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Summary

Toward simultaneous flow and pressure assessment in large arteries
using non-invasive ultrasound

In clinical practice, ultrasound is frequently used as a non-invasive method to es-
timate geometric properties of large arteries such as diameter and wall thickness
and haemodynamic variables such as blood velocity. For the purpose of deducing
biomechanical parameters and hemodynamic variables that are related to the
development of cardiovascular disease (CVD), such as compliance and vascular
impedance, the assessment of only geometry and blood velocity does not suffice.
A simultaneous and preferably non-invasive assessment of flow and pressure is
required.
Presently applied ultrasound methods do not allow an accurate simultaneous as-
sessment of flow and pressure. For flow estimation, often two measurements are
performed: a measurement of the diameter (ultrasound beam positioned perpen-
dicular with respect to the vessel) and a measurement of the maximum axial
velocity by means of Doppler ultrasound (ultrasound beam positioned at a non-
perpendicular angle with respect to the vessel). By subsequently assuming a cer-
tain velocity distribution, e.g., a Poiseuille or Womersley profile, flow is estimated.
However, in-vivo, most arteries are tapered, curved and bifurcating, causing the
axial velocity distribution to be altered by transversal velocities, resulting in asym-
metrical axial velocity profiles. This causes an inaccurate flow estimation since
the assumed velocity distributions are only valid for flow in straight vessels. Ad-
ditionally, a simultaneous accurate assessment of blood velocity and wall motion
is not feasible, further deteriorating the flow estimate and hampering an accurate
pressure assessment.
In this study, Particle Image Velocimetry (PIV) based algorithms were applied
to RF-data acquired using a commercially available clinically approved ultra-
sound system. This allowed to estimate velocity components perpendicularly to
the ultrasound beam, thus enabling a simultaneous and accurate assessment of
wall position and axial velocity profiles. The velocity estimation technique was
validated by comparing velocity profile measurements performed on steady and
unsteady flow in a straight vessel in an experimental setup to computational fluid
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dynamics (CFD) computations. Excellent agreement was found for the axial ve-
locity profile. Integration of the measured axial velocity profile resulted in an
accurate flow estimate.
Since in-vivo, most vessels are curved, the velocity assessment method was subse-
quently validated for application to flow in such geometries. In the experimental
setup, axial velocity profiles were measured for both steady and unsteady flow in
a curved vessel. Measured velocity profiles were again compared to CFD compu-
tations. Also in this case, an excellent agreement was found.
An analytical and CFD based study on flow in curved vessels was performed in
order to accurately estimate flow from the measured asymmetrical axial velocity
profiles. This study resulted in the cos θ-method. Application of the cos θ-
method to the asymmetric axial velocity profiles as measured in the curved vessel
resulted in an accurate flow estimate for both steady and unsteady flow. A signifi-
cant improvement with respect to the presently used flow approximation methods
was found. For a physiologically relevant flow, the average deviation between the
cos θ-integration based flow estimate and reference flow was found to be about
5%, compared to an average deviation of 20% for both the Poiseuille and Wo-
mersley approximations.
Finally, efforts were made to estimate local pressure from a single non-invasive
ultrasound measurement by combining a vessel diameter measurement with a
simultaneous estimation of the local compliance. The local compliance was esti-
mated by measuring the local pulse wave velocity (PWV). Various methods for
the estimation of local PWV were evaluated in the experimental setup. The QA-
method, a method in which the local PWV is estimated from the ratio between
changes in flow and changes in cross-sectional area of the vessel, was found to offer
an accurate estimate of the local PWV. By combining the PWV estimate with
the diameter waveform an accurate pressure estimation was obtained, indicating
that a non-invasive pressure assessment by means of ultrasound is viable.
Although the measurements performed in this study were restricted to a exper-
imental setup, prospects for in-vivo application of the introduced methods look
promising. The introduced methods enable an improved assessment of the condi-
tion of the vascular system, which in future can be applied to obtain information
of the effect of therapeutic interventions and to identify factors which are charac-
teristic for the development of CVD.
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Introduction
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1.1 Physiology and pathology

1.1.1 The cardiovascular system

The major function of the cardiovascular system is transportation of oxygen and
nutrients to the tissues, and waste products from the tissues. The cardiovascu-
lar system consists of the heart and the vascular system. The heart is a four-
chambered pump that drives the blood through the vascular system by cyclic
contraction and relaxation of the cardiac muscle.
Blood mainly consists of blood plasma with red blood cells (erythrocytes), white
blood cells (leucocytes) and blood platelets (thrombocytes). The volume frac-
tion of the erythrocytes (haematocrite) in blood in healthy subjects is approxi-
mately 45%. As a result, these cells dominate the rheological behaviour of the
blood. At high shear rates, the erythrocytes align with the flow and deform,
resulting in decreased blood viscosity. At low shear rates, the erythrocytes ag-
gregate face to face when they are brought in to contact with each other. These
aggregates are known as rouleaux and their presence increases the blood viscosity.
At near zero shear rate, secondary aggregation occurs, leading to the formation
of a rouleaux network, further increasing the viscosity. The deformability and ag-
gregation of the erythocytes result in shear thinning behaviour of blood in simple
shear (Figure 1.1).
The vascular system can be divided into the systemic and the pulmonary circu-
lation. In the systemic circulation oxygenated blood is carried away from the
heart to the body and deoxygenated blood is transported back to the heart. In
the pulmonary circulation, oxygen-depleted blood is transported away from the
heart, to the lungs, and oxygenated blood returns to the heart. Both circulations
consist of a network of arteries, arterioles, capillaries, venules and veins.

Blood is transported to the tissue by the arteries. The smallest branches of the
arterial system are the arterioles. The arterioles can adapt the local blood flow to
the needs of the tissue by dilating or expanding the vessel lumen. In the capillar-
ies, the blood velocity is low, allowing the exchange of oxygen, nutrients and waste
products. The deoxygenated blood is then collected by venules, which gradually
join into progressively larger veins. The veins transport the blood from the tissue
back to the heart.
The periodic contraction of the cardiac muscle results in a pulsatile blood volume
flow and pressure in the arterial system. The aorta and the larger arteries have
pronounced elastic properties and act as a buffer for the blood volume ejected
from the heart in the systolic phase of the heart cycle. The smaller arteries, ar-
terioles and capillaries are mainly resistive to flow. As a result pressure and flow
propagate as waves through the arterial system. The pressure and flow pulses are
attenuated as they propagate away from the heart. At the level of the capillaries,
both pressure and flow are approximately stationary. A good perfusion of the
tissue is accomplished when this steady pressure level is adequately high.
The wall of the larger arteries is composed of three main layers. The innermost
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Figure 1.1: Top: aggregation (rouleaux), disaggregation and deformation. Bot-
tom: viscosity in steady shear of normal blood (adapted from Chien et al. (1970)).

layer, the tunica intima consists of a single layer of endothelial cells, supported
by an internal elastic lamina. The endothelial cells are in direct contact with the
blood flow. The middle layer, the tunica media, is made up of smooth muscle cells
and elastic tissue and is usually the thickest layer. The orientation and content of
smooth muscle cells and elastic tissue mainly determine the mechanical properties
of the artery. The outermost layer, the tunica externa (adventitia) is primarily
composed of collagen and anchors the artery to its surroundings.

1.1.2 Cardiovascular disease

Diseases involving the heart and blood vessels (arteries and veins), often referred
to as cardiovascular disease (CVD), are a common cause of death in adults in
the western society (Petersen et al., 2005). The most common type of CVD
is atherosclerosis, a disease in which, locally, plaques build up at the inside of
arteries. In-vivo studies indicate that atherogenesis, the developmental process
that may lead to atherosclerosis, is influenced by local hemodynamics. It has been
shown that locations where low and oscillating wall shear stress occur correlate
well with the location where atherosclerotic lesions form (Caro et al., 1971; Zarins
et al., 1983; Friedman et al., 1992). Typical locations are inside bends (e.g.,in
coronary arteries) and non-divider walls of bifurcations (e.g., in the carotid bifur-
cation).
The formation of plaques within an artery causes hardening of the artery, resulting
in loss of elasticity of the arterial wall and thus an decrease of compliance. Arteries
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with a decreased compliance cannot adequately buffer the volume ejected from
the heart, resulting in an increased pulse- and systolic pressure. Additionally, the
velocity of the pressure and flow pulses increases, causing reflections to arrive at
the heart during the ejection phase, which contributes to an increase of systolic
pressure (Schiffrin, 2004). Subsequently, the increased load on the heart can result
in ventricular hypertrophy (Boutouyrie et al., 1995). At a later stage, atheroscle-
rosis may cause local narrowing of the the vessel’s lumen. A significant narrowing
of a vessel’s lumen causes a decreased mean flow to the parts of the vascular tree
distal to the stenosis, which can result in an insufficient blood supply to the tissue
and organs fed by the vessel. Estimation of the arterial impedance (the transfer
function between pressure and volume flow) can be a valuable method to estimate
the condition of the vessel.
Monitoring factors such as compliance and arterial impedance allow the assess-
ment of CVD. However, these biomechanical properties can only be derived if
local blood pressure, blood volume flow, and dynamic geometrical information of
the vessel wall (diameter, distension (change in diameter), vessel wall thickness
and curvature) are known. In clinical practice, these hemodynamic and geometri-
cal parameters cannot always be assessed in a direct way at the required specific
sites in the arterial tree, especially if these measurements must be performed non-
invasively. As a result, often substitute parameters are used. An alternative way
to assess arterial compliance is to use the pulse wave velocity (PWV) (Frank,
1922; Lehmann et al., 1993); the stiffer the artery, the higher the PWV will be.
Studies of arterial impedance in humans are hampered by the lack of reliable
non-invasive techniques to simultaneously record pressure and flow locally as a
function of time. Therefore, vessel diameter and centreline velocity have been
applied as a substitute for pressure and flow (Brands et al., 1996). However,
this approximation is only valid for fully developed Newtonian flow in straight
geometries with linearly elastic wall material properties and small deformations.
In-vivo, blood is non-Newtonian and flow is not fully developed, vessels are curved
with non-linear vessel wall material properties and the deformation of the vessel
wall is relatively large. For an accurate estimation of arterial impedance, accurate
estimations of blood volume flow and pressure are required.
Various imaging modalities exist (Table 1.1), which allow to monitor the develop-
ment of CVD. Because of its high resolution, approximately realtime acquisition
and low cost, ultrasound is often preferred.

1.2 Ultrasound

Ultrasound is a pressure wave with a frequency above the audible range (20 Hz -
20 kHz). In clinical ultrasound diagnostics, ultrasound in the range of frequencies
between 2 MHz and 10 MHz (Kremkau, 1998) is applied to non-invasively assess
blood velocity, blood volume flow and blood vessel wall properties. The choice of
the applied frequency depends amongst others on the required penetration depth
and spatial resolution along the sound propagation direction. Since the attenua-
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Table 1.1: Comparison of imaging modalities: ultrasound, computed tomography
(CT) and magnetic resonance imaging (MRI). Adapted from Szabo (2004).

Ultrasound CT MRI

What is imaged Mechanical properties Tissue absorption Biochemistry
Acoustic impedance (T1 and T2)

Acces Small window Circumferential Circumferential
around body around body

Acquisition time Approximately Hours Hours
realtime

Spatial resolution 0.3 − 3 mm ≈ 1 mm ≈ 1 mm
Penetration Frequency dependent Excellent Excellent

3-25 cm
Safety Very good Ionizing radiation Very good
Cost e100k e1M e5M
Portability Excellent Poor Poor

tion of the ultrasound wave increases with increasing frequency, the penetration
depth decreases with increasing frequency. Conversely, because the resolution is
proportional to the wavelength of the applied sound wave, the resolution increases
with increasing frequency. For examining superficial arteries, generally ultrasound
systems with a transmission frequency of about 7 − 10 MHz are applied, which
results in a resolution of approximately 300 µm and a penetration depth that is
limited to about 6 − 9 cm.
Pulses of ultrasound are transmitted into the tissue by means of a transducer,
which employs piezo electric crystals to convert an electrical signal into an acous-
tical wave. As a single ultrasound pulse travels through the tissue, the pulse
is partly reflected at acoustic boundaries. Additionally, the pulse is attenuated
due to scattering and dampening. At the transducer, the ultrasound echo is col-
lected and transformed back into an electric radio frequency signal (RF-signal)
by means of the same piezo-electric crystal. Subsequently, echo arrival time is
converted into the distance from which the echo originated by assumption of a
specific sound propagation speed in the tissue, c. From one emitted pulse of ultra-
sound, one scan line is generated by calculating the envelope of the corresponding
RF-signal (Figure 1.2 left). Scan lines are generated at the pulse repetition fre-
quency, fPRF . M-mode images are generated by displaying the scan line as a
function of time. An M-mode image provides information on tissue motion along
the ultrasound beam (Figure 1.2 centre). A 2D cross section of a tissue can be
acquired by either sending out pulses of ultrasound from the same starting point in
different directions or by sending out pulses of ultrasound from different starting
points. In linear array transducers, a 1D array of piezo transducers is employed
to generate parallel scan lines, resulting in a rectangular cross sectional image,
which is called a B-mode image (Figure 1.2 right). The B-mode image contains
tissue information in axial and transverse direction at a single time point.
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Figure 1.2: From left to right: RF-signal, M-mode image and B-mode image of
the common carotid artery. In the RF-signal, the high amplitude wall reflections
are clearly visible. As expected, the amplitude of the blood scattering signal is
much smaller. In the M-mode image, the envelope of the RF-signal is presented
as a function of time in order to provide information of tissue motion in radial
direction; the cyclic diameter change is clearly visible. A linear array transducer
is applied to generate a B-mode image which provides a 2D cross section of the
vessel.

In ultrasound imaging, the lateral resolution (perpendicular to the sound propaga-
tion direction) is determined by the ultrasound beam width in the scan plane. To
improve lateral resolution, a group of elements is employed to generate the ultra-
sound pulse. By introducing delays to the employed group of transducers (Figure
1.3), electronic focussing can be accomplished. At the focus point, the lateral
beam width is the smallest (and there the best lateral focus is obtained), while
away from the focus point, the lateral beam width increases. The combination of
transmission and reception focussing greatly improves lateral resolution.

RF-signals consist of contributions due to reflections and scattering. When the
dimensions of the acoustic boundary are larger than the wavelength of the ultra-
sound wave transmitted, the sound wave will party reflect. Reflection will take
place under the same angle as the angle of incidence. However, when the dimen-
sions of the acoustic boundary becomes small compared to the wavelength of the
ultrasound wave transmitted, the ultrasound wave will be scattered in all direc-
tions. For example, when imaging a blood vessel, the blood will cause scattering
because the dimensions of a red blood cell (ø ≈ 10 µm) and the interspacing be-
tween them is much smaller than the ultrasound wavelength (λ = c/f ≈ 300 µm),
reflection will occur at the lumen-wall interface.
The signals due to scattering and reflection are mixed with each other, with
noise and reverberations. Reverberations are reflections from in between acoustic
boundaries (secondary reflections). These secondary reflections, e.g., often mani-
fest themselves in the lumen of the blood vessel. The power of reflections is in the
order of 40 − 60 dB larger than the power of the scattering, while the power of
the reverberations is in the order of 20 dB higher than the power of the scattering
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Delay Generator Delay Generator

EchoUltrasound wave

Transducer elements

Echo-generating structureFocus

Figure 1.3: The transmitted ultrasound pulse can be focussed by introducing
delays to the employed group of transducers (left). Similarly, when the array is
receiving echoes, a listening focus can be attained by introducing delays (right).

(Hoeks et al., 1991). Frequency domain analysis allows a discrimination between
reflection and scattering components, based on the differences in temporal proper-
ties. The schematical power spectral density distribution presented in Figure 1.4
shows the major RF-signal components:

1. Reflections induced by stationary or slowly moving tissue (high spectral
power, narrow bandwidth, low temporal mean frequency)

2. Scattering induced by red blood cells (low spectral power, wide bandwidth,
temporal mean frequency depending on blood flow velocity)

3. Reverberations (low spectral power, narrow bandwidth, low temporal mean
frequency)

4. Noise (low spectral power, uniform spectral distribution)

For blood velocity assessment, generally a filter (e.g. an ordinary high pass filter)
is applied to discriminate the scattering from the reflections (Szabo, 2004; Evans
et al., 1989). Subsequently, the component of the blood velocity vector, v , along
the ultrasound propagation direction can be estimated by measuring the Doppler
frequency shift between the incident ultrasound pulse and the received echo:

v =
fDc

2f0
, (1.1)



10 Chapter 1

Scattering

0 f     /2PRF
f (Hz)

P
o

w
e

r 
(a

.u
.)

Noise

-f     /2PRF

1, 3

2 24 4

Figure 1.4: Schematical representation of the power spectrum distribution of an
RF-signal, indicating the contributions of reflections, scattering and noise.

in which v is the velocity component of the blood in the direction of the ultrasound
beam, c the speed of sound, f0, the transmitted frequency and fD, the Doppler
shift. By estimation of the insonation angle α between the ultrasound propagation
direction and the blood velocity vector (Figure 1.5), the magnitude of the blood
velocity vector can be estimated by:

|v| =
fDc

2f0 cos α
. (1.2)

For the assessment of velocity distribution, small sample volumes are applied to
the RF-signal, which enable to acquire depth dependent Doppler shifts.

v

sound  propagation direction

ultrasound beam

vessel

v

sample volumes

Figure 1.5: For each sample volume, velocity is estimated by application of the
Doppler equation (1.2). The Doppler angle α is the angle between the velocity
vector and the sound propagation direction.

Information on vessel wall motion can be obtained by selecting a M-line perpen-
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dicular to the artery of interest and processing the RF signal. This allows the
accurate estimation of the vessel diameter waveform (Hoeks et al., 1990, 1997),
which is closely related to local pressure inside the vessel.
Since ultrasound RF data of blood vessels contains both information on blood ve-
locity and vessel wall motion it offers a promising possibility for the simultaneous,
non-invasive assessment of local volume flow and pressure.

1.3 Assessment of hemodynamic variables

The ability to accurately, and preferably simultaneously and non-invasively assess
pressure and flow at specific sites in the cardiovascular system enables the esti-
mation of biomechanical parameters, such as compliance and vascular impedance.
This allows the assessment of the condition of the vascular system, enabling to
obtain information of the effect of therapeutic interventions and to identify hemo-
dynamic factors which are characteristic for the development of CVD.

For blood volume flow estimation, the axial blood velocity component and vessel
wall position need to be assessed accurately. In order to obtain an accurate esti-
mation of velocity by means of Doppler ultrasound (Section 1.2), the insonation
angle α should be constant and accurately known, small deviations already result
in large velocity errors (Fillinger and Schwartz, 1993; Gill, 1985): for an angle
of about 60◦, which is often applied in clinical practice, an error of 10% in the
insonation angle results in an error of approximately 20% in the velocity estimate.
Additionally, due to the non-perpendicular orientation, Doppler ultrasound does
not allow to accurately estimate the position of the vessel wall and to accurately
estimate velocity close to the vessel wall. There, the velocity estimation deteri-
orates since the wall reflection has a significant contribution in sample volumes
recorded there (Figure 1.5).
Volume flow can be estimated either by directly integrating the measured velocity
profile or by assuming a specific velocity distribution based on the centreline or
maximum velocity. In clinical practice, often a Poiseuille or Womersley profile is
assumed and the flow is calculated based on the maximum of centreline velocity
(Douchette et al., 1992) since an accurate velocity estimation close to vessel walls
is not feasible. The Poiseuille approximation is suitable for quasi-static flow in
straight arteries, whereas the Womersley approximation is valid for in-stationary
flow in straight arteries.
However, most arteries are tapered, curved and bifurcating, causing the axial
velocity distribution to be altered by transversal velocities, resulting in asym-
metrical axial velocity profiles and consequently in inaccurate flow estimations
(Krams et al., 2005). Because of this, accurate flow estimation based on assumed
velocity distributions is not feasible in-vivo. For accurate flow estimation, an
improved integration method is required which enables flow estimation based on
assessed asymmetric axial velocity profiles. This requires accurate velocity es-
timation close to the wall, so again, a perpendicular angle between ultrasound
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beam and vessel is preferred.
Several blood velocity measurement techniques have been introduced to overcome
the angle dependency of Doppler ultrasound. Vector Doppler methods employ two
ultrasound beams, angled with respect to each other, to assess the 2D velocity.
(Fox, 1978; Overbeck et al., 1992). The drawback of these methods is that for
increasing distance, deviation and bias in the velocity estimate increases. Addi-
tionally, the inability to accurately measure velocity close to the vessel wall is not
overcome. Ultrasound speckle velocimetry (USV) allow flow imaging with high
spatial resolution and negligible angle dependency (Bohs et al., 1993, 1995; San-
drin et al., 2001; Trahey et al., 1987) by analysing the acoustic speckle pattern of
the flow field. However, for an accurate, low noise velocity assessment, this tech-
nique requires specially modified ultrasound systems, custom scanning sequences
and custom-developed ultrasound transducers (Bohs et al., 2000; Sandrin et al.,
2001). To induce a large amount of scattering, high concentrations of scatter-
ing particles are applied. However, due to the requirement of very high particle
concentrations (Kim et al., 2004a), the application of USV for in-vivo applica-
tions is limited. Additionally, the presence of velocity gradients seriously affects
the performance of the PIV algorithms (Adrian, 1991) applied in USV. Jensen
and Munk (1998) introduced the transverse oscillation (TO) method, which is
based on the principle of applying a transverse spatial modulation to enable the
assessment of motion transverse to the ultrasound beam. Both experiments in
a experimental setup and in-vivo (Udesen and Jensen, 2003, 2004) have shown
that the TO method allows an accurate assessment of blood velocity for trans-
verse flow. To date only experimental ultrasound systems are used to implement
the TO method. This method may have the potential of being implemented in a
commercial scanner for realtime estimation. Recently, Particle Image Velocimetry
(PIV) techniques (Adrian, 2005) were applied to ultrasound data, to estimate 2D
velocity (Kim et al., 2004a,b; Liu et al., 2008). Promising results were obtained
for velocity field measurements of flows in a phantom setup seeded with Ultra-
sound Contrast Agent (UCA). PIV based velocity assessment methods have the
potential to allow direct volume flow estimation based on the measured velocity
profile.

Local pressure estimates can be applied for impedance analysis and to convert
parameters such as vessel wall diameter and vessel wall thickness into relevant
biomechanical properties, such as elastic modulus (Reneman and Hoeks, 2000),
distensibility and compliance of the vessel wall (Meinders et al., 2000). Various
methods have been developed which enable local pressure estimation at sites in
the vascular system where a direct non-invasive assessment, for example in the
carotid artery, is not possible. Pressure waveforms assessed elsewhere (e.g. in
the radial or digital artery) can be applied as a substitute for the local pressure,
however, this offers a poor approximation since the pressure waveform changes
with the location in the arterial tree (McDonald, 1974). Additionally, due to the
assessment at two locations, phase errors are introduced (Hoeks et al., 2000). It
has been been suggested to use a transfer function to derive the central pressure
from a peripheral one (Chen et al., 1997), which can be assessed non-invasively,
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for example the radial pressure, estimated by means of tonometry. Allthough the
use of transfer functions was proven to be successful (O´Rourke, 1999; Milasseau
et al., 2000), it has the inherent problem that vascular parameters of individuals
should match that of a reference population (Hoeks et al., 2003). Additionally,
the phase difference between diameter and pressure still remains.
Deriving the blood pressure waveform from the diameter waveform circumvents
the introduction of possible phase differences and avoids the use of a generalized
transfer function (Meinders and Hoeks, 2004). Various methods were developed
to estimate the local pressure from the diameter waveform. By simply calibrating
the mean and minimum arterial diameter to mean arterial and diastolic pressure,
errors in pulse pressure of only 1.6 mmHg were reported (van Bortel et al., 2001).
A more realistic exponential relationship between the arterial cross section and
pressure (van Loon et al., 1977; Hayashi et al., 1980; Powalowski and Pensko,
1988) can be assumed (Meinders and Hoeks, 2004). However, for these methods
still a reference pressure input is required. A promising method to estimate local
pressure is by simultaneous assessment of PWV and diameter waveform. The
stiffness of the artery is determined from a PWV measurement, which combined
with the diameter waveform can be applied to estimate the local pressure.

1.4 Aim and outline

1.4.1 Aim

The aim of this thesis is to develop and validate a method which enables a si-
multaneous and accurate estimation of volume flow and local pressure by means
of non-invasive ultrasound. The development of the flow and pressure estimation
methods is conducted in a phantom setup, which, contrary to in-vivo, allows to
perform well-defined experiments, facilitating comparison with analytical approx-
imations and CFD computations, and enables comparison with reference mea-
surement techniques. In-vivo application of the developed methods is outside of
the scope of this thesis.

1.4.2 Outline

Computational fluid dynamics (CFD) models can be applied as a tool to validate
novel velocity (flow) and pressure estimation methods. Chapter 2 focusses on
CFD models which enable an accurate estimation of local velocity components
and pressure distribution in compliant geometries. Current weak coupling meth-
ods for fluid structure interaction (FSI) are compared and a dedicated coupling
method appropriate for pressure and flow waves in large arteries is introduced.
In Chapter 3, an ultrasound velocity estimation technique is introduced which
allows the estimation of velocity components perpendicularly to the ultrasound
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beam, using a commercially available ultrasound scanner equipped with a linear
array probe. This enables the simultaneous measurement of axial blood veloc-
ity and vessel wall position, rendering a viable and accurate flow assessment.
The measurement technique is validated by comparing axial velocity profile mea-
surements performed in a phantom setup to analytical and CFD calculations.
Physiologically relevant flows in a straight vessel are considered.
In-vivo most arteries are curved and bifurcating, which causes the axial velocity
distribution to be altered by transversal velocities, resulting in asymmetrical axial
velocity profiles. Novel integration methods are required to estimate the volume
flow from the asymmetric axial velocity profile. Chapter 4 concentrates on the
assessment of blood volume flow through a curved tube from the asymmetric ax-
ial velocity profile. Analytical approximation methods for steady flow in curved
tubes are investigated. From the results, a novel volume flow estimation method,
the cos θ-method, is derived, which is subsequently validated and compared to the
presently applied Poiseuille method by means of a CFD model.
In Chapter 5, the previously introduced ultrasound velocity assessment technique
(Chapter 3) is applied to both stationary and non-stationary non-Newtonian flow
in a planar curved geometry in a phantom setup. The axial velocity profile mea-
surements are compared to CFD calculations in order to estimate the performance
of the velocity assessment technique in the presence of the high spatial and tempo-
ral velocity gradients, characteristic for flow in curved geometries. Subsequently,
the cos θ-method is applied to estimate the flow from the asymmetric axial veloc-
ity profiles. The results are compared to flow estimations obtained by means of
the presently applied Poiseuille and Womersley approximations.
Besides an accurate flow assessment, also an accurate simultaneous pressure as-
sessment is required to estimate biomechanical parameters such as compliance
and vascular impedance. Chapter 6, focusses on the estimation of local pres-
sure by means of non-invasive ultrasound. Local pressure is estimated from a
simultaneous assessment of local pulse wave velocity (PWV) and vessel diame-
ter. Several methods to estimate PWV from ultrasound derived parameters are
applied to measurements performed in a phantom setup. Results are compared
with reference measurements of both PWV and local pressure.
Finally, a general discussion and conclusion is presented in chapter 7.
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(2009). A time-periodic approach for fluid structure interaction in distensible vessels Journal of
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2.1 Introduction

Computational fluid dynamics (CFD) is a valuable tool for gaining insight into
the hemodynamics of the vascular system.
CFD models can be used to investigate the relationship between local hemody-
namics and vascular (dys) function (Taylor et al., 1996), but can also be applied
for improvement and validation of clinical measurement methods (Wolters et al.,
2005).

In compliant complex geometries, 3D fluid-structure-interaction (FSI) may pro-
vide accurate descriptions of deformation and flow phenomena. However, such
models are costly in terms of computer time and resources. Consequently, 3D
computational methods are mostly applied to small segments of the arterial sys-
tem (Taylor et al., 1998; Gijsen et al., 1999a,b; van de Vosse et al., 2003). The
effects of the distal and proximal part of the section then need to be incorporated
by means of proper boundary conditions, e.g., formulated in ordinary differen-
tial equations of lesser geometrical scale, as in wave propagation (1D) or lumped
parameter (0D) models. So, generally, the modelling of the fluid-structure in-
teraction of blood flow in arteries requires the combination of different types of
models (Formaggia et al., 1999, 2001; Quarteroni and Veneziani, 2003; Fernandez
et al., 2005), each with their own spatial dimensions (Figure 2.1).

3D 1D 0D1D
R2

R2

R1

R1

C

C

Figure 2.1: Schematic representation of a geometric multi scale model

Lumped parameter models, such as the Windkessel model, relate pressure to
flow: p(t) = p(q(t)). A combination of lumped parameter models and 1D wave
propagation models may be applied for the global representation of the circulatory
system (Olufsen et al., 2000). Wave propagation models are often applied to
describe the propagation of pressure and flow waves through large sections of the
arterial system (Hughes and Lubliner, 1973; Olufsen et al., 2000), requiring a
significantly smaller amount of computing resources than 3D FSI models. These
models can be utilised to provide the 2D/3D models with boundary conditions,
either at the inlet or outlet (Vignon-Clementel et al., 2006), but also on a larger
section of the model (Reuderink et al., 1993).

Mathematically, FSI models are based on the 3D Navier-Stokes equations, de-
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scribing the fluid motion, and the equations of motion for solids describing the
vessel wall (structure) motion and deformation. A coupling has to be implemented
between the fluid problem and the solid problem by means of dynamic and kine-
matic interface conditions. The pressure and shear load from the fluid side of the
fluid-solid interface has to be in equilibrium with the traction at the boundary of
the solid at the fluid-solid interface (dynamic interface condition). In addition,
the velocity of the solid must equal the fluid velocity at the fluid-solid interface
(kinematic interface condition)
In fully coupled solution methods, the fluid and the solid problem are solved si-
multaneously (de Hart et al., 2003; van Loon et al., 2004; Giannopapa, 2004).
Typically, in arterial FSI problems, the eigenvalues of the system matrices asso-
ciated with both problems are more than 9 orders of magnitude apart, resulting
in a badly conditioned total matrix for the total system. Consequently, these
methods can be computationally expensive and require large computer resources.
In partitioned FSI approaches (Matthies and Steindorf, 2002), the fluid and the
solid problem are solved sequentially, using standard methods for both domains.
The fluid and solid problems are then coupled through the interface conditions
described above.
In decoupled solution methods, the fluid and solid problem are solved indepen-
dently. In the case that the wavelength of the pressure pulse travelling through
the vessel is large compared to the section of interest, the pressure distribution in-
side the vessel may be assumed spatially constant and can be chosen equal to the
prescribed outlet pressure, which e.g., can be determined from a 0D or 1D model.
For arteries with a large length-to-radius ratio, this decoupled procedure may be
inadequate due to a non-negligible axial pressure drop. 1D models, however, can
also be applied to prescribe the pressure distribution inside the vessel (Reuderink
et al., 1993). Although this approximation can be more appropriate, it becomes
inaccurate in case the 1D model is incapable to adequately represent the pressure
gradients due to complex flow phenomena (e.g. in complex geometries).

For arterial FSI problems, partitioned schemes are preferred. A partitioned ap-
proach is likely to be feasible because the flow induced pressure variations, being
of the order ρV 2, are an order in magnitude smaller than the amplitude of the
pressure wave traveling through the arterial system. So inaccuracies in the ve-
locity field will hardly influence the wall motion. In partitioned schemes, weakly
and strongly coupled approaches exist.
In weakly coupled methods, the flow induced pressure is transferred timestep-
wise to the solid as a normal stress at the fluid-solid interface. This induces the
wall motion. Only one solution of the solid and fluid problem is required per
time step, making it appealing in terms of computational effort. Two problems,
typical for weakly coupled methods, may arise. First, in the weakly coupled ap-
proach no convergence may be achieved due to the so-called added mass effect,
which amongst others has been analysed by Forster et al. (2007) and Causin et al.
(2005), and is found to be dependent on the density/mass ratio between solid and
fluid. However, in specific cases, it can be justified to employ a quasi-stationary
approach for modeling the solid, averting convergence problems related to the
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added mass effect (Section 2.2.1). A second problem that may arise is that the
solution of the fluid problem is always one step behind of the solution of the solid
problem. Due to the phase error between fluid and solid computation, a temporal
computational instability, which cannot be avoided by refinement of the spatial
and temporal discretization, can occur. For tubes with a high length-to-radius
ratio this can lead to errors in the total volume of the domain considered that are
of equal order as the flow flux during a single time step (Rutten, 1998), causing
the method not to converge, either due to divergence of the fluid or solid compu-
tation.
In general, convergence issues in partitioned schemes can be overcome by strongly
coupled methods, which apply sub-iterations and under relaxation for solution of
the solid and fluid problem for each time step to converge to the solution of the
fully coupled system (Fernandez et al., 2006; Fernandez and Moubachir, 2005;
Deparis et al., 2006). The major drawback of these kinds of methods are non-
robustness and the increasing amount of computational costs.
An alternative partitioned scheme is based on sequential coupling, as applied in
the Sequentially-Coupled Arterial Fluid Structure Interaction (SCAFSI) method,
which was recently introduced by Tezduyar et al. (2008a,b). Test computations
performed on cerebral and abdominal aortic aneurysm geometries showed im-
proved convergence properties, without requiring a significant increase in compu-
tational demand.
In this study, a similar time-periodic approach for weakly coupled 3D FSI is pre-
sented, which enables the modeling of time-periodic incompressible flow inside
clinically relevant compliant geometries, i.e.: straight and weakly curved vessels,
with a high length-to-radius ratio, and bifurcations.
The second section of this chapter starts with an overview of the equations, which
describe the flow of an incompressible fluid through a compliant vessel and the
deformation and motion of the vessel wall (Section 2.2.1). Next, a description of
the time-periodic coupling method, as proposed in this study, is given in Section
2.2.2. The implementation of the models in the computational framework is dis-
cussed in Section 2.2.4. In Section 2.2.5, a series of simulations is presented, which
is used to study the convergence properties of the time-periodic coupling method.
The results of this analysis are presented in Section 2.3. Finally, two applications
of FSI computations are presented in Section 2.4. The discussion and conclusions
are given in Sections 2.5 and 2.6.

2.2 Materials and methods

2.2.1 The 3D model

Consider a spatial domain Ω and its boundary Γ as illustrated in Figure 2.2.
The spatial domain is subdivided into a fluid domain, Ωf , with boundary Γf ,
subdivided into Γfi, Γfo and Γfs and a solid domain, Ωs, with boundary Γs,
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subdivided into Γsi, Γso and Γsf = Γfs. The boundary that separates the fluid
and the solid domain is indicated by Γfs.

Γ

Ωf

Γ

Γ

Γ

Ω

Γ

Γ

s

fs sw

fi

si

fo

so

Figure 2.2: Simple compliant tube

The blood velocity and pressure distribution in the vessel are computed by solv-
ing the Navier-Stokes equations on the deforming fluid domain Ωf based on the
arbitrary Lagrangian-Eulerian (ALE) method (Donea et al., 1982). The displace-
ments in the vessel wall are computed by solving the equations of motion and
continuity on the solid domain Ωs.

Blood flow

Denoting the fluid velocity by v(x, t) (with x ∈ Ωf , t > 0), the pressure by p(x, t)
and the constant fluid density by ρ, the ALE formulation of the Navier-Stokes
equation for an incompressible fluid reads:

ρ
∂v

∂t

∣

∣

∣

∣

Ω(t)

+ ρ(v − w) · ∇v −∇ · σ − f = 0 in Ωf

∇ · v = 0 in Ωf ,

(2.1)

with σ the Cauchy stress tensor, w the velocity of the fluid domain and f the
external body forces per unit of volume. In this study the body forces are assumed
to be zero; influences of gravity are neglected. The time derivative is defined with
respect to the moving grid. Considering blood as a Newtonian fluid, the Cauchy
stress tensor is defined as

σ = −pI + 2ηD, (2.2)
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with p the fluid pressure, η the viscosity I the identity tensor and D = 1
2 (∇v +

(∇v)T ) the rate of deformation tensor.

For the boundary conditions, at the inflow boundary, Γfi, a Womersley velocity
profile vn(x, t) corresponding to a flow qi(t) is prescribed in normal direction. At
the outflow boundary, Γfo, the normal stress is prescribed in terms of a given
pressure, po(t), and at the fluid/solid boundary a no-slip condition is prescribed,
the fluid velocity is equal to the grid velocity w:

v − w = vn(x, t)n on Γfi,
σ · n = pon on Γfo,
v = w on Γfs,

(2.3)

with n the outward boundary normal. For more detailed information on the
equations applied, the reader is referred to van de Vosse et al. (2003).

Wall deformation

The displacements in the vessel wall, u, are computed by solving the equations
of motion (with no body forces) and continuity on the solid domain Ωs:

ρ
∂2u

∂t2
+ ∇ · σ = 0 in Ωs, det(F) − 1 = 0 in Ωs, (2.4)

with σ the Cauchy stress tensor and F = (∇0x(t))T the deformation gradient
tensor defining the deformation between the reference state Ω0 and the current
state Ω(t).

The vessel wall is considered a linearly elastic neo-Hookean material for which the
Cauchy stress tensor is defined by

σ = −pI + G(B − I), (2.5)

with p the hydrostatic pressure, I the unit tensor, G the shear modulus and the
Finger tensor, defined as B = F · FT. The shear modulus is assumed to be
constant. Also other, non-linear, material behaviour can be used without loss of
generality.
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Under the assumption that the vessel wall thickness, h, is small compared to the
vessel radius, a0, the momentum equation in radial direction reduces to:

ρh
∂2ur

∂t2
= p − σϑϑh

a0
. (2.6)

The left hand side of equation (2.6) can be approximated by:

ρh
∂2ur

∂t2
≈ ρhω2ur = O(10−4) Pa. (2.7)

For arteries, the internal pressure is typically of O(104) Pa. Therefore the inertial
term in the momentum equation (2.4) may be neglected: circumferential stresses,
σϑϑ, are balanced by the internal (transmural) pressure p. A quasi stationary
approach is applied for modelling the solid.

At the cross-sectional surfaces at the inflow and the outflow boundaries, Γsi and
Γso, respectively, all displacements are constrained. At the fluid/solid boundary,
the pressure and shear load from the fluid is applied as a traction boundary
condition for the solid. For convenience, the shear load will be neglected in this
study, since for the intended application, the influence of shear forces is negligible.
So, at the fluid/solid boundary, Γfs the normal stress is prescribed in terms of a
given pressure load, pw. The outer wall boundary, Γsw, is considered stress free
in normal direction:

u = 0 on Γsi ∪ Γso,
σ · n = −pwn in Γfs,

(2.8)

again, with n the outward boundary normal.

Grid motion

The velocity of the fluid mesh, w, is determined by solving a linear elastic de-
formation of a compressible solid problem defined on the fluid domain, where
the displacement of the wall is used as an essential boundary condition in Γfs

and where the displacement in Γfi and Γfo equals zero. By choosing the finite
element space for this linear elastic problem equal to the one used for the fluid
solver, isoparametric elements are ensured for all timesteps.
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2.2.2 Time periodic weak coupling

In this study, the existing decoupled and weakly coupled methods for FSI are
compared to the newly introduced time-periodic coupling method.
In the time-periodic approach, the flow induced pressures are transferred time
period-wise to the solid. This is allowed as long as periodic functions are applied
as boundary conditions and the solution is assumed to be periodic accordingly.
The algorithm is:
Given a pressure pk−1(x, t) on the time interval [kT, (k + 1)T ], for each time-step
tn in the time interval [kT, (k + 1)T ]:

1. solve the solid problem to find the displacement uk(x, tn) = u(pk−1(x, tn))

2. calculate the grid velocity, wk(x, tn), of the fluid domain,

3. solve the fluid problem to find the velocity, vk(x, tn), and pressure distribu-
tion, pk(x, tn)

The algorithm continues until pk(x, t) converges to a limit function p(x, t) within
a predefined tolerance. The algorithm is initiated with the pressure distribution
obtained from a 1D wave propagation model, which also provides the boundary
conditions for the fluid problem.

For the weakly coupled method, the flow induced pressure is transferred time-step
wise to the solid: uk(x, tn) = u(pk(x, tn−1)). Again, the boundary conditions
for the fluid problem are provided by the 1D wave propagation model. For the
decoupled method, not only the boundary conditions are derived from the wave
propagation model, but also the axial pressure distribution which drives the wall
motion: uk(x, tn) = u(p1D(x, tn)).

2.2.3 1D model

For the 1D approximations, the time-domain based wave propagation model as
introduced by Bessems et al. (2007) is applied. Contrary to present models (Ster-
giopulos et al., 1999; Formaggia et al., 2001), this model allows phase differences
between the boundary layer flow and the flow inside the inviscid core of the ves-
sel. This results in proper estimates for the friction and non-linear term in the
momentum balance (Bessems et al., 2007), providing an accurate description of
wave propagation (Bessems et al., 2008).
At the outlets of the 1D model, three element Windkessel models, with param-
eters R1, R2 and CT (Figure 2.1), are defined to relate the outlet pressure to
outlet flow (Stergiopulos et al., 1999). The value of the terminal resistance, R1,
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is obtained by modeling minimal reflections at the outlets:

R1 ∼ Z0 =

√

L0

C0
=

√

ρhE

2π2(1 − ν2)a5
0

, (2.9)

with L0 = ρ/a0 representing the local inertance, C0 the local compliance and Z0

the local impedance at the distal end of the vessel. The vessel wall thickness and
radius are respectively indicated by h and a0, E is the Youngs’ modulus, ν is the
Poisson ratio and ρ is the fluid density. The peripheral resistance, R2, and the
compliance, CT , are adjusted such that pressures within the physiological range
are obtained and a physiological pressure drop is achieved:

R1 + R2 =
p̄

q̄
and CT = τ/R2, (2.10)

in which p̄ is the desired mean pressure and q̄ is the mean flow prescribed at the
inlet. The time constant τ = 1.5 s was found to result in a physiological pressure
drop.

2.2.4 Implementation

The 1D wave propagation model is applied to a 1D mesh representing the centre-
line of the geometry considered. Locally, at a smaller section of the 1D model, a
3D computational domain is defined at which the 3D FSI model is implemented.
The equations from both models are solved successively.

To solve the equations resulting from the 1D wave propagation model a spectral
element method is employed, as described by Bessems et al. (2007). This results
in a solution for the pressure, p̂(ξ, t), and the flow, q̂(ξ, t), in each node, ξi, of the
1D mesh, 1 ≤ ξi ≤ N . N is the total number of nodes in the 1D mesh.

To apply the pressure distribution from the 1D model to the 3D section, the
pressure at the fluid-solid interface is set equal to the pressure at the nearest
point at the centreline, for each node at the fluid-solid interface. The pressure at
the points at the 3D centreline is determined from the 1D solution using a linear
interpolation (Figure 2.3). The linear interpolation results in p̂(ψc, t) and q̂(ψc, t),
on which the points at the 3D centreline are indicated by ψc = (ψ1, .., ψM ). At the
entrance of the 3D segment, the flow is prescribed according to q(ψin) = q̂(ξin),
at the exit, the normal stress is prescribed according to (σ · n)out = p̂(ξout)n.

For bifurcating geometries, it is assumed that the pressure gradients within the
centre section are negligibly small, such that in the centre section of the 3D
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Figure 2.3: Schematic overview of the 1D and 3D domain. The × indicates 1D
nodes and the • indicates 3D centreline nodes. For each node located at the
fluid-solid interface, for example xw, the nearest point located at the centreline,
indicated by xc, is determined. The pressure in xw is set equal to the pressure in
xc, which is determined from the 1D pressure by a linear interpolation.

bifurcation, a uniform pressure, equal to the pressure in the 1D bifurcation can
be prescribed.

In the 3D FSI model a first order Euler-implicit discretization scheme is used for
temporal discretization of the equations presented in Section 2.2.1. The equations
are consecutively linearised using the Newton-Raphson method, discretised and
solved on a mesh consisting of 27-noded, isoparametric tri-quadratic Crouzeix-
Raviart hexahedrons using the SEPRAN finite element package (Segal, 2004).

2.2.5 Convergence analysis

An idealised model of the common carotid artery (CCA) is used to study the
time-periodic approach. The CCA geometry is modelled as a straight vessel with
a radius of a0 = 3 mm and a wall thickness of h = 0.5 mm. The value of the shear
modulus G of the wall is prescribed to be 300 kPa. This value is chosen such
that the maximum of the radial deformation for the physiological pressure range
is approximately 5% (Milnor, 1989). For the blood flow a Newtonian fluid is used
with a density of 1.06 ·103 kgm−3 and a dynamic viscosity of 4.9 ·10−3 kgm−1s−1.

At the inlet of the 1D model a smooth waveform resembling CCA flow is pre-
scribed. The outlet of the 1D model is terminated by a three element Windkessel
model, with parameters R1 = 3.6 · 1012 kgm−4s, R2 = 8.6 · 1012 kgm−4s and
CT = 1.2 · 10−13 m4s2kg−1. In Figure 2.4, the prescribed flow waveform and the
resulting pressure waveform at the exit of the 1D model are presented.

For the input flow, with geometrical and fluid properties as shown above, the
Reynolds number, defined as Re = ρva0/µ, ranges from 100 to 800, which is in
the physiological relevant range (Ku, 1983).
The geometry described above is defined at p = 0 mmHg. Before the FSI calcula-
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Figure 2.4: At the left, the flow waveform prescribed at the inlet of the 1D model
is shown. The resulting pressure waveform at the outlet of the 1D model is shown
at the right.

tions are initiated the pressure load on the wall is slowly increased toward diastolic
pressure level. This prevents a sudden wall motion, due to a large pressure step,
at the first time step.

To study the convergence properties of the time-periodic approach, an FSI com-
putation has been performed for t ∈ [0, 5T ] on a section of the CCA with a length
L = 40a0. A discrete L2-norm is applied to determine the convergence rate:

ǫ = ||p̄n+1 − p̄n||2 =

√

∑

i

(p̄i
n+1 − p̄i

n)2, (2.11)

in which the nodes in the fluid domain are indicated by i. p̄n Is the mean value
of the pressure solution from the 3D Navier-Stokes equation, during period n.

To compare the performance of the time-periodic, decoupled and weakly coupled
methods, FSI computations were performed for vessel geometries with increasing
length-to-radius ratio (L/a0 = 10, 20, 40, 50 and 60). Convergence of inlet pressure
(pi) and outlet flow (qo) solutions of the decoupled and time-periodic method are
compared by means of the discrete L2-norm:

ǫq = ||qo,dc − qo,tp

qo,tp
||2 and ǫp = ||pi,dc − pi,tp

pi,tp
||2, (2.12)

in which the subscripts dc and tp respectively indicate the decoupled and time-
periodic approach.
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2.3 Results

The result of the convergence analysis has been presented in Figure 2.5. It clearly
shows a monotonic decrease of the residual ǫ with increasing period number n. All
pressure and flow solutions presented in the remainder of this study were obtained
by performing computations for 5 periods (for n = 4, ǫ = O(10−4)).

1 2 3 4 5
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10

10

10
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Figure 2.5: Convergence analysis applied to the pressure solution of a time-
periodic FSI computation performed on a straight section of the CCA with a
length L = 40a0.

It was found that the weakly coupled approach is applicable to vessels up to
L
a0

≈ 10, for vessels of larger length the computations diverge. The time-periodic

and the decoupled methods are succesfully applied to vessels up to L
a0

= 60. No
significant differences with respect to computation time and convergence between
both methods were found, which is to be expected, since for both methods equal
solution methods are applied and only minor differences in prescribed boundary
conditions exist.

In Figure 2.6 the results of the FSI-computations for the inlet/outlet flow and
inlet/outlet pressure, for the straight section of L = 20a0 and L = 50a0 of the
CCA are presented. For each calculation method, respectively, the inlet flow and
the outlet pressure are equal since these are the imposed boundary conditions.
Generally, for short sections (L = 20a0) minor differences (ǫq = 3 · 10−2, ǫp =
3·10−3) occur, whereas for longer sections (L = 50a0), more significant differences
(ǫq = 4 · 10−1, ǫp = 1 · 10−1 ) in solution are found between the decoupled and
time-periodic approach.

Deviations between 1D and 3D flow and pressure solutions are present which can
be caused by the difference in solid model applied for the 1D and 3D computations.
A closer analysis of the wall motion shows a maximum difference of 2% in wall
distension between 1D and 3D model, which indicates that the 3D solution offers
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Figure 2.6: Results of the FSI-computations for the inlet/outlet flow and in-
let/outlet pressure calculated by the 1D-model, the decoupled approach and the
time-periodic approach for straight sections of the CCA with a length of L = 20a0

and L = 50a0.

a sensible solution for the FSI problem.

2.4 Applications

In-vivo, the CCA and most other arteries are not straight, but have a significant
curvature. MR and ultrasound imaging studies of CCA morphology have shown
that the ratio of curvature, δ (δ = a0/R), for the CCA can range up to 3% (Tortoli
et al., 2003). Fluid flowing through a curved vessel experiences a centripetal force.
The fluid in the core of the tube is forced towards the outside of the bend, which
results in secondary flows and thus an energy loss. Therefore, the axial pressure
drop in a curved tube is larger than the pressure drop in a straight tube of
equal length (Dean, 1928). Besides an axial pressure gradient, also cross-sectional
pressure gradients are present: the pressure-load distribution on the vessel wall
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is non-uniform due to 3D flow phenomena. Furthermore, the arterial tree is a
highly bifurcating network. As in curved vessels, also in bifurcations, non-uniform
pressure-load distributions occur, possibly influencing the wall motion.

For both curved and bifurcating geometries, the performance of the time-periodic
coupling method is compared to the performance of the decoupled approach.
For the curved geometry, a curved section of the CCA with a length of 40a0

and a curvature ratio of 3% is considered (Figure 2.7). For vessel properties and
boundary conditions, equal values as presented in section 2.2.5 are applied.

Figure 2.7: Geometry for the curved section of the CCA (left) and the Carotid
bifurcation (right)

For the bifurcating geometry, the carotid bifurcation is modelled as an idealised
symmetric planar bifurcation (Figure 2.7). The inlet trunk of the bifurcation has
a radius of 3 mm, and a length of Li = 4a0. The radius of the outlet trunk is
chosen such that the average shear rate at the outlet is equal to the average shear
rate at the inlet, the length of the outlet trunks is equal to Lo = 8a0. The angle
between both outlet trunks is 120 degrees.
At the inlet of the 1D bifurcation model a smooth flow waveform, resembling
the CCA flow is prescribed. At the outlets, the 1D model is terminated by
a three element Windkessel model, with parameters R1 = 6.5 · 1012 kgm−4s,
R2 = 8.2 · 1011 kgm−4s and CT = 1.8 · 10−14 m4s2kg−1 (2.9 and 2.10).

2.4.1 Results

The flow field in the curved vessel geometry, as calculated using the time-periodic
coupling method clearly shows the development of the asymmetric axial velocity
distribution and the presence of the secondary velocity field (Figure 2.8).
For the decoupled and time-periodic approach, a comparison (Figure 2.9) of the
inlet/outlet flow and inlet/outlet pressure, indicates deviations between 1D and
3D flow and pressure solutions, which can be caused by the difference in the solid
model applied for the 1D and 3D computations. Differences between decoupled
and time-periodic coupling method are found to be ǫq = 2 ·10−1 and ǫp = 4 ·10−2.
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For the bifurcating geometry, the flow field calculated using the time-periodic cou-
pling method is presented in Figure 2.10. In the outlet trunks, the characteristic
asymmetric axial velocity distribution and secondary velocity field are clearly vis-
ible. In Figure 2.11 the results of the FSI-computations for the inlet/outlet flow
and inlet/outlet pressure for the carotid bifurcation are presented. The graphs in
Figure 2.11 show no significant differences between 1D and 3D, furthermore, also
no significant differences (ǫq = 5 · 10−6, ǫp = 7 · 10−8 ) in solution arise for the
decoupled and time-periodic coupling method.

2.5 Discussion

The weakly coupled time-periodic FSI method has been applied succesfully to
straight, curved and bifurcating geometries. Approximate solutions of the pres-
sure distribution of subsequent time-periods were obtained using the pressure so-
lution of the previous time-step as an initial condition. Contrary to most present
models, 1D models were not only applied for supplying boundary conditions, but
also as an approximation for the initial axial pressure distribution inside the 3D
section. The convergence analysis showed good results, but since no theoretical
results were available for the time-periodic approach, no comparison with liter-
ature was made. Additionally, it should be noted that the proposed algorithm
is not suitable for transient analysis, since it is based on the assumption that
periodic functions are applicable for the boundary conditions.

The time-periodic coupling method has been compared to the decoupled and
weakly-coupled approaches. The time-periodic coupling method was found to
offer an improved computational stability compared to the weakly-coupled ap-
proach. For the weak coupling method, convergence problems already arise for
vessels with a length-to-radius ratio higher than 10, which for the time-periodic
approach only occurs for vessels with a length-to-radius ratio above 60. These
numbers (10, 60) are probably related to the wave length of the pressure wave.
Decreasing the step size of the temporal discretization from 0.01 s to 0.001 s
did not result in an improvement with respect to the computational stability.
Since in this study, a quasi stationary approach is applied for modeling the solid,
added mass instabilities are not believed to be responsible for the convergence
problems in the weakly-coupled approach. More likely, phase errors in the wall
motion estimate are. For vessels with a length-to-radius ratio above 60, no conver-
gence is achieved, both for decoupled and time-periodic approaches. Additional
simulations, involving only an isolated solid domain, have shown that the non-
convergence is occuring in the solid calculation itself and is not a result of coupling
issues. Although this non-convergence is odd, and should be solved, it is of minor
relevance for this study, since for in-vivo application, the simulation of vessels
with a length-to-radius ratio ranging between 10 and 50 is of interest. Due to
bifurcating and tapering, straight vessels with a higher length-to-radius ratio are
hardly present, therefore, we believe that the simulation of these kind of geome-
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tries is not very relevant.
Both the decoupled and time-periodic coupled methods are succesfully applied
to geometries with a high length-to-radius ratio. The computations show that
differences in solution between decoupled and time-periodic approach increase for
geometries with increasing lenght-to-radius ratio. The differences are probably
caused by the fact that for 1D and 3D models different material properties and
geometry are applied for calculating the wall motion, resulting in differences in
wall distension. This will have the most notable effects in vessels of high length-
to-radius ratio.
For high length-to-radius geometries, the SCAFSI method, as introduced by Tez-
duyar et al. (2008a,b), probably also improves convergence properties, since the
proposed time-periodic method and the SCAFSI method are similar. Common
step in both methods is that for the initial iteration, the wall motion is driven
by a reference pressure signal. However, in the SCAFSI algorithm, this reference
pressure is assumed spatially constant, whereas in the time-periodic approach,
the reference pressure is determined from a 1D wave propagation model. The
1D pressure distribution is a more accurate approximation for the pressure dis-
tribution inside 3D geometries than a constant pressure, especially for geometries
with a high length/radius ratio. Test computations performed using the SCAFSI
method on cerebral and abdominal aortic aneurysm geometries show improved
convergence properties, without requiring a significant increase in computational
demand (Tezduyar et al., 2008b). However, no results are shown for geometries
with a high length-to-radius ratio, which is the focus of this study.
For the FSI-computations performed on the bifurcating geometry, no significant
differences arise for the different coupling methods, which indicates that the
change of pressure distribution on the vessel wall due to the 3D flow phenomena
is too small to significantly influence the vessel wall motion. Also for the curved
vessel, the differences observed are probably more a result of the high length-to-
radius ratio, than of the 3D flow phenomena due to the curvature. Consequently,
it can be concluded that the advantage of the time-periodic coupling method with
respect to the decoupled method will primarily show for geometries with a high
length-to-radius ratio.

2.6 Conclusion

The time-periodic weakly coupled method presented in this study enables the
modeling of FSI in long compliant vessels. This is a problem for weakly coupled
methods based on timestep-wise coupling. Flow through straight compliant ves-
sels with a length up to 60 times the radius is modelled succesfully, whereas weakly
coupled methods based on timestep-wise coupling only permit a length-to-radius
ratio of 10. The simulations presented in this study show that the time-periodic
method can be a valuable tool in the simulation of blood flow in arteries.



33

Chapter 3

Perpendicular ultrasound
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ment by 2D cross correlation of RF data: experiments and validation. Experiments in Fluids,
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3.1 Introduction

Haemodynamic factors, such as blood flow and pressure, play a significant role
in cardiovascular (dys)function. For example, blood flow regulates the lumen di-
ameter, whereas intraluminal pressure regulates the wall thickness (Fung, 1993).
Furthermore, the blood velocity distribution close to the vessel wall is an impor-
tant factor in the development and localization of atherosclerosis (Caro et al.,
1971).
In clinical practice, ultrasound is often used as a non-invasive method to assess
(centreline) blood velocity and vessel wall motion (Brands et al., 1999). Doppler
ultrasound allows the measurement of the component of the blood velocity along
the ultrasound beam at a high temporal resolution. To assess the axial blood
velocity component, the ultrasound beam has to be positioned at an angle with
respect to the blood velocity vector. For a reliable velocity assessment it is neces-
sary that this angle is accurately known. Small deviations already result in large
velocity errors (Fillinger and Schwartz, 1993; Gill, 1985).
To relate the (centreline) velocity measurement to volume flow, assumptions have
to be made on the axial velocity distribution across the vessel. In addition, the
position of the vessel walls needs to be accurately known in order to perform the
integration from velocity to flow and to determine the vessel diameter. The posi-
tion of the vessel walls can only be assessed accurately with the ultrasound beam
in perpendicular orientation with respect to the vessel. This renders a simultane-
ous measurement of velocity by Doppler ultrasound and wall position impossible,
and thus hampers an accurate flow assessment.
Several blood velocity measurement techniques based on ultrasound have been
reported to overcome the angle dependency of Doppler ultrasound and to allow
2D velocity estimation.
Vector Doppler methods were introduced, in which ultrasound beams, positioned
at an angle with respect to each other, were applied to assess the 2D velocity,
either using a single (Fox, 1978) or two (Overbeck et al., 1992) transducers. The
drawback of these methods is that the angle between the beams decreases with
depth, resulting in an increasing standard deviation and bias in the velocity esti-
mates.
Ultrasound speckle velocimetry (USV), allows flow imaging with a high spatial res-
olution and a negligible angle dependency (Bohs et al., 1993, 1995; Sandrin et al.,
2001; Trahey et al., 1987). The USV technique enables assessment of 2D velocity
vectors by analyzing the acoustic speckle pattern of the flow field. However, for an
accurate, low noise velocity assessment, this technique requires specially modified
ultrasound systems, custom scanning sequences and custom-developed ultrasound
transducers (Bohs et al., 2000; Sandrin et al., 2001). To induce a large amount of
scattering, high concentrations of scattering particles are applied. However, due
to the requirement of very high particle concentrations (Kim et al., 2004a), the
application of USV for in-vivo applications is limited. Additionally, the presence
of velocity gradients seriously affects the USV performance (Adrian, 1991).
Jensen and Munk (1998) introduced the transverse oscillation (TO) method,
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which is based on the principle of applying a transverse spatial modulation to
enable the assessment of motion transversely to the ultrasound beam. Both ex-
periments in a phantom setup and in-vivo (Udesen and Jensen, 2003, 2004) have
shown that the TO method allows an accurate asessment of blood velocity for
transverse flow. Allthough at this point, experimental ultrasound systems are
used to implement the TO method, it may have the potential of being imple-
mented in a commercial scanner for real time estimation.
The application of Particle Image Velocimetry (PIV) techniques (Adrian, 2005)
to ultrasound was first reported by Crapper et al. (2000). PIV algorithms were
applied to B-mode video images of a sediment-laden flow, resulting in estimated
velocities up to 6 cms−1. Kim et al. (2004a,b) introduced Echo PIV: advanced
PIV algorithms were applied on second harmonic images enhanced by an Ultra-
sound Contrast Agent, generated by a commercially available ultrasound scanner
equipped with a phased array sensor transducer. This allowed the assessment
of the 2D velocity field, with a spatial resolution of 1.2(r) × 1.7(θ) mm at the
image centre. For stationary flow a dynamic range of 1 to 60 cms−1 was re-
ported, obtained at a temporal resolution of 3.8 ms. For pulsating flow, 18 cycles
were ensemble averaged to obtain axial velocity profiles with a peak velocity up
to 50 cms−1 at a temporal resolution of 2 ms. Liu et al. (2008) developed a
custom-designed ultrasound system equipped with a linear array probe to ensure
a more uniform resolution compared to the phased array transducer. The custom
designed system allowed flexible control of the Echo PIV parameters. A compar-
ison between Doppler and echo PIV-based measured peak velocity on high speed
non-laminar flow up to 140 cms−1 showed a maximum deviation of 6.6 %. For
the measured flow rates, echo PIV imaging parameters such as frame rate, beam
line density and spatial resolution were adjusted such that the maximum velocity
was accurately captured.
In this study an ultrasound velocity assessment technique similar to echo PIV is
applied, which focusses on the assessment of the velocity component perpendicu-
lar to the ultrasound beam. This enables a simultaneous assessment of both axial
velocity profile and vessel wall position at high temporal and radial resolution,
thus enabling a more accurate flow assessment. Contrary to the above summarized
velocity assessment techniques, a standard linear array transducer, connected to a
commercially available, clinically approved ultrasound system equipped with RF-
data output and acquisition system is applied for the velocity estimation. The
linear array probe is positioned perpendicular to the vessel. The ultrasound sys-
tem is operated in fast B-mode (high frame rate B-mode). The axial velocity is
assessed by applying PIV based analysis techniques to the raw B-mode RF data.
The position of the wall can be determined from the radio frequency (RF) ultra-
sound data (Brands et al., 1999), allowing an accurate integration of velocity to
flow. The pressure inside the vessel can be estimated from the wall distension
and pulse wave velocity, which both can be determined from the perpendicularly
acquired fast B-mode data (Hermeling et al., 2007). This enables a simultaneous
assessment of local pressure and flow, which can be applied to characterize the
global conditions of the vascular tree (Brands et al., 1996).
The aim of this study is develop and validate a velocity measurement technique.
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The validation is performed by comparing velocity measurements in a phantom
setup to analytic and Computational Fluid Dynamics (CFD) calculations. In the
phantom setup, stationary flow and a physiologically relevant pulsatile flow are
generated, using a blood analog fluid which mimicks both the acoustical and me-
chanical properties of blood.
An overview of the phantom setup, blood mimicking fluid, data acquisition, data
processing and a description of the validation experiments is given in the mate-
rials and methods section. Next, the results of the validation experiments are
presented in the results section. The study is completed with the discussion and
conclusion sections.

3.2 Materials and methods

3.2.1 Phantom setup

In the phantom setup (Figure 3.1), a fluid, mimicking the acoustic and rheolog-
ical properties of blood, is pumped from a reservoir through a compliant tube,
which mimics the blood vessel. A polyurethane tube (HemoLab, Eindhoven, The
Netherlands) with a length of about 1.5 m, a radius of 4 mm and a wall thickness
of 0.1 mm is applied to mimic the common carotid artery (CCA). The tube is
fully submerged in a reservoir of water to prevent deformation under influence
of gravity. Additionally, the water acts as an excellent conductor of sound. The
tube is terminated by an impedance from which the fluid flows back, through a
reservoir, to the inlet of the pump. For the terminal impedance, a Windkessel
model is applied. The viscous dissipation in the distal vessel, R, and the viscous
dissipation in the distal capillary bed Rp, are modelled by local narrowing, the
compliance of the arterial system, C, is modelled by an air-chamber.

Ultrasound

Art.Lab

PC

LabVIEW
Trigger

BMF

Flowprobe

Water

Impedance

C

R Rp

Figure 3.1: Schematic overview of the experimental setup.

The flow is generated by combining a stationary pump and a servo-actuator
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operated piston pump (indicated in Figure 3.1 by a single symbol). The sta-
tionary pump (Pacific Scientific, IL, USA) is manually set to a specific flow rate,
whereas the trajectory of the piston pump (home developed) is computer con-
trolled with LabVIEW software (National Instruments, Austin, TX, USA).
The ultrasound probe is placed far (approximately 1 m) from the inlet of the
polyurethane tube to ensure development of laminar flow at the measurement
site. The probe is accurately positioned perpendicularly to the vessel, by means
of a 3D manipulator, such that the mechanical focus of the probe is located at the
centre of the vessel. To maximize the signal level, the electrical focus is set equal
to the mechanical focus. At about 1 cm upstream of the ultrasonic probe a flow
probe (Transonic, 10PAA) is positioned to measure the flow through the vessel.
The data from the flow probe measurements is acquired simultaneously with the
data from the ultrasound scanner using a common trigger signal generated by a
PC using the same LabView software.

3.2.2 Blood mimicking fluid

Blood is a non-Newtonian fluid with shear thinning properties: for high shear
rates, the viscosity decreases. A shear thinning Blood Mimicking Fluid (BMF),
with both acoustical and mechanical properties similar to blood has been devel-
oped.
The BMF consists of Xanthan gum (Fluka, 95465), 0.5 gl−1 dissolved in water
(97.3% weight) with 1.8% weight Orgasol particles and 0.9% weight Synperonic
NP10 added. Xanthan gum is used to mimic the mechanical behaviour of blood
(Brookshier and Tarbell, 1993; van den Broek et al., 2008). Ultrafine polyamide
particles (2001UDNAT1, Orgasol, ELF Atochem, Paris, France) with a diameter
of 5 · 10−6 m are used as ultrasound scattering particles. The polyamide particles
have a specific density of 1.03 gcm−3. The concentration of the particles used
results in a blood-similiar backscattering of ultrasound waves (Ramnarine et al.,
1998). Synperonic NP10 (Fluka 86208) acts as a surfactant to prevent coagulation
of the scattering particles.
In general, scattering particles used in BMF are chosen to be naturally buoyant
(Ramnarine et al., 1998) with respect to the fluid base. This implies an accurate
control of the fluid density to prevent the particles to sediment or float. The shear
thinning properties of the developed BMF reduces sedimentation and floating of
particles since slow moving particles experience a relatively high drag force, due
to high viscosity at low shear. This facilitates the application of the BMF in the
phantom setup.

The velocity distribution across the vessel cannot be described by Poiseuille (sta-
tionary flow) or Womersley (non-stationary flow) theory, since these were derived
for Newtonian fluids. Mathematically, the BMF can be modelled as a generalized,
non-Newtonian shear thinning liquid. Application of a power law model (Bird,
1987) enables an analytic approach for calculating the velocity distribution. The
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power law model is given by

η = η0(λγ̇)n−1, (3.1)

with η0 the viscosity at γ̇ = 1/λ, a time constant λ and n the power-law constant.
The power-law model can only be applied to describe the viscosity at intermediate
shear rates, since very low and very high shear rates result in physically unrealistic
values for the viscosity.
Assuming that the non-Newtonian properties of a fully developed, stationary
flow can be characterized by a power-law model at characteristic shear rate, the
velocity distribution for fully developed flow in a straight circular tube is given
by (Bird, 1987):

v(r) =
Q

πa2

1
1
2 − 1

1/n+3

(

1 − (
r

a
)

1

n
+1

)

, (3.2)

in which n = n(γ̇char). The characteristic shear rate γ̇char is defined as (Gijsen
et al., 1999b):

γ̇char =
2Q

πa3
, (3.3)

in which Q is volume flow rate through the vessel and a, the radius of the vessel.
Consequently, for shear thinning fluids, this results in velocity profiles that are
flattened (n < 1) compared to the Poiseuille profiles for Newtonian flow (n = 1).

A more realistic viscosity model, which can be applied in CFD analysis, is given
by the Carreau-Yasuda model (Bird, 1987):

η − η∞
η0 − η∞

= [1 + (λγ̇)b](n−1)/b, (3.4)

with η0 the viscosity at low shear rate, η∞ the viscosity at high shear rate, λ a
time constant and n the power-law constant. The parameter b determines the
transition between the low-shear-rate region and the power-law region.

3.2.3 Data acquisition

The commercially available Picus Art.Lab ultrasound system (ESAOTE Europe,
Maastricht, The Netherlands) is used to collect the raw RF-data for offline pro-
cessing. The system is equipped with a 7.5 MHz linear array transducer of 40
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mm, consisting of 128 transducer elements. The RF data are sampled at 33 MHz
(fs) and have an approximate centre frequency of 6.8 MHz and a quality factor
of 2.

For the PIV measurements, the ultrasound system is operated in fast B-mode
(high frame rate B-mode), also called multiple M-line mode. Each frame is com-
posed of 14 adjacent M-mode lines generated at a pitch of 0.3125 mm. To max-
imize the signal level at the focal point, the electrical focus is set equal to the
mechanical focus, which is fixed at 2 cm from the transducer surface. The frame
rate of the ultrasound system is determined by the number of M-lines and the
pulse repetition frequency (fpr), the frequency at which individual M-mode lines
are acquired, which depends on the maximum depth setting of the ultrasound
system. For the PIV measurements the depth is set to 50 mm, which results in a
frame rate, f , of 730 s−1. The maximum measurement time is hardware limited
to about 3.8 seconds. The RF data matrix obtained from the system is a 3D
function of depth (r), time (t) and position along the probe (z) (Figure 3.3).

3.2.4 Data processing

The RF data were processed on a PC using Matlab (The MathWorks, Natick,
MA, USA). After removal of the DC component of the RF signals, a 4th order
Butterworth band pass filter (4.2 MHz and 12.5 MHz) is applied. A 4th order
Butterworth high pass filter with a cutoff frequency of 20 Hz is applied in the
temporal direction to suppress static and slow moving objects (e.g. wall rever-
berations).

A cross-correlation based technique similar as in PIV (Adrian, 2005) is applied to
determine the axial velocity distribution of the flow through the tube. In optical
PIV, the spatial resolution is determined by the number of pixels in the image
sensor in combination with the interrogation area size. In the case of a square
data area this results in an equal resolution for both spatial directions. For the ul-
trasound data, the field of view (FOV) is rectangularly shaped (Figure 3.2). The
width of the FOV is determined by the transducer element width, Wel, which
is equal to 0.315 · 10−3 m, and the number of active transducer elements. For
14 active elements and an imaging depth set to 50 mm this results in a FOV of
4.4 × 50.0 mm.
The spatial resolution along the ultrasound beam, determined by the ultrasound
wavelength, is much higher than the resolution in perpendicular direction, which
depends on the overall size of the aperture. Because of this, data windows of 8
samples (0.2 mm) in radial direction and 14 samples (4.4 mm) in axial direction
are applied to the RF-data. The axially stretched data windows are consistent
with the objective to accurately assess axial velocity profile and flow through ves-
sels: the small radial dimension of the data window allows the estimation of axial
velocity in the presence of large radial gradients, additionally, the axial gradi-
ents in axial velocity are presumed to be small compared to the radial gradients,
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justifying the large axial dimension of the data window.

FOV

Transducer

Data window
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Centerline
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Figure 3.2: Schematic overview of the FOV, the data windows etc.

After identification of the anterior (ξa) and posterior wall position (ξp) by means
of a sustain attack filter (Meinders et al., 2001), 50% overlapping data windows
are applied to the lumen of the vessel. Positions along the coordinate axis ξ are
expressed in ultrasound sample points. The data windows are indicated by their
respective centre coordinate ξi

w, in which 1 ≤ i ≤ N , with N the total number
of applied data windows in a single frame. The position of the data windows,
expressed in meters, ri

w, with respect to the centreline is given by

ri
w =

2c

fs
[ξi

w − ξp + ξa

2
], (3.5)

in which c is the velocity of sound for the BMF and fs the ultrasound sampling
frequency. The vessel radius is determined by

a =
c

fs
(ξp − ξa). (3.6)

Like in optical PIV analysis, for each data window in the acquired frames, the shift
between two corresponding data windows from subsequent frames is calculated
by performing a 2D cross correlation in the time domain on the raw RF data and
determination of the peak position in the cross correlation plane (Figure 3.3).

The position of the peak, δx̂(ri
w) = (δξ̂(ri

w), δẑ(ri
w)), is determined by finding the

location of the maximum in the correlation plane after application of a Hilbert
transformation, which is applied to calculate the envelope. According to the
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Figure 3.3: Schematic overview of the velocity estimation algorithm. For all
frames in the RF matrix (1), data windows, ξi

w, are applied. For each pair of
corresponding data window in subsequent frames (2) a cross correlation is per-
formed. The shift between the data windows is estimated by detecting the peak
position, δx̂(ri

w) = (δξ̂(ri
w), δẑ(ri

w)), in the cross correlation plane (3) and sub-
sequently performing the peak fit. By incorporating the time difference between
subsequent frames, the average velocity, v(ri

w, t), of the fluid corresponding to the
data window (4) is determined from the estimated shift.

central limit theory (Evans et al., 2000), the backscattered echo is Gaussian dis-
tributed since it is composed of signal contributions due to many independent
scatters (Cloutier et al., 2004). Consequently, to gather sub-pixel information
for the peak position, a three point Gaussian-fit estimator (Westerweel, 1993) is
applied for determining the fractional displacement ǫ(ri

w) = (ǫξ(r
i
w), ǫz(r

i
w)):

ǫψ(ri
w) =

ln(δψ̂(ri
w) − 1) − ln(δψ̂(ri

w) + 1)

2[ln(δψ̂(ri
w) − 1) + ln(δψ̂(ri

w) + 1) − 2 ln(δψ̂(ri
w))]

for ψ = ξ, z.

(3.7)

For each data window, this results in the sub-pixel peak position, with respect to
the centre of the cross correlation plane, δx(ri

w) = δx̂(ri
w) + ǫ(ri

w).

The position of the peak with respect to the centre of the cross correlation plane,
δx(ri

w), provides an estimate of both the average radial and average axial velocity
of the fluid inside the data window. Regarding the fact that a single frame is
composed from multiple M-mode lines acquired at the fpr (ultrasound B-mode
imaging is a swept process), the axial velocity can be calculated from the axial
shift, δz(ri

w), by

vz(r
i
w) =

∆z

∆t
=

Welδz(ri
w)

f−1 + f−1
pr δz(ri

w)
, (3.8)
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in which ∆z is the axial shift expressed in meters and ∆t the actual time difference
in seconds corresponding to the axial shift. The radial velocity can be calculated
from the radial shift, δξ(ri

w), by

vr(r
i
w) =

∆r

∆t
=

2cδξ(ri
w)

fsf−1
, (3.9)

in which ∆r is the axial shift expressed in meters and ∆t the actual time difference
in seconds corresponding to the radial shift. In this study, only the axial velocity
is assessed, since no radial velocity components are present for developed flow in
a straight vessel.

3.2.5 Validation measurements

The stationary flow was generated with a constant head system positioned be-
tween the stationary pump and the inlet of the phantom vessel to attenuate
possible flow oscillations caused by the stationary pump. By varying the resis-
tance, R, at the outlet of the phantom vessel, stationary flow rates ranging from
0.23 lmin−1 to 1.23 lmin−1 were generated, corresponding to 75 < Re < 800, in
which the Reynolds number, Re, is defined as:

Re =
2av̄ρ

η(γ̇char)
, (3.10)

in which v̄ is the average axial velocity and ρ the BMF density.
Flow rates were estimated by means of the Transonic flow probe, which was
calibrated before each measurement using a stopwatch and a measuring beaker.
For each flow rate an ultrasound measurement was performed. The RF data were
filtered as described in the previous section. Application of the cross correlation
algorithm resulted in a 2816 instantaneous velocity profile estimations, sampled at
730 Hz. A median filter with a temporal and spatial window size of respectively,
4 · 10−3 s and 6.9 · 10−5 m, was applied to remove outliers. The average velocity
profile measurement was compared with the analytic approximation of the velocity
profile as defined in (3.2). The power-law constant, n, was assessed by determining
the tangent to the Carreau-Yasuda curve at the characteristic shear rate. The
characteristic shear rate was based on the mean flow estimate of the Transonic
flowprobe.

For the non-stationary flow measurements, a pulsatile flow waveform with a cycle
time of 1 s, a mean of about 0.7 lmin−1 and a peak flow of about 1.5 lmin−1 was
generated by superimposing the flow pulse of the piston pump on the stationary
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flow of the stationary pump. This corresponds to an average Reynolds number
of 300 and a peak Reynolds number of 900, which is physiologically relevant (Ku
et al., 1985). The impedance at the outlet was set such that the induced pressure
was high enough to prevent the vessel to collapse but small enough to lead to a
negligibly small vessel wall motion. Using LabView, the piston pump was pro-
grammed to generate 30 beats. Simultaneously, the flow was measured. During
these 30 seconds, 3.8 seconds of fast B-mode RF data were obtained for offline
processing. The trigger signal was used to synchronize the flow measurement
with the RF data. The RF data were filtered as described in the previous section.
Application of the cross correlation algorithm resulted in 2816 instantaneous ve-
locity profile estimations, sampled at 730 Hz. After the removal of outliers by
application of a median filter with a temporal and spatial window size of respec-
tively, 4 · 10−3 s and 6.9 · 10−5 m, a low pass, zero-phase Butterworth filter with
a cutoff frequency of 40 Hz was applied to suppress high frequency noise. So no
beat-to-beat averaging was performed allowing for real time flow assessment in
future ultrasound systems.
A finite-element CFD model of a rigid walled straight tube (Beulen et al., 2009;
van de Vosse et al., 2003) (Chapter 2) was applied to calculate the time-dependent
velocity distribution across the vessel. The shear rate dependency of the viscosity
was incorporated by implementing the Carreau-Yasuda model (3.4) in the CFD
model. For the boundary conditions, at the inlet, the flow as assessed in the
experiments was prescribed, at the walls, the no-slip condition was applied. The
results of the instantaneous velocity profile measurement were compared with the
CFD computations.
Subsequently, the flow measurements were compared to flow estimates based on
the integration of the measured axial velocity profiles.

3.3 Results

3.3.1 Blood mimicking fluid

The kinematic viscosity of the BMF was measured as function of shear rate with
a Couette rheometer (RFS 2, Rheometrics Scientific). The viscosity was deter-
mined for shear rates between 0.1 s−1 and 1000 s−1 with 10 measurements per
decade (Figure 3.4).
The parameters η0, η∞, λ, a and n, of the Carrea-Yasuda model describing the
BMF were determined with a least squares fit of (3.4) on the viscosity data pre-
sented in Figure 3.4, and are presented in Table 3.1.
The speed of sound was assessed by a time of flight measurement using a single
ultrasound transducer and was found to be equal to 1510 ms−1 at room tem-
perature. The density of the BMF was calculated by measuring the mass of a
known volume of BMF (volumetric pipette) by means of a Mettler balance and
was found to be equal to 1100 kgm−3.
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Figure 3.4: Shear thinning behaviour of the BMF, • indicates measurements, the
solid line indicates the fit.

Table 3.1: Parameters of the Carreau-Yasuda model describing the BMF as esti-
mated by means of a least squares linear fit.

η0 η∞ λ b n
(kgm−1s−1) (kgm−1s−1) (s)

5.6 · 10−2 2.9 · 10−2 1.0 · 10−1 5.3 · 10−1 −4.6·10−2

3.3.2 Stationary flow

For each measurement, the flow rate, the Reynolds number, the corresponding
characteristic shear rate and the resulting power-law constant are presented in
Table 3.2.
A comparison between the mean velocity profiles for the ultrasound measurement
and the analytic solution of the velocity profile is shown in Figure 3.5. The results
were nondimensionalized by the radius a, of the vessel. The ultrasound transducer
was located at r/a ≈ −5.
Excellent agreement was found between the analytic solution and the ultrasound
measurements. The root mean square value of the deviation between the measured
and calculated velocity profiles ranges from 1 cms−1, for the lowest flow rate, to
4 cms−1, for the higher flow rates. For the two highest flow rates (1.10 lmin−1

and 1.23 lmin−1), the measured flow profiles appear to be more flat than the
calculated velocity profiles.

3.3.3 Non-stationary flow

A comparison between the instantaneous velocity profile measurement and the
CFD solution of the velocity profile is presented in Figure 3.6. The velocity profiles
are shown at 8 distinct phases in the period. The results were nondimensionalized
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Table 3.2: Overview of the flow rate, Reynolds number, the characteristic shear
rate and the corresponding power law constant

Q (lmin−1) Re γ̇char (s−1) n

0.23 75 38 0.52
0.35 140 58 0.55
0.47 214 78 0.57
0.60 302 100 0.59
0.73 397 120 0.62
0.85 489 141 0.64
1.10 691 182 0.68
1.23 800 204 0.70

by the radius, a, of the vessel. Again the ultrasound transducer was located at
r/a ≈ −5.

Overall, the measurements agree very well with the calculated velocity profiles,
allthough minor deviations occur in the near wall region. Especially during the
systolic peak deviations between calculation and measurement occur. Near r/a =
−0.5, significant fluctuations of the assessed velocity occur due to an ill-suppressed
reverberation.

Integration of the velocity profile over the cross sectional area of the vessel results
in a flow estimation. A comparison of the ultrasound-based flow estimate and
the direct volume flow measurement is presented in Figure 3.7. To both flow
waveforms a low pass, zero phase Butterworth filter with a cutoff frequency of
40 Hz was applied to suppress high frequency noise.
Both flow waveforms agree very well, no significant deviations occurred.

3.4 Discussion

The stationary flow measurements indicate that the deviation between the time
averaged ultrasound velocity measurement and the analytic solution in the core
region is at most about 3 cms−1. For the higher flow rates, the measured velocity
profiles appear to be more flat than the calculated velocity profiles. For these flow
rates, the inlet length might not be sufficient for the flow to fully develop. It should
be noted that according to Schlichting (1960), the inlet length, Li for a Newtonian
laminar flow is given by Li = 0.112Rea0. In the experiment, this condition
was sufficiently met, however, due to the non-Newtonian properties of the BMF
applied in the experimental setup, the required length might be larger. For both
the stationary and non-stationary flow, the deviation between calculated and
measured velocity profile increases in the near wall region, 0.9 < |r|/a < 1.0. This
can be caused by the fact that the signal of the wall dominates the scattering signal
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Figure 3.5: Comparison of the ultrasound measurement and the analytic velocity
profile (•, ultrasound measurement; −, analytic solution)

in this region, which results in errors in the velocity estimation. Furthermore, a
small misestimate of the rheologic properties of the BMF can have a significant
influence in the near wall region, since close to the wall, the shear rate increases
dramatically. This causes deviations in the calculated velocity profile, especially
in the near wall region. Finally, the focussing of the ultrasound beam might
influence the accuracy of the obtained results. As mentioned in Section 3.2,
the beam is focussed at the centre of the vessel. At that position, the beam
cross section is minimal. The beam cross section increases upon moving closer to
the vessel walls, resulting in an increasing measurement volume. Consequently,
the velocity estimate provides an average velocity for an increased measurement
volume. Close to the wall, a significant portion of the measurement volume will
contain wall signals, causing an underestimation of the velocity.

For the non-stationary flow, at peak systole, a drop of signal occurs at r/a ≈ −0.7,
which is approximately the position at which the reverberation of the anterior wall
appears. For stationary flow, the reverberation is static, allowing the high pass
filter to suppress the reverberation. However, for non-stationary flow, the rever-
beration is slightly moving. As a result, the applied high pass filter is not able to
adequately suppress the reverberations. Furthermore, the velocity approximation
is found to be systematically high from r = −0.5 to r = 0.9 for t2 and t3. The
small deviations observed are probably caused by measurement errors caused by
the flow probe, which result in errors in the CFD derived velocity profiles.

Kim et al. (2004b) have shown that the accuracy and resolution of EchoPIV
is improved by application of iterative schemes (Hart, 2000) and smart window
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Figure 3.6: Comparison of the ultrasound measurement and the calculated veloc-
ity profile (◦, ultrasound measurement; −, CFD calculation)
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Figure 3.7: Comparison of the ultrasound based flow estimate and the flow probe
flow estimate.

offsetting (Westerweel et al., 1997). In principle, these techniques could be applied
to the RF data acquired in this study. Although the resolution in radial direction
is sufficient, in axial direction, some improvement is desired. However, in axial
direction only 14 samples are available, limiting the application of the above
mentioned techniques.

Before a practical in-vivo application of the velocity estimation technique is pos-
sible, a few issues need to be considered.
First, the ultrasonic backscatter from flowing blood is found to be dependent
on the local hemodynamics (Yuan and Shung, 1989). The resulting variation in
echogenicity is probably caused by the combined effect of shear rate and accelera-
tion on red blood cell aggregation (Paeng et al., 2004a,b). A drop in echogenicity
could have an adverse effect on the accuracy of velocity estimation. To study these
consequences, actual blood should be applied in the phantom setup, since for the
BMF no aggregation of the scatterers occurs, resulting in a constant echogenicity.
Secondly, in-vivo most arteries are curved, resulting in secondary velocity com-
ponents and an asymmetric axial velocity distribution. The secondary velocity
components will result in a motion of the scatterers, transverse to the measure-
ment plane. This may have an adverse effect on the accuracy of velocity estima-
tion. Furthermore, measurements of the axial velocity distribution will results in
asymmetric velocity profiles, for which the integration to obtain flow is not trivial.
Both consequences will be looked into in upcoming studies.
Finally, probably the biggest challenge for implementation of the velocity es-
timation technique for in-vivo application is the development of proper clutter
removal filters. As in-vivo, the relative strenght of the wall signal with respect to
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the blood signal is about 60 dB higher, signifying the importance of these filters.
The non-stationary flow measurements have shown that reverberations can cause
significant errors in the velocity estimation and that adequate filtering is required
to suppress these wall signals. In the phantom setup the reverberation occurs at
a discrete position because of the uniform vessel wall thickness and properties.
As a result, the velocity estimation is disrupted only locally. However, in-vivo, re-
verberations are present throughout the lumen, further complicating the velocity
estimation.

Under the assumption that an adequate anti-clutter filter can be developed, this
technique allows a beat to beat analysis of the velocity distribution/flow using a
commercially available and clinically approved ultrasound system. In the future,
a real time assessment might be possible, since no averaging is required. Futher-
more, in combination with pulse wave velocity and distension measurements a
simultaneous assessment of pressure and flow will be enabled. This will allow
ultrasound to be extended from a local property to a global properties assessment
method in clinical practice.

3.5 Conclusion

An ultrasound velocity assessment technique is introduced, which allows the es-
timation of velocity components perpendicularly to the ultrasound beam, using
a commercially available ultrasound scanner equipped with a linear array probe.
Validation measurements in a phantom setup, with the linear array probe in per-
pendicular orientation with respect to the vessel have shown that a beat to beat
assessment of the axial velocity profile is feasible. In the core region (|r|/a < 0.9)
an accuracy of 3 cms−1 is achieved, in the near wall region (0.9 < |r|/a < 1), the
accuracy decreases due to the presence of the wall. For a physiologically relevant
flow, a successful integration from velocity profile to flow has been performed indi-
cating that this technique can be a valuable asset for an accurate flow estimation
in vessels in clinical applications.
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4.1 Introduction

4.1.1 Motivation and aim

Cardiovascular disease (CVD) is one of the most common causes of death in west-
ern society; it is responsible for nearly half (49%) of all deaths in Europe (Petersen
et al., 2005). The main characteristic changes of arteries related to CVD are stiff-
ening of the arteries, leading to an elevated blood pressure, and the thickening of
the artery walls (Laurent et al., 2006). To obtain local hemodynamic variables
and to deduce the important biomechanical parameters that are related to the
development of CVD, such as compliance, wall shear-stress, pulse wave veloc-
ity and vascular impedance, the pressure and flow at specific areas of the blood
circulation needs to be monitored, preferably simultaneously and non-invasively.

For more than fifty years ultrasound measurements have been used clinically to
investigate patients non-invasively. From the measurements various geometric and
hemodynamic variables, such as velocity profiles, vessel diameter, intima-media
thickness, wall shear stress and pulse wave velocity can be obtained (Brands
et al., 1996). Frequently used methods to determine blood flow velocity in the
arteries by means of ultrasound are based on Doppler or cross-correlation to assess
axial velocity profiles (Brands et al., 1997). Although the velocity profiles are
asymmetric, in general, in clinical practice a Poiseuille profile is assumed and
the flow is calculated based on the measured maximum or centreline velocity
(Douchette et al., 1992; Mitchell et al., 2004).

The Poiseuille method is adequate for quasi static flow in straight arteries with
axial velocities only. However, most arteries are tapered, curved and bifurcat-
ing, causing the axial velocity distribution to be altered by transversal velocities,
resulting in asymmetrical axial velocity profiles and consequently in inaccurate
flow estimations (Krams et al., 2005). To perform the velocity measurements,
the ultrasound beam needs to be positioned, not perpendicular, but at a certain
angle with respect to the centreline of the artery (the insonation angle). The
uncertainty in this angle influences the error of the Doppler measurement (Balbis
et al., 2005). Another disadvantage is that the motion of the artery wall cannot
be measured accurately at the same time, since the ultrasound beam needs to be
positioned perpendicular to the artery for such a measurement.

To study vascular impedance (the transfer function between pressure and the
volume flow), it is important to measure simultaneously the pressure and flow
at a specific area of the blood circulation of the patient. Theoretically, the local
pressure can be deduced from the wall distension and the pulse-wave velocity.
A relatively new method to measure axial velocity profiles with ultrasound is a
particle imaging velocimetry based ultrasound measurement (Chapter 3). The
measured (asymmetric) axial velocity profiles are obtained perpendicularly to
the artery and can be combined with the measurement of wall distension at the
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Figure 4.1: An example of the axial velocity distribution in a curved tube (left),
the corresponding secondary velocity profile (middle) and the pressure distribu-
tion (right), obtained from CFD simulations, where ‘O’ marks the outside of the
curve and ‘I’ the inside of the curve.

same time from the same ultrasound signal. To obtain an accurate combined
measurement, a novel method needs to be found to accurately estimate the local
volume flow from the measured (asymmetrical) axial velocity profiles at a certain
cross section of a curved artery. Therefore, this study will focus on the effect of
curvature on the axial velocity profile for steady flow through a curved tube and
a new volume flow estimation method.

The flow regime of interest is based on the parameters of the carotid artery, to
obtain physiologically relevant velocity distributions. The mean axial velocity in
the common carotid artery is roughly 0.2 ms−1, the radius is about 4 mm and the
maximum curvature ratio is about 0.16 (Bovendeerd et al., 1987). It is assumed
that blood is a Newtonian fluid with a density of ρ = 1.132 · 103 kgm−3 and a
dynamic viscosity of η = 3.56 · 10−3 kgm−1s−1. This results in a Dean number
(see theoretical background below for definition) of 580. Therefore, the main
region of interest is defined as 1 ≤ Dn ≤ 1000. The parameters stated above for
the density, viscosity and radius are also used for obtaining the analytical and
computational results in this study.

4.1.2 Introduction to the theoretical background

Nearly all authors mentioned in the theoretical background later in this paper
give the same theoretical/physical explanation to describe steady flow in a curved
tube. When a fluid flows from a straight tube into a curved tube, a change in
the flow direction is imposed on the fluid. The fluid near the axis of the tube has
the highest velocity and therefore experiences a larger centrifugal force (ρw2/R,
where w is the axial velocity, ρ the density and R the distance to the centre of
curve) compared to the fluid near the walls of the tube. Therefore, the fluid in the
centre of the tube will be forced to the outside of the curve. The fluid near the
walls, having a lower axial velocity, on the outer side of the curve will be forced
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Figure 4.2: The toroidal coordinate system (r, θ, z) with velocities (u, v, w), which
is used to describe flow in a curved tube. The z-coordinate is defined as z = R0ϕ,
where R0 is the curvature radius of the tube, a is the radius of the tube and R is
the distance to the centre of curvature, defined as R0 − a < R < R0 + a. In this
system u is the velocity in the r-direction, v is the velocity in the θ-direction and
perpendicular to u. The velocity in the z-direction is w, which is perpendicular
to both u and v.

inwards along the walls of the tube, because the pressure is lower at the inside of
the curve. This overall balance between the radial pressure and the centrifugal
forces results in a secondary flow, which influences the axial velocity distribution
(Figure 4.1).

During the last century a few analytical approximation methods were derived
to explain and predict the behaviour of stationary flow in curved tubes. The
solutions obtained by Dean, Topakoglu and Siggers & Waters will be evaluated
more extensively and compared with each other (Dean, 1928; Topakoglu, 1967;
Siggers and Waters, 2005). These authors derived analytical solutions for small
Dean numbers (Dn ≪ 1) and assumed that the analytical solution for a curved
tube is just a small disturbance on the Poiseuille flow of a straight tube, with the
flow being driven by the pressure gradient.

Topakoglu (1967) and Siggers & Waters (2005) used the toroidal coordinate sys-
tem with the coordinates (r, θ, z) (Figure 4.2). Dean (1928) used a slightly dif-
ferent definition, but the results as presented in this chapter are adapted to the
coordinate system definition of Topakoglu and Siggers & Waters. The most rele-
vant results to this study obtained by the authors with respect to the axial velocity
profiles are briefly shown, together with the equations, which relate the flow in a
curved tube to the flow in a straight tube.
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4.1.3 Outline

The chapter is structured as follows. In Section 4.2 a short theoretical back-
ground of literature on steady flow in curved tubes is presented. Three analytical
approximation methods for fully developed flow in curved tubes are discussed
more extensively. Then a novel estimation method, based on the analytical ap-
proximation methods, is derived to assess the volume flow through a curved tube
from the axial velocity profiles. Finally, a Computational Fluid Dynamics (CFD)
model is introduced, which is applied to investigate flow in curved tubes for ranges
of flow rate and curvature ratio, where no analytical solution exists.

In the next section (Section 4.3) axial flow profiles from the analytical approxi-
mation methods are compared with each other and with the results of the CFD
models, as to validate the analytical approximation methods. Furthermore, the
CFD solutions are used to validate the novel volume flow estimation method and
to compare the new estimation method with the currently used Poiseuille method.
The final sections contain the discussion and conclusions.

4.2 Methods

4.2.1 Theoretical background

In 1928, Dean published the derivation of an analytical solution describing the
steady flow of an incompressible fluid in curved tubes with a small curvature,
δ = a/R0, where a is the radius of the tube and R0 the curvature radius of the
tube. This analytical solution was based on the assumption that the secondary
flow is just a small disturbance of the Poiseuille flow in a straight tube. He
noticed that when the fluid motion is slow, the reduction in flow rate due to the
curvature of the tube depends on the single variable K defined by K = 2Re2a/R0,
in which the Reynolds number can be defined as Re = aWmax/ν, where Wmax is
the maximum velocity in the axial direction and ν is the kinematic viscosity.

Dean derived a series solution expanded in K to describe the fully developed
steady flow analytically, in a tube with a small K-number (see Appendix A.1,
which shows the resulting expressions for the axial velocity (w)). He also derived
the ratio of the flow rate through a curved tube in his model (QcD) to that in a
straight tube (QsD) driven by the same pressure gradient. This ratio equals:

QcD

QsD
= 1 − 0.03058

( K

576

)2
+ 0.01195

( K

576

)4
+ O(K6), (4.1)

Dean stated that this equation predicts the flow fairly accurate for K<576. When
K=576, a reduction in flow rate is calculated of approximately 1.9%, compared
to flow in a straight tube.
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The second approximation method was derived by Topakoglu (1967). A power
series expansion was performed in δ to find the solution for the set of non-linear
differential equations he derived (see Appendix A.2). He obtained the following
relation for the normalized flow rate through the curved tube in comparison with
flow through a straight tube, under the same conditions:

QcT

QsT
= 1 − 1

48
δ2

(1.541

67.2
n2 + 1.1n − 1

)

+ O(n3), (4.2)

where n =
(

Re
6

)2
.

In 1968, McConalogue & Srivastava made an extension to the work of Dean.
They solved the equations numerically with Fourier series for 96 < Dn < 600.
The Dean number was defined as:

Dn = 4Re(
2a

R
)1/2 =

√

( 2a3

ν2L

)GMSa2

µ
, (4.3)

where GMS was the mean pressure gradient, ν the kinematic viscosity and µ the
dynamic viscosity coefficient. The Dean number was based on the K-number
proposed by Dean, with Dn = 4

√
K and so a Dean number of 96 corresponded

to a K-number of 576.

McConalogue & Srivastava showed that for Dn = 600, the position of the maxi-
mum axial velocity is reached at a distance less than 0.38 times the radius from the
outer boundary and that the flow is reduced by 28% in comparison to a straight
tube. Collins and Dennis obtained numerical solutions for an extended range of
Dean numbers, 96 < D < 5000 (Collins and Dennis, 1975). They give the contour
plots of the axial and transversal velocities for Dn = 96, 500, 605.72, 2000, 5000,
which show a good agreement with the results of McConalogue and Srivastava
(1968) for Dn = 96 and Dn = 605.72.

The most recent publication of relevance to this study is the article of Siggers &
Waters (2005). To derive an analytical approximation method for flow in curved
tubes with a small Dean number and small curvature ratio, Siggers & Waters
used the series solution for w expanded in Dn, where wk is allowed to depend on
δ (see Appendix A.3).

Siggers & Waters have calculated the axial flow rate in a curved tube driven by
the axial pressure gradient −(ρν2GSW /a3) with GSW = 4Re, which is according
to their calculations given by:

QcSW = πDn
(1

8
+

1

27 · 3δ2− 11

215 · 33 · 5Dn2δ

− 1541

228 · 36 · 52 · 7Dn4 + O(δ4, Dn2δ3, .....)
)

.

(4.4)

To obtain the flow ratio, this equation should be divided by the corresponding
flow in a straight tube (Qs) and the dimensional flow rate is aνQcSW /

√
2δ.
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Table 4.1: Overview of the series expansions used by the authors to derive their
analytical approximations.

Author: Series expansion to: Flow ratio Qc

Qs

=

Dean (1928) K = 2Re2δ = Dn2

16 1 − 0.03058
(

K
576

)2
+ 0.01195

(

K
576

)4

Topakoglu δ 1 − 1
48δ2

(

1.541
67.2 n2 + 1.1n − 1

)

Siggers & Waters Dn & δ πDn
Qs

(

1
8 + 1

27·3δ2 − 11
215·33·5Dn2δ

− 1541
228·36·52·7Dn4

)

A summary of the three analytical approximation methods discussed above, has
been shown in Table 4.1. In each method a slightly different series expansion
method was used and an equation to describe the flow in curved tube compared
to the flow in a straight tube was derived.

More extensive overviews of earlier work on flow in curved tubes are given by
Pedley (1980), Ward-Smith (1980) and Berger and Talbot (1983).

4.2.2 Flow estimation methods

In clinical practice the volume flow is estimated by assessment of the maximum ax-
ial velocity, obtained with Doppler ultrasound, and the assumption of a Poiseuille
velocity distribution across the artery. However, the axial velocity profiles of
curved arteries become more and more asymmetrical for increasing flow rates
(Re) and increasing curvature ratios (δ). When the volume flow is estimated
based on the maximum velocity, the asymmetry of the velocity profiles is ne-
glected, causing an error in the volume flow estimation. Therefore, a new volume
flow estimation method, that can be applied in clinical practice, is investigated
and compared with the flow calculations resulting from the Poiseuille method.

Motivated by the analytical solutions for the axial velocities derived by Dean,
Topakoglu and Siggers & Waters (see Appendix A), we propose a new method
to estimate the flow rate from the velocity profile on a diameter, which we call
the ‘cos θ-method’. The cross section is divided into two semicircles along the
diameter perpendicular to that on which the measurement is taken. The flow
rate (Qcosθ) is estimated by assuming the axial flow to be axisymmetric in each
semicircle, giving the expression:

Qcosθ = π

∫ a

0

rw+(r)dr + π

∫ a

0

rw−(r)dr, (4.5)

where a is the tube radius, and w+(r) and w−(r) are the measured velocities on
the two radii (see Figure 4.3).
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w− w+

Figure 4.3: Visual explanation of the division of the axial velocity profile into w+

and w−. In this figure the symmetry plane and the plane normal to the symmetry
plane of the curved tube are indicated.

We expect this method to produce more accurate results than the Poiseuille
method, since each of the three aforementioned analytical approximations shows
that the largest correction to Poiseuille flow in the axial velocity profile takes the
form f(r) cos θ for some function f . It can be shown that this correction does not
contribute to either the true flux or to the estimate given by the cos θ-method;
hence any errors will be given by smaller terms. Conversely, such a term would
affect the error in the Poiseuille method, leading to less accurate results.

It should be mentioned that the cos θ-method is in principle applicable for every
arbitrary angle of measurement through the tube, as long as the diameter along
which the measurement is performed, crosses the centre point. However, in clinical
practice the ultrasound beam may not always measure along the true diameter of
the artery.

In the results section the (asymmetric) axial velocity profiles calculated with the
CFD model (Section 4.2.3) are used as input for the Poiseuille method and the
cos θ-method, the imposed flow is used as a reference value.

4.2.3 Computational Fluid Dynamics (CFD)

The aim of the CFD simulations is to calculate the axial velocity distribution of
steady, fully developed flow in curved tubes. The results will be used to validate
the range of applicability of the analytical approximation methods and to inves-
tigate the flow in curved tubes at higher Dean numbers, for which the analytical
approximation methods are invalid, but which are most relevant for large arteries
in humans.
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Figure 4.4: The mesh of the CFD model with a curvature ratio of δ = 0.16.

It is assumed that the fluid in the curved tube is an incompressible Newtonian
fluid. The governing equations are

∇ · v = 0, ρ
∂v

∂t
+ ρv · ∇v = −∇p + η∇2v,

here the gravity and body forces are neglected, v is the velocity, p the pressure, ρ
the fluid density and η the dynamic viscosity. At the tube walls no-slip boundary
conditions are applied and at the inlet a flow rate is prescribed.

The mesh of the finite element based CFD model is composed of isoparametric
hexahedral volume elements with 27 points. The elements are of the tri-quadratic
hexahedron Crouzeix-Raviart type, with a discontinuous pressure over the element
boundaries. An integrated or coupled approach is used for the continuity equation
(Cuvelier et al., 1986). For the temporal evolution, a first order Euler-implicit
discretization scheme is applied. To linearize the convective term, the Newton-
Raphson method is chosen. The Bi-CGstab iterative solution method, with an
incomplete LU decomposition preconditioner, was applied to solve the linearized
set of equations.

A CFD curved tube model for fully developed flow is implemented in the finite
element package SEPRAN (Segal, 2004). The mesh of the CFD model consist of a
small curved section of 6 axial elements, with a total length of 4 times the radius.
It has 18 elements across the diameter and 48 elements along its circumference
(see Figure 4.4).

Initially, a Poiseuille velocity distribution is prescribed at the inlet:

w(r) = Wmax

(

1 −
( r

a

)2
)

. (4.6)

For the subsequent time steps the velocity distribution is taken at the plane
halfway the tube, this velocity distribution is multiplied with a rotation matrix
in order to correct for the curvature, before it is prescribed at the inlet of the



60 Chapter 4

next time step. It was found that the velocity distribution in the midplane is not
influenced by the stress free outlet condition. For representative Dean numbers
the fully developed curved tube flow obtained with this method was compared
to simulations performed with a longer tube, which had a length of 80 times the
radius and was long enough to have a fully developed curved tube flow at the
end, by only prescribing a Poiseuille inlet flow. A difference of 0.2% was found,
whereas a 50-fold reduction in computation time was achieved using the former
method.

The simulations were performed for all combinations of Dn = 1, 10, 25, 50, 100,
200, 400, 600, 800 and 1000 with δ = 0.01, 0.02, 0.04, 0.08, 0.10 or 0.16, except
Dn = 1000 and δ = 0.01 due to computational instabilities. For the simulations it
is assumed that blood is a Newtonian fluid with a density of ρ = 1.132 ·103 kgm−3

and a dynamic viscosity of η = 3.56 · 10−3 kgm−1s−1 (see also Section 4.1.1). In
the results section the axial velocity profiles will be analysed and compared to
analytical and computational results obtained from literature.

4.3 Results

4.3.1 Analytical Approximation Methods

Dean, Topakoglu and Siggers & Waters derived analytical approximations by
using series expansion, see Table 4.1, to solve the Navier-Stokes equations with
the assumption that δ ≪ 1 and K ≪ 1 or Dn ≪ 1. The authors all used a different
scaling method, which were not always explicitly stated. Therefore, the results
of this study are normalized to perform a comparison between the three different
analytical approximation methods. The axial velocity profiles are divided by the
maximum of their axial velocity. The velocity profiles are given as a function of
ξ, with ξ = r/a going from −1 to 1 (so half of the measurement diameter in the
−90◦ < θ ≤ 90◦ plane is defined positive and the other half in the 90◦ < θ ≤ 270◦

plane is defined negative).

The Qc/Qs flow ratios of the analytical approximation methods are plotted in
Figure 4.5. The solution derived by Dean only depends on K, so if K (or Dn)
does not change, the solution will not change for different curvature ratios. The
solutions of Topakoglu and Siggers & Waters do change for different curvature
ratios, while the Dean number stays the same. Around Dn = 60 Dean’s solution
starts to deviate from the other solutions, it even increases for Dn > 100. The
flow ratios derived by Topakoglu and Siggers & Waters give nearly the same
result. They keep on decreasing and become negative for Dn > 220 (not visible
in Figure 4.5).

Figure 4.6 shows the normalized axial velocity profiles in the plane of symmetry
derived by the three analytical solutions for Dn = 1, 50, 100 and δ = 0.01, 0.16
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Figure 4.5: The flow ratios between flow in a curved tube (Qc) and flow in a
straight tube (Qs) of the analytical approximations derived by Dean, Topakoglu
and Siggers and Waters.

based on the equations for the axial velocities of Appendix A. As Dn increases
the position where the maximal velocity is achieved moves towards the outside
of the curve, while as δ increases this position moves to the inside of the curve,
this effect is supported by the analytical solutions of Topakoglu and Siggers &
Waters. For example if δ= 0.16, then as long as Dn < 50, the maximum velocity
is achieved at a positive value of ξ, closer to the inside of the curve.

4.3.2 CFD

Results obtained with the CFD model for all simulations performed with a cur-
vature ratio of δ = 0.16 are shown in Figure 4.7. The position of the maximum
velocity can be determined from the axial velocity profiles of the symmetry plane.
For a higher Dean number and so a higher Reynolds number, the position of the
maximum velocity shifts more to the outside of the curve, which is in accordance
to the derived analytical solutions of Dean, Topakoglu and Siggers & Waters.

The position of the maximum velocity as function of the Dean number and the
curvature ratio is shown in Figure 4.8. It shows that the position of the maximum
velocity as function of the curvature ratio (δ, left graph) or as function of the Dn
number (right graph) have different relations. There seems to be a linear relation
between the position of the maximum and δ, but this linear relation is not the
same for different Dean numbers.

The right graph of Figure 4.8 shows that for low Dean numbers the position of
the maximum velocity shifts to the inside of the curve. From Dn = 50 and higher
the position of the maximum velocity is always shifted to the outside of the curve.
For increasing Dean numbers the shift increases. The differences in the position
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Figure 4.6: The normalized axial velocity profiles of the analytical approximations
derived by Dean, Topakoglu and Siggers & Waters for Dn = 1, 50 and 100 and
δ = 0.01 or 0.16. The right panels depict magnifications of the central region.
The velocity profiles derived by Dean do not change for different δ’s for a fixed
Dean number, therefore, only δ = 0.01 is shown. The axial velocity profiles with
δ = 0.01 are lying on top of each other for every Dean number, while the velocity
profiles of Topakoglu and Siggers & Waters for δ = 0.16 are shifted to the right.
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Figure 4.7: The axial velocity profiles for different Dean numbers for δ = 0.16. In
the left figure the normalized velocity profiles for the symmetry plane and in the
right figure the normalized velocity profiles for the plane normal to the symmetry
plane.

of the maximum velocity for different curvature ratios but with the same Dean
number become less for higher Dean numbers.

The position of the maximum axial velocity as function of Reynolds number is
shown in Figure 4.9. Around Re = 20 all curves pass through the symmetry
point (zero), which from now on is called ‘zero-shift point’. For smaller Reynolds
numbers the position of the maximum is shifted to the inside of the curve and for
higher Reynolds numbers the position is shifted to the outside of the curve.

4.3.3 CFD vs. Analytical Approximation Methods

The results of the analytical approximation methods and the CFD simulations
can be compared by their normalized axial velocity profiles. The analytical solu-
tion derived by Siggers & Waters is compared to the profiles calculated with the
CFD model in Figure 4.10. These graphs show that the analytical solutions are
similar to the CFD simulations for Dn ≤ 50 and 0.01 ≤ δ ≤ 0.16. For Dn =
100 the analytical approximation deviates from the axial velocity profile derived
with the CFD model. This deviation increases for higher Dean numbers. The
same results will be obtained for the axial velocity profiles calculated from the
analytical approximation method of Topakoglu, as his method gives nearly the
same results as the approximation method from Siggers & Waters. The analytical
approximation method of Dean agrees with the other analytical solution methods
for δ = 0.01, as this value is closest to δ=0, for which the analytical solution was
derived.
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Figure 4.11: Comparison of the results of the CFD simulations (dotted line) and
the analytical approximation derived function of Siggers & Waters (solid line).
At the left, the position of the maximum velocity is plotted as function of the
curvature ratio for different Dean numbers. The right graph shows the position of
the maximum velocity as function of Dean number for different curvature ratios.
The solutions for Dn = 1, 10 are very close, while a little difference can be seen
for Dn = 25, 50 and for Dn = 100 the solutions of the CFD are distinct from the
analytical approximation.

Siggers & Waters derived their analytical approximation for curved tubes using
series expansion and by assuming that Dn ≪ 1 and δ ≪ 1. The relative position
of the maximum velocity rWmax is related to the Dean number and curvature
ratio by:

rWmax =
19Dn2

214 · 32 · 5 − 3δ

8
+ O(δ3, Dn2δ2, Dn4δ,Dn6). (4.7)

Figure 4.11 shows this relative position as function of Dean number for different
values of δ in comparison with the results obtained with the CFD model (see also
Figure 4.8). In the left graph the position of the maximum velocity as function
of δ is given for both methods and in the right graph as function of the Dean
number. Again the results of the analytical approximation coincide with the
CFD results for Dn ≤ 50, while for higher Dn numbers the analytical solutions
starts to deviate from the CFD results.

4.3.4 Flow estimation methods

The axial velocity profiles obtained with the CFD model are used as input to
compare the volume estimation methods with each other and with the imposed
flow. The flow estimation based on the cos θ-method is performed on the axial
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Figure 4.12: The deviation of the estimated volume flow from the imposed volume
flow for δ = 0.01 (left figure) and δ = 0.16 (right figure) as function of Dean
number. The estimated flow is based on the cos θ-method applied to the a velocity
measurement along the symmetry plane (-◦-) or the plane normal to the symmetry
plane (-⋆-) or the Poiseuille method applied to the symmetry plane (-x-).

velocity profiles of the symmetry plane and the plane normal to the symmetry
plane (see Figure 4.3). The deviation of the estimated flow from the imposed flow
for the different flow estimation methods are shown in Figure 4.12 for simulations
with δ = 0.01 and δ = 0.16.

The results in Figure 4.12 show that the cos θ-method and the Poiseuille method
give similar results for Dn ≤ 100. For higher Dean numbers the Poiseuille method
shows a consistent underestimation of the volume flow, which is nearly three
times larger than the underestimation of the cos θ-method for high Dean numbers
(Dn > 400). The cos θ-method with the plane normal to the symmetry plane as
input results in an overestimation of the flow for higher Dean numbers.

The deviation of the calculated flow of the cos θ-method based on profiles in the
symmetry plane are compared to the imposed volume flow for different Dean
numbers and curvature ratios (see Figure 4.13).

For a curvature ratio of δ = 0.01 and 1 ≤ Dn ≤ 800, the cos θ-method based on
the axial velocity profile in the symmetry plane has a maximum deviation from
the imposed flow of less than 4%, while the Poiseuille method has a maximum
deviation of 12.7%. The cos θ-method based on the axial velocity profile in the
plane normal to the symmetry plane results in a maximum deviation of 6.4%,

A curvature ratio of δ = 0.16 and 1 ≤ Dn ≤ 200 gives similar results for the cos θ-
method based on the axial velocity profiles of both the symmetry and its normal
plane. For higher Dean numbers the cos θ-method based on the symmetry plane
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Figure 4.13: The deviation of the estimated volume flow (based on the cos θ-
method) compared to the calculated flow in percentages for different curvatures,
based on velocity profiles obtained from the symmetry plane.

gives an underestimation of the flow, which is maximally 5.5% at Dn = 600.
The cos θ-method based on the plane normal to the symmetry plane gives an
overestimation of the flow which is maximally 7.5% at Dn = 600. The Poiseuille
method gives a consistent underestimation for Dn > 50, which is maximally
15.8%.

Figure 4.13 shows that for the different curvatures the deviation of the cos θ-
method is maximally 5.5% and is reached for all curvatures around Dn = 600,
for higher Dean numbers the deviation decreases. For small Dean numbers (1≤
Dn ≤25) the higher curvature ratios give a slightly larger error, while for in-
termediate Dean numbers (25≤ Dn ≤200) the smaller curvature ratios result
in larger deviations from the imposed flow. Finally, for high Dean numbers
(400≤ Dn ≤1000) the largest curvature ratios have the largest deviation.

4.4 Discussion

4.4.1 Analytical Approximation Methods

All analytical approximation methods have been derived for Dn or K ≪ 1 and
δ ≪ 1, however, the results are accurate for Dn ≤ 50. The equations derived for
the flow ratios, that compare flow in a curved tube to flow in a straight tube with
the same pressure gradient, already show that Dean’s analytical solution does not
depend on δ for a constant K or Dn. His solution becomes unrealistic at smaller
Dean numbers, compared to the solutions of Topakoglu and Siggers & Waters,
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the flow ratio increases for Dn > 100. The analytical approximation methods
derived by Topakoglu and Siggers & Waters depend on the curvature ratio and
give similar results.

Investigation of the axial velocity profiles results in essentially the same observa-
tions. The three approximation methods give the same results for δ = 0.01. An
interesting effect is the displacement of the maximum velocity to the inside of the
curve for higher curvature ratios in the analytical solutions derived by Topakoglu
and Siggers & Waters. Topakoglu did not mention this effect in his paper. Siggers
& Waters did notice that their equation for w01 causes the maximum velocity to
move towards the inside of the curve for increasing δ, but did not give a physical
explanation.

4.4.2 CFD

The fully developed flow profiles calculated with the CFD tube model correspond
with results from literature (Collins and Dennis, 1975; McConalogue and Srivas-
tava, 1968). However, it is difficult to compare the results exactly. Often only
the Dean number is given in combination with the value of the (scaled) maximum
axial velocity, but nothing is known about the exact values for the curvature ratio,
diameter, viscosity parameters etc. A complete description of a flow problem in
a curved tube requires two of the characteristic dimensionless numbers δ, Re and
Dn to be stated.

Most research is focused on the flow ratio of flow through a straight tube in
comparison with flow in a curved tube driven by the same pressure gradient. For
the simulations in this study, flow is prescribed and no attention has been paid to
the pressure gradient, since this cannot be assessed by ultrasound measurements
yet.

Besides a qualitative comparison between the contour plots of the axial velocities,
another more quantitative comparison can be made by observing the position of
the maximum velocity. McConalogue & Srivastava used a Fourier-series devel-
opment method to solve the momentum and continuity equation in the toroidal
system numerically (McConalogue and Srivastava, 1968). They published their
resulting contour plots of the axial velocity for different values of Dean number
between Dn = 96 and Dn = 605.72. From these contour plots the relative position
of the maximum velocity can be deduced.

In Figure 4.14 the results are shown in the same graph as the maximum positions
computed with the CFD model. The figure shows a good resemblance between
the results from McConalogue & Srivastava and the results of the CFD model. As
McConalogue & Srivastava state that they assume δ to be small, one should expect
their results to agree most closely with the δ = 0.01 solutions of the simulations.
As can be seen in Figure 4.14 their results do match the δ = 0.01 results closely,
except two data points around Dn = 200.
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Figure 4.14: The position of the maximum velocity as function of Dean number
for different δ’s with the results of McConalogue and Srivastava (1968).

4.4.3 CFD vs Analytical Approximation methods

Comparison of the analytical axial velocity profiles with the calculated profiles of
the CFD simulations show that the analytical solution predicts the axial velocity
very well for Dn ≤ 50. It is striking that, despite the assumptions made for the
approximation (small δ), the analytical solution also coincides very well with the
results of the CFD model for higher curvature ratios, up to δ = 0.16. Furthermore,
the equation for the position of the maximum velocity derived by Siggers & Waters
coincides very well for Dn ≤ 50 with the calculated positions of the CFD model.

The computational method presented in this study and the analytical method of
Siggers & Waters both predict that for low Dean numbers the maximum position is
shifted to the inside of the curve. This effect increases for an increasing curvature
ratio. Since the velocity profiles are fully developed in space and time, the shift
to the inside of the curve cannot be explained by entrance effects, which holds for
frictionless flow in the core of the tube (Bovendeerd et al., 1987; Agrawal et al.,
1978).

A possible explanation could be that for low Dean numbers, and especially for
low Dean numbers with a larger curvature ratio, the Reynolds number is low.
Then the values of the velocity in the secondary field are small, which results in a
negligible pressure gradient in the radial direction which becomes comparable to
the pressure distribution in a straight tube. However, the geometry of the tube
is still curved: at the inside of the bend the fluid is subject to the highest axial
pressure gradient. Therefore the fluid velocity will be maximal at the inside of
the tube. This implies that the shift towards the inside of the curve is a pure
geometry driven effect.

The shift of the maximum velocity to the inside of the curve for lower Dean
numbers was noticed earlier by Murata et al., but not many other authors mention
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this phenomenon (Murata et al., 1976). Murata et al. did not investigate this
effect for different curvature ratios and Reynolds numbers.

Plotting the relative position of the maximum velocity as function of the Reynolds
number shows a ‘zero-shift point’, as we would like to call it (see Figure 4.9).
Around Re ≈ 20 the effect caused by the axial pressure gradient balances the
effect of the centrifugal forces (radial pressure difference). This zero-shift point
can also be found by inserting rWmax = 0 in the equation derived by Siggers
& Waters, which results in two solutions. The first solution is δ = 0, which
corresponds to a straight tube, and the second solution is Re = 21.3, which
corresponds to the zero-shift point.

4.4.4 Flow estimation methods

The Poiseuille method and the cos θ-method give similar results for Dn ≤ 100. For
higher Dean numbers the Poiseuille method becomes more and more inaccurate,
with an estimation error of 12.7% compared to the imposed flow for Dn = 1000
and δ = 0.01. The cos θ-method gives much better results and deviates maximally
4% from the imposed flow. The cos θ-method based on the axial velocity profile
in the plane perpendicularly to the plane of symmetry results in a maximum
deviation of 6.4%. The results for a curvature ration of 0.16 are similar, but all
deviations are slightly elevated.

The cos θ-method has been investigated for different curvature ratios, see Fig-
ure 4.13, and the maximal deviation in the symmetry plane is only 5.5%, which
is a much better estimation than the Poiseuille method. The analytical approxi-
mation methods support the cos θ-method, because all derived methods show that
the first correction term on the Poiseuille component of the axial velocity depends
on cos(θ), for a fixed r. To investigate whether the analytical solutions are right,
the axial velocity (obtained from the CFD simulations) is plotted as function of
a fixed r, r = 2 mm, for Dn = 100 and δ = 0.16 (Figure 4.15). This figure shows
that the axial velocity as function of θ for a fixed r, can be described with a cosine
function, which is plotted in the figure based on the mean axial velocity and the
amplitude at θ = 0.

As shown earlier, the analytical approximation methods are valid for Dn < 100.
So the error of the cos θ-method can be caused by an asymmetric, multi-harmonic
change of the axial velocity in curved tubes for higher Dean numbers. Therefore,
the axial velocity is plotted as function of a fixed r, r = 2 mm, for Dn = 1000
and δ = 0.16 (see right graph of Figure 4.15). From this result it is clear that
for this case a single cosine function cannot approximate the axial velocity as a
function of θ for a fixed r anymore.

In clinical practice, the axial velocity profile will not, in general, be measured
exactly on the symmetry plane. Therefore the influence of the orientation of
the ultrasound beam with respect to the tube is investigated, by estimating the
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flow of the axial velocity profiles obtained under a certain angle with respect to
the symmetry plane (see Figure 4.16). This indicates that for Dn = 1000 and
δ = 0.16, the maximum error depending on the angle is an overestimation of
volume flow calculation by 6.1%, which is obtained at the plane normal to the
symmetry plane (θ = 90◦).

4.5 Conclusion

The analytical approximation methods for flow in curved tubes derived by Dean,
Topakoglu and Siggers & Waters were investigated and a quantitative comparison
has been made. The results show that the analytical approximation derived by
Dean does not depend on the curvature ratio for a fixed Dean number, while
the solutions of Topakoglu and Siggers & Waters do. The solutions derived by
Topakoglu and Siggers & Waters give similar results.

A CFD model for fully developed curved tube flow was developed to simulate the
axial velocity in a curved tube and simulations were performed in the range of
1≤ Dn ≤ 1000 and 0.01 ≤ δ ≤ 0.16. The axial velocity profiles obtained with the
CFD model are in good agreement with results presented in literature, although it
is sometimes hard to compare the results exactly with each other (McConalogue
and Srivastava, 1968; Collins and Dennis, 1975).

The analytical approximation methods were compared to the results of the CFD
model. The approximations derived by Topakoglu and Siggers & Waters predict
the velocity profiles very well for Dn ≤ 50 and fair for Dn ≤ 100 and all curvature
ratios, while Dean’s approximation only coincides with δ = 0.01. For higher Dean
numbers (Dn > 100) no proper analytical approximation method exists.

At lower Dean numbers, the position of the maximum velocity shifts to the inside
of the curve, while at higher Dean numbers the position of the maximum velocity
is located at the outside of the curve. This phenomenon can be explained by
the relatively low pressure gradient in radial direction in comparison to the axial
pressure gradient, causing the fluid to follow the path with the highest axial
pressure gradient, which is at the inner curve at low flow rates.

A zero-shift point is found when the relative position of the maximum velocity,
obtained from the CFD simulations, is plotted as a function of the Reynolds
number. The equation for the position of the maximum velocity derived by Siggers
& Waters was used to derive the exact zero-shift point, which is at Re = 21.3.
At this point the effect caused by the axial pressure difference equals the effect of
the centrifugal forces (radial pressure gradient).

The cos θ-method is supported by the analytical approximation methods. For Dn
≤ 100 the Poiseuille method is still sufficient, but for Dn ≥100 the cos θ-method
estimates the volume flow nearly three times better than the Poiseuille method,
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for δ = 0.01 4% versus 12.7%. The axial velocity profile measured at a certain
angle from the symmetry plane results in an estimation error of at most 6.2% for
Dn=1000 and δ = 0.16.

These results indicate that it is possible to estimate the volume flow through
a curved tube from a given (asymmetrical) axial velocity profile with the cos θ-
method, with a reasonable accuracy. Before this method can be used in clinical
practice, the cos θ-method needs to be tested on unsteady flows, non-Newtonian
fluids and finally on axial velocity profiles obtained from patients or volunteers.
It should be kept in mind that in most arteries the flow is not fully developed.
However, if entrance effects have the same cos θ dependent effect on the axial
velocity, this will not give additional errors for the flow estimation with the cos θ-
method.
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Chapter 5

Flow estimation in curved
vessels by means of

non-invasive ultrasound

The contents of this chapter have been submitted for publication: B. W. A. M. M. Beulen,
A. C. Verkaik, M. C. M. Rutten, F. N. van de Vosse. Volume flow estimation in curved vessels
by means of perpendicular ultrasound. Experiments in Fluids, submitted (2009)
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5.1 Introduction

Haemodynamic factors play a significant role in the development and localisation
of cardiovascular disease (CVD) (Fung, 1993; Caro et al., 1971). Arteries affected
by CVD in general show thickening and stiffening of the vessel walls, leading
to elevated blood pressure (Laurent et al., 2006). To deduce the biomechanical
parameters that are related to the development of CVD, such as compliance, wall
shear stress, pulse wave velocity and vascular impedance, and to obtain local
hemodynamic variables, the pressure and flow at specific areas of the arterial
system need to be monitored, by preference non-invasively and simultaneously.

In clinical practice, ultrasound is frequently used as a non-invasive method to
obtain geometric and haemodynamic variables such as blood (centreline) velocity,
wall shear stress, vessel diameter, intima-media thickness (IMT) and pulse wave
velocity (PWV) (Brands et al., 1998, 1999). The local flow is derived from the
vessel diameter and blood velocity assessment, whereas the local pressure can the-
oretically be derived from a simultaneous assessment of the vessel wall distension
and PWV.
For the velocity assessment, often Doppler ultrasound is applied. To perform the
velocity measurements, the ultrasound probe needs to be positioned at a certain
insonification angle (non perpendicular) with respect to the blood velocity vector.
A reliable velocity assessment necessitates this angle to be accurately known and
constant during the measurement. Deviations in insonification angle result in ve-
locity errors of the same order (Fillinger and Schwartz, 1993; Gill, 1985). For flow
estimation, a certain velocity distribution, e.g., a Poiseuile or Womersley profile is
assumed and the flow is calculated based on the maximum or centreline velocity
(Douchette et al., 1992). The Poiseuille approximation is suitable for quasi-static
flow in straight arteries, whereas the Womersley approximation is valid for in-
stationary flow in straight arteries. However, most arteries are tapered, curved
and bifurcating, causing the axial velocity distribution to be altered by transver-
sal velocities, resulting in asymmetrical axial velocity profiles and consequently in
inaccurate flow estimations (Krams et al., 2005). Additionally, the position of the
vessel walls needs to be known exactly in order to perform the integration of ve-
locity to flow. An accurate assessment of the wall position wall is only achievable
with the ultrasound beam positioned perpendicular to the vessel. As a result, a
simultaneous assessment of velocity by Doppler ultrasound and wall position is
impossible, which hampers an accurate flow assessment.

Several blood velocity measurement techniques based on ultrasound have been
reported to overcome the angle dependency of Doppler ultrasound and to allow
2D velocity estimation. Methods were introduced in which multiple ultrasound
beams were applied to overcome the angle dependency (Fox, 1978; Overbeck et al.,
1992). However, due to beam widening, these methods resulted in increasing
standard deviations and biases in the velocity estimates for increasing depth. Ul-
trasound speckle velocimetry (USV) enables assessment of 2D velocity vectors by
analyzing the acoustic speckle pattern of the flow field (Bohs et al., 1993, 1995;
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Sandrin et al., 2001; Trahey et al., 1987). However, for an accurate, low noise ve-
locity assessment, this technique requires specially modified ultrasound systems,
custom scanning sequences and custom developed transducers. Furthermore, due
to the requirement of very high particle concentrations, the application of USV
for in-vivo applications is limited (Kim et al., 2004a). The application of Particle
Image Velocimetry (PIV) techniques (Adrian, 2005) to ultrasound was first re-
ported by Crapper et al. (2000). Kim et al. (2004b,a) introduced Echo PIV, which
was applied on images enhanced by an Ultrasound Contrast Agent, obtained by
means of a commercially available ultrasound scanner equipped with a phased
array transducer. Liu et al. (2008) developed a custom-designed ultrasound sys-
tem which allowed flexible control of the Echo PIV parameters, extending the
measurable velocity range and improving the spatial resolution.

In Chapter 3, an ultrasound velocity assessment technique similar to echo PIV was
applied to estimate velocity components perpendicular to the ultrasound beam,
using a linear array transducer connected to a commercially available, clinically
approved ultrasound system equipped with RF data output and acquisition sys-
tem. In the remainder of this study, this method will be referred to as ultrasonic
perpendicular velocimetry (UPV). The UPV method enables simultaneous assess-
ment of axial velocity profile and vessel wall position and was validated by com-
paring velocity profile measurements performed on stationary and in-stationary
flow in a phantom setup to computational fluid dynamics (CFD) calculations
(Chapter 3). For flow estimation in curved geometries, Verkaik et al. (2009) in-
troduced the cos θ-method, which allows an accurate flow assessment based on
integration of axial (asymmetrical) velocity profiles, assuming that the asymmetry
in the velocity distribution is primarily caused by the local curvature of the ves-
sel (Chapter 4). The integration method is supported by the existing analytical
approximations for steady and unsteady Newtonian flow in curved vessels (Dean,
1927; Topakoglu, 1967; Siggers and Waters, 2005, 2008). Furthermore, a valida-
tion by means of CFD calculations has shown that this method is more accurate
than the Poiseuille approximation for stationary Newtonian flow through weakly
curved vessels.

The aim of this study is to test the applicability of the UPV assessment in com-
bination with the cos θ-method to assess axial velocity distribution and volume
flow for stationary and non-stationary flow in curved vessels. In a phantom setup,
measurements of the axial velocity profile in planar curved vessels are performed
by means of the UPV method. The flow conditions and vessel geometry are cho-
sen to mimic flow in the CCA. Results of the velocity profile measurements are
compared with CFD calculations. Finally, the cos θ-method is applied to esti-
mate the volume flow from the asymmetric axial velocity profiles. The results are
compared with the presently applied Poiseuille and Womersley approximations.
Furthermore, an analysis of the sensitivity of the integration methods to the exact
orientation of the measured velocity profile in the cross section of the artery is
analysed by means of a CFD-based analysis.
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5.2 Material and methods

5.2.1 Experimental setup

In the experimental setup (Figure 5.1), a fluid, mimicking the acoustic and rheo-
logical properties of blood was pumped from a reservoir through a compliant tube,
which mimics the blood vessel. A polyurethane tube (HemoLab, Eindhoven, The
Netherlands) with a radius, a, of 4 mm and a wall thickness of 0.1 mm was applied
to mimic the common carotid artery (CCA). The polyurethane tube consisted of
multiple straight and curved segments with a length of about 30 cm, produced
with a spin coating method, which were smoothly glued together, resulting in a
tube with a straight inlet and outlet section and a single curved centre section.
Vessels with a curved section with a radius of curvature, R, of 20 cm and 40 cm
were produced. This corresponds respectively to a curvature ratio, δ = a/R, of
0.01 and 0.02. The phantom vessel was fully submerged in a reservoir of water
to prevent the vessel to deform under influence of gravity. The curved section
was positioned in a horizontal plane to prevent influence of gravity on the flow.
Additionally, the water acted as a conductor of sound. The tube was terminated
by a resistance, from which the fluid flowed back to the reservoir. For the ter-
minal impedance, a Windkessel model was applied. The viscous dissipation in
the distal vessel, Rs, and the viscous dissipation in the distal capillary bed Rp,
were modelled by local narrowing, the compliance of the arterial system, C was
modelled by an air-chamber.

Flowprobe

Ultrasound
Art.Lab

PC
Labview

BMF

Water

Water

R a

Impedance

C

RpRs

Figure 5.1: Schematic overview of the experimental setup

The flow was generated by combining a stationary pump and a servo-actuator
operated piston pump (indicated in Figure 5.1 by a single symbol). The station-
ary pump (Pacific Scientific, IL, USA) was manually set to a specific flow rate,
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whereas the trajectory of the piston pump (home developed) was computer con-
trolled using LabView software (National Instruments, Austin, TX, USA).
To ensure a developed velocity distribution at the measurement site, the ultra-
sound probe was positioned at 270◦ from the inlet of the curve. The ultrasound
probe was accurately positioned in the symmetry plane of the curve, perpendic-
ular to the polyurethane tube, by means of a 3D manipulator, such that the
mechanical focus of the probe was located at the centre of the vessel. To maxi-
mize the signal level, the electrical focus was set equal to the mechanical focus. At
about 1 cm upstream of the ultrasound probe, an ultrasonic flow probe (10PAA,
Transonic, NY, USA) was positioned to measure the flow through the tube. The
data from the flow probe measurements were acquired simultaneously with the
data from the ultrasound scanner using a common trigger signal generated by a
PC using the same LabVIEW data acquisition software.

5.2.2 Blood mimicking fluid

A shear thinning blood mimicking fluid (BMF), with both acoustical and rhe-
ological properties (Figure 5.2) similar to blood was used. The BMF consisted
of a Xanthan gum (95465, Fluka, Buchs, Switzerland) solution fluid base, used
to mimic the mechanical behaviour of blood, and polyamide particles (2001UD-
NAT1, Orgasol, ELF Atochem, Paris, France), added to imitate the acoustical
properties of blood (Ramnarine et al., 1998). The kinematic viscosity of the BMF,
as measured as a function of shear rate with a Couette rheometer (Chapter 3) is
presented in Figure 5.2. For a more elaborate description the reader is referred
to Chapter 3.
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Figure 5.2: Shear thinning behaviour of the BMF, • indicates measurements, the
solid line indicates the fit. This figure is identical to Figure 3.4.

Generally, scattering particles should be naturally buoyant with respect to the
fluid base. This implies an accurate control of fluid density to prevent particles to
sediment or float. Due to the shear thinning properties of the fluid base applied in



80 Chapter 5

the BMF, sedimentation and floating of the particles is reduced since slow moving
particles experience a relatively high drag force. This facilitates the application
of the BMF in the experimental setup.
Mathematically, the shear thinning properties of the BMF are described using the
Carreau-Yasuda model (Bird, 1987; Gijsen et al., 1999b):

η − η∞
η0 − η∞

= [1 + (λγ̇)b](n−1)/b, (5.1)

with η0 the viscosity at low shear rate, η∞ the viscosity at high shear rate, n the
power-law constant and λ a time constant. This equation is identical to Equation
3.4 as introduced in Chapter 3. The parameter b determines the transition be-
tween the low-shear-rate region and the power-law region. The solid line in Figure
5.2 indicates the least squares fit of the Carreau-Yasuda model to the measured
data.

5.2.3 Data acquisition

The commercially available Picus Art.Lab ultrasound system (ESAOTE Europe,
Maastricht, The Netherlands) was used to collect the raw RF-data for offline
processing. The system was equipped with a 7.5 MHz linear array transducer of
40 mm, consisting of 128 transducers. The RF data were sampled at 33 MHz (fs)
and had an approximate centre frequency of 6.8 MHz and a quality factor of 2.

For the velocity profile measurements, the ultrasound system was operated in fast
B-mode (also called multiple M-line mode), producing 14 M-mode lines, compo-
sing a single frame. To maximize the signal level at the focal point, the electrical
focus is set equal to the mechanical focus, which was fixed at 2 cm from the
transducer surface. The frame rate of the ultrasound system is determined by
the number of M-lines and the pulse repetition frequency (fpr), the frequency
at which individual M-mode lines are acquired, which depends on the maximum
depth setting of the ultrasound system. For the velocity profile measurements,
the depth was set to 50 mm, which resulted in a frame rate, f , of 730 s−1 and a
field of view of 4.4 × 50.0 mm. The maximum measurement time was hardware
limited to about 3.8 seconds. The RF data matrix obtained from the system was
a 3D function of depth (r), time (t) and position along the probe (z).

5.2.4 Data processing

The RF data were processed on a PC and computations were performed with
Matlab (The MathWorks, Natick, MA, USA). After removal of the DC component
of the RF signals, a 4th order Butterworth band pass filter (4.2 MHz and 12.5
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MHz) was applied. For each data point, a 4th order 20 Hz Butterworth high pass
filter was applied in the temporal direction to suppress static and slow moving
objects (e.g. wall reverberations).

After identification of the vessel-lumen interface by means of a sustain attack
filter (Meinders et al., 2001), data windows of 4.4(z) x 0.2(r) mm at 50% overlap
were applied to the filtered RF data. The cross correlation based UPV method,
as introduced in Chapter 3, was applied to assess the axial velocity distribution
of the flow through the tube. This resulted in 2816 instantaneous velocity profile
estimations, sampled at 730 Hz.

5.2.5 Velocity assessment

The stationary flow was generated with a constant head system positioned be-
tween the stationary pump and the inlet of the phantom vessel to attenuate possi-
ble flow oscillations caused by the stationary pump. By varying the resistance at
the outlet of the phantom vessel, stationary flow rates varying from 0.15 lmin−1

to 1.15 lmin−1 were generated, which corresponded to 50 < Re < 520, in which
the Reynolds number, Re, is defined as:

Re =
2av̄ρ

η(γ̇char)
, (5.2)

where v̄ is the average axial velocity and ρ the BMF density. The effect of the
non-Newtonian properties of the BMF was taken into account by incorporating
the viscosity at the characteristic shear rate: η = η̇(γchar). The characteristic
shear rate (Gijsen et al., 1999b) was defined here as

γ̇char =
2Q

πa3
, (5.3)

in which Q is flow through the vessel and a, the radius of the vessel. Flow in
curved geometries is characterized by the Dean number:

D = 4Re
√

2δ, (5.4)

in which Re is the Reynolds number and δ the curvature ratio. The flow in the
tube with δ = 0.01 was characterized by a Dean number 30 < D < 300, the tube
with δ = 0.02, by 50 < D < 400. Volume flow rates were measured by means of
the Transonic flow probe, which was calibrated before each measurement using a
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stopwatch and a measuring beaker to collect steady flow. For each flow rate an ul-
trasound measurement was performed. The RF data were filtered as described in
the previous section, subsequently the UPV method was applied. A median filter
with a temporal and spatial window size of respectively, 4 ·10−3 s and 6.9 ·10−5 m,
was applied to remove outliers.

For the non-stationary flow measurements, a pulsatile flow waveform (see Figure
5.8) with a cycle time of 1 s, a mean of 0.7 lmin−1 and a peak flow of about
1.6 lmin−1 was generated by superimposing a flow pulse of the piston pump on a
stationary flow component generated by the stationary pump. The resistance at
the outlet was set high enough to prevent collapse of the vessel and low enough
to induce low pressures, leading to negligibly small vessel wall motion and de-
formation. The stationary flow measurement was performed using the δ = 0.02
geometry. To circumvent too large displacements of the tube due to the pulsatile
pressure wave, the curved section of the vessel was fixed in space by placing the
tube in an agar gel (1 wt% agar in water).
The generated flow waveform corresponded to physiologically relevant average and
peak Reynolds numbers, equal to 300 and 900 respectively (Ku, 1983). For the
flow in the curved section this corresponded to an average and peak Dean number,
equal to 240 and 720 respectively. For the calculation of the Womersley parameter,

α = a
√

ωρ/η, it was assumed that η = η( ˙̄γchar) = η( 2Q̄
πa3 ) ≈ 5 · 10−3 kgm−1s−1.

For the first harmonic, the Womersley parameter was found to be 4.5.
Using LabVIEW, the piston pump was programmed to generate 30 beats. Si-
multaneously, the flow was measured and a trigger signal was generated. During
these 30 beats, 3.8 seconds of fast B-mode RF data were obtained for offline pro-
cessing. The trigger signal was used to synchronize the flow measurement with
the RF-data. The RF-data were filtered as described in the previous section. A
median filter with a temporal and spatial window size of respectively, 4·10−3 s and
6.9 · 10−5 m, was applied to remove outliers. A low pass, zero-phase Butterworth
filter with a cutoff frequency of 40 Hz was applied to suppress high frequency
noise.

A finite-element CFD model of a rigid walled curved vessel (Beulen et al., 2009;
van de Vosse et al., 2003) (Chapter 2) was applied to calculate the time-dependent
velocity distribution across the vessel. The shear rate dependency of the viscosity
was incorporated by implementing the Carreau-Yasuda model (5.1), using the
parameters that were presented in Table 3.1. For the boundary conditions, at the
inlet, the flow as assessed in the experiments was prescribed. At the walls, the
no-slip boundary condition was applied. The results of the instantaneous velocity
profile measurements were compared with the CFD computations.
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5.2.6 Flow assessment

Volume flow was estimated from the measured axial velocity profiles by applica-
tion of the cos θ-method (Chapter 4) and the Poiseuille and Womersley approx-
imations. For the cos θ-method, the measured velocity profile was divided into
two equal parts at the centreline. Each part of the profile was integrated over
half of the surface of the tube, based on the measured radius, as if it were an axi-
symmetric profile (Figure 5.8). The volume flow was approximated by summation
of both contributions:

Q = π

∫ a

0

v+(r)rdr + π

∫ a

0

v−(r)rdr. (5.5)
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Figure 5.3: Schematical explanation of the integration method: the measured
axial velocity profile is divided into two equal parts at the centreline, v−(r) (left)
and v+(r) (right). Each part is integrated over half the surface of the tube as if it
were an axi-symmetric profile. The volume flow is approximated by summation
of both contributions.

For Doppler velocity measurements, the exact position of the vessel walls, and
thus the position of the centre of the vessel, are not known. For that reason it is
often assumed that the centreline velocity is equal to the maximum velocity mea-
sured over the cross section of the artery (Fraser et al., 2008). Accordingly, for
the Poiseuille approximation, the measured velocity profile was approximated by
a parabolic velocity profile with a maximum velocity equal to the measured maxi-
mum velocity. For the Womersley approximation, the inverse Womersley method
(Cezeaux and Grondelle, 1997) was applied to determine the flow rate from the
measured maximum velocity. All three flow approximations were compared to
the flow as assessed directly during the measurement.
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5.2.7 Sensitivity Analysis

For application of the flow approximation methods it is frequently assumed that
the acquired velocity distribution is obtained by measuring exactly through the
centre of the vessel. However, in clinical practice, the exact orientation of the
ultrasound beam, with respect to the cross section of the vessel, is not known and
varies for each measurement. Depending on the shape of the velocity distribution
and the approximation method applied, these uncertainties in positioning can
result in significant misestimates in the flow deduced. In order to obtain an esti-
mate of these deviations, the Poiseuille, Womersley and cos θ flow approximation
methods were applied to CFD derived velocity profiles. Contrary to an experi-
mental investigation of the sensitivity, a CFD based analysis allows to eliminate
the influence of measurement errors in velocity profile and probe positioning on
the flow approximations and thus allows to solely focus on the performance of the
approximation methods.
At the inlet of the CFD model, the flow, as assessed in the non-stationary flow
experiment, was prescribed, at the walls, the no-slip boundary condition was ap-
plied. It is assumed that the velocity profile is measured over a line oriented at
an angle Φ with respect to the symmetry plane (θ = 0) at a distance d from the
centre of the cross section, perpendicularly positioned to the centre line of the
vessel (Figure 5.4). In this analysis, the cross-section of the ultrasound beam is
assumed to be constant and negligibly small.

d

ultrasound beam

vessel wall

Poiseuille approximation

Womersley approximation

v

r

Figure 5.4: Schematic overview showing the apparent velocity profile (input for
the cos θ-approximation) and the Poiseuile and Womersley approximations (based
on the apparent maximum velocity) for an axial velocity assessment for which the
ultrasound beam crosses the vessel at an agle Φ and a distance d, perpendicularly
to the centerline.

The velocity profile was determined for 0 ≤ Φ ≤ 2π, with steps of π/18, and
0 ≤ d ≤ a/2, with steps of a/36. For each combination of Φ and d, the appar-
ent velocity profile was divided into two equal parts at the apparent centreline.
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Subsequently, the cos θ-method was applied to determine the flow. Furthermore,
the apparent maximum velocity was applied as an input for the Poiseuille and
Womersley based approximations. After applying a low pass, zero phase Butter-
worth filter with a cutoff frequency of 40 Hz, the resulting flow waveforms were
analysed by comparing the minimum, maximum and mean flow, pulsatility index
and rise time to the corresponding properties of the prescribed flow waveform
(Leguy et al., 2009). The pulsatility index was defined as the ratio of the dif-
ference between maximum and minimum flow and the temporal averaged flow.
The rise time was defined as the time difference between the time-point with the
maximum second derivative and the time-point with the maximum flow value.
For the analysis it was assumed that differences less than 10 % between prop-
erties derived from the reference flow and integration based flow waveform were
adequate for in-vivo application.

5.3 Results

5.3.1 Stationary flow

A comparison between the mean velocity profiles for the ultrasound measurement
and the CFD solution of the velocity profile is presented in Figure 5.5. The re-
sults were non-dimensionalized by the radius, a, of the vessel. The ultrasound
transducer was located at r/a ≈ −5.
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Figure 5.5: Comparison of the ultrasound measurement (·) and the CFD velocity
profile (−) for both the δ = 0.01 and δ = 0.02 geometry.

The measured velocity profiles agree quite well with the calculated velocity pro-
files. The root mean square value of the deviation between the measured and
calculated velocity profile is on average 1.7 · 10−2 ms−1 for the measurements
performed in the δ = 0.01 geometry and 2.4 · 10−2 ms−1 for the measurements
performed in the δ = 0.02 geometry. For the δ = 0.01 geometry, the shift of the
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maximum velocity towards the outside of the bend appears to be less pronounced
for the measured profiles than for the calculated profiles.

The volume flow is estimated from the measured asymmetric axial velocity profiles
by means of the cos θ and the Poiseuille flow estimation method. A comparison
of the integration based flow estimates and the reference flow measurement by
the flow probe for both the δ = 0.01 and δ = 0.02 geometry is presented in Figure
5.6.
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Figure 5.6: Comparison of the flow estimation based on the cos θ (∗) and the
Poiseuille method (△) to the reference flow measurement for both the δ = 0.01 and
δ = 0.02 geometry. Additionally, the flow is determined from the CFD calculated
velocity profiles using the cos θ (◦) and the Poiseuille-method (⋆).

A linear fit shows that for the δ = 0.01 curved vessel, the ratio between the
cos θ-based flow estimate and direct flow measurement equals 0.97± 0.03, with a
constant flow underestimate of −0.03± 0.03 lmin−1. For the δ = 0.02 curved ves-
sel, the ratio between the cos θ-based flow estimate and direct flow measurement
equals 0.88±0.06, with a constant flow underestimate of −0.01±0.06 lmin−1. The
CFD based flow estimates show that especially at high Dean and δ the cos θ inte-
gration method slightly underestimates the flow (about 5% for qref ≈ 1.1 lmin−1).
At low flow rates, the deviation is negligible. At the lowest flow rates, the de-
viations found for the Poiseuille approximation are comparable to the deviations
found for the cos θ method. However, for the Poiseuille approximation, these
deviations increase to 20% for the high flow rates (qref ≈ 1.1 lmin−1).

5.3.2 Non-stationary flow

A comparison between the instantaneous velocity profile measurement and the
CFD solution of the velocity profile is presented in Figure 5.8. The velocity
profiles are shown for 8 distinct phases in the period in Figure 5.7. The results
are non-dimensionalized by the radius, a of the vessel. Again, the ultrasound
transducer was located at r/a ≈ −5
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Figure 5.7: Comparison of the ultrasound measurement and the calculated veloc-
ity profile (◦, ultrasound measurement; −, CFD calculation).
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Overall, the measurements agree very well with the calculated profiles, although
some deviations occur at peak systole. The volume flow is estimated from the
measured asymmetric axial velocity profiles by means of the cos θ-method, the
Poiseuille and Womersley approximations.
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Figure 5.8: Comparison between the flow probe measurement and the cos θ,
Poiseuille and Womersley based flow approximations.

The cos θ-based flow approximation agrees well with the reference flow, allthough
some deviation occurs in the systolic peak. The Poiseuille and Womersley based
flow approximations clearly underestimate the flow, especially in peak systole.

5.3.3 Sensitivity analysis

The results of the comparison of the minimum, maximum and mean flow and
the pulsatility index between reference flow waveform and integration based flow
waveform (Figure 5.9, 5.10 and 5.11) show the absolute percentual deviation be-
tween reference and integration based flow waveform for the previous mentioned
properties for different combination of angle, Φ, and offset, d. Regions with an
absolute deviation above 10 % are shaded.
The contour plots in Figure 5.9 indicate that for the cos θ-method, Qmin, Qmean

and the pulsatility index can be assessed with an estimation error of less than
10% for the major part of the (Φ,d)-space. However, the estimation of the maxi-
mum flow, Qmax, is found to be more sensitive for increasing d: for d > a/10, the
deviation is already higher than 10%.
The contour plots presented in Figure 5.10 and 5.11 show that both the Poiseuille
and Womersley approximation can only be applied to adequately assess the mini-
mum flow. For the maximum and mean flow and the pulsatility index, deviations
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between reference flow and integration based flow are above 10 % for the major
part of the (Φ,d)-space.
For the rise time it is found that for the cos θ-method the mean deviation is 4%
(max 8%) compared to respectively 1% (max 8%) and 6% (max 15%) for the
Poiseuille and Womersley approximations with respect to the reference flow.
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Figure 5.9: Absolute deviation between the reference flow and the cos θ-based
flow estimate for offset d and angle Φ. Deviations are expressed in percentages,
regions with deviations larger than 10% are shaded.

5.4 Discussion

For the stationary flow measurements, the shift of the maximum velocity towards
the outside of the bend appears to be less pronounced for the measured profiles
than for the calculated profiles. This deviation can be caused by the fact that the
flow is not able to develop fully in the δ = 0.01 geometry. It is difficult to position
the curved sections of the vessel exactly in a horizontal plane, especially for the
δ = 0.01 geometry. Small vertical deviations from the horizontal plane can already
result in local vertical deviations which are in the same order as the curvature
of the vessel. This prevents full flow development and can cause deviations from
the CFD-calculated profiles. Additionally, for this weakly curved geometry, the
measurement location might be not far enough from the entrance of the curved
section to observe fully developed flow.
Overall, the deviations found between calculated and measured velocity profiles
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Figure 5.10: Absolute deviation between the reference flow and Poiseuille based
flow estimate for offset d and angle Φ. Deviations are expressed in percentages,
regions with deviations larger than 10% are shaded.
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Figure 5.11: Absolute deviation between the reference flow and Womersley based
flow estimate for offset d and angle Φ. Deviations are expressed in percentages,
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are comparable to the deviations found between calculated and measured velocity
profiles in straight geometries (Chapter 3). Both for the δ = 0.01 and δ = 0.02
geometry, the deviation between the velocity profile measurements and calculated
velocity profile increases in the near-wall region, 0.9 < |r|/a < 1.0 and especially
near the anterior wall (r/a = −1), probably due to the fact that the signal of the
wall dominates the scattering signal in this region. Additionally, the high spatial
velocity gradients can cause a decrease in accuracy of the velocity estimation.
Furthermore, a small misestimate of the rheologic properties of the BMF can
have a significant influence in the near wall region, since close to the wall, the
shear rate increases dramatically. This causes deviations in the calculated velocity
profile, especially in the near wall region.

For the measurements performed in the δ = 0.01 geometry, the cos θ-method
proves to be quite accurate, with an average deviation of 3% with respect to the
reference flow. For the measurements performed in the δ = 0.02 geometry this
deviation increases to 12%. Deviations found between cos θ-approximation and
reference flow are comparable to the deviations reported by Verkaik et al. (2009)
for Newtonian flow. The cos θ-method is found to provide a much more accurate
flow estimate than the Poiseuille approximation, especially for high flow rates
(increasing Dean number) and increasing δ. This is to be expected, since the
Poiseuille method offers a bad approximation for the flattened velocity profiles
that occur for shear thinning fluids.

The analysis of the velocity profiles calculated by the CFD model, has shown that
the maximum deviation with respect to the reference flow, induced by the cos θ-
method is about 5% for the examined flow rates. The larger deviation found in
the measurements (12% for the δ = 0.02 geometry) can be caused by errors in the
measured axial velocity profile. This can be expected from the cross-correlation
algorithm since for each data window the average velocity is determined, in the
case of large radial velocity gradients this can result in an underestimate of the
velocity. Furthermore, close to the wall, the velocity profiles are distorted by the
vicinity of the wall, also causing an underestimation of the velocity and thus an
underestimation of the flow. Additionally, transverse velocity components, such
as secondary velocity components which especially occur in curved vessels, can
have a slight influence on the performance of the cross correlation based velocity
estimate.

For the non-stationary flow measurements, the comparison between the velocity
profile measurements and CFD computations shows that the cross correlation
based ultrasonic perpendicular velocimetry is able to cope with the relatively
high temporal and spatial velocity gradients which occur in non-stationary flow
in curved vessels, allowing an accurate assessment of axial velocity distribution
for non-stationary flow in curved vessels. No beat to beat averaging is required
to acquire usable velocity profiles.
In the systolic peak, the velocity is slightly underestimated. It appears as if a cut
off for the maximum velocity occurs. This is probably caused by the fact that the
displacement between two succesive fast B-mode frames is too large. According to
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the one-quarter rule (Keane and Adrian, 1992), the maximum axial displacement
of particles in two successive frames is WFOV /4, in which WFOV is the width of
the field of view. For ultrasound cross correlation based measurements (Liu et al.,
2008), this results in a maximum axial velocity equal to:

vmax ≈ fWFOV

4
. (5.6)

For the ultrasound system employed in this research, f is equal to 730 Hz, resulting
in vmax ≈ 0.8 ms−1, which is about equal to the cutoff value found in the
velocity measurements. The only possibility to increase the maximum measurable
velocity, without decreasing the axial resolution (increasing WFOV ), is to increase
f . Considering the rapid development of ultrasound systems, it is to be expected
that in near future ultrasound systems with increased frame rate will allow the
assessment of higher maximum velocities.

Although the cos θ-method was derived for flow estimation for stationary New-
tonian flow through weakly curved vessels, it is found that this method is also
successfully applicable to non-Newtonian flow for physiologically relevant flow
and geometries. The average deviation between the cos θ-integration based flow
estimate and the reference flow is about 5% (max about 20%), compared to an
average deviation of 20% (max about 40%) for both the Poiseuille and Womersley
approximations.

For a successful clinical application it is required that the flow estimation method
is not too sensitive to the exact orientation of the measured velocity profile with
respect to the centre line of the cross section. The sensitivity analysis shows that
the considered approximation methods can all be successfully applied to estimate
the minimum flow rate with an error of less than 10%. However, only the cos θ-
method is able to estimate the maximum, minimum and mean flow rate and the
pulsatility index with an estimation error of less than 10%.
For the cos θ-method it was found that in order to obtain an error of less than 10%
in minimum flow, mean flow and pulsatility index, the beam should be positioned
at d < a/4. For the maximum flow estimate is found that the exact positioning
is more strict: for d > a/10, the deviation is already higher than 10%. An
experienced ultrasound operator should be able to locate the centre of a vessel
within a 10% accuracy by finding the maximum possible vessel diameter and/or
the maximum signal. This allows the cos θ-method to be applied for an accurate
flow estimation. It should be noted that in practice, the ultrasound beam has
a finite cross section. As a result, the estimated velocity always represents an
average velocity over a certain measurement volume.
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5.5 Conclusion

The UPV method has been applied for an accurate assessment of the axial velocity
profile for both steady and un-steady non-Newtonian flow in weakly curved vessels
in a phantom setup. A comparison between measurements and CFD calculations
of the velocity profile shows that the UPV-model allows an accurate assessment
of the axial velocity distribution. The deviation between the time averaged ul-
trasound velocity profile measurement and the CFD solution is on average about
2 cms−1.
For flow estimation, the cos θ-method, Poiseuille and Womersley approximation
have been applied to the measured velocity profiles. For stationary flow, the max-
imal deviation of the cos θ-method derived flow rate compared to the reference
flow is 12% whereas the Poiseuille approximation results in deviations up to 20%.
For non-stationary flow, the average error between the cos θ-integration based
flow estimate and reference flow is about 5%, compared to an average deviation
of 20% for both the Poiseuille and Womersley approximations.
A CFD-based comparison of the Poiseuille, Womersley and cos θ-integration
methods indicates the Poiseuille and Womersley methods can only be applied
to accurately assess minimum flow (error < 10%). The cos θ-method however,
is found to allow accurate (error < 10%) assessment of the minimum, mean and
maximum flow for velocity profiles assessed at d < a/10 from the centreline, in-
dependent on the angle Φ.
Overall, ultrasonic perpendicular velocimetry, combined with the cos θ-integration
method, proves to provide an accurate flow estimation for flow in slightly curved
arteries such as the common carotid artery (CCA). Furthermore, the results show
that an accurate flow estimation is feasible, independent on the orientation of the
measured velocity profile with respect to the plane of symmetry, even when not
exactly measured through the centreline of the vessel. The study shows that ultra-
sonic perpendicular velocity assessment method combined with the cos θ-method
could be a valuable asset for accurate flow assessment in superficial arteries such
as the brachial artery and the CCA.
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Chapter 6

Towards a non-invasive
pressure assessment
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6.1 Introduction

Diseases involving the heart and blood vessels (arteries and veins), often referred
to as cardiovascular disease (CVD), are a common cause of death in adults in
the western society (Petersen et al., 2005). The most common type of CVD
is atherosclerosis, a disease in which, locally, plaques build up at the inside of
arteries, resulting in a decrease of vessel compliance, causing an elevated pres-
sure. At a later stage, the plaques can rupture, causing local narrowing of the
vessel lumen, or stenosis, resulting in an increased flow resistance, and conse-
quently, a reduced, possibly insufficient, blood supply to the tissue and organs fed
by the vessel.
In clinical practice, ultrasound is frequently applied to non-invasively assess blood
velocity, blood volume flow and blood vessel wall properties such as vessel wall
thickness and vessel diameter waveforms (Hoeks et al., 1990, 1997; Brands et al.,
1999). To convert these properties into relevant biomechanical properties that
are related to CVD, such as elastic modulus and compliance of the vessel wall
(Reneman and Hoeks, 2000; Meinders et al., 2000; Wilson et al., 1995), local
pressure has to be assessed simultaneously with vessel wall thickness and ves-
sel diameter waveforms. Additionally, accurate estimates of vascular impedance
(transfer function between pressure and blood flow) can be a valuable tool for
the estimation of the condition of the vessel, e.g., to diagnose stenosis. Studies
of arterial impedance in humans, however, are hampered by the lack of reliable
non-invasive techniques to simultaneously record pressure and flow locally as a
function of time. Local pressure assessment has great potential for improving the
ability to diagnose and monitor CVD.
The most straightforward approach to estimate local pressure would be to insert
a pressure catheter into the artery under investigation. However, this influences
local flow and geometry, and most importantly, for routine examination, a non-
invasive method is highly preferred. Non-invasively, the pressure can only be
estimated reliably at a few arterial locations, e.g. in the radial and digital artery,
by performing a tonometer measurement. Pressure waveforms estimated at such
locations might be applied as a substitute for the local pressure at a location
where a non-invasive estimation is impossible. However, this is only an approx-
imation, since the pressure waveform changes with location in the arterial tree
(McDonald, 1974). Additionally, the assessment at two locations results in phase
errors (Hoeks et al., 2000). It has been suggested to use a transfer function to
derive the central pressure from the peripheral one (Chen et al., 1997). Although
the use of a transfer function has proven to be useful (Milasseau et al., 2000;
O´Rourke, 1999), it has the inherent problem that vascular parameters (mainly
diameter and compliance) of individuals should match that of a reference popu-
lation (Hoeks et al., 2003), whereas all available data indicate that the dynamic
characteristics of central arteries depend on age and vascular condition. Addition-
ally, the phase difference between diameter and pressure still remains. Deriving
the blood pressure waveform from the diameter waveform circumvents the intro-
duction of possible phase differences and avoids the use of generalized transfer
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functions (Meinders and Hoeks, 2004). By simply calibrating the mean and mini-
mum arterial diameter to end diastolic and mean pressure, errors in carotid pulse
pressure of only 1.6 mmHg were obtained (van Bortel et al., 2001), despite the
linear relationship assumed between diameter and pressure. In the method de-
veloped by Meinders and Hoeks (2004), a more realistic exponential relationship
between arterial cross section and pressure (van Loon et al., 1977; Hayashi et al.,
1980; Powalowski and Pensko, 1988) is assumed to increase accuracy.
Although the above described methods allow an accurate estimation of local pres-
sure, these methods still consist of the assessment of a waveform closely related
to pressure which is subsequently scaled by an additional direct pressure mea-
surement to gain a pressure estimate. However, direct local pressure estimation
by a single measurement is preferable. This can be established by combining
knowledge of the mechanical behaviour of the arterial wall with an assessment of
vessel wall motion. Due to periodic volume ejection of blood from the heart into
the elastic arteries, pressure and flow waves travel through the arterial system.
Waves propagate from the heart to the periphery, but also, reflected waves travel
from the periphery back to the heart (Westerhof et al., 1972). The speed at which
these flow and pressure pulses travel, the pulse wave velocity (PWV), c, is related
to the mechanical properties of the vessel by:

c =

√

A

ρ

dp

dA
=

√

A

ρ

1

C
with C = dA/dp (6.1)

which is a function of the cross sectional area of the artery, A, the density of
the blood ρ and the compliance of the artery, C (Milnor, 1989; McDonald, 1974).
From (6.1) it can be derived that the local pressure, p(t), with respect to an
unknown constant pressure offset, p0, is given by:

p(t) − p0 =

∫ A(t)

A(0)

CdA =

∫ A(t)

A(0)

A

ρc2
dA, (6.2)

from which follows that local pressure can be estimated from a simultaneous as-
sessment of vessel cross-sectional area and PWV.
Estimation of PWV can either be performed globally or locally. In the global ap-
proach, the transit time over a long trajectory of the arterial tree, often composed
of both elastic and muscular arteries, is measured, resulting in an average PWV.
Therefore, PWV is preferably assessed over a short segment of an artery, thus al-
lowing estimation of local in stead of average material properties. In a reflection
free system, the local PWV can be obtained from two pressure measurements, one
at either end of the segment of interest. However, when reflections are present,
the reflected waves will affect the measurement, resulting in an apparent PWV
estimate. To resolve this problem, (Taylor, 1959) developed a method in which
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a third pressure measurement is added, located half way between the two ex-
isting measurement positions, which allows to estimate the true PWV. Bertram
et al. (1997) applied the 2 and 3-point methods to pressure signals, acquired both
in-vivo and in an experimental setup, and showed that accurate estimation of
PWV in the presence of reflections by means of the 3-point method is possible.
Cross correlation based methods, in which the time shift between signals, e.g.
vessel wall velocity (Struijk et al., 1992), assessed at two measurement locations,
is determined, are also hampered by the presence of reflections. However, the
influence of reflections can be minimized by looking at characteristic points in the
waveform which are not too much influenced by reflections, e.g. the systolic foot
(McDonald, 1974; Hermeling et al., 2007).
A few methods exist in which the PWV can be estimated during the reflection free
period of the cardiac cycle, e.g., at the start of systole. The method of character-
istics (Parker and Jones, 1990), which is based on the one-dimensional equations
of flow in elastic tubes without viscous losses, shows that changes in pressure, dp,
are related to changes in velocity, dU , by means of the ’water hammer’ equation:
dp± = ±ρcdU±, in which the ’+’ sign refers to forward travelling waves and the
’−’ sign refers to backward waves. For reflection-free periods, this indicates a
linear relation between pressure and average velocity. This allows to straightfor-
wardly identify the reflection-free period in a PU-loop and subsequently to easily
estimate the PWV (Khir et al., 2001). However, this requires a simultaneous
assessment of blood flow and pressure, acquired using equipment with similar fre-
quency characteristics (Hoeks et al., 2000). Since, in this research, the aim is to
estimate pressure based on PWV-assessment, this method for PWV estimation is
not usable. However, Rabben et al. (2004) proposed a similar method, the QA-
method, in which the local PWV in the artery is estimated during a reflection free
period of the cardiac cycle as the ratio between the change in flow and the change
in cross-sectional area. Again, the reflection free period can be easily identified
by a linear section in the QA-loop. In the absence of reflections, the characteristic
impedance, Zc, is related to compliance, C, cross sectional area, A0, and volume
flow, Q, by:

Zc =
dp

dQ
=

dp

dA

dA

dQ
=

1

C

dA

dQ
. (6.3)

Additionally, the solution from the one-dimensional wave equation (Milnor, 1989)
shows that the characteristic impedance is also related to distensibility by:

Zc =

√

ρ

A

1

C
. (6.4)

By multiplying (6.1) and (6.4) and subsequently inserting (6.3), it can be shown
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that the PWV is given by:

c =
dQ

dA
. (6.5)

In the study by Rabben et al. (2004), the cross sectional area was estimated
from M-mode data (Rabben et al., 2002) by assuming an axi-symmetric geome-
try. The flow was determined from a Doppler ultrasound velocity measurement,
acquired at the same position as the M-mode data, by application of Womersley
theory for pulsatile flow in straight tubes (Womersley, 1955). Vessel wall diame-
ter and blood velocity were acquired subsequently and several cardiac cycles were
averaged in order to obtain smooth diameter and flow waveforms. As a result,
temporal misalignment between the area and flow curves can result in errors in the
PWV estimate. Williams et al. (2005, 2007) estimated both flow and diameter
waveforms from color flow coded B-mode images, circumventing temporal mis-
alignment errors. However, the assessed flow waveforms were scaled afterwards
using an additional Doppler measurement. Additionally, the determination of the
vessel area, which also influences the flow, was affected by the insonation angle.
The recently validated ultrasound velocity estimation technique (Chapter 3 and
5), combined with the cos θ-integration model (Verkaik et al., 2009) (Chapter
4), enables an accurate assessment of volume flow in both straight and curved
vessels at high temporal resolution. Additionally, due to the applied perpendicu-
lar insonation angle of the ultrasound beam, the wall diameter of the vessel can
be accurately assessed simultaneously, from the same measurement. This renders
this technique promising for local PWV-assessment based on the QA-method, and
subsequently pressure estimation by application of (6.2), allowing simultaneous
flow and pressure estimation based on a single measurement. Additionally, appli-
cation of the 3-point method to wall motion as assessed at several points along
the vessel, by means of the linear array transducer, can be a promising method
for PWV estimation. This method enables PWV estimation in the presence of
reflections, circumventing the need to find reflection free periods in the cardiac
cycle, subsequently resulting in a more straightforward and possibly more accu-
rate PWV assessment.
The aim of this study is to evaluate the QA-method for local PWV assessment
and subsequently local pressure estimation, based on perpendicular measurement
of the flow and diameter waveforms. Additionally, it is looked into whether vessel
wall motion can be applied as an input for PWV assessment by means of the
3-point method. Measurements are performed in a phantom setup. This allows
to compare the estimated PWV, pressure and flow waveforms with corresponing
values and waveforms obtained using reference measurements.
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6.2 Material and methods

6.2.1 Wave propagation

The one-dimensional equations that describe the pressure and flow in distensible
tubes can be derived by integrating the continuity and momentum equation over
a cross section of the tube (Pedley, 1980). Under the assumption that the wave
length is large compared to the diameter of the tube, that the phase velocity is
large compared to the mean fluid velocity and that the wall motion is longitudi-
nally constrained, the one dimensional mass and momentum equations are given
by (Milnor, 1989):

C0
∂p

∂t
+

∂q

∂z
= 0

ρ
∂q

∂t
+ A0

∂p

∂z
= −f0q

(6.6)

with f0 a friction function defined as:

f0(ω) = iωρ
F10(ω)

1 − F10(ω)
with F10(α) =

2J1(i
3/2α)

i3/2αJ0(i3/2α)
. (6.7)

F10(α) is the Womersley function with J0 and J1, Bessel functions of the first kind
of order 0 and 1, in which α is the Womersley parameter, defined as α =

√

ωρ/η.
Equations (6.6) can be solved in the frequency domain by substituting harmonic
solutions:

p(ω, z, t) = p̂(ω)ei(ωt−kz) (6.8)

q(ω, z, t) = q̂(ω)ei(ωt−kz) (6.9)

where p̂ and q̂ are the complex amplitudes of the pressure and flow respectively,
and k(ω) is the complex wave number, defined as:

k(ω) =
ω

c
− i

γ(ω)

λ
, (6.10)
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in which c denotes the phase velocity, λ = 2πc/ω the wave length and the ex-
ponential decrease of the amplitude of the waves is described by the attenuation
constant γ(ω).

Substitution of (6.8) and (6.9) in (6.6) yields:

iωCp̂ − ik(ω)q̂ = 0

−ik(ω)A0p̂ + (iωρ + f0)q̂ = 0,
(6.11)

from which the following expression for the wave number k is found after setting
the determinant of the resulting set equal to zero:

k(ω) = ± ω

c0

√

1

1 − F10(ω)
= ±k0

√

1

1 − F10(ω)
, (6.12)

in which c0 denotes the Moens-Korteweg wave speed, which is given by c0 =
√

A0/ρC. Again, the wave number is complex. The phase velocity and attenua-
tion constant are presented in Figure 6.1.
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Figure 6.1: Phase velocity c/c0 and attenuation constant γ/2π as a function of α.

For large Womersley numbers, the wave number k(ω) is real, indicating that there
is no attenuation, and the phase velocity equals the Moens-Korteweg wave speed.

6.2.2 Phantom setup

In a phantom setup (Figure 6.2), a shear thinning blood mimicking fluid (BMF)
with both acoustical and mechanical properties similar to blood (Chapter 3), was
pumped through a phantom vessel. A polyurethane tube with a radius, a, of
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12.5 mm, a wall thickness of 0.1 mm and a length of about 1.5 m was used as a
phantom vessel. The phantom vessel was fully submerged in a reservoir of water
to prevent the vessel from deforming under influence of gravity. Additionally, the
water acted as a conductor of sound.

Ultrasound

Art.Lab

PC

LabVIEW
Trigger

BMF

Flowprobe

Water

Impedance

Reservoir

z z z

C

R Rp

Figure 6.2: Schematic overview of the experimental setup.

At the inlet of the phantom vessel, a pulsatile flow waveform with a cycle time
of 1 s, a mean of about 0.7 lmin−1 and a peak flow of about 8 lmin−1 was gener-
ated by means of a servo-actuator operated piston pump (home developed), from
which the trajectory was computer controlled using LabView software (National
Instruments, Austin, TX, USA). For the calculation of the Womersley parameter,
α, the viscosity at characteristic shear rate, η = η(γ̇char) = η(2Q̄/πa3), was taken.
The characteristic shear rate was based on a Poiseuille profile like in Gijsen et al.
(1999b). For the first harmonic, the Womersley parameter, α, was approximately
equal to 10, from which according to the theory introduced in Section 6.2.1 it can
be concluded that for the pressure waves travelling through the phantom setup,
the PWV is approximately equal to the Moens-Korteweg wave speed.
The vessel was terminated by an impedance from which the BMF flows back
through a reservoir, to the inlet of the pump. For the terminal impedance, a
Windkessel model was applied. The viscous dissipation in the distal vessel, R,
and the viscous dissipation in the distal capillary bed Rp, were modelled by local
narrowing, the compliance of the arterial system, C, was modelled by an air-
chamber. The impedance was set such that the maximum wall distension of the
polyurethane tube was about 0.5 mm.
The ultrasound probe was positioned at about 0.75 m from the inlet of the tube,
in perpendicular orientation with respect to the tube, such that the mechanical
acoustic focus was at the centre of the vessel. At about 1 cm upstream of the
ultrasound probe, an ultrasonic flow probe (10PAA, Transonic, NY, USA) was
positioned to measure the flow through the tube. Three pressure wires (Pres-
sureWire, Radi, Uppsala, Sweden) were positioned at equidistant axial positions
(z1, z2 and z3) inside the vessel. The centre pressure wire was positioned near
the ultrasonic flow probe, the other two were positioned equidistantly at proximal
and distal locations.
The data from the flow probe and pressure wires measurements were acquired si-
multaneously with the data from the ultrasound scanner using a common trigger



Material and methods 103

signal generated by a PC, using LabVIEW data acquisition software.

6.2.3 Data acquisition

The commercially available Picus Art.Lab ultrasound system (ESAOTE Europe,
Maastricht, The Netherlands) was used to collect raw RF-data for offline process-
ing. The system was equipped with a 7.5 MHz linear array transducer of 40 mm,
consisting of 128 transducers. This results in a transducer pitch, δzp, approxi-
mately equal to 0.3125 mm. The RF data were sampled at 33 MHz (fs) and had
an approximate centre frequency of 6.8 MHz and a bandwidth of 4 MHz.
The ultrasound system was operated in fast B-mode (high frame rate B-mode),
also called multiple M-line mode. In the fast B-mode, 14 M-mode lines are pro-
duced, composing a single frame. The distance between the employed M-lines
is equidistant and can be set between a minimum value of ∆zp = 1 × δzp =
0.3125 mm to a maximum of ∆zp = 3.5 × δzp = 1.0938 mm. The frame rate of
the ultrasound system is determined by the number of M-lines and the pulse rep-
etition frequency, the frequency at which individual M-mode lines are acquired,
which depends on the depth setting of ultrasound system. In this study, the
depth was set to 50 mm, which resulted in an pulse repetition frequency fpr, of
10211 Hz and a frame rate f , of 730 Hz. The maximum measurement time is
hardware limited to about 3.8 seconds. The RF data matrix obtained from the
system is a 3D function of depth (r), time (t) and position along the probe (z).
To maximize the signal level at the focal point, the electrical focus was set equal
to the mechanical focus, which is fixed at 2 cm from the transducer surface.

6.2.4 Data processing

The RF data were processed on a PC using Matlab (The MathWorks, Natick,
MA, USA). After removal of the DC component of the RF signals, a 4th order
Butterworth band pass filter (4.2 MHz and 12.5 MHz) was applied.
For assessment of vessel wall position, the vessel-lumen interface was identified
by means of a sustain attack filter (Meinders and Hoeks, 2004). Subsequently,
the C3M estimator (Brands et al., 1997) was applied to assess the anterior and
posterior wall velocity for each M-mode line. The dimensions of the data window
for the C3M estimator had a temporal size of 50 ms at an overlap of 40 ms and
a size in depth equal to 330 µm.
For the flow estimation, a 4th order Butterworth high pass filter with a cutoff fre-
quency of 20 Hz was applied in the temporal direction to suppress static and slow
moving objects (e.g. wall reverberations). Data windows of 4.4(z) × 0.2(r) mm
at 50% overlap were applied to the filtered RF data. The cross correlation based
velocity estimation method, as validated in Chapter 3, was applied to assess the
axial velocity distribution of the flow through the tube.



104 Chapter 6

6.2.5 PWV assessment

Peak to peak transit time

In order to obtain a reference value for the PWV, the PWV was estimated by
generating a steep pressure pulse and measuring the transit time over a long
section of the polyurethane tube. Since the polyurethane tube that was applied
has uniform mechanical properties and wall thickness nor tube radius varied, the
local PWV corresponded with the global PWV. For the assessment of the transit
time, the first pressure wire was positioned near the inlet of the tube (z1 = 0 m),
the second 0.15 m downstream (z2 = 0.15 m) and the third pressure near the
outlet of the tube (z3 = 1.28) m.

QA-method

In order to obtain PWV by means of the QA-method, the ultrasound system was
operated in fast B-mode, employing 14 M-lines, generated at the minimum pitch
∆zp = 0.3125 mm. The distance between the employed M-lines was minimized
since for the cross correlation based velocity estimation, an increased pitch results
in de-correlation, deteriorating the velocity estimation. The fast B-mode RF-data
were processed as described in Section 6.2.4. This resulted in 2816 estimations
of the vessel diameter, d(t), and the instantaneous velocity profile, v(r, t) wave-
forms, sampled at 730 Hz. After application of a median filter, with a temporal
and spatial window size of respectively, 4 · 10−3 s and 6.9 · 10−5 m, which was
used to remove outliers from the velocity measurement, the velocity profiles were
integrated to obtain flow, Q(t). To suppress high frequency noise, a low pass But-
terworth filter with a cutoff frequency of 20 Hz was applied, both to the diameter
and flow waveforms. For application of the QA-method it was assumed that the
cross sectional area of the vessel was circular. Consequently, the area waveform,
A(t) was determined from the diameter waveform, by A(t) = πd(t)2/4.

2 and 3-point method

For estimation of PWV by means of the 2 and 3-point methods, the vessel radial
wall position was used as an input. To compensate for global radial vessel motion,
the difference between the anterior and posterior radial wall velocity was used as
the input to estimate the local PWV. To cancel the influence of axial motion on
the wall velocity estimate, the axial motion of the tube was locally constrained
by placing the lower half of the tube in an agar gel. Due to this constraint, the
compliance decreases locally, which results in an increased local PWV. A reference
value for the local PWV was estimated by applying the 2 and 3-point methods
to the pressure signals as assessed using the locally positioned pressure wires.
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For the 2 and 3-point methods, the assessed signal, e.g. the wall velocity or
pressure, was transformed into the frequency domain by means of an FFT. For
each harmonic, ω, the input signal, s, is given by

s(ω, z, t) = ŝ(ω)ei(ωt−kz), (6.13)

with k the complex wave number as defined in (6.10). Assuming that the signals
were reflection free, the complex wave number can be calculated from a simulta-
neous assessment of s at two locations, s1 = s(ω, z1, t) and s2 = s(ω, z2, t), by
means of the two point method:

k2P (ω) =
i

∆z
ln

(

ŝ1(ω)

ŝ2(ω)

)

, (6.14)

in which ∆z is the distance between the measurement locations z1 and z2. When
reflections were present, s needs to be simultaneously assessed at three locations,
s1 = s(ω, z1, t), s2 = s(ω, z2, t) and s3 = s(ω, z3, t), in order to estimate the
complex wave number by means of the three point method (Taylor, 1959):

k3P (ω) =
i

∆z
cosh−1

(

ŝ1(ω) + ŝ3(ω)

2ŝ2(ω)

)

(6.15)

where ∆z is the distance between two adjacent measurement locations, e.g. z1

and z2 or z2 and z3.

For the ultrasound-based assessment of the PWV by means of the 2 and 3-point
methods, the ultrasound system was operated in fast B-mode, resulting in 14 M-
lines (Figure 6.3). The distance between adjacent employed M-lines was set equal
to the maximum value of ∆zp = 1.0938 mm (3.5×δzp), which was favorable since
this maximized the observed phase differences in wall motion, and so increases
the accuracy of the 2 and 3-point methods.

Processing the fast B-mode RF-data, as described in Section 6.2.4, resulted in an
estimate for the wall velocity at 14 locations (corresponding to the 14 M-lines)
along the linear array, for a period of 3.8 s. Since Fourier analysis was required
for application of the 2 and 3 point methods, only 3 s (3 complete periods) of the
wall velocity signals were used.
For the application of the 2 and 3 point methods, the velocity as assessed at
maximally, equidistantially spaced locations (solid lines in Figure 6.3) was used
to estimate the PWV. For the 3-point method, this resulted in the wall velocity
signals assessed at the combinations of transducers: 1, 7 and 13, and 2, 8 and 14
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Figure 6.3: Schematic overview of the employed M-lines (dashed lines) generated
by means of the linear array. At the locations corresponding to the M-lines, the
wall velocity is estimated. For the application of the 2 and 3 point methods, the
velocity as assessed at maximally, equidistantially spaced locations (solid dashed
lines) is used to estimate the PWV.

(Figure 6.3). In order to compare the 2 and 3-point method, the wall velocity
signals as assessed by corresponding transducers were applied for the 2-point
method: 1 and 7, and 2 and 8 (Figure 6.3). The resulting distance between two
adjacent measurement positions is ∆z = 21δzp = 6.6 mm. Since the M-lines are
obtained subsequently, the wall velocity signals s′2 and s′3 need to be corrected
for the time delay with respect to s1 in order to obtain simultaneously assessed
velocity waveforms:

ŝ2 = ŝ′2e
6iω/fP RF

ŝ3 = ŝ′3e
12iω/fP RF

(6.16)

Subsequently (6.14) and (6.15) were applied to obtain the complex wave number.
For each harmonic, the resulting complex wave number was averaged over both
combinations of input signals and over 3 periods.
For the pressure wire-based assessment of the PWV by means of the 2 and 3-point
method, 3 pressure wires, locally positioned at positions, z1, z2 and z3, with an
equidistant spacing of 0.1 m, respectively assess pressure signal p1(t), p2(t) and
p3(t). Subsequently, (6.14) was applied to pressure signals, p1(t) and p2(t), and
(6.15) was applied to pressure signals p1(t), p2(t) and p3(t), to obtain an estimate
of the complex wave number, respectively by the 2 and 3-point method. Resulting
wave numbers were averaged over 3 periods.
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6.2.6 Local pressure estimation

Local pressure was estimated from the simultaneous assessment of the PWV and
the cross sectional area waveform by means of (6.2). However, the integral was
replaced by a cumulative sum, since the diameter waveform, as assessed by means
of ultrasound, was a discrete function:

pn = p0 +
ρc2

A

n
∑

i=1

∆An with ∆An = An+1 − An, (6.17)

in which, pn = p(n∆t) and An = A(n∆t), with ∆t = f−1 and n = 0, 1, 2, ..., N −
1, N , N = 2816.
Local pressure was only estimated for the QA-measurement. The agar gel locally
obstructed deformation of the cross section of the vessel for the 2 and 3-point
measurements, thereby preventing an the accurate estimation of vessel cross sec-
tional area based on diameter measurement, thereby impeding the applicability
of (6.17).

6.3 Results

6.3.1 PWV assessment

Peak to peak transit time

The pressure signals as assessed simultaneously by means of the pressure wires
are presented in Figure 6.4 (top). For each signal, the time point corresponding
to the global maximum is determined and subsequently plotted as a function of
pressure wire position (Figure 6.4, bottom). The PWV is assessed by performing
a least squares linear fit. The PWV, which is equal to the slope of the linear fit,
is found to be: c = 9.4 ± 0.1 ms−1.

QA-method

For three cycles, the cross-sectional area and flow were determined from the ve-
locity and diameter estimation obtained from the RF-data. The resulting area
and flow waveforms and the flow versus area loop are presented in Figure 6.5. The
straight part of the loop corresponds to the reflection-free period of the cycle. By
means of a least squares linear fit of the straight section, which was manually
identified, the slope was found to be 9.4 ± 0.3 ms−1.
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Figure 6.4: In the upper graph, the pressure signals (p1 = p(z1, t), p2 = p(z2, t)
and p3 = p(z3, t)) assessed by means of the pressure wires are presented. For
each signal, the global maximum is indicated by ◦. In the lower graph, the time
point corresponding to the global maximum in each pressure signal is plotted as
a function of the measurement position, z1, z2 and z3. The solid line indicates a
least squares linear fit.

2 and 3-point methods

For the ultrasound-based PWV assessment, the real part of the complex wave
number, as estimated by means of the 2 and 3 point method, is presented in
Figure 6.6. For the 3 point method the deviation in the estimated real part of
the complex wave number is found to be higher than for the 2 point method.
From the wave propagation theory presented in Section 6.2.1 it was concluded
that the PWV in the phantom vessel is approximately constant and equal to
the Moens-Korteweg wave speed, c = c0. As a result, a linear relation between
frequency and real part of the complex wave exists, with a slope equal to 2π/c.
Subsequently, c is estimated by performing a linear fit to the data. For the 2 and
3-point method applied on the vessel wall velocity signal, respectively, a PWV
equal to c = 8.7 ± 0.8 ms−1 and c = 8.6 ± 2.4 ms−1 is found.
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Figure 6.5: Estimated cross sectional area, A(t), flow, Q(t), and flow versus cross-
sectional area loop for 3 cycles. The thick solid line indicated in the QA-loop
represents a linear fit to the straight part of the loop.

As a reference, the 2 and 3-point methods were also applied to the pressure sig-
nals as acquired using the pressure wires. The real part of the estimated average
complex wave number is presented in Figure 6.7. Deviations with respect to the
presumed linear relation between the real part of the complex wave number and
frequency are found to be more for the 2 point method than for the 3 point
method, which is to be expected, since the performance of the 2-point measure-
ment deteriorates in the presence of reflections. By performing a linear fit to the
data, c was estimated to be equal to 10.5± 0.2 ms−1 and 10.3± 0.6 ms−1 for the
3 and 2-point method respectively. A slightly higher PWV with respect to the
PWV as estimated by means of the QA-method is found.

6.3.2 Pressure assessment

For the QA-method, the PWV estimate and the vessel wall diameter waveform
are combined to calculate the local pressure estimate by means of (6.17). The
resulting pressure waveform is presented in Figure 6.8. As a reference, the pressure
as assessed by the pressure wire has been added. The average pressure difference
with respect to the pressure wire measurement is about 0.2 kPa, maximum and
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Figure 6.6: Real part of the complex wave number plotted as a function of the
harmonic as assessed by applying the 3 point method (left) and 2 point method
(right) to wall velocity signals as assessed using ultrasound. The solid lines indi-
cate a linear fit to the data.
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Figure 6.7: Real part of the complex wave number plotted as a function of the
harmonic as assessed by applying the 3 point method (left) and 2 point method
(right) to pressure signals assessed with pressure wires position at ∆x = 0.10 m
with respect to each other. The solid lines indicate a linear fit to the data.
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minimum values are estimated accurately.
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Figure 6.8: Local pressure, as estimated by means of a pressure wire measurement
and as estimated from a simultaneous assessment of diameter waveform and PWV.

6.4 Discussion

Current non-invasive pressure estimation methods in general consist of the as-
sessment of a waveform closely related to presssure, which is subsequently scaled
by an additional pressure measurement to gain the pressure estimate. The PWV
based method evaluated in this study however, allows pressure estimation from
a single measurement; a simultaneous assessment of the local mechanical proper-
ties and motion of the vessel enables an accurate pressure assessment. However,
current methods for local PWV estimation, e.g. by means of cross correlation
based estimation methods (Struijk et al., 1992; Eriksson et al., 2002), are affected
by reflections. Although the impact of reflections can be minimized by looking
at characteristic points which are not too much influenced by reflections, e.g. the
systolic foot in the distension waveform (McDonald, 1974; Hermeling et al., 2007),
this requires an unambiguous approach for identifying these characteristic points.
Besides, only a single point of the available distension waveform is employed,
whereas an entire waveform is available.
In this study, two promising approaches for local PWV estimation, the QA-
method and the 2 and 3 point methods, were evaluated. Both enable a straight-
forward method for measuring the local PWV.
As for current methods, the applicability of the QA-method is restricted to reflec-
tion free periods of the cardiac cycle, however it is more appropriate for practical
application since this method allows a simple identification of the reflection free
periods, by finding linear sections in the QA-loop. Furthermore, this method is
most suitable for the ultrasound measurement technique applied in this study.
Contrary to previous studies (Rabben et al., 2004; Williams et al., 2005), in the
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present study, the vessel diameter and velocity profile were acquired simultane-
ously. No additional scaling or velocity profile approximations were applied to
deduce flow. This resulted in an accurate simultaneous estimate of volume flow
and cross sectional area. Subsequent application of the QA-method resulted in an
estimate of the PWV, which accurately corresponded with the reference value as
assessed using the peak to peak transit time measurement (Table 6.1). However,
it should be noted that for the experimental setup, the reflection free period is
relatively long, resulting in a significant linear section in the QA-loop. It is known
however, that in most humans, only the early systolic wave is reflection free (Li,
2004), which lasts approximately 50 ms (Rabben et al., 2004). Although this is a
short time period, the high sample rate (730 Hz) of the measurement technique
applied in this study allows to estimate about 35 sample points in the early sys-
tolic wave. This should be sufficient to adequately estimate the slope of the linear
section in the QA-loop. Still, it should be noted that the presence and the length
of the reflection free period depends on the measurement location in the arterial
system. In the periphery, the reflection free period might be significantly shorter.

Table 6.1: Results for the PWV estimation and measurement methods applied in
this study.

Method Setup Data c (ms−1)

Transit time Water Pressure wire 9.4 ± 0.1
QA Water Ultrasound 9.4 ± 0.3
2-point Agar Ultrasound 8.7 ± 0.8

Agar Pressure wire 10.3 ± 0.6
3-point Agar Ultrasound 8.6 ± 2.4

Agar Pressure wire 10.5 ± 0.2

Contrary to the QA method, the 3-point method allows to estimate the PWV in
the presence of reflections. As a result, no identification of a reflection free period
is required, the complete period is applied for the estimation. The 3-point method
was applied to ultrasound estimated wall velocity signals and pressure signals as
assessed by means of pressure wires. As a reference, also the 2 point method was
applied. The results from the 2 and 3-point methods applied to the wall veloc-
ity signal show that the 3-point method causes a much higher spread in the real
part of the complex wave number compared to the 2-point method, which is not
expected since the 3-point method should not be sensitive for reflections (Figure
6.6). Although the values of the PWV as estimated by means of the 2 and 3 point
method correspond, they are found to be lower than expected based on the peak
to peak transit time and QA-measurement (Table 6.1). Due to the local decrease
of compliance as result of the local constriction of wall motion by the agar gel,
a slightly higher value of the PWV is expected though. As a reference, the 2
and 3-point methods were also applied to pressure signals estimated by means
of pressure wires. A comparison of the resulting real part of the complex wave
number shows that, as expected, the 3-point method offers more precise estimates
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of the propagation coefficient than the 2-point method (Figure 6.7). Additionally,
as expected, a PWV value slightly higher than the value as estimated by the peak
to peak transit time method is found (Table 6.1).
An important difference between the ultrasound-based and pressure wire-based
assessment is the distance between measurement locations. For the ultrasound-
based assessment, the distance equals only 0.66 cm, whereas the distance is equal
to 0.10 · 10−2 m for the pressure wire-based assessment. The wavelength of the
pressure wave traveling through the setup is equal to λ = c0T ≈ 10 m. For
sensors positioned a few mm from each other, differences in signals assessed by
the sensors are very small. The smaller the distance between measurement lo-
cation, the more significant small amplitude and phase errors are. Decreasing
the distance between pressure wires would allow a more truthful comparison with
the ultrasound-based estimation. However, for the pressure wires, the position-
ing errors become significant for small inter-sensor distances, whereas for the
ultrasound-based assessment, the measurement location is fixed by the physical
distance between ultrasound transducers and therefore accurately known.
By manually generating input signals with known temporal shift in between, and
subsequently mixing these signals with random noise of an increasing amplitude,
it is found that the 3 point method is more sensitive to noise in the input signals
than the 2 point method. This may cause the relatively poor precision observed
in the real part of the complex wave number for the 3-point method.
In the ultrasound transducer, for generating a M-line, internally groups of trans-
ducers are employed to focus the ultrasound beam. The resulting beam width is
approx 1 mm at the focus. Both the use of groups of transducers and the finite
beam width result in the estimation of the average wall velocity for a finite section
of the tube. Since the section is relatively large compared to the distance between
the measurement locations, this might cause inaccuracies in the estimation of
PWV based on the 2 and 3-point methods. This can contribute to the deviation
in PWV found with respect to the reference measurement. The currently applied
ultrasound system does not allow the activiation of a set of transducers in the cen-
tre part of the linear array for application of the QA-method and simultaneously
activate 2 transducers at the far ends of the linear array for 3-point based PWV
estimation. However, such an option would be required for a true simultaneous
assessment of PWV and flow.
For the high Womersley number (α ≈ 10) occuring in the phantom setup, the
waves travel at approximately the Moens-Korteweg wave velocity. In-vivo how-
ever, except for the aorta, the Womersley number is smaller and ranges from
approximately 4 for the large arteries (r ≈ 4 mm) to about 1 for the small
(r ≈ 1 mm) arteries. As a result, the wave speed may vary considerably with
frequency, favoring the need for frequency dependent PWV estimation methods
such as the 3-point method.
The combination of local PWV based on the QA-method and vessel diameter
resulted in an accurate and precise estimate of the local pulse pressure. It should
be noted that a constant pressure offset cannot be determined. The PWV esti-
mated by means of the 2 and 3-point methods were not applied for local pressure
estimation since the agar gel prevents the circular deformation of the vessel cross
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section. This effect, but less severe, can also occur in-vivo due to non-uniform
tissue properties surrounding the vessel. Additionally, for in-vivo application, er-
rors in pressure estimate can be introduced due to non-linear material properties
of the vessel wall.

6.5 Conclusion

Application of the QA-method and the 2 and 3-point methods for local PWV
estimation by means of ultrasound were evaluated in a phantom setup. The QA
method was found to allow an accurate and precise estimation of the PWV. A
PWV value of 9.4±0.3 ms−1 was found, whereas the reference value, as estimated
by means of a peak to peak transit time measurement, was found to be equal to
9.4±0.1 ms−1. Although in theory, the 3 point method enables an unbiased precise
estimation of PWV in the presence of reflections, in practice, applied to ultrasound
estimated wall velocity signals, the PWV value obtained by this method, c = 8.6±
2.4 ms−1, was found to be imprecise and to be an underestimation of the actual
PWV. The similar 2-point method was also found to result in an underestimate
for the PWV (c = 8.7 ± 0.8 ms−1). Based on the QA-method derived PWV
and vessel diameter measurement, the local pulse pressure was estimated. The
average pressure difference between estimated pressure and the reference pressure
was found to be about 0.2 kPa. Maximum and minimum pressure values were
also estimated accurately. The measurements performed in this study indicate
that local pressure assessment by means of ultrasound is feasible.
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7.1 Introduction

The objective of this thesis was to develop and validate methods which enable
a simultaneous and accurate assessment of volume flow and local pressure by
means of non-invasive ultrasound. This enables the derivation of compliance
and vascular impedance, which are both important parameters to characterize
the cardiovascular disease (CVD) process. To enable an accurate validation of
the developed methods, volume flow and pressure measurements were conducted
in a phantom setup. Contrary to in-vivo tests, this allowed to perform well-
defined experiments, facilitating comparison with analytical approximations and
computational fluid dynamics (CFD) computations, and enabled comparison with
reference measurements.

7.2 Study results

7.2.1 CFD as a validation tool

CFD models can be a valuable tool for the validation of novel measurement tech-
niques. The first part of the thesis (Chapter 2) focussed on the application of
CFD models for accurate assessment of local velocity components and pressure
distribution in arteries. These models are required for the CFD-based validation
of velocity, volume flow and pressure assessment methods in clinically relevant
geometries. For arterial fluid structure interaction (FSI) problems, partitioned
schemes are preferred. In partitioned schemes, weakly and strongly coupled meth-
ods exist. In currently applied weak coupling methods, convergence issues arise for
vessels with a high length-to-radius ratio. In general, these issues can be overcome
by strongly coupled methods, which apply sub-iterations and under-relaxation for
solution of the fluid and the solid for each time step to converge to the solution
of the fully coupled system (Fernandez et al., 2006; Fernandez and Moubachir,
2005; Deparis et al., 2006). The major drawback of these kinds of methods are
poor robustness and the increasing amount of computational costs. In Chapter
2, currently applied weak coupling methods for fluid structure interaction (FSI)
were compared and a dedicated coupling method, the time-periodic weakly cou-
pled method, appropriate for pressure and flow waves in long compliant vessels,
was introduced. The time-periodic method was found to allow modeling of vessels
with a length up to 60 times the radius, without requiring a significant increase in
computational effort. The currently applied timestep-wise coupling was found to
only permit a length-to-radius ratio up to 10. In general, the length-to-radius ra-
tio of geometries considered for arterial FSI computations is higher than 10, which
indicates that the time-periodic method can be a valuable tool in the simulation
of blood flow in arteries. Additionally, the introduced method enables an accurate
validation of velocity and pressure measurement techniques in a phantom setup.
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7.2.2 Non-invasive flow assessment

The second part of the thesis (Chapters 3, 4 and 5) focussed on improving vol-
ume flow estimation by means of non-invasive ultrasound, based on the accurate
assessment and correct integration of the complete axial velocity profile, for both
straight and curved geometries. CFD models were applied as a tool to validate
the velocity assessment method and the novel integration method.

In clinical practice, volume flow is often estimated based on axial velocity as
assessed using Doppler ultrasound. However, an accurate assessment of the com-
plete axial velocity profile by means of Doppler ultrasound is not possible (Leguy
et al., 2009). Near the vessel wall, velocity estimates are less accurate. Since the
assessment of the centreline or maximum velocity is less subject to measurement
errors, the volume flow is estimated by assuming a specific velocity distribution,
e.g. a Poiseuille or Womersley profile (Douchette et al., 1992), based on the as-
sessment of the centreline or maximum velocity and the local diameter. However,
most arteries are tapered, curved and bifurcating, causing the axial velocity dis-
tribution to be altered by secondary velocities, resulting in asymmetrical axial
velocity profiles and consequently in inaccurate flow estimations (Krams et al.,
2005). For the diameter assessment, a separate measurement needs to be per-
formed since the non-perpendicular insonification angle, required for performing a
Doppler measurement, prevents an accurate diameter assessment. Consequently,
accurate volume flow estimation based on a single ultrasound measurement is not
possible without applying complex probes.

In Chapter 3, an ultrasound velocity estimation method was validated which en-
ables an accurate simultaneous assessment of the complete axial velocity profile
and vessel wall position. Particle image velocimetry (PIV) based methods were
applied to estimate axial velocity from raw RF-data obtained by means of a linear
array transducer positioned perpendicularly with respect to the vessel axis. For
the experimental validation, physiologically relevant flows were considered in a
straight vessel phantom, employing a blood analog fluid which mimics both the
acoustic and mechanical properties of blood. Accurate velocity profile measure-
ments were obtained (deviation about 3 cms−1 with respect to CFD for mean
velocities varying from 10 to 40 cms−1), without requiring high concentrations
of particles to induce a large amount of scattering such as in ultrasound speckle
velocimetry (UPV) (Bohs et al., 1993, 1995; Sandrin et al., 2001; Trahey et al.,
1987), custom developed ultrasound systems as in current Echo PIV methods (Liu
et al., 2008) or averaging over multiple measurements (Kim et al., 2004a; Liu et al.,
2008). Integration of the assessed axial velocity profile to volume flow yielded flow
estimates which accurately agreed with reference volume flow assessments.

In Chapter 4, an analytical/CFD based study was presented, which concentrates
on the derivation and validation of a flow estimation method which improves the
estimation of volume flow through a curved tube based on the (asymmetric) axial
velocity profile. The cos θ-method, a novel flow estimation method, was derived
from an analysis of existing analytical approximation methods for flow in curved
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tubes. The cos θ-method was validated and compared to the currently applied
Poiseuille method by means of CFD modelling. Although the Poiseuille method
was found to suffice for Dn ≤ 100, the cos θ-method was found to estimate the
volume flow nearly three times better than the Poiseuille method for the higher,
clinically relevant, Dean numbers. For δ = 0.01 the maximum deviation from
the exact flow is 4% for the cos θ-method, while this is 12.7% for the Poiseuille
method in the plane of symmetry. For Dn = 1000 and δ = 0.16, the error in
flow estimation by means of the cos θ-method was found to be at most 6.2%.
The results indicate that the cos θ allows an accurate estimation of volume flow
through a curved tube from a given asymmetrical axial velocity profile, whereas
the Poiseuille method, which is currently often used in clinical practice, offers a
poor flow estimation (Leguy et al., 2009).

In Chapter 5, the PIV-based ultrasound velocity assessment technique, validated
in Chapter 3, was applied to both stationary and non-stationary non-Newtonian
flow in a planar curved geometry in a phantom setup. For the experiments, again,
physiologically relevant flows were considered, employing a blood analog fluid
which mimics both the acoustic and mechanical properties of blood. Excellent
agreement was found between the axial velocity profile measurement and CFD
calculations of the axial velocity profile, which shows that the applied velocity
estimation technique is able to cope with the relatively high spatial and temporal
velocity gradients occuring in curved tube flow. Subsequently, the cos θ-method
was applied to estimate the flow from the asymmetric axial velocity profiles and
compared to the currently applied Poiseuille and Womersley approximations. The
comparison shows, as expected from the CFD-based analysis presented in Chapter
4, that the cos θ-integration based flow estimate is much more accurate than
the Poiseuille and Womersley based estimations. For the non-stationary flow
measurements, a deviation of 5% with respect to the reference flow was found for
the cos θ method, compared to an average deviation of 20% for both the Poiseuille
and Womersley approximation. Additionally, by means of a CFD based analysis,
it was found that an accurate flow estimation is feasible, even when not measured
exactly through the centre of the tube. This facilitates the flow estimation for
in-vivo measurements, since for this case, the exact orientation of the ultrasound
beam with respect to the curved vessel, and thus the orientation of the measured
velocity profile with respect to the cross section, is generally unknown.

7.2.3 Non-invasive pressure assessment

Finally, Chapter 6 focusses on the non-invasive estimation of local pressure. In
current clinical practice, local pressure is often assessed by estimating a waveform
closely related to pressure that is subsequently scaled by an additional direct pres-
sure measurement to gain a pressure estimate. A direct pressure measurement
that can be applied simultaneously with a flow assessment is preferred. In Chap-
ter 6, local pressure was estimated by combining knowledge of the mechanical
behaviour of the arterial wall with the assessment of wall motion. Local compli-
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ance was estimated by measuring the pulse wave velocity (PWV), subsequently
compliance was combined with vessel cross sectional area to estimate pressure.

Measurements of the PWV were performed by means of the QA-method, the 2-
point, and the 3-point method. It was found that the QA-method allows a precise
and unbiased estimation of the PWV. Although the application of this method
is restricted to the reflection free period of the cardiac cycle, it offers a straight-
forward method for recognizing the reflection free period in a QA-loop. Existing
methods (Struijk et al., 1992; Hermeling et al., 2007) require wave separation
analysis (Khir et al., 2001) to check whether reflections were present during the
measurement. In theory, the 3-point method allows to accurately estimate local
PWV in the presence of reflections (Bertram et al., 1997). This has been con-
firmed in this thesis by measurements using pressure wires. Applied to pressure
signals obtained using pressure wires, precise estimates of the PWV were found.
However, for ultrasound, the 3-point method (and also the 2-point method) was
found to offer a poor estimate of the PWV when applied to vessel wall velocity.
This indicates that application of the 2 and 3-point method to vessel wall motion,
as assessed by means of the currently used ultrasound probe, is not suitable for
local PWV estimation. Based on the QA-method derived PWV and vessel diam-
eter measurement, the local pulse pressure was estimated. The average pressure
difference between estimated pressure and the reference pressure was found to be
about 0.2 kPa, which is about 5% of the pulse pressure value. Maximum and
minimum pressure values were also accurately estimated. This shows that the
simultaneous assessment of PWV and wall diameter is a promising method to
estimate local pressure.

Studies of arterial impedance in humans are hampered by the lack of reliable
non-invasive techniques to simultaneously assess the local pressure waveform and
volume flow. The experiments presented in this study show that a precise, un-
biased and combined assessment of local pressure and volume flow by means of
non-invasive ultrasound assessment is feasible. Since no velocity profile approxi-
mations or substitutes for pressure, as in e.g. Brands et al. (1996), are applied, this
allows to derive the genuine arterial impedance, instead of a non-dimensionalized
form. The methods introduced have the potential to enable an accurate in-vivo
derivation of arterial impedance.

7.3 Clinical perspective

Although each experiment and CFD computation presented in this study was
designed to mimic a relevant in-vivo situation, they still only offer a simplified
version of the complex in-vivo situation. Consequently, for in-vivo application of
the flow and pressure estimation methods developed, some additional research as
described below is required.

Considering the velocity and flow estimation, the most important difference be-
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tween the experiments performed in this study and clinical application is the
influence of ultrasound reverberations. In the experiments, the vessel wall is
modelled as a thin-walled polyurethane tube surrounded by water, whereas in-
vivo, the vessel wall is a multilayered complex material, surrounded by tissue.
The non-stationary flow measurements in the straight vessel phantom have shown
that reverberations can cause significant errors in the velocity estimation. In the
phantom setup the reverberation occurs at a discrete position because of the uni-
form vessel wall thickness and properties. As a result, the velocity assessment is
disrupted only locally. However, in-vivo, reverberations are present throughout
the lumen, further complicating the velocity estimation. In-vivo, proper clutter
removal filters are required to allow an accurate velocity and volume flow assess-
ment. Assuming that adequate filters can be developed and given the increase in
sensitivity of novel ultrasound systems, the methods presented in Chapter 3, 4
and 5 will enable an improved in-vivo volume flow assessment for both straight
and curved geometries.

In the phantom setup, it is shown that a precise and unbiased non-invasive pres-
sure estimation, based on the simultaneous assessment of PWV and vessel diam-
eter is feasible. Requirements such as an adequately long reflection free period
in the cardiac cycle and a circular vessel cross section are accurately met in the
phantom setup. In-vivo, however, the length and existence of the reflection free
period depends on the location in the arterial system, complicating the applica-
bility of the QA-method for PWV estimation. In the future, application of the
3-point method on wall velocity signals obtained with a linear array probe which
allows to obtain M-lines at maximally spaced locations along the transducer array,
might allow the accurate and precise assessment of PWV in the presence of re-
flections, thereby relaxing the need for a reflection free period. Additionally, due
to inhomogeneity of the surrounding tissue, the cross sectional area of the vessel
might not remain circular during deformation, complicating the cross sectional
area estimation based on the diameter assessment.

The methods developed and validated for volume flow and pressure assessment
were applied to RF data acquired by means of a commercially available, clin-
ically approved ultrasound system. The methods were merely applied as post
processing steps, no adjustments to the hardware of the ultrasound system were
employed. As a result, a swift transition from the experimental application to
clinical application is possible.

In-vivo application of the measurement methods presented in this study can im-
prove the non-invasive assessment of pressure and volume flow, and subsequently,
compliance and vascular impedance. This allows a better assessment of the condi-
tion of the vascular system, enabling the acquisition of information of the effect of
therapeutic interventions and the identification of factors which are characteristic
for the development of CVD.
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7.4 Conclusion

Non-invasive ultrasound based measurement methods, enabling the simultaneous
assessment of volume flow and pressure, were developed. Validation experiments
in a phantom setup have shown excellent accuracy and precision for both volume
flow and pressure assessments. Compared to current methods, volume flow as-
sessment has been significantly improved, especially in curved geometries. For the
pressure assessment only a local ultrasound measurement is required. Although
some additional research is required for in-vivo application of the methods devel-
oped, the prospects for clinical application look promising. The ability to simul-
taneously assess pressure and volume flow can significantly improve derivation of
parameters such as arterial impedance and compliance.
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Appendix A

Analytical solutions for the
axial velocity (w)

In this appendix the results of the analytical approximation methods of Dean,
Topakoglu and Siggers & Waters with respect to the axial velocity (w) are shown.
It should be noticed that all authors used different scaling and non-dimensionalisation
methods, which are not explicitly stated here and for which we would like to refer
to the corresponding articles.

A.1 Derivation by Dean

Dean derived a higher order series solution expanded in K to describe the fully
developed, steady flow analytically in a tube with a small K-number, which results
for the axial velocity in:

w = w0 + Kw1 + K2w2 + ..... (A.1)

The solutions obtained from the series expansion are given by:

w0 = 1 − r′2, (A.2)

w1 =
cos θ

576

(19r′

40
− r′3 +

3r′5

4
− r′7

4
+

r′9

40

)

, (A.3)

where r′ = r/a.
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A.2 Derivation by Topakoglu

Topakoglu performed a power series expansion in δ and by insertion of:

w = w0 + δw1 + δ2w2 + ..... (A.4)

Topakoglu derived the following equations, describing the axial velocity:

w0 = f0 = Re(1 − r′2), (A.5)

and

w1 = f1 cos θ, (A.6)

where

f1 = −3

4
f0

[

1 − 1

8640
Re2(19 − 21r′2 + 9r′4 + r′6)

]

r′ (A.7)

and finally

w2 = f20 + f22 cos 2θ, (A.8)

where

f20 =
−1

32
f0

{

3 − 11r′2 +
1

7200
Re2

[

148 + 43r′2 − 132r′4+

+68r′6 − 7r′8
1

3225.6
Re2(823.8 − 3432.2r′2 + 5835.8r′4−

5252.2r′6 + 2713.8r′8 − 803r′10 + 121r′12 − 7r′14)
]}

(A.9)

and

f22 =
1

8

{

2.5 − 1

3456
Re2

[

46.3 − 61.3r′2 + 29.6r′4 − 4r′6−

1

42336
Re2

(

1456.9 − 2402.06r′2 + 1746.49r′4 − 705.47r′6 + .

191.23r′8 − 28.01r′10 + 1.6r′12
)]}

r′2.

(A.10)

A.3 Derivation by Siggers & Waters

Siggers & Waters used a series solution for w expanded in Dn, where wk is allowed
to depend on δ to derive a solution for the axial velocity

w = Dn

∞
∑

k=0

Dn2kwk, (A.11)
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with

wk =
∞
∑

j=0

δjwkj = wk0 + δwk1 + δ2wk2 + ....., (A.12)

with

w00 =
1

4
(1 − r′2), (A.13)

w01 = − 3

16
r′(1 − r′2) cos θ, (A.14)

w02 =
1

128
(1 − r′2)(−3 + 11r′2 + 10r′2 cos 2θ). (A.15)

To get the O(Dn3) solution they set w1 = w
[1]
1 +w

[2]
1 , with w

[1]
1 = w

[1]
10 +δw

[1]
11 +.....

and w
[1]
2 = w

[2]
10 + δw

[2]
11 + ....., with:

w
[1]
10 =

1

215 · 32 · 5r′(1 − r′2)(19 − 21r′2 + 9r′4 − r′6) cos θ, (A.16)

w
[1]
11 =

1

218 · 33 · 52
(1− r′2)

[

6(109 − 586r′2 + 689r′4 − 311r′6 + 39r′8) (A.17)

−5r′2(163 − 193r′2 + 86r′4 − 10r′6) cos 2θ
]

and

w
[2]
10 = 0, (A.18)

w
[2]
11 =

1

217 · 32 · 52
(1− r′2)

[

−(257− 543r′2 + 557r′4 − 243r′6 + 32r′8) (A.19)

−25r′2(10 − 14r′2 + 7r′4 − r′6) cos 2θ
]

.

Some more equations for higher order derivations were shown, but the explicit
solutions were not stated.
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Samenvatting

Ultrageluid wordt in de kliniek vaak toegepast om op een niet-invasieve manier
geometrische eigenschappen van grote vaten, zoals diameter en wanddikte en
hemodynamische variabelen zoals bloedstroomsnelheid te bepalen. Om biomecha-
nische parameters en hemodynamische variabelen die karakteristiek zijn voor de
ontwikkeling van hart en vaatziekten, zoals compliantie en impedantie, te bepalen,
is de bepaling van geometrie en bloedstroomsnelheid alleen onvoldoende. Daar-
voor is een gelijktijdige en bij voorkeur niet invasieve meting van debiet en druk
vereist.
Met de huidige ultrageluidstechnieken is het onmogelijk om gelijktijdig debiet en
druk nauwkeurig te bepalen. Debiet wordt vaak bepaald aan de hand van twee
metingen: een diametermeting (geluidsbundel loodrecht op het vat) en een me-
ting van de maximale axiale bloedstroomsnelheid met behulp van Doppler ultra-
geluid (geluidsbundel onder een hoek met het vat). Door een theoretische snel-
heidsverdeling aan te nemen, bijvoorbeeld een Poiseuille of Womersley profiel,
wordt hieruit vervolgens het debiet berekend. In-vivo zijn vaten zelden recht:
vaten zijn taps toelopend, gekromd en hebben vertakkingen. Dientengevolge
zijn er secundaire snelheidscomponenten aanwezig die de axiale snelheidverdeling
bëınvloeden. Dit resulteert in asymmetrische axiale snelheidsverdelingen. Omdat
de aangenomen snelheidsverdelingen slechts geldig zijn voor rechte vaten, geeft een
dusdanige bepaling een onnauwkeurige afschatting van het debiet. Verder is het
onmogelijk om gelijktijdig met de snelheidsmeting nauwkeurig de wandbeweging
te bepalen, waardoor de debietmeting nog verder verslechtert en het gelijktijdig
bepalen van druk uit wandbeweging en debiet onmogelijk wordt.
In dit onderzoek worden Particle Image Velocimetry (PIV) gebaseerde algoritmen
toegepast op RF-data die verkregen zijn met behulp van een commercieel beschik-
baar, voor klinische toepassing goedgekeurd ultrageluidssysteem. Dit maakt het
mogelijk om snelheidscomponenten loodrecht op de ultrageluidbundel, en dus ge-
lijktijdig wandpositie en axiale snelheid nauwkeurig te meten. Deze snelheidsmeet-
techniek is gevalideerd door metingen van het snelheidsprofiel in een experimentele
opstelling te vergelijken met resultaten van computational fluid dynamics (CFD)
berekeningen, voor stationaire en instationaire stromingen in een recht vat. Er
werd een goede overeenstemming gevonden voor het axiale snelheidsprofiel. Inte-
gratie van het gemeten axiale snelheidsprofiel leverde een nauwkeurige afschatting
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van het debiet op.
Omdat in de praktijk de meeste vaten gekromd zijn is de snelheids meetmethode
vervolgens gevalideerd voor toepassing op stromingen in dit soort geometrieën.
In de experimentele opstelling zijn axiale snelheidsprofielen gemeten voor sta-
tionaire en instationaire stroming in kromme buizen. Opnieuw zijn de gemeten
profielen vergeleken met resultaten van CFD-berekeningen. Ook hier werd een
goede overeenstemming gevonden tussen de gemeten profielen en de met behulp
van CFD berekende snelheidsprofielen.
Om nauwkeurig debiet te bepalen op basis van de gemeten asymmetrische axiale
snelheidsprofielen, is een analytische en een op CFD gebaseerde studie gedaan naar
stroming in kromme vaten. Deze studie heeft geresulteerd in de cos θ-methode.
Toepassing van de cos θ-methode op de gemeten asymmetrische axiale profielen
gaf een nauwkeurige afschatting van het debiet, voor stationaire en instationaire
flow. Vergeleken met de huidig toegepaste afschattingsmethode voor het debiet
werd een grote verbetering gevonden. Voor een fysiologisch relevant debiet gaf de
cos θ-methode een gemiddelde afwijking van 5% ten opzichte van het referentie-
debiet terwijl deze voor de huidig toegepaste Poiseuille en Womersley benaderin-
gen gelijk was aan 20%.
Tenslotte is getracht om de lokale druk te bepalen uit enkel een niet-invasieve
ultrageluidsmeting door een meting van de diameter te combineren met een ge-
lijktijdige bepaling van de lokale compliantie. De lokale compliantie is bepaald
door de lokale golfsnelheid (PWV) te meten. Verschillende methoden om lokaal
de PWV te meten zijn getest in de experimentele opstelling. Hieruit bleek dat
de QA-methode, een methode waarbij de lokale PWV bepaald wordt uit de ver-
houding tussen veranderingen in debiet en veranderingen in oppervlak van de
dwarsdoorsnede van het vat, het mogelijk maakt om lokaal nauwkeurig PWV te
meten. Door de PWV meting te combineren met een gelijktijdige meting van de
diameter werd de lokale druk nauwkeurig afgeschat. Dit geeft aan dat het haal-
baar is om op een niet-invasieve manier in-vivo druk te meten met behulp van
ultrageluid.
Hoewel de meettechnieken besproken in deze studie alleen getest zijn voor toepass-
ing in een gecontroleerde experimentele omgeving, zijn de vooruitzichten voor
klinische toepassing veelbelovend. De gepresenteerde methoden maken het mo-
gelijk om de toestand van het vaatbed nauwkeuriger te bepalen, waardoor in de
toekomst informatie verkregen kan worden over het effect van therapeutische in-
grepen en factoren gëıdentificeerd kunnen worden die karakteristiek zijn voor de
ontwikkeling van hart- en vaatziekten.
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