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We propose a method to represent the path integral over gauge fields as a tensor network.
We introduce a trial action with variational parameters and generate gauge field configu-
rations with the weight defined by the trial action. We construct initial tensors with indices
labelling these gauge field configurations. We perform the tensor renormalization group
(TRG) with the initial tensors and optimize the variational parameters. As a first step to
the TRG study of non-Abelian gauge theory in more than two dimensions, we apply this
method to three-dimensional pure SU(2) gauge theory. Our result for the free energy agrees
with the analytical results in the weak and strong coupling regimes.
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1. Introduction
Much attention has been paid to the tensor renormalization group (TRG) [1] as a new numerical
method for studying lattice field theories [2–26], since the method is free from the sign problem
and enables us to take the large-volume limit quite easily.

In the TRG, it is nontrivial to represent the path integral over continuous bosonic fields as
a tensor network that provides initial tensors, while it is rather straightforward to represent
that over fermionic fields as a tensor network. For scalar fields, the Gauss–Hermite quadra-
ture works well in two [10,11] and four [12,13] dimensions. For gauge theories, the character
expansion is successfully applied to the U(1) gauge field [4–6,21,26], SU(2) gauge field [14,15],
and SU(N) and U(N) gauge fields [17] in two dimensions, while a random sampling method is
applied to the SU(2) and SU(3) gauge fields in two dimensions [16]. In the character expansion,
the tensor indices correspond to the labels that specify irreducible representations belonging to
a subset of all irreducible representations of a gauge group. In the random sampling method,
the tensor indices label gauge configurations that are generated numerically with the Haar mea-
sure.

Moreover, the cost of calculation for the method is more sensitive to the dimensionality of
space-time than other methods such as the Monte Carlo method. Indeed, in gauge theories in
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more than two dimensions, it looks hard to make the above subset in the character expansion
large. As for the random sampling method, we find that it works well in the strong coupling
regime for three-dimensional pure SU(2) gauge theory. However, we will see that it is not ap-
plicable to other regimes when the range of the tensor indices is hard to increase. Thus, as far
as we know, no non-Abelian gauge theories in more than two dimensions have been studied
through the TRG so far. Hence, it is desirable to develop a more efficient method to represent
the path integral over gauge fields as a tensor network.

In this paper we propose a candidate for such a method. We introduce a trial action with
variational parameters for a link variable and numerically generate gauge field configurations
with the weight defined by the trial action. We construct initial tensors with indices labelling
these gauge field configurations. We perform the tensor renormalization group with the initial
tensors for various values of the variational parameters, and fix the variational parameters
such that the result is insensitive to them in the spirit of the mean field approximation and the
Gaussian expansion method (improved mean field approximation or delta expansion; see, for
instance, Ref. [27] and references therein). Our method can be viewed as an improvement of the
random sampling method [16]. As a first step to the TRG study of non-Abelian gauge theory
in more than two dimensions, we apply this method to three-dimensional pure SU(2) gauge
theory. We find that the result for the free energy agrees with the analytical results in the weak
and strong coupling regimes.

This paper is organized as follows. In Sect. 2 we describe our method to represent the path
integral over gauge fields as a tensor network. In Sect. 3 we show the result for three-dimensional
pure SU(2) gauge theory obtained using our method. Section 4 is devoted to conclusion and
discussion. In the appendix, the construction of initial tensors is explained in detail.

2. Tensor network formulation
In this section we explain our method to represent three-dimensional pure SU(N) gauge theory
on the lattice as a tensor network. To extend this to higher dimensions is straightforward.

The partition function is defined by

Z =
∫ ∏

n,μ

dUn,μe−S, (1)

where n are the lattice sites, and (n, μ) with μ = 1, 2, 3 specify the links. Un, μ are the link
variables that take SU(N) matrices, and dUn, μ are the Haar measure normalized as

∫
dUn, μ =

1. The plaquette action S is defined by

S = β

N

∑
n,μ>ν

Re Tr(1 − Uμν (n)), (2)

with Uμν (n) = Un,μUn+μ̂,νU
†
n+ν̂,μ

U †
n,ν .

Here we introduce a trial action Sv with some variational parameters such that the partition
function is unchanged:

Z =
∫ ∏

n,μ

dUn,μe−(S−Sv )−Sv . (3)

We assume that Sv is given by the sum over single link actions as

Sv =
∑
n,μ

S̃v(Un,μ), (4)
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and that the partition function for the single link action S̃v,

Zv =
∫

dU e−S̃v(U (n,μ)),

is calculable by a certain method. The simplest example of S̃v is given by

S̃v(U ) = −H
N

Re TrU, (5)

where H is a variational parameter. In the SU(2) case, Zv is calculated as

Zv = 2
I1(H )

H
, (6)

where I1 is the modified Bessel function. Later, we will use Eq. (5) for SU(2).
Then, we represent Z as

Z = Z3V
v 〈e−(S−Sv )〉v, (7)

where V is the number of sites, and 〈···〉v stands for the statistical average with respect to the
Boltzmann weight e−Sv :

〈· · · 〉v = 1
Z3V

v

∫ ∏
n,μ

dUn,μ · · · e− ∑
n,μS̃v(Un,μ ). (8)

We generate K configurations of U with the Boltzmann weight e−S̃v(U ) in general numerically
and approximate the integral over each Un, μ as

∫
dUn,μg(Un,μ,Un′,μ′, . . .) ≈ 1

K

K∑
i=1

g(Ui,Un′,μ′, . . .), (9)

where Ui are elements of the set G = {U1, U2, …, UK}. We use the labels of the configurations
i as the tensor indices.

In principle, the calculation is independent of S̃v if one can make K large enough in per-
forming the TRG. For instance, one can take S̃v = 0, which corresponds to producing config-
urations randomly with the Haar measure. This corresponds to the random sampling method
that is used for a tensor network representation of two-dimensional pure gauge theory [16].1

However, it is difficult to make K large due to the cost of calculation. Indeed, it turns out in
Sect. 3 that in pure SU(2) gauge theory S̃v = 0 with reasonable values of K works only in the
strong coupling regime. In practice, we need to sample configurations such that the TRG works
efficiently. We choose S̃v appropriately and optimize the variational parameters such that the
result is insensitive to them.

We construct a tensor that resides on the center of a plaquette:

Ai jkl = exp
[

β

N
Tr

(
UiUjU

†
kU †

l

)
− 1

4

(
S̃v(Ui) + S̃v(Uj ) + S̃v(Uk) + S̃v(Ul )

)]
. (10)

We introduce a tensor Bijkl to construct a six-rank tensor from Aijkl, following the exact blocking
formula [2]. Bijkl are placed on links, and take the form

Bi jkl = δi jkl = δi jδ jkδklδl i. (11)

A graphical representation of A tensors and B tensors is given in Fig. 1. By using A and B
tensors, the initial tensor T is constructed as

T = A(0) ⊗ A(1) ⊗ A(2) ⊗ B ⊗ B ⊗ B. (12)

1It is shown in this case that K is allowed to be small.
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Fig. 1. (Left) A tensors on plaquettes and B tensors on links. (Right) T tensor in the center of a cube,
where T = A(0)⊗A(1)⊗A(2)⊗B⊗B⊗B.

Here we generate three configuration sets G(0), G(1), and G(2) for A(0), A(1), and A(2), respectively,
to improve the K dependence [16].2The A(0), A(1), and A(2) tensors are defined on the (xy), (yz),
and (zx) planes, respectively (see Fig. 1), while the T tensor is a six-rank tensor which is placed
in the center of a cube and whose bond dimension is K2. Thus, we obtain a tensor network
representation of the partition function

Z(K ) =
(

e−β Zv

K

)3V

tTr ⊗n T, (13)

where tTr stands for the trace over tensor.
In what follows, we consider the SU(2) case and adopt Eq. (5) as the trial action. We truncate

the bond dimension for T to D by introducing isometries as in the higher-order TRG (HOTRG)
method [3]. The truncation procedure is summarized in Appendix A.

3. Numerical results
In this section we show the numerical results for three-dimensional SU(2) pure gauge theory
on the lattice. We calculate the free energy (density) F = (1/V)log Z by using our formulation
introduced in the previous section and anisotropic TRG (ATRG) [23]. We adopt Eq. (5) with
N = 2 as the trial action S̃v. In the following results, the lattice size L, which is related to V as
V = L3, is fixed to L = 1024.

First, by using the Monte Carlo method with the Boltzmann weight e−S̃v , we generate three
sets of K field configurations G(i) = {U (i)

1 ,U (i)
2 , . . . ,U (i)

K }, i = 0, 1, 2. Second, we construct the
A(i) tensors (i = 0, 1, 2) from G(i) as explained in the previous section. Third, by installing isome-
tries to truncate the bond dimension from K2 to D as explained in Appendix A, we construct
the initial tensor T. Finally, we apply the ATRG [23] with the bond dimension D to the initial
tensor T to calculate the free energy F = 1

V log Z. We perform the calculation of the free energy
for various values of H for fixed β and search for a plateau of the free energy under the change
of H because the free energy is originally independent of H.

The estimates of the free energy have statistical errors in addition to the systematic errors
coming from the finiteness of K and the bond dimension D. The statistical errors that are given
below as error bars are obtained from ten independent trials.

2We can further consider a couple of collections of three configuration sets, {G(0), G(1), G(2)} and {G
′(0),

G
′(1), G

′(2)}, each of which is used on even/odd sites [16].
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Fig. 2. The D-dependence of the free energy with β = 1 (left) and β = 50 (right), where K = 12. The lines
are drawn to guide the eye. (Left) The dots and triangles represent the results for H = 0.001 and H = 5,
respectively. The statistical errors for H = 0.001 are smaller than the symbol size. (Right) The dots and
triangles represent the results for H = 1 and H = 20, respectively. The statistical errors for H = 20 are
smaller than the symbol size.

Fig. 3. The K dependence of the free energy with β = 1 (left) and β = 50 (right), where D = 12. The lines
are drawn to guide the eye. (Left) The dots and triangles represent the results for H = 0.001 and H = 5,
respectively. The statistical errors for H = 0.001 are smaller than the symbol size. (Right) The dots and
triangles represent the results for H = 1 and H = 20, respectively. The statistical errors for H = 20 are
smaller than the symbol size.

3.1. The D and K dependencies
In this subsection we examine the dependence of the free energy on D and K. We choose β = 1
and β = 50 as typical values of small and large β, respectively.

First, we examine the D dependence. The D dependence of the free energy with β = 1 and
β = 50 is shown in the left and right panels of Fig. 2, respectively. Here, K is fixed to K = 12,
and the results for two typical values of H are shown. We see in Fig. 2 (left) that the statistical
errors for H = 0.001 are much smaller than those for H = 5, and that the results for both H =
0.001 and H = 5 are stable against the change of D. We see in Fig. 2 (right) that the statistical
errors for H = 20 are much smaller than those for H = 1, and the result for H = 20 is stable
against the change of D while that for H = 1 is not. These results imply that it is crucial in our
algorithm to tune H appropriately. In particular, D = 12 is considered to be sufficient in both
the weak and strong coupling regimes if H is chosen appropriately.

Next, we examine the K dependence. The K dependence of the free energy with β = 1 and
β = 50 is shown in the left and right panels of Fig. 3, respectively. Here, D is fixed to D = 12,
and the results for two typical values of H are shown. We see in Fig. 3 (left) that the statistical
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Fig. 4. The free energy is plotted against β. The statistical errors are smaller than the symbol size. The
strong coupling expansion is expressed by the dashed line, while the weak coupling expansion by the
dotted line.

errors for H = 0.001 are much smaller than those for H = 5, and that the result for H = 0.001
is stable against the change of K while that for H = 5 is not. This again implies that tuning H
is crucial in our algorithm, and K = 16 is sufficient in the strong coupling regime. Similarly, we
see in Fig. 3 (right) that the statistical errors for H = 20 are much smaller than those for H =
1. However, the result for H = 20 does not look completely stable against the change of K in
the range K ≤ 16. Due to the limitation of available memory, we take K = 16 in the following
calculations. Indeed, as we show in Sect. 3.2, the result for the free energy for 20 ≤ β ≤ 50 agrees
with the weak coupling expansion. Thus, the K dependence for K ≥ 16 with H ∼ 20 is expected
not to be large in the weak coupling regime. From the above results, we set D = 12 and K = 16
in the following calculations.

3.2. Free energy
We show the result for the free energy in Fig. 4. Here, D and K are fixed to D = 12 and K = 16 as
mentioned in the previous subsection. We search for a plateau for each value of β in the 0 < H
≤ 20 region. The free energy is obtained from F = F(H∗), where H∗ has the smallest statistical
error among the plateau. Note that H∗ depends on β. The dependence of the free energy on H
is shown in Fig. 5, where we choose β = 1 and β = 50 as typical small and large values of β,
respectively. We see that there is a plateau in the H ≤ 0.6 region for β = 1 and in the H ≤ 16
region for β = 50. We take H∗ = 0.001 in β ≤ 7 and H∗ > 10 in β ≥ 20. (H = 0 should also
work for β ≤ 7.)

The strong coupling expansion of the free energy is given by

F (β ) = −3β + 3
8
β2 − 3

384
β4 + O(β6), (14)
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Fig. 5. The H dependence of the free energy with K = 16 and D = 12 for β = 1 (left) and β = 50 (right).

which is expressed by the dashed line in Fig. 4. The weak coupling expansion of the expectation
value of a plaquette is given by W1 × 1 = e−1/β [28]. Thus, we have

F (β ) = −3 log β + C + O
(

1
β

)
, (15)

with C being an integration constant. We determine the constant as C = −5.8426 by fitting the
data in the 20 ≤ β ≤ 50 region to −3log β + C. The weak coupling expansion is expressed by
the dotted line in Fig. 4. The result indeed agrees with the strong and weak coupling expansion,
in the strong and weak regimes, respectively. However, in the 7 ≤ β ≤ 19 region, we cannot find
any definite plateau. We expect this to be resolved by increasing K and/or improving the trial
action.

Our result suggests that the random sampling method [16] works in the strong coupling
regime in higher-dimensional gauge theories. If K cannot be made large enough, another
method is needed in the intermediate and weak coupling regimes. Our method is a candidate
for such a method.

4. Conclusion and discussion
We proposed a method to represent the path integral over gauge fields as a tensor network. In
our method, tensor indices label gauge field configurations that are generated with the weight
determined by the trial action with variational parameters. We construct initial tensors with
these indices and perform the TRG with the initial tensors for various values of the variational
parameters to fix the variational parameters such that the result is insensitive to them. As a
first step to the TRG study of non-Abelian gauge theories in more than two dimensions, we
studied three-dimensional pure SU(2) gauge theory by using our method with the ATRG. We
reproduced the weak and strong coupling behaviors of the free energy. We found that the ran-
dom sampling method (corresponding to H = 0) works in the strong coupling regime, while
tuning H to a nonzero value is needed in the weak coupling regime. Our result suggests that
our method can be used for studying gauge theories in more than two dimensions.

It is likely that we need to perform the calculation with larger K and/or to improve the trial
action to see complete stability of the free energy against the change of K in the weak and
intermediate coupling regimes and find plateaus in the intermediate coupling regime.3

In order to establish the effectiveness of our method, we should study the physics of three-
dimensional SU(2) gauge theory such as the string tension and the finite-temperature phase

3We should also try to introduce a couple of collections of three configuration sets, each of which is
used on even/odd sites.
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transition [18]. Furthermore, inclusion of matter, topological terms, the chemical potential,
extension to other non-Abelian gauge groups, and extension to four dimensions are left as
future work. We hope that our method will indeed be powerful for problems with complex
actions.
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Appendix A. Construction of the initial tensor
In this appendix we describe the details of the construction of the initial tensor. We have three
A tensors {A(0), A(1), A(2)} and three B tensors that were introduced in Sect. 2. If the initial T
tensor is constructed exactly, the six-rank tensor needs an O

(
(K2)6

)
memory footprint. For this

reason, we install isometries to reduce the bond dimension from K2 to D. We apply HOTRG
[3] to coarse-grain the x, y, and z directions as shown in Fig. A1.

First, we introduce the isometries for the x direction. We perform higher-order singular value
decomposition for M ≡ A(0)⊗A(1)⊗B. M is a matrix whose rows consist of the indices of A(0)

and A(2) corresponding to the right side (see Fig. A2) and the columns consist of the other
indices (see Fig. A2).

Then, we calculate MM†, which is a Hermitian matrix, and perform the canonical transfor-
mation of MM† as

MM† = UR�R(UR)†, (A1)

where �R is a diagonal matrix whose diagonal elements are the eigenvalues of MM†. We also
obtain UL for the left side in the same way. We can evaluate the truncation error εR and εL for

Figure A1. Isometries Ux, Uy, and Uz for the x, y, and z directions, respectively.
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UR and UL:

εR(L) =
∑
i>D

(�R(L) )ii. (A2)

We adopt the one with the smaller truncation error between UR and UL as Ux. Uy and Uz for
the y and z directions are obtained in the same way: M = A(0)⊗A(1)⊗B for the y direction, and
M = A(1)⊗A(2)⊗B for the z direction. Finally, we obtain the initial tensor T by contracting A(0),
A(1), A(2), B, B, B, Ux, Uy, and Uz as in Fig. A1.
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