, we achieve robust reconstruction of various disjoint
datasets. Our work is favorable for future real-time low size, weight, and power hybrid vision: we reconstruct
images on a 15 W laptop CPU with 15,000 frames per second: faster by a factor of 3 than previously reported

results and 3 orders of magnitude faster than convolutional neural networks.
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1. INTRODUCTION

Image reconstruction has wide application in medicine [1,2],
biology [3], X-ray crystallography [4], and low-light vision,
among other technologies. These reconstructions generally in-
volve solving an inverse problem and retrieving the phase from
phaseless intensity measurements. The field has been an active
area of research for several decades [5—7] and inverse solvers
achieve impressive results with additional coded optics or op-
tical scanning [8-21]. More recently, deep neural networks,
and specifically convolutional neural networks, enable single
feed-forward, noniterative reconstruction [22] and are capable
of learning from the statistical information contained in a vari-
ety of systems, from speckle [23,24] to coded diffraction [25]
patterns. Inverse solvers using neural networks are generally
faster than iterative, optimization-based, or optical scanning-
based algorithms and may require as few as 100 illumination
training patterns, for example, with an “unrolled” neural net-
work [26].

However, despite the benefits of using neural networks to
solve inverse problems, there are also drawbacks. Some of these
issues—especially those associated with phase retrieval—have
been solved. Others—particularly those related to generalizabil-
ity, robustness, and processing time or energy—remain active
areas of research [24]. Since neural networks learn how to weigh
the importance of information patterns based on training data,
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they exhibit a tendency to “memorize” patterns to gain intu-
ition about the task [27]. This predisposition toward prior data
is advantageous for building “inductive, artificial intelligence
machines” that extract patterns; however, that predisposition
is a detriment to the generalizability of inverse solutions,
e.g., for building real-time computational cameras. Antun ez /.
[28] highlight three specific issues encountered by neural nets
in imaging tasks:

1. Small, sometimes undetectable perturbations in the in-
put (both image and sampling domain) can cause severe arti-
facts in the image reconstruction.

2. Small structural changes can be left undetected.

3. More samples in the training set can lead to a deterio-
ration of the results (as a result of the “memory” effect described
above). Subsequently, algorithms themselves can stall or expe-
rience instabilities.

Whereas biomedical applications are aimed at large-image,
high-quality image reconstruction [3], we turn our attention
toward building real-time computational cameras for low size,
weight, and power (SWaP) image reconstruction, which are
needed for autonomous-vehicle applications. In our prior effort
[29], we demonstrate reconstruction with a “small brain” dual-
layer neural network. Such regression-based approaches [30]
demonstrate fast reconstruction rates, robustness to noise,
and show potential for generalization with a phase vortex
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encoder. Here, we focus entirely on the generalizability of a
simple neural network using a single-layer architecture for im-
age reconstruction. We supply the model with a generalized or
universal training set (UTS) (synthetic images, used to train the
neural network) and then test the neural network with images
of different, unseen classes [see Fig. 1(a)]. A UTS-trained model
overcomes the challenges associated with the “stereotypes” that
generally arise from training by a specific image set. On the
other hand, some disadvantages include the fact that the neural
network is too simple to reconstruct images when nonlinear
transformations are required [31]. Nevertheless, our results pro-
vide insight for training generalizable neural networks and com-
putational cameras that operate at fast speeds. Our proposed
method can readily be used for the initialization of alternating
minimization problems or downstream image analysis
tasks [32-34].

It is perhaps surprising that the simple learning model pos-
sesses enough capacity to recover a good approximation of the
inverse coded-diffraction problem, and even with such a simple
neural network there are interesting issues to address. In an ef-
fort to move toward producing a generalized training set, we
compare the performance of the vortex encoder with other ran-
dom encoders. From there, we build intuition for the UTS de-
sign based on the modal decomposition of the training,
diffracted imaging patterns, and singular value decomposition
(SVD)-entropy. We also perform experiments, which build
heuristics for real-world applications. We find that the choice
of training images and optical encoder is important for achiev-
ing generalizability, since not all imaged patterns provide a
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unique mapping to be learned and not all learned intensity pat-
terns aid image reconstruction. While we have not quantita-
tively analyzed the image reconstruction, i.e., compared the
set of training images to the span of the neural network, we
observe that reduced SVD-entropy in the training set increases
the learning efficiency, in both simulations and experiments.

2. PROJECT SETUP

In this section, we review an approach similar to Ref. [29] for
our study of generalizable training. Figure 1(b) shows a sche-
matic of the hybrid machine vision system, which encodes the
image prior to the neural network with either a random or vor-
tex phase pattern.

A. Hybrid Vision System

The fields from the object at the diffractive encoder plane are
F(x,7). The encoder plane is imprinted with two diffractive
element patterns M (x, y), as shown in Fig. 1(c). A sensor or
detector captures the intensity pattern of the electric fields
F'(u,v). Let F be the Fourier transform operation
(x,y) = (#,v), where we capture an image in the Fourier
plane:

F'(u,v) = FIM(x,y) F(x, )] U]

Light from each object produces two images, each with a
different diffractive element M(x,y). Although the mask
pattern may imprint vector (i.e., polarization-dependent) or

spectral (time-dependent) delays, here we assume a homo-
geneous polarization, a linear encoder, and monochromatic,
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Fig. 1.

(a) Project objective: design a generalized training set for a neural network, which can later be used for general image reconstruction

without retraining and can operate in real time. (b) Schematic of hybrid vision camera where light from an object is transmitted through a diffractive
encoder (DE). Sensors capture two transmitted images that are combined as inputs to the trained neural network, which reconstruct the object from
the detector-plane images. (c) This project employs two pairs of diffractive encoders: one with low SVD-entropy (lens and topological charge m = 1
and 3) and the other with high SVD-entropy (uniformly distributed random pattern).
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continuous-wave light. All optical neural networks have been
previously demonstrated, notably with several diffractive layers
in the terahertz regime [35], with nonlinear activations via satu-
rable-absorbing nonlinearities [36], and with nano-interfero-
metric etalons [37] in the visible regime. All-optical
methods maximize speed and minimize energy loss in the neu-
ral computation [38]. At the same time, all-optical systems re-
quire nonlinear interactions as proxies for the electronic neural
network layer activations. These nonlinearities occur at small
length scales in order to confine light sufficiently, so all-optical
computing may be more sensitive to environmental conditions
and less suitable for autonomous-vehicle computational
cameras.

By contrast, we focus on hybrid imaging in which optical
processing conditions sensor measurements and an electronic
neural network performs reconstruction [39-41]. Our work
is also inspired by pytchography approaches in
Refs. [10-12]. Two phase masks are used to capture the inten-
sity measurements of the object on the sensor, which are then
fed to a no-hidden-layer neural network. At this time, we do
not predict depth sensing with imaging, so the masks contain
lenses for Fourier-plane detection. Here we reproduce the ob-
ject based on the detector intensity patterns and assume that
the detector is in the focal plane associated with a quadratic
radial phase of the mask. In recent work, Fresnel mid-field im-
aging shows potential for better object-based depth detec-
tion [42].

In a manner similar to Ref. [29], we generate phase-modu-
lated patterns:

F(x, ) M(x,y) = éXG(x,y)M(x, y), (2)

where G(x,y) is the Gaussian beam pattern illuminating the
object and X is the positively valued original image. This
Gaussian pattern represents a smooth pupil function or the il-
luminating beam. In our study, we fix @ = 7 and find that the
reconstruction quality does not change significantly when a
varies from 7 /4 to 37/2.

The general inverse problem for mapping the detector mea-
surements to the original image involves solving the following
nonlinear system of equations:

Y =HX)+N, ()
or for our specific case,
Y = |F* Gx, )M (x, )] + N, (4)

where Y is the positively valued sensor measurement; H(-) is a
nonlinear transform operator that includes the transfer function
of the optics, light scattering, and the sensitivity curve of the
detector; and NV is the measurement noise.

The Fourier-plane intensity patterns ¥~ are the inputs to a
neural network. The neural network estimates X (size 28 x 28)
given ¥ (size 28 x 28 x 2). To train the neural network, we use
the TensorFlow library with the mean squared error loss and
Adam optimization algorithm. Convergence is achieved with
similar results using either “linear” or “Relu” activation.
Our approach is simple and shows promising opportunities
for generalized image reconstruction with “small brain” neural
networks.
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B. Universal Training Sets and Diffractive Encoders
We choose two pairs of diffractive encoders. One pair is com-
posed of vortex masks, where each mask has an on-axis singu-
larity of either m = 1 or 3:

M(x,y) = e 05) (5)

where [ is the effective focal length of the radial quadratic
phase, A is the wavelength of light, 7 is an on-axis topological
charge, and w is the width of the Gaussian beam illuminating
the mask. Figures 1(b) and 1(c) show diffractive elements with
m =1 and 3. The second pair is composed of random masks,
where each pixel of the transmitted pattern is encoded with a
random phase from 0 to 27z. The mask is also illuminated with
the same Gaussian beam. On the side of the training, we work
with a range of images composed of 28 x 28 patterns that are
random X, Fourier-based X, or shapes related to a vortex
phase X,.

We approach the generalized training to understand the mo-
dal distribution of each image X. In principle, the training im-
ages should span the space of the test images, which defines the
requirements for reconstruction. This would suggest that each
coded-diffraction Fourier-plane image should be decomposed
into Fourier modes, since this common basis provides a unique
and straightforward basis for each image. Such Fourier patterns
are linear wave patterns that change with phase and vary with
variables 7, &, [, n:

XF(:j,:k,d);,n)(x’y) = 4[€i(xsj+}/:/e+(/)z)]Gn’ (6)

where combinations of 5; = 27j/dx, s, = 2zk/dy, and k span
the Fourier space intended to reproduce any arbitrary image
and N. G, represents a scanning Gaussian beam with varied
width and center,

G (x,y) = el + 02,1 wi 7

where x,,y,,w, tune size of the UTS to be comparable to
others. The size of the dataset also changes the phase shift,
where ¢p, = 27k /N and N is the number of the uniquely val-
ued wave fringes with wavenumbers s, 5, in Xp.

We refer to a “vortex training set” as a UTS composed of
shapes similar to the phases of a vortex beam that have distinct
edges and curves:

Xv(x]_)yk’(ﬁ]_’ 1) (x,)/) = A{gim; arctan[(y—y‘,)/(x—xj)]ﬂm}G‘j’k’n_ (8)

For the vortex Xy, as well as the random X UTS, we use uni-
formly distributed random variables to mask the pattern with a
Gaussian profile. In other words, combinations of x;, y;, and
¢, = 2nk/N span the dataset, or

Gopn(x,y) = 165+ 09w, (9)

This Gaussian function G ,(x,y) represents a scanning
light beam that illuminates the training images. All image pat-
terns are positively valued and normalized to have a peak value
of 1.

We produce three UTSs that span the image space using up
to 40,000 patterns. The goal of our project is to illustrate trends
and intuition with these datasets.

Once trained with a large dataset, we observe that the dense
neural network without hidden layers can approximate almost
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any shape-based image (MNIST, fashion MNIST, CIFAR). An
example set of reconstructed images from different classes is
shown in Fig. 2. Figure 2 shows a representative set of images
reconstructed from models trained with Xz, Xy,, and X and a
vortex mask. In each case, 20,000 training images are used.
Error with thresholding is as low as 10% with test datasets.
While the overall error is similar, models trained with the vor-
tex-phase datasets, X, generally have the lowest error and
strongly highlighted edges. Meanwhile models trained with a
Fourier basis X - have the highest error and models trained with
arandom basis X ; have error in between, with error distributed
over the area of the image. Additional differences are explained
in the following section.

C. Differences in Convergence and Single-Pixel
Response with Different Training Sets

With this simple neural network and three different UTSs, we
observe trends in convergence and overfitting. These trends
consistently depend on the choice of the UTS patterns regardless
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of the choice of mask M or M. Figures 3(a)-3(c) show sam-
ples from 20,000-image X z, X/, and X » UTS with the vortex
mask M. Some pairings converge with minimal overfitting
while others do not provide enough information in ¥ to
calculate the inverse of the nonlinear mapping, H(X)
[Figs. 3(d)-3(f)].

A Fourier basis is the most well-known spectral basis for
decomposing an image. When training with a Fourier basis,
the validation loss stops decreasing after a certain number of
epochs, which signals that the neural network struggles to ex-
tract information about the mapping given this orthogonal set
of images. What this tells us is rather unintuitive about the span
or basis of image reconstruction with neural networks, but po-
tentially addressed in Ref. [43]: the images are less effectively
learned by the neural net because there is minimal overlap be-
tween them; the correlations between Fourier modes are less
visible to the neural net.

The random UTS also unreliably converges when the data-
set is smaller than 2000, and its loss generally shows a “hill,”

2H
S

BEDNSSR
SECERER

—
—
—

Bl ]
SEMEENS

——
EE=n

BEELEE

=

EINANGE

o —afu Bl WM & |

EEm==Eﬂ

NECEC=E OERNEDNE

NESENED

“yd

K

4

B
T
SN

ENASTET lﬂl:!l

Fig. 2. Reconstructed images from (a), (b), (c) MNIST handwritten and (d), (e), (f) fashion MNIST datasets with random, Fourier, and vortex
bases, respectively. The vortex basis provides edge enhancement for object detection. (g) Ground truth and (h) reconstructed images from the
CIFAR-10 dataset using the vortex training bases and a vortex mask as the encoder.
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where the loss plateaus before dropping. Meanwhile, the vor-
tex-based UTS is less prone to such behavior. This combination
of trends tells us that neither orthogonality nor randomness is
ideal for training a neural network. The structured pattern of
our vortex-based UTS Xy, is a better candidate for generalized
training compared to random X or Fourier X patterns. In
our discussion, we provide some measures related to the UTS
image analysis and trained model robustness.

3. DISCUSSION

In this section, we discuss the ability to recreate sharp images,
which may be seen by the single-pixel response. The single-
pixel response from the random UTS-trained neural network
is sharply corrugated [Fig. 4(a)], whereas the structured, single-
pixel images from the vortex-trained model are generally
smooth with a sharp “hole” in the center or dark spot
[Fig. 4(b)]. We claim that these differences in the impulse re-
sponse are responsible for the edge-enhanced reconstruction of
shapes in Figs. 2(c) and 2(f). Figures 4(a) and 4(b) illustrate
example images reconstructed with just one “hot” pixel in
the camera sensor plane. These patterns are the building blocks
of the reconstruction scheme and these patterns change de-
pending on how the model is trained. Depending on the train-
ing set, the model is tuned to pay attention to different features
of the image, which may depend on the task at hand.

Figure 4(c) provides a simple noise analysis that shows the
additional advantage of robustness when the neural network is
trained with a low-entropy UTS. We show the reconstruction
error as a function of noise magnitude. Poisson shot noise and
background noise are added to the Fourier-plane intensity pat-
terns of the test image set. Low SVD-entropy image training
and encoders appear more robust.

A. Analysis with Singular Value Decomposition
Entropy
In order to estimate complexity of the pattern we employ the
measure of entropy. We approximate the 2D entropy of the
images using the spectra of singular value decomposition
(SVD), which describes the complexity of an image. Unlike
Shannon entropy [44], SVD-entropy illustrates the mixture
of spatial modes that are present in an image.

We use a normalized relation for the SVD-entropy that is
invariant with image intensity scaling:

K
Esyp ==Y 5,log,(5)), (10)
1

where the argument &; is the normalized magnitude of the sin-
gular values or the modal coefficients of the image, given as

GA
6; = —— and E 6, =1, (11)
Z{(ai i
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Fig.4. (a) Single “hot” pixel response of the random model and (b) single-pixel response of the vortex model, which demonstrates sharp edges and
resolves high-contrast objects. (c) Comparison of reconstruction error for different levels of noise given high-entropy random UTS and random mask
and lower SVD-entropy vortex UTS and vortex mask. This error corresponds to the scenario in which shot noise dominates the background noise.

where K is the number of singular values and o, are the singular (low SVD-entropy) information from the data [Figs. 2(c), 2(f),
values. 2(g), and 2(h)]. This effectively acts as a filter for salient features

Some trends related to the SVD-entropy are illustrated in of the image. This low SVD-entropy training would be useful
Fig. 5. If images in the set have several high singular values for some specific tasks, especially when, e.g., we are less inter-
0;, the images may be reconstructed using fewer “elementary” ested in the image’s background information than in the fore-
patterns; those with higher entropy require many more patterns ground object.

to achieve enough reconstruction accuracy. Low SVD-entropy
images are smoother with fewer edges. On the other hand,
images with many discontinuities exhibit a high degree of
SVD-entropy.

From our analysis of differently structured patterns, the
SVD-entropy scales logarithmically with the edge steps or dis-
locations in an image [Figs. 5(a) and 5(b)]. In this illustration,
we plot the phase of an m = 3 vortex with varied Gaussian-

B. Heuristic Experiments

To illustrate the potential and the impact of our approach for
generalizable training, we show heuristic experimental results.
In simulations, almost any encoded diffraction pattern with a
mask presents a learnable map for a simple neural network.
However, in practice when noise is present, neural networks
do not always converge. Our experimental data show that

beam filtering. The measure of 2D SVD-entropy aids our under noisy experimental conditions where light is unpolarized
analysis of the UTS. The vortex UTS has a broad range and and the sensor data is collected with significant levels of noise,
lower values of SVD_entropy in contrast to the random the hlgh SVD—Cl'ltl'Opy dataset is not suitable for the task of
UTS [Fig. 5(c)]. image reconstruction: background light and distortions render
Pertaining to our efforts toward generalized training or a a high SVD-entropy training image useless since the neural net-
UTS, we see that a low SVD-entropy training set like that with work does not learn the pattern. By contrast, a neural network
structured patterns Xy allows us to extract the structured trained on low SVD-entropy images is capable of recovering
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Fig. 5. (a) SVD-entropy of a structured pattern composed of the phase of a vortex (modulus 0, 277) and a Gaussian mask with radius of w?. A
few-pixel pattern has almost zero entropy, and the SVD-entropy saturates for a vortex depending on the topological charge. (b) Illustration of these
patterns with w=5x%x103,5%x102, 5x 10 ,and 5 corresponding to SVD-entropy values of 0.94, 1.8, 2.6, and 2.7. The SVD-entropy strongly
relates to the length of the edge dislocations of an image. (c) Histogram of the SVD-entropy in the vortex X, Fourier X, and random Xy
generalized training sets implemented in this project.
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Fig. 6. (a) Schematic of experimental reconstruction with UTS. There is no spatial filter or polarizer, images are noisy, and at this wavelength, the
modulation dynamic range is only @ = 7. This was done intentionally to simulate poor experimental conditions with background light. (b) Sample
of random UTS images and (c) sample of reconstructed images produced by random patterns, which are not learned by the simple neural network
model experimentally. On the other hand, (d) simpler images with fewer edges are (e) reconstructed by the neural network. (f) Sample of ground
truth images and (g) discernable reconstructed patterns when the neural network is trained by the vortex dataset.

reasonable approximations of the unseen images, as shown
in Fig. .

Our experimental setup consists of a 633 nm helium—neon
continuous-wave laser, microscope objective, HOLOEYE spa-
tial light modulator and focusing lenses, and a CMOS 8-bit
camera (1280 x 1024 pixels resolution). The setup does not in-
clude polarizers as part of the design to provide a large-back-
ground and an unmodulated signal to test the limits of image
reconstruction with a simple neural network. As a result, we are
unable to recover images with the zeroth-order transmitted pat-
tern. When we instead collect the sensor data at the first dif-
fraction maximum, we are successful with image reconstruction
but only with the vortex UTS. For reconstruction purposes,
small square patches of the detector pattern are taken (e.g.,
50 x 50 pixels).

In our experiments with imperfect spatial beam profiles and
background unmodulated noise, the simple neural networks do
not converge with random masks [the results are shown in
Figs. 6(b) and 6(c)]. Experimentally, we demonstrate two
masks shown in Figs. 1(c) and 1(d), which are successfully
learned by the neural network. The low SVD-entropy dataset
composed of shapes with straight edges and curves, i.e., X
[Eq. (8)], converges but the high SVD-entropy random Xy
patterns do not. Again, we find it more difficult to train a sim-
ple neural network with a high SVD-entropy UTS.

4. CONCLUSION

Corners, edges, and higher-order solutions are a challenge in
image reconstruction, requiring a higher degree of superposed
waves [45]. This more complex representation of images is the
definition of SVD-entropy in an image and suggests that the
reconstruction of such images requires the learning of images
composed of high SVD-entropy patterns [46]. We find, how-
ever, that this is not always the case when aiming for robust
neural network-based reconstruction. In fact, generalized

training with low-entropy patterns recreates these sharp features
well with edge enhancement.

We show that a simple neural network without hidden
layers is capable of learning generalized image reconstruction.
With this simple architecture designed to approach generalized
training, it is evident that not all generalized datasets are equal.
When we compare the convergence of differently structured
datasets such as handwritten digits and fashion MNIST, a
set of images or encoder based on vortex phase patterns (struc-
tured, low SVD-entropy, a combination of edges and curves)
yields image reconstruction with lower error than a high SVD-
entropy random encoder pattern that contains many edges.
With a dataset such as CIFAR, the salient features are preserved
in image reconstruction using a vortex UTS.

We have previously shown that a convolutional neural network
can outperform a single-layer neural network but with significantly
higher energy cost. The deep neural network is also less robust to
noise [29]. Here, we aim to work with a “small brain” neural net-
work rather than a deep neural network architecture. This ap-
proach has been specifically tuned with the aim of low-SWaP
computational cameras. We draw the following conclusions.

¢ Single-layer neural networks are capable of approximating
the inverse mapping from phaseless Fourier-plane intensity
patterns after basic training.

e Such  moderate-accuracy ~ generalizable  image
reconstruction achieves high speeds (we achieve 15,000 frames
per second on a 15 W laptop CPU).

* Image reconstruction with simpler neural networks is ro-
bust to the vulnerabilities and instabilities described by Ref. [28].

* Even with a simple neural network architecture and a
large training basis set, we encounter differences in conver-
gence. (Experimentally with an imperfect encoder, neural net-
works learn low SVD-entropy images more rapidly and reliably
than high SVD-entropy.)

* Low SVD-entropy images are valuable in training neural
networks to extract the salient features of the image.
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Additional advantages of a UTS include what is likely a gen-
eralized upper bound for error [3], higher robustness, and high
potential for low-SWaP computational cameras. Because of its
low computational complexity, our approach in the future may
be inverted to uncover the inverse mapping in data-driven
models to solve inverse problems. A higher degree of sampling
over the sensor images (i.e., zero-padding) may further reduce
the reconstruction image error and even provide additional ad-
vantages, i.e., super-resolution phase retrieval from multiple
phase-coded diffraction patterns [47] and depth detection [48].
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