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Abstract 
 

Streptomycetes are known for their inherent ability to produce pharmaceutically relevant 

secondary metabolites. Discovery of medically useful, yet novel compounds has become a 

great challenge due to frequent rediscovery of known compounds and a consequent decline in 

the number of relevant clinical trials in the last decades. A paradigm shift took place when the 

first whole genome sequences of streptomycetes became available, from which silent or 

“cryptic” biosynthetic gene clusters (BGCs) were discovered. Cryptic BGCs reveal a so far 

untapped potential of the microorganisms for the production of novel compounds, which has 

spurred new efforts in understanding the complex regulation between primary and secondary 

metabolism. This new trend has been accompanied with development of new computational 

resources (genome and compound mining tools), generation of various high-quality omics 

data, establishment of molecular tools and other strain engineering strategies. They all come 

together to enable systems metabolic engineering of streptomycetes, allowing more 

systematic and efficient strain development. In this review, we present recent progresses 

within systems metabolic engineering of streptomycetes for uncovering their hidden potential 

to produce novel compounds and for the improved production of secondary metabolites. 

 

Keywords: Biosynthetic gene clusters – Genome mining – Secondary metabolites – 

Streptomycetes – Systems metabolic engineering  

  



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

3 
 

Abbreviations: antiSMASH, antibiotics and Secondary Metabolites Analysis Shell; ARC, 

antibiotic-remodeling compound; ARTS, Antibiotics Resistant Target Seeker; BGC, 

biosynthetic gene cluster; Cas9, CRISPR-associated protein; CDA, calcium-dependent 

antibiotic; ChIP, Chromatin ImmunoPrecipitation; CRISPR, Clustered Regularly 

Interspaced Short Palindromic Repeats; dRNA-seq, differential RNA sequencing; EFMA, 

Elementary Flux Mode Analysis; FBA, flux balance analysis; FSEOF, Flux Scanning based 

on Enforced Objective Flux; GARLIC, Global Alignment for natuRaL-products 

chemInformatiCs; GC, gas chromatography; GCF, Gene Cluster Family; GNPS, Global 

Natural Products Social Molecular Networking; GRAPE, Generalized Retrobiosynthetic 

Assembly Prediction Engine; GSMM, genome-scale metabolic models; HR, homologous 

recombination; IMG-ABC, Integrated Microbial Genomes Atlas of Biosynthetic gene 

Clusters; LC-MS/MS, liquid chromatography tandem mass spectrometry; MFA, metabolic 

flux analysis; MIBiG, Minimum Information on Biosynthetic Gene Clusters; MOMA, 

Minimization Of Flux Adjustment; NHEJ, non-homologous end joining; NMR, Nuclear 

magnetic resonance; NRP, non-ribosomal peptide; PAM, protospacer adjacent motif; PI, 

pristinamycin I; PII, pristinamycin II; PK, polyketide; PRISM, Prediction Informatics for 

Secondary Metabolomes; Ribo-seq, ribosome profiling; sgRNA, single guide RNA; SMBP, 

The Secondary Metabolite Bioinformatics Portal; ssRNA-seq, strand-specific RNA 

sequencing; TFR, TetR family transcriptional regulator; WGCNA, weighted correlation 

network analysis 
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1 Introduction 

Streptomycetes are filamentous gram-positive bacteria predominantly found in soil and water 

environments. The bacteria are recognized for their capabilities to produce secondary 

metabolites with clinically relevant applications, some of which include antibiotics such as 

streptomycin and daptomycin, anthelmintic compound avermectin, immunosuppressant 

tacrolimus (FK-506), and anti-cancer agents bleomycin and doxorubicin (for review, see [1]). 

Despite the proven clinical effects of secondary metabolites, drug discovery in streptomycetes 

has witnessed a decline in success rate ever since the golden age of antibiotics experienced 

from late 1940s to 1960s [2]. A paradigm shift begun in the early 2000s when the complete 

genome sequences of a model organism Streptomyces coelicolor [3] and an industrial strain 

Streptomyces avermitilis [4] were published. In the case of S. coelicolor, the 8.6 Mb linear 

chromosome was found to harbor several cryptic or silent biosynthetic gene clusters (BGCs) 

in addition to already known BGCs of actinorhodin, undecylprodigiosin and calcium-

dependent antibiotic (CDA). These silent BGCs showed indications of possible biosynthesis 

of secondary metabolites, but interestingly, no corresponding compounds were detected under 

standard laboratory growth conditions. In the following years, many of these silent BGCs 

were successfully activated and their corresponding secondary metabolites were 

characterized, including iron-chelators desferrioxamine [5] and coelichelin [6,7], 

sesquiterpene antibiotic albaflavenone [8], and polyketide (PK) alkaloid coelimycin [9]. The 

initial successes in identifying novel secondary metabolites from silent BGCs have led to the 

subsequent increases in the genome sequencing of streptomycetes in the last decade (Fig. 1).  

Availability of genome data has spurred advances in relevant technologies covering 

computational resources (in particular, genome and compound mining tools), high-throughput 

(omics) techniques as well as molecular tools. Genome mining tools such as antibiotics and 

Secondary Metabolites Analysis SHell (antiSMASH) [10–12] and Prediction Informatics for 

Secondary Metabolomes (PRISM) [13,14] have greatly improved our ability to survey the 

genomic potential of strains, and allowed for initial prioritization of engineering efforts. Also, 
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omics techniques such as transcriptomics and proteomics have contributed to understanding 

the complex regulatory networks employed by streptomycetes to balance primary and 

secondary metabolism [15,16]. Availability of such genome and expression data has further 

enabled construction of genome-scale metabolic models (GSMMs) of streptomycetes to 

describe metabolic pathways and predict optimal routes for the production of secondary 

metabolites [17]. 

With high-quality whole genome sequences and an array of suitable 

genome/compound mining and molecular cloning tools readily at hand, the secondary 

metabolite research is now moving towards systems metabolic engineering of streptomycetes 

in order to fully harness their potential to produce medically valuable secondary metabolites 

[18]. Systems metabolic engineering brings in recent developments experienced in the fields 

of systems and synthetic biology, and provides a more systematic and efficient approaches for 

strain engineering [19]. However, streptomycetes and other secondary metabolite-producing 

microbes require additional sophisticated analyses concerned with secondary metabolite 

BGCs before strains are engineered at the systems level for the novel compound production 

and the improved production titers [17]. To this end, here we review recent progress within 

the field of systems metabolic engineering of streptomycetes with focuses on the additional 

sophisticated analyses unique to streptomycetes as well as recent successful studies on 

streptomycetes engineering (Fig. 2).  

 

2 Unique considerations for systems metabolic engineering of streptomycetes 

The established framework of systems metabolic engineering [19] can serve as a guideline for 

the optimal production of secondary metabolites using streptomycetes (Fig. 3). However, 

systems metabolic engineering of streptomycetes has additional special considerations that 

are not necessarily relevant to popular model organisms such as Escherichia coli and 

Saccharomyces cerevisiae. In this context, we first focus on these ‘unique considerations’ for 

streptomycetes, including characterization of BGCs, their encoding secondary metabolites 
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and regulations involved in the secondary metabolite biosynthesis as well as molecular tools 

specifically adapted for the streptomycetes engineering. 

 

2.1 Characterization of BGCs and their secondary metabolites through computational 

resources 

Due to the complex nature of secondary metabolism, computational resources are needed to 

better understand working mechanisms of secondary metabolisms many of which are still 

unknown. Secondary metabolite biosynthetic pathways are also not sufficiently covered by 

existing general metabolic databases (e.g., KEGG and MetaCyc). Fortunately, advances in 

high-quality genome sequences of Streptomyces isolates (Fig. 1) and other secondary 

metabolite-producing organisms have sparked the development of such specialized 

computational resources, including databases and genome/compound mining tools, and the 

representative ones are presented herein. First, BGC databases allow for easy access and 

evaluation of curated and predicted BGCs, such as the Minimum Information on Biosynthetic 

Gene Clusters (MIBiG) [20], the Integrated Microbial Genomes Atlas of Biosynthetic gene 

Clusters (IMG-ABC) [21], and the antiSMASH database [22]. For the secondary metabolite 

compounds, several comprehensive databases exist as well, including NORINE [23] 

specifically for non-ribosomal peptides (NRPs), Antibiotic’ome [24] for the predicted 

molecular targets of antibiotics, and StreptomeDB [25], which presents information on 

compounds produced by streptomycetes.   

Second, genome mining tools continue to develop with more features, which allow 

for predicting and assigning functions to enzymes involved in the biosynthesis of secondary 

metabolites. antiSMASH [12] and PRISM [14] are two of the most well-established tools, 

which both base their predictions on identification of signature genes or domains known to be 

specific for secondary metabolite BGCs [20]. Another recently released approach called 

EvoMining employs phylogenomic analysis to identify repurposed enzymes, originating from 

primary metabolism, which has been recruited to secondary metabolism for the secondary 
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metabolite biosynthesis [26]. Using this EvoMining approach, Cruz-Morales et al. identified a 

new clade of biosynthetic enzymes involved in the biosynthesis of arseno-organic metabolites 

[26]. In addition, an alternative way of mining BGCs is found in the Antibiotics Resistant 

Target Seeker (ARTS) (https://arts2.ziemertlab.com), which evaluates BGCs based on self-

resistance mechanisms of antibiotic producers [27]. ARTS scans genomes for promising 

BGCs based on known resistances and the presence of duplicated, co-localized housekeeping 

genes that display an evidence of horizontal gene transfer. In the context of systems metabolic 

engineering, the identified resistance genes can be used as probes to find novel BGCs without 

requiring detailed information on the BGC. The Gene Cluster Family (GCF) network 

(http://www.igb.illinois.edu/labs/metcalf/gcf/index.html) [28] is another useful approach for 

BGC identification, which groups gene clusters and assigns functions of previously 

uncharacterized BGCs. 

For the compound mining, further prioritization of BGCs in promising strains can be 

achieved through cheminformatic analyses of the metabolome data generated from liquid 

chromatography (LC) tandem mass spectrometry (MS/MS) or nuclear magnetic resonance 

(NMR) [13,29]. Upon LC-MS/MS-guided identification of new compounds, following 

compound mining (or cheminformatic) tools enable automated compound characterization 

and dereplication: Global Alignment for natuRaL-products chemInformatiCs (GARLIC) in 

combination with Generalized Retrobiosynthetic Assembly Prediction Engine (GRAPE) 

platform [30]; and the open-access MS/MS database Global Natural Products Social 

Molecular Networking (GNPS) [31]. The GARLIC pipeline allows for both linking orphaned 

products to their corresponding BGCs and for identification of novel compounds by aligning 

bacterial PK and NRP BGCs predicted by PRISM to a comprehensive library of natural 

products from GRAPE [30]. The applicability of this pipeline consisting of PRISM, GRAPE 

and GARLIC was demonstrated by identifying a new compound, potensibactin, isolated from 

Nocardiopsis potens DSM 45234, and also by linking three previously orphaned natural 

products, lucensomycin, octacosaminin and bogorol, to their respective BGCs in 

Streptomyces achromogenes NRRL 3125, Amycolatopsis sp. NAM 50, and Brevibacillus 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

8 
 

laterosporus DSM 25, respectively. Meanwhile, the GNPS platform contains a 

comprehensive compound data collection curated by the natural product community [31]. As 

this community-driven knowledge-sharing database constantly expands, it allows for 

continuous screening of newly uploaded data sets against the established database. Besides its 

applicability in the discovery and characterization of natural products and their BGCs, the 

network can be used to identify structural analogs of a known molecule as exemplified from 

the analysis of a broad-spectrum antibiotic stenothricin from Streptomyces roseosporus. 

Based on the molecular networking and dereplication features of the platform, GNPS 

identified a subnetwork of five stenothricin analogs produced by Streptomyces sp. DSM5940, 

all with different structural properties compared to the original molecule stenothricin.  

More detailed descriptions beyond these computational resources discussed herein 

can be found from several review papers [32–34]. In addition, to aid scientists within the field 

in prioritizing the individual tools, The Secondary Metabolite Bioinformatics Portal (SMBP) 

at http://www.secondarymetabolites.org was recently launched [35]. For each tool or 

database, SMBP provides the users with links and short descriptions, allowing for quick and 

easy browsing. SMBP can especially be useful for metabolic engineers who plan to produce 

secondary metabolites, but are not familiar with secondary metabolism biochemistry. 

2.2 Characterization of the regulation of secondary metabolites biosynthesis in 

streptomycetes – use of omics techniques as an example 

The data obtained from genome mining often provides little information on the regulation of 

secondary metabolites biosynthesis in streptomycetes. An additional level of information 

from omics techniques can be used to clarify the complex regulations involved [36]. 

Transcriptomics is the most accessible and most frequently adopted omics approach which 

monitors changes in the gene expression levels over a course of time, or as a result of external 

stimuli or genetic manipulation [16]. In this context, Nieselt et al. [37] conducted microarray 

analyses of time-point samples of S. coelicolor M145 taken during a 60 h fermentation, and 

established changes in the expression profiles of clustered genes during the metabolic switch 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

9 
 

from primary to secondary metabolism. Here, the general change in expression profiles 

observed between the 35 h and 36 h especially marked the metabolic switch, which was an 

interval for the depletion of phosphate from the medium. More recently, multi-omics 

techniques were deployed to determine the transcriptional and translational landscape of S. 

coelicolor M145 using differential RNA-sequencing (dRNA-seq) and strand-specific RNA-

seq (ssRNA-seq) first, followed by ribosome profiling (Ribo-seq) [38]. In particular, the use 

of Ribo-seq shed light on the level of translational control on genes involved in both primary 

and secondary metabolism, and revealed a general decline in the translation efficiency of 

BGCs in S. coelicolor after the cell’s transition to growth phase. Furthermore, translation 

efficiency was negatively correlated with transcription, hence revealing the extra level of 

regulation to account for when embarking on the quest of strain optimization.  

In addition to transcriptomics, proteomics can provide additional and complementary 

information on regulations associated with the transition to antibiotic production. Proteome 

data of S. coelicolor M145 were collected at three developmental stages ranging from 

compartmentalized mycelium (12 h) to the multinucleated mycelium (24 h and 72 h), which 

revealed that hypha differentiation from substrate to aerial hypha was found to be correlated 

with a change in proteome composition [39]. Based on LC-MS/MS, 626 proteins were 

identified, of which 345 proteins were further quantified to reveal that proteins involved in 

primary metabolism were the most abundant in the cells in the compartmentalized mycelium, 

whereas proteins involved in secondary metabolism were found to predominate the cells in 

the multinucleated mycelium. Such omics studies will allow us better understand metabolic 

characteristics and complex regulations involved in biosynthesis of desired secondary 

metabolites. 

2.3 Molecular tools for streptomycetes engineering 

A remarkable progress recently made in the computational field has been accompanied with 

concurrent advances in molecular tools in order to overcome callenges associated with 

streptomycetes engineering: high GC contents, relatively long cultivation times and 
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occasional (or frequent in some strains) reluctance towards introduction of recombinant DNA 

[40]. To circumvent the limitations encountered when using the standard restriction- and 

ligation-based cloning for genetic manipulation, the E. coli-derived λ Red system was applied 

for faster and more efficient gene disruption, in-frame deletion, gene replacement, and 

refactoring of entire gene clusters in Streptomyces strains [41]. To aid genetic engineering 

effort even further in streptomycetes, an alternative to this classical method was reported 

using the S. cerevisiae I-SceI homing endonuclease for DNA double strand break (DSB)-

based genome editing [42,43]. This meganuclease differs from conventional restriction 

enzymes by its longer recognition site of 18 bp and with a lower risk of off-targets for gene 

editing purposes. Using a two-plasmid system, the I-SceI recognition sequence and a suitable 

resistance marker are introduced into a defined site on the genome of the recipient 

streptomycete via a single crossover event using the first plasmid. Double crossover is 

induced upon introduction of the second plasmid, which harbors the synthetic codon-

optimized I-SceI under the control of either the constitutive ermE* or thiostrepton-inducible 

tipA promoter. To facilitate marker-free gene deletions, plasmids derived from pSG5 [44] 

with temperature sensitive replicons can be used. When using the I-SceI system for gene 

replacement in Streptomyces sp. Tü 6071, I-SceI-mediated homologous recombination (HR) 

was found to be 25 times more efficient than spontaneously occurring HR, hence, establishing 

its use for more systematic gene editing in streptomycetes [42].   

More recently, an even more efficient and flexible system for genome engineering in 

streptomycetes has made its way to the field, namely the type II Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated protein (Cas9) system 

from Streptococcus pyogenes. The CRISPR-Cas9 technique can be applied for deletion of 

genes and gene clusters [45–47] in a multiplex manner [45], reversible gene expression 

control [47], and induction [48]. The optimized system relies on two components: the single 

guide RNA (sgRNA), which is a synthetic RNA consisting of a CRISPR RNA (crRNA) and 

trans-activating crRNA (tracrRNA) complex, and is required for guiding Cas9 to modify the 

targeted genome sequence; and the endonuclease Cas9 or catalytically inactive dCas9, which 
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upon interaction with the sgRNA, scans the genome for protospacer adjacent motif (PAM) 

sequences and the corresponding 20 bp recognition site. Upon recognition of the target DNA 

sequence, Cas9 binds to and cleaves the specific site in the genome whereas the inactive 

dCas9 will bind to the target DNA without sequence modifications. Here, the dCas9 presents 

an easy-to-clone tool for reversible control of gene expression, and thus is useful for 

investigating regulation without the risk of off-target effects or subjecting the cells to the 

stress associated with gene replacements or mutagenesis procedures [47]. CRISPR-Cas9-

mediated mutagenesis can be used in the absence of templates for HR. In this case, the repair 

mechanism is dependent on the non-homologous end joining (NHEJ) of the DNA in 

Streptomyces species. However, efficiency and specificity are greatly improved if a homology 

template for HR is provided [45–47]. This has been demonstrated in independent studies, in 

which Cobb et al. [45] and Huang et al. [46] reported 60%~100% and 70%~100% 

efficiencies, respectively, whereas Tong et al. [47] reported near 100% efficiency for their 

studies on the actinorhodin gene cluster in S. coelicolor. 

For specific applications, the CRISPR-Cas9 system has proven suitable for 

identification and examination of putative genes and BGCs for secondary metabolism in 

several Streptomyces species. One example is the use of the system for discovery and 

examination of the BGC encoding the antibiotics formicamycins in a new isolate 

Streptomyces formicae [49]. Using the pCRISPomyces-2 vector, which harbors both the 

codon-optimized Cas9 from S. pyogenes and the sgRNA cassette, the only type II polyketide 

synthase (PKS) BGC in S. formicae was deleted, resulting in a mutant incapable of producing 

any formicamycins. Using the same vector, the authors proceeded to elucidate the 

biosynthetic pathway by knocking out single genes in the putative BGC, and ultimately 

proposed a preliminary biosynthetic route for the production of this group of antibiotics [49]. 

Similarly, CRISPR-Cas9 was used to determine that the LuxR family cluster-situated 

regulator FscRI was necessary for the activation of antimycins biosynthesis in Streptomyces 

albus S4 [50]. Using this information, heterologous production of antimycins in S. coelicolor 

M1146 was achieved when the BGC was co-expressed with its activator FscRI. The general 
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versatility of the CRISPR-Cas9 system has been further exemplified by its application for 

genome editing of rare actinomycetes, one of which is Actinoplanes sp. SE50/110 [51]. 

The CRISPR-Cas9 was applied in an alternative fashion for the knock-in strategy in 

order to activate silent BGCs in multiple Streptomyces strains [48]. Replacing native 

promoters with the strong, constitutive promoter kasOp* using the CRISPR-Cas9 system led 

to the production of new compounds in S. roseosporus, Streptomyces venezuelae, and 

Streptomyces viridochromogenes. Furthermore, the compound isolated from S. 

viridochromogenes was found to be a novel pigmented PK produced from an otherwise silent 

BGC of the type II PKS. Although this activation strategy bears striking similarity to a 

technique previously reported for the activation of five gene clusters in S. albus J1074 [52], 

the incentive to use the CRISPR-Cas9 system is the increased efficiency of HRs, presenting 

an improved method for genetic manipulation of strains suffering from the low efficiency of 

natural recombination. 

 The use of synthetic or natural strong promoters has also been proven useful in 

activating BGCs with low or no expression levels [53–55]. Based on the xylE reporter gene 

and RNA-seq, 32 promoters from S. albus J1034 were identified and characterized, revealing 

ten promoters with strengths 200%~1,300% higher than that reported for the standard, 

constitutive promoter ermE*p [55]. Using a similar screening approach, Siegl et al. [54] 

evaluated their collection of synthetic promoters, and reported strengths of 2%~319% in 

comparison with that of ermE*p. 

In addition to the newly adapted molecular tools discussed above, various systems 

metabolic engineering strategies for the model organisms can also be deployed to refactor 

secondary metabolites biosynthesis in native hosts, including removal of competing pathways 

to change the flux distribution or increase the pool of precursors, deletion of repressors, and 

overexpression of activators [56]. With further advances in the field, systems metabolic 

engineering strategies will also be employed for establishment and optimization of secondary 

metabolites production in heterologous hosts in the future (see below). 
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2.4 Additional approaches that facilitate streptomycetes engineering 

Besides the molecular tools discussed above, several additional approaches exist, which may 

further facilitate streptomycetes enginering and the secondary metabolite production. First, if 

the native host is reluctant towards any genome engineering efforts, heterologous expression 

might prove a helpful alternative [40,57]. Strains such as S. albus, S. avermitilis, S. coelicolor 

and Streptomyces lividans are readily amenable to cloning and expression, and therefore, their 

use as heterologous hosts circumvents native host limitations [58]. Also, the construction of 

genome-minimized hosts, which have had one or more BGCs removed from their genomes, 

might improve titers of a given product by avoiding the use of common precursors for other 

secondary metabolites [56,58]. One such example is the minimized host S. coelicolor M1154 

which had four of its BGCs deleted in addition to the introduction of point mutations in rpoB 

and rpsL, and is known to have an improved antibiotic production performance. Using this 

host, Gomez-Escribano and Bibb reported 30- and 40-fold increases in the production titers of 

congocidine and chloramphenicol, respectively, compared to the control strain S. coelicolor 

M145 as the production host [59]. An even further reduction of the S. coelicolor genome was 

obtained by Zhou et al. [60] who, using PCR-targeting of cosmids for the gene disruption, 

sequentially deleted all the ten BGCs encoding PKS and non-ribosomal peptide synthetases 

(NRPS) in addition to a 900-kb subtelomeric region. A series of mutants were generated as a 

result, one of which had 14% of its genome deleted. Furthermore, a physiological comparison 

of the constructed genome-minimized mutants to the wild-type showed no differences in 

growth rates. Hence, this strategy can provide new hosts suitable for heterologous expression 

of a wide variety of BGCs.  

The development of a small molecule activation approach could also prove helpful 

when working with the troublesome isolates. In this regard, chemical elicitation which uses 

small molecules to induce the metabolites production in a given strain has been used with 

positive outcomes [61,62]. Using the GFP- and LacZ-based reporter systems to monitor 

activation of gene expression, a library of 640 elicitors was screened to find nine of them 
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eliciting production of two otherwise silent BGCs in Burkholderia thailandensis E264 [61]. 

Similarly, in a study on the effects of rare earth elements on secondary metabolite production 

in S. coelicolor, scandium and lanthanum were found to induce gene expression for the 

actinorhodin BGC in addition to four otherwise silent BGCs [63]. More recently, a library of 

30,569 small molecules was screened for their effects on actinorhodin production in S. 

coelicolor M145 [64]. This led to the isolation of a group of four antibiotic-remodeling 

compounds (ARCs), of which ARC2 was found capable of eliciting secondary metabolism in 

related Streptomyces species as well. Following these findings, the synthetic derivative Cl-

ARC was used for the stronger elicitation of BGCs encoding molecules at a low abundance in 

a panel of fifty Actinomycete strains [65]. This resulted in the identification of several CI-

ARC-induced compounds including oxohygrolidin from Streptomyces ghanaensis, not 

previously known to produce this molecule [66]. Furthermore, based on bioactivity-guided 

assays, it was shown that while the extracts of the elicitor-treated S. ghanaensis failed to 

provide detectable inhibition, purified oxohydrolidin displayed activity against S. cerevisiae 

Y7092. The latter finding provides strong incentives to focus future work on purified 

compounds in order to avoid masking of low abundance molecules in complex sample 

mixtures. Furthermore, such systematic analyses show a great promise in high-throughput 

screening approaches in that they allow for both screening multiple elicitors on one strain, or, 

as reported by Craney et al. [64], screening one elicitor molecule against a collection of 

strains. The major limitation to such an approach, however, remains in the massive amount of 

samples generated, which all require time-consuming subsequent analytics studies. 

 

3 Recent examples of systems metabolic engineering of streptomycetes for the optimized 

production of secondary metabolites 

The framework of systems metabolic engineering continues to be adopted to improve the 

production of secondary metabolites in streptomycetes, as seen from the many recent 

successful examples reported (Table 1). Some noteworthy examples include the production of 
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tacrolimus (FK506) using Streptomyces tsukubaensis [67–69], ascomycin (FK520) using 

Streptomyces hygroscopicus var. ascomyceticus [70–72], avermectin using S. avermitilis [73], 

and pristinamycin I (PI) and II (PII) using Streptomyces pristinaespiralis  [74,75]. 

To solve the issue of low production yield of tacrolimus in the natural producer, 

Wang et al. [67] first determined the intracellular response of S. tsukubaensis to exogenous 

feeding of four precursors known to promote the tacrolimus biosynthesis. Using a weighted 

correlation network analysis (WGCNA) on a dataset containing 93 different intracellular 

metabolites measured with gas chromatography (GC)-MS and LC-MS/MS, metabolites 

highly associated with the tacrolimus biosynthesis were identified. Furthermore, time-point 

sampling led to the identification of three pronounced pathways involved in the tacrolimus 

biosynthesis, namely pentose phosphate, shikimate, and aspartate pathways. Using this 

information and the GSMM of S. tsukubaensis, the genes aroC and dapA, involved in the 

biosynthesis of chorismate and lysine, respectively, were identified for overexpression, and 

the effects of overexpression of these genes were experimentally validated. As a result, a 

mutant overexpressing the aroC and dapA genes produced 1.64-fold higher yields of 

tacrolimus, compared to the wild-type strain.  

Ascomycin, an ethyl analog of tacrolimus, is another important immunosuppressant. 

To optimize the production of this compound, the natural producer S. hygroscopicus var. 

ascomyceticus has undergone several rounds of metabolic engineering. Early strain 

development efforts have so far included femtosecond laser irradiation mutagenesis combined 

with a shikimic acid enduring screening. Although shikimic acid was found to have a positive 

effect on the ascomycin production, the mutant strain FS35, from the mutagenesis screen, also 

displayed high sensitivy towards this substrate. To overcome this negative effect, an 

endurance screening with shikimic acid was carried out, resulting in the isolation of a 

shikimic acid-resistant mutant strain SA68 with ascomycin yield of 330 mg/L (270 mg/L for 

the parent strain) [70,71]. More recently, systems metabolic engineering [72] was employed 

to obtain a high-yield ascomycin producing strain, which showed 84.8% titer improvement, 

compared to the parent strain. Prior to the strain engineering, 13C-labelling experiments and 
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metabolic flux analysis (MFA) were employed in parallel to construct and validate an 

ascomycin metabolic network. Elementary flux mode analysis (EFMA) on the model allowed 

the identification of chorismatase FkbO and pyruvate carboxylase Pyc as overexpression and 

inactivation targets, respectively. Furthermore, from the fed-batch fermentation of the high-

producer strain TD-ΔPyc-FkbO, ethylmalonyl-CoA was found to be limited towards the end 

of fermentation, which opens up for future engineering efforts.   

Similarly, industrial producer strains have undergone extensive systems metabolic 

engineering to improve their production titers of a group of avermectins [73]. As avermectin 

biosynthesis is under the tight control of several regulators, much focus has been put on 

relieving such regulators. The pathway-specific regulator AveR, which is involved in the 

activation of avermectin biosynthesis, is itself subject to both negative and positive regulation 

[73]. Here, the two TetR family transcriptional regulators (TFRs) encoded by the genes 

SAV576 and SAV577 were found to indirectly downregulate the avermectin biosynthesis 

through binding to the promoter region of SAV575; SAV575 is known to be involved in 

providing acetate and propionate extender units required for the avermectin production 

[76,77]. Using a combination of microarray analysis, genetic studies, and chromatin 

immunoprecipitation (ChIP) assays, the expression levels of the TFRs and SAV575 were 

determined for both mutant and wild-type strains as well as the binding sites of SAV575 for 

the TFRs. This observation allowed for proposing the regulatory role of the TFRs in the 

avermectin production. Based on this information, a double deletion mutant (∆SAV576 and 

∆SAV577) was constructed, which showed ~3 fold higher production of avermectin, 

compared to the wild-type [77]. 

A more recent example of using a combinatorial metabolic engineering approach has 

been presented for the production of streptogramin-like antibiotic pristinamycin, which 

consists of two chemically unrelated compounds PI and PII [78]. As the native host S. 

pristinaespiralis suffers from low yields, additional copies of the two BGCs responsible for 

the production of PI and PII were introduced in addition to the deletion of repressors [74,75]. 

The metabolic engineering efforts were strongly aided from previous findings of the 
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regulatory cascade governing the biosynthesis of both PI and PII in S. pristinaespiralis [79]. 

For PII, the deletion of the two cluster-specific repressors PapR3 and PapR5 along with 

overexpression of the activators PapR4 and PapR6 resulted in a 1.5-fold higher production of 

PII in a mutant harboring an additional copy of the PII BGC, compared to the wild-type. 

Furthermore, the addition of resins to relieve both feedback inhibition and toxicity of PII 

resulted in the 5.26-fold higher production, compared to wild-type, when grown in 5 L 

bioreactors [74]. For PI, the highest production was observed in a mutant in which the BGC 

of PII was removed, an additional copy of the PI BGC introduced, and the repressor PapR3 

deleted. Besides the 2.4-fold increased production of PI compared to the wild-type, 

interestingly, the mutant with only the PII BGC removed showed 20-40% lowered PI 

production, compared to the wild-type, revealing a possible role of PII as a coactivator or 

inducer of PI production [75]. Further characterization efforts are needed to unravel the 

regulatory mechanism behind this observation and to additionally engineer the strain 

accordingly.    

Additional examples on the use of both metabolic engineering and more general 

engineering strategies for the optimization of secondary metabolites production in 

actinobacteria have recently been reviewed elsewhere [56].  

 

4 Conclusions 

The expansions and improvements witnessed within the fields of genome and compound 

mining, omics, and molecular cloning techniques are paving the way for systems metabolic 

engineering to harness the production potential of streptomycetes. Systematic and global 

analyses that have been undertaken will continue to improve, and, as a result, will foster faster 

and better decision making when re-designing a given strain for the optimal production of a 

target secondary metabolite and discovery of new secondary metabolites. However, it should 

be noted that, despite all these resources available, a certain amount of iterations of the 

design-build-test-learn cycle are still necessary as demonstrated for other microbial metabolic 
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engineering cases, especially taking into account the complex regulation between primary and 

secondary metabolism in streptomycetes. Implementation of molecular cloning methods in an 

automated, high-throughput setting, such as iBioFab [80], biosensors for detecting expression 

of secondary metabolite biosynthesis genes [81], or biosensors for the production of a desired 

secondary metabolite [82] might further reduce time and efforts needed to optimize the 

production of secondary metabolites using streptomycetes. It is expected that the tools and 

strategies of systems metabolic engineering of streptomycetes will advance rapidly to harness 

full biotechnological potentials of this important class of bacteria. 
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Tables 

Table 1 Examples of metabolic engineering strategies used for the optimization of secondary metabolite production in streptomycete hosts 

Secondary metabolite Streptomyces host Metabolic engineering strategies 

Highest yield 
increase 

(compared to 
control strain) 

References 

Actinorhodin Streptomyces coelicolor A3(2) 

• Construction of two comprehensive GSMMs: iIB711 and iMK1208. The latest 
iMK1208 comprises 1208 genes, 1643 reactions, and 1246 metabolites 

• Construction of a mutant strain with improved yields 
• 13C-MFA and transcriptional analysis of mutant and parental strains to compare 

their fluxes and gene expression patterns, respectively 
• FSEOF on iMK1208 to identify additional gene target for overexpression and 

subsequent experimental verification 

52-fold  [83–85] 

Ascomycin Streptomyces hygroscopicus 
var. ascomyceticus 

• Parallel 13C labeling and MFA to construct metabolic network model 
• EFMA on the ascomycin network model for target predictions 
• Strain engineering by overexpression and inactivation of genes 
• Addition of resin HP20 in the growth medium 

84.8% [70–72] 

Avermectin Streptomyces avermitilis 
• Increasing flux through precursor pathways 
• Microarray analysis and ChIP assays for the analysis of expression levels 
• Identification and deletion of regulators with inhibitory effect on production 

3-fold [73,76,77] 

Daptomycin Streptomyces roseosporus 
LC-511 

• MFA to identify potential bottlenecks in biosynthesis 
• Identification of three genes for overexpression to increase fluxes through rate-

limiting pathway 
• Construction of a triple overexpression mutant with improved titers 
• Transcriptional analysis to evaluate gene expression patterns of parental and 

mutant strains 
• Addition of glucose to fed-batch fermentations of the triple mutant strain to 

improve yields further 

43.2% [86,87] 

Pristinamycin Streptomyces pristinaespiralis 

• Transcriptional analysis by RT-PCR for the evaluation of regulatory network 
involved in biosynthesis 

• Strain engineering by introduction of extra copies of the BGC, deletion of 
repressors, and overexpression of activators 

• Addition of resins to bioreactors 

2.4-fold (PI) 
5.26-fold (PII) [74,75] 
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Rapamycin Streptomyces hygroscopicus 
ATCC 29253 

• Construction of a GSMM with 1003 reactions and 711 metabolites 
• FBA and MOMA analyses to evaluate gene targets for improving production 
• Construction of a mutant strain with one gene knock-out and overexpression of 

two genes showing higher fluxes through key primary metabolism pathways 

142.3% [88] 

Spinosad Streptomyces albus J1074 

• Construction of a Saccharopolyspora spinosa NRRL 18395 bacterial artificial 
chromosome library 

• Establishment of heterologous expression of spinosyn BGC in Streptomyces 
lividans TK24 and S. albus J1074 

• Transcriptional and translational (proteomics) analyses to evaluate heterologous 
and native hosts 

• Metabolomics to identify the best suited candidate host for the expression of 
spinosyn BGC 

• Pathway refactoring including promoter engineering and overexpression of 
synthetic modules in S. albus mutant 

1000-fold [89] 
 

Tacrolimus Streptomyces tsukubaensis 

• Proteomic and metabolomic analyses of an overproducer strain fed with soybean 
oil 

• WGCNA for the identification of pronounced precursor pathways 
• Identification of key limiting steps in the pronounced pathways using a GSMM 
• Gene overexpression to increase fluxes through two precursor pathways 

1.64-fold [67–69] 
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Figure legends 

 

Figure 1.  Cumulative number of whole genome sequences of Streptomyces species published in National Center for Biotechnology Information (NCBI) 

from 2001 to September 2017. 

 

Figure 2. Schematic representation of the workflow of systems metabolic engineering for streptomycetes. Characterization of BGCs, their encoding 

secondary metabolites and biosynthesis regulations involved is critical in engineering streptomycetes for the production of novel compounds and the higher 

yields of a known end product or. Genome and compound mining, omics techniques, molecular tools as well as the use of elicitors play important roles in this 

process.  

 

Figure 3. Workflow of systems metabolic engineering for the optimal production of secondary metabolites. The workflow shown includes tools and methods 

used within the individual steps. The workflow can be applied in an iterative fashion as illustrated by the design-build-test-learn cycle. The use of the entire 

workflow is exemplified by the production of ascomycin using Streptomyces hygroscopicus var. ascomyceticus. Here, (1) and (2) illustrates the two separate 

rounds of engineering applied for the optimization of ascomycin production.  
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Figure. 1 
 
 

 
 
Figure. 2 
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Figure. 3 
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