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Abstract: Investigating the human brain in utero is important for researchers and clinicians seeking to
understand early neurodevelopmental processes. With the advent of fast magnetic resonance imaging
(MRI) techniques and the development of motion correction algorithms to obtain high-quality 3D
images of the fetal brain, it is now possible to gain more insight into the ongoing maturational process-
es in the brain. In this article, we present a review of the major building blocks of the pipeline toward
performing quantitative analysis of in vivo MRI of the developing brain and its potential applications
in clinical settings. The review focuses on T1- and T2-weighted modalities, and covers state of the art
methodologies involved in each step of the pipeline, in particular, 3D volume reconstruction, spatio-
temporal modeling of the developing brain, segmentation, quantification techniques, and clinical appli-
cations. Hum Brain Mapp 38:2772–2787, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Quantitative image analysis of the in vivo fetal brain
plays a crucial role in clinical decision-making and neuro-
science research. During the last several years, a growing
trend in using magnetic resonance imaging (MRI) for such
studies is observed. MRI is the most common medical
imaging modality for the diagnosis and follow-up of
patients with brain abnormalities, and the understanding
of normal neurodevelopment in adult brains. For fetuses,
although ultrasound (US) is widely accepted as the prima-
ry technology for in utero imaging of the brain [Garel,
2008], US examination is often hampered by some limita-
tions, including reduced amniotic fluid volume, maternal
obesity, inappropriate fetal head position, multiple
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pregnancy, and bony reverberation artifacts from the skull
[Glastonbury and Kennedy, 2002; Twickler et al., 2003].
Conversely, MRI offers superior contrast in soft tissues
and an increased field of view compared to US. Prenatal
diagnosis can therefore benefit from fetal MRI by comple-
menting the findings in US. Indeed, in recent years, in
utero MRI has shown to be of important added value in
the study of disorders [Clouchoux et al., 2013; Kyriakopoulou
et al., 2014; Scott et al., 2013] and early brain development
[Clouchoux et al., 2012; Wright et al., 2014].

Quantification of fetal brains from MRI is more challeng-
ing than that of the adult brain as it requires additional
processing techniques and makes some of the widespread
techniques for adult brain MRI not applicable. In the pipe-
line to perform fetal brain MRI quantitative studies (see
Fig. 1), the first challenges come from motion artifacts dur-
ing image acquisition. While advances in fast MRI sequen-
ces help decrease acquisition times, the development of
motion correction techniques allows obtaining high-
resolution 3D images of the fetal brain from the several
motion-corrupted acquired stacks. These studies also
require the delineation of tissues and structures of interest
in the 3D reconstructed volumes. For this purpose, auto-
matic segmentation techniques are desirable over manual
labeling as the latter is very time-consuming and subject
to inter- and intra-rater variability. Therefore, quantitative
approaches often rely on automated segmentation algo-
rithms to achieve accurate and reproducible measure-
ments. However, in this third stage of the pipeline (i.e.,
segmentation), researchers have to face new difficulties
concerning the nature of the fetal brain. The rapid and
complex cerebral changes in shape and appearance (e.g.,
transient laminar pattern and myelination) that occur dur-
ing intrauterine growth make existing techniques for adult
brains unfeasible and advocate for the development of
novel approaches. This has increased the need to build
spatio-temporal atlases of the fetal brain to capture these
dynamic changes. Spatio-temporal atlases have shown to
be useful for automatic segmentation, which is notably
challenged by the low resolution of fetal brain images, the
excessive amount of partial volume effects (PVEs), and the
substantial dissimilarities in shape and MRI contrast
between brains at different gestational ages (GAs).

There is a growing body of literature on fetal brain MRI.
This work aims to provide an overview of the automated
pipeline for performing quantitative analysis of fetal brain
from structural MRI. Acquisition and reconstruction stages
of the pipeline are not the main purpose of this review
and are briefly discussed in Challenges of Fetal Brain MRI
section. The reader is referred to the work by Studholme,
[2011, and references therein] for a comprehensive review
of these techniques. For each pipeline stage, the motivation
and the difficulties that arise when working with fetal
brain MRI are outlined from both clinical and methodolog-
ical perspectives, and a literature review of the methodo-
logical advances is presented. Although this work mainly

focuses on methods targeting the fetal brain in structural
MRI, methods proposed for neonates are also discussed
given the shared similarities once fetal-exclusive limita-
tions are overcome. The rest of the article is organized as
follows. Challenges of Fetal Brain MRI section overviews
some of the challenges that arise in fetal brain MRI.
Atlases of the Developing Brain section introduces the con-
struction and use of spatio-temporal atlases. Segmentation
of Brain Images section is devoted to segmentation techni-
ques of tissues and other anatomical structures in fetal
and neonatal brains. In Quantification of Early Normal
Brain Development section, a broad view of quantitative
studies of normal brain development is provided. Exam-
ples of Clinical Applications section describes potential
clinical applications of fetal MRI in the study of early
brain abnormalities. A discussion about the state of the art
is presented in Discussion section. Finally, Conclusions
section concludes the article.

CHALLENGES OF FETAL BRAIN MRI

Difficulties with fetal brain MRI start to appear as early
as in the imaging process. Acquisition of full 3D MRI of
the fetal brain is still impractical due mainly to the thick
slice acquisition necessary to achieve good signal-to-noise
ratio and the presence of motion artifacts caused by spon-
taneous movement of the fetus and maternal breathing.
Shortening the acquisition time would help decrease the
likelihood of motion artifacts [Malamateniou et al., 2013].
Advances in fast MRI sequences, such as single shot fast
spin-echo, in conjunction with post-processing techniques
(i.e., motion correction and super resolution) have granted
the means to gain broad insight into the in utero fetal
brain by providing high-resolution 3D volumes. Typically,
several motion-corrupted stacks of thick 2D slices are
acquired in orthogonal orientations and then used to
reconstruct a high-resolution motion-free 3D volume of
the brain. Existing methods for motion correction and
reconstruction [Kim et al., 2010; Murgasova et al., 2012]

Figure 1.

Pipeline to perform quantitative analysis of fetal brain MRI. Fast

MRI sequences are used in the first stage to acquire several

motion-corrupted stacks of the fetal brain, which are then used

to obtain the final motion-corrected 3D reconstruction (second

stage). The third stage is for approaches to build spatio-

temporal atlases to capture the dynamic changes of the fetal

brain, which can serve as spatial priors in the segmentation of

brain tissues and other structures of interest. The fourth stage

is dedicated to quantitative studies (e.g., volumetry, gyrification).
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require the delineation of the fetal brain (at least in one
slice) from maternal tissue. However, Keraudren et al.,
[2014] proposed a fetal brain extraction method from 2D
stacks, that combined with the reconstruction approach in
Murgasova et al., [2012] provides a fully automated pipe-
line to obtain the final 3D volumes. A volume reconstruction
example using this pipeline is shown in Figure 2. Recently, a
GPU-accelerated slice-to-volume reconstruction method simi-
lar to Murgasova et al., [2012] was proposed in Kainz et al.,
[2015].

In quantitative MRI studies, one of the requirements is
the labeling of the different regions of the brain. Neverthe-
less, segmentation is not forthrightly applicable as MRI
suffers from noise, intensity inhomogeneity and PVE that
may negatively impact the performance of image process-
ing techniques. PVE is present when multiple tissues con-
tribute to a single voxel producing a blurring effect, for
instance, in the boundary between gray matter (GM) and
cerebrospinal fluid (CSF). PVEs can lead to volume mea-
surement errors in the range of 20%260% [Gonz�alez Bal-
lester et al., 2002] and are more recurrent in fetal brain
MRI, as illustrated in Figure 3, due to its lower resolution
when compared to adult brain images. In fetuses, these
problems are accentuated because early brain develop-
ment involves a rapid and complex sequence of

morphological, functional, and appearance changes.
Hence, in addition to the aforementioned obstacles, large
tissue intensity variations are present in fetal (and neona-
tal) brains due to myelination and cell migration [Ruther-
ford, 2001]. Myelination is the last stage of white matter
(WM) development and takes place from the second half
of gestation to the end of adolescence [Dubois et al., 2014],
making the intensities of WM similar to those of both cor-
tical and subcortical GM in T1-weighted (T1w) and T2-
weighted (T2w) MR images. Neuronal migration occurs
from the germinal matrix (GMAT), which is comprised of
ventricular and subventricular zones, toward the cerebral
wall to form the prospective neocortex. During this pro-
cess of corticogenesis, the fetal brain goes through an
intensive laminar organization, where the cortical plate
(CP), the subplate (SP) and the intermediate zone (IZ) are
formed, as shown in Figure 4. By the 27th gestational
week (GW), however, intensity contrast between the IZ
and SP begins to overlap and eventually transforms into
neonatal WM [Prayer et al., 2006]. Also late in the 2nd tri-
mester, the GMAT commences to gradually regress until it
completely disappears by term [Girard and Chaumoitre,
2012]. These developmental processes make the segmenta-
tion of the developing brain in MRI more challenging as
compared to adult brains.

Figure 2.

Example of reconstruction from motion-corrupted stacks of 2D MRI slices. First three columns

(i.e., stacks 1, 2, and 3) correspond to axial, sagittal, and coronal acquisitions, respectively. Fourth

column is the final reconstruction. Rows, from top to bottom, show axial, sagittal, and coronal

views, respectively, for each image.
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ATLASES OF THE DEVELOPING BRAIN

The core raison d’̂etre of brain atlases is to (1) serve as a com-
mon reference coordinate system for spatial normalization of
a group of individuals to study intra- and inter-group vari-
ability, and (2) act as an atlas for segmentation of brain
regions [Fonov et al., 2011, and references therein]. The study
of the developing brain ought to be age-specific given tran-
sient laminar pattern and the evident vast differences in shape
and appearance across age (see Fig. 5) that occur during the
maturational process. This age-specific character of segmenta-
tion and processing techniques of the developing brain has
driven research [e.g., Habas et al., 2010; Serag et al., 2012b]
toward the use of spatio-temporal atlases instead of a single
atlas at a particular time-point. Compared to conventional
atlases, spatio-temporal atlases encode spatial as well as tem-
poral variability. This allows to better retain the anatomical
variability across age. Several atlases can be found in the liter-
ature for adult [Evans et al., 1993], pediatric [Wilke et al.,
2003], infant [Joshi et al., 2004], neonatal [Murgasova et al.,
2011; Serag et al., 2012a], and fetal [Habas et al., 2010] brains.

Population-Specific Atlases

An ideal atlas of the human brain should have the desir-
able features of being (1) representative of the population,
(2) unbiased, and (3) sharp (i.e., with high contrast). Using a
single anatomy as an atlas precludes fair representation as
the arbitrary choice of the reference template does not
encompass the neuroanatomical variability of the entire
population. To better accommodate this variability,

population average atlases, such as the Montreal Neurologi-
cal Institute (MNI) template [Mazziotta et al., 1995] for adult
brains, were constructed. These atlases are built by averag-
ing the anatomical images from a particular population,
based on distinctive criteria such as age, gender, or ethnici-
ty. The representative bias introduced when using a single-
subject atlas can then, to some extent, be avoided using the
MNI template. Still, when targeting pediatric brains, Wilke
et al., [2003] found considerable differences in tissue distri-
bution between pediatric and adult data, substantially
appreciated in GM. Thus, spatial normalization of pediatric
brain images to the MNI or other adult templates is less
accurate [Shi et al., 2011] and might introduce a strong bias
in anatomical quantification. This problem is especially
important in younger brains due to their continuous devel-
opment throughout childhood and adolescence [Paus et al.,
1999]. Several researchers have therefore developed
population-specific brain atlases for children and infants. Joshi
et al., [2004] constructed a probabilistic atlas of anatomical
structures from 8 T1w MR scans of 2-year-old children. Wilke
et al., [2008] created reference pediatric templates from 404
healthy subjects aged 5–18 years. Recently, Fonov et al., [2011]
built age-specific MRI atlases for 6 age groups in the range of
4.5–18.5 years. Along the same lines, Altaye et al., [2008] pro-
posed a method to create an infant (9 to 15 months) probabilis-
tic atlas, and demonstrated that the use of their atlas
performed better than a default adult or pediatric template in
segmenting the infant brain. Kazemi et al., [2007] built a neo-
natal brain template based on T1w MR images of 7 individuals
with GA between 39 and 42 weeks.

The major requirements for the construction of these
adult and pediatric atlases are twofold: (1) the definition

Figure 4.

Coronal T2W slice of a fetus at 23 GWs illustrating the laminar

organization of the brain: the hypointense CP is the outermost

layer. The SP is hyperintense relative to the CP and IZ. Immediatly

beneath the SP, the hypointense IZ appears. The GMAT represents

the innermost layer and is isointense to the CP.

Figure 3.

Examples of partial volume effect (arrows) in the boundaries

between GM and CSF, and background and CSF in an axial MRI

slice of a 29 GWs fetus. [Color figure can be viewed at wileyon-

linelibrary.com]
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of a reference space, and (2) the transformation model
that maps each brain to this common space. A potential
source of bias comes forth in the selection or creation of
the initial reference template during atlas construction.
For example, Park et al., [2005] selected the initial tem-
plate to be the closest brain to the geometrical mean in a
low dimensional space. However, to reduce the dependence
on any particular anatomy during normalization, the conven-
tional approach is based on iterative strategies where the ini-
tial template is derived from the multiple anatomies in the
database and successively updated in each iteration [Avants
et al., 2010; Fonov et al., 2011]. Sharpness of atlases, converse-
ly, is closely related to the transformation model. A single-
subject based atlas has well defined anatomical boundaries.
For the average atlases to exhibit sharp anatomical details,
non-rigid registration seems to be more appropriate for build-
ing such atlases [e.g., Fillmore et al., 2015; Fonov et al., 2011].
To further enhance the anatomical details, Shi et al., [2014]
proposed a patch-based sparse representation approach to
fuse the information from the individual images after
registration.

Spatio-Temporal Atlases

Methods for building atlases of the human brain have
evolved in parallel to the emergence of new imaging tech-
niques, being closely linked to the age of the individuals
under study because of the substantial structural changes
existing between age groups. Atlases described above
either were produced for infant and older populations, or
have a sparse age coverage (i.e., temporal variability is
covered by only a few discrete temporal points). The study
of neonates and fetuses at a precise developmental period
becomes difficult because changes in the developing brain
occur in the order of weeks or even days. One way to
circumvent this limitation is to provide atlases with a fine-
grained temporal resolution. Beyond static population-
specific atlases, the solution relies on the building of
spatio-temporal atlases, whose purpose is to encode both

longitudinal and inter-subject variability. For the temporal
domain, brains along a certain age range need to be taken
into account in the atlas creation, whilst, for the spatial
domain, a sufficient number of subjects at a particular
time-point is needed. Due to ethical and practical issues,
building spatio-temporal atlases directly from repeated
longitudinal imaging of the same subject is difficult, and
they are therefore constructed from many individuals,
scanned at different ages. Several methods exist in the liter-
ature to build this kind of atlases for neonates [Murgasova
et al., 2011; Serag et al., 2012a, 2012b; Zhang et al., 2016]
and fetuses [Dittrich et al., 2014; Gholipour et al., 2014;
Habas et al., 2010; Serag et al., 2012b]. Table I summarizes
the main features and datasets used for each of these meth-
ods. The time-varying dimension of these atlases is an
advantageous characteristic in that it allows dynamic gener-
ation of average intensity images and corresponding prior
tissue probability maps at any arbitrary time-point confined
within the age range of the brain scans used to build the
atlas.

Most of the aforementioned spatio-temporal atlases
were created from T2w images using non-rigid [Dittrich
et al., 2014; Gholipour et al., 2014; Habas et al., 2010; Serag
et al., 2012a, 2012b; Zhang et al., 2016] rather than rigid
registration [Dittrich et al., 2014; Murgasova et al., 2011].
Rigid registration is better suited for the spatio-temporal
atlases to capture the variability across subjects, and this
was used in Dittrich et al., [2014] for age estimation. For
segmentation purposes, non-rigid registration provides
more accurate results. Although, as pointed out in Murga-
sova et al., [2011], building the atlas with affine transforma-
tions may turn out to be advantageous for segmentation
applications when the to-be-segmented image is non-rigidly
registered to the newly created template. Furthermore, the
spatio-temporal latent atlas in Dittrich et al., [2014] was
built in a semi-supervised manner, where segmentations of
ventricles and cortex were only available for a reduced set
of images. During the construction stage, these segmenta-
tions are transferred to the remaining images to create prior

Figure 5.

Rapid brain maturation. From left to right: 26, 29, and 34 GWs fetal brains.

r Benkarim et al. r

r 2776 r



probability maps for the generated atlas. With regard to
image modality, the neonatal spatio-temporal atlas in Serag
et al., [2012b] was created from both T1w and T2w modali-
ties. Although this multi-channel atlas uses T1w and T2w
images, registrations were only performed on T2w images
and resulting transformations were used to deform the T1w
modality. A neonatal spatio-temporal atlas for both T1w
and T2w modalities was also created in Zhang et al., [2016].

A distinguished feature that needs to be considered in
the construction of spatio-temporal atlases is the modeling
of the temporal dimension. The first work on building a
spatio-temporal atlas of the fetal brain [Habas et al., 2010]
used non-linear modeling of the temporal variations in a
reduced age range of 21-25 GWs. However, in larger age
ranges, there may be no subjects at the exact age of

interest. Therefore, the works in Dittrich et al., [2014] and
Murgasova et al., [2011] adopted a temporal kernel regres-
sion method to compute the weighted contribution of the
temporal neighbors in the creation of the average brain
templates. In Gholipour et al., [2014] and Serag et al.,
[2012a, 2012b], adaptive kernel regression was used to cre-
ate their spatio-temporal atlases. Here, the adaptive kernel

accounts for a sufficient number of subjects in the contri-
bution to the atlas creation. This ensures a consistent level
of detail for a synthesized atlas at any time-point when
the brains are not uniformly distributed over the age
range. Zhang et al., [2016] used a patch-based approach
similar to Shi et al., [2014] for creating the atlas. However,
the key improvement of this work over previous
approaches is the temporal consistency of their atlas, as it

TABLE I. Spatio-temporal atlases of the developing brain

Modality
Fetal/

Neonatal Subjects GA Structures
Type of

segmentation

Registration

Spatial Temporal

(Habas et al. 2010) T2w Fetal 20 21-25 GM Manual Groupwise LS
WM Non-rigid
GMAT Segmentations
VENT

(Murgasova et al. 2011) T2w Neonatal 142 29-44 WM Automatic Pairwise KR
CoGM Affine
CeGM
BS
CB
CSF

(Serag et al. 2012a) T1w and Neonatal 204 29-44 WM Automatic Pairwise AKR
T2w CoGM Non-rigid

CeGM For each GA
BS (only T2w)
CB
CSF

(Serag et al. 2012b) T1w and Both 204 29-44 WM Automatic Pairwise AKR
T2w (neonatal) CoGM (neonatal) Non-rigid

80 22-39 CeGM Manual For each GA
(fetal) BS (fetal) (only T2w)

CB
CSF

(Dittrich et al. 2014) T2w Fetal 12 21-25 VENT Manual Groupwise KR
CoGM (only few) Rigid or

Non-rigid
(Gholipour et al. 2014) T2w Fetal 40 26-36 WM – Groupwise AKR

CoGM Non-rigid
CeGM
GMAT
BS
CB
CSF

(Zhang et al. 2016) T1w and Neonatal 35 0-12 WM Automatic Groupwise AKR
T2w (150 scans) (months) GM Non-rigid

CSF

Abbreviations in the table: VENT, ventricles; CeGM, central GM; CoGM, cortical GM; BS, brainstem; CB, cerebellum; LS, least squares
fitting; KR, kernel regression; AKR, adaptive kernel regression. Unavailable information is marked as –.
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was built based on subject-specific longitudinal informa-
tion (i.e., using 4.3 scans per subject in average).

SEGMENTATION OF BRAIN IMAGES

Automatic tissue segmentation of the human brain in
MRI has been incentivized by its many clinical applica-
tions. Cortex delineation, for instance, is a prerequisite for
the study of cortical thickness and gyrification (see Quanti-
fication of Early Normal Brain Development section). The
success of quantitative analysis is heavily sustained by the
accuracy of image segmentation algorithms. While there is
a plethora of MRI segmentation techniques for the adult
brain [e.g., Greenspan et al., 2006; Ortiz et al., 2013; Pham
and Prince, 1999], a limited number of works to segment
brain MRI of neonates and fetuses exists in the literature.
The poor spatial resolution of images, and the varying
intensity distribution between tissues, dynamic shape
changes and reduced contrast in the brain at such early
ages render more challenging the automatic brain segmen-
tation of this age group compared to adults.

Segmentation of Neonatal Brain MRI

In the neonatal brain, WM exhibits substantial intensity
variation due to the ongoing process of myelination that
gradually reverses the WM-GM contrast, reaching a point
around the ninth month when both tissues appear isoin-
tense [Barkovich, 2005]. This may mislead intensity-based
segmentation algorithms to identify PVEs at the boundary
between CSF and GM as the yet unmyelinated WM [Xue
et al., 2007]. To cope with these systematic segmentation
errors in neonates, several authors have proposed brain
tissue segmentation methods combining intensity informa-
tion with spatial priors and contextual information.

Among these works, an atlas-free approach [Xue et al.,
2007] adopted the Expectation-Maximization (EM) algo-
rithm with Markov Random Field (MRF) regularization
for tissue classification combined with a knowledge-based
strategy to correctly classify mislabeled PVEs at the CSF-
GM boundary. Recently, another approach that does not
require atlas priors was presented in Gui et al., [2012],
where a watershed technique was used to segment the
brain MRI of neonates based on information about tissue
connectivity, structure and relative positions. Most of pub-
lished works, however, used atlas-based approaches to
guide the segmentation. Prastawa et al., [2005] developed
an atlas-based automatic algorithm based on graph cluster-
ing and outlier removal. It used the EM scheme followed
by a non-parametric kernel density estimation to obtain
the final segmentation. Shi et al., [2010] proposed a joint
registration-segmentation framework that used subject-
specific tissue probabilistic atlases generated with adaptive
fuzzy C-means [Pham and Prince, 1999] from follow-up
data of the same subject. With the same purpose, an atlas-
based approach interleaving registration and segmentation
was used in Shi et al., [2011], which combined subject-

specific cortical GM distribution with a data driven neona-
tal atlas. Weisenfeld and Warfield, [2009] presented an
algorithm that iteratively performs sample refinement, seg-
mentation, and fusion using STAPLE [Warfield et al.,
2004]. Wang et al., [2011] proposed a level set segmenta-
tion framework with a thickness constraint in the cortical
area, and combined local intensity information and atlas
priors. This work was further improved in Wang et al.,
[2014] using a subject-specific atlas and incorporating non-
local (i.e., patch) information. In Ledig et al., [2012], the
spatio-temporal atlas in Murgasova et al., [2011] was used
with an extended version of the EM algorithm incorporat-
ing a second-order MRF to penalize inconsistent labeling
caused by PVEs. In a recent work, Anbeek et al., [2013]
segmented eight different tissue classes in a supervised
manner using intensity and voxel coordinates with K-
nearest neighbors. Wang et al., [2015] also proposed an
iterative supervised approach to segment the main tissues
using random forest [Breiman, 2001] and features from
several modalities (i.e., T1w, T2w, and fractional anisotropy
images), including the estimated probability maps. On pre-
mature neonates, brain tissue segmentation was carried out
in Beare et al., [2016] and Sanroma et al., [2016] on the data-
set provided by the NeoBrainS12 challenge [Isgum et al.,
2015]. Sanroma et al., [2016] proposed an ensemble approach
that optimally combines the outputs of two complementary
segmentation approaches (i.e., intensity-based and multiatlas
label fusion). In Beare et al., [2016], a supervised approach
was presented using a combination of unified segmentation,
template adaptation and topological filtering.

Beyond the segmentation of the main tissues, methods for
the parcellation of anatomical structures in the neonatal
brain have been proposed in Gousias et al., [2013] and Mak-
ropoulos et al., [2014]. There is a notable overlap between
tissue segmentation and parcellation in that both approaches
make use of image intensities. Although in the latter case,
intensity-based features are not sufficient as in the case of
tissue segmentation, and spatial priors derived from atlases
become also necessary. Therefore, Gousias et al., [2013] pre-
sented a multiatlas approach to segment the brain MRI in
50 regions using ALBERTs [Gousias et al., 2012], a dataset
of manually annotated neonatal atlases. These atlases were
also used in a hierarchical approach to label multiple brain
structures using EM-MRF and knowledge-based rules for
misclassified voxels [Makropoulos et al., 2014].

Segmentation of Fetal Brain MRI

Automatic segmentation of fetal brain MRI is even more
intricate, as in addition to the existing difficulties in neo-
nates, fetal brains have a transient laminar pattern (see
Challenges of Fetal Brain MRI section) and MRI quality is
highly affected by fetal and maternal movements during
acquisition. There is much less literature on fetal brain
MRI segmentation. Table II lists the main characteristics of
existing methods. One of the first works [Claude et al.,
2004] proposed a semi-automated method to segment 3
regions (i.e., posterior fossa, brainstem and vermis) on a
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single MRI slice of the fetal brain, using region growing
based on intensity and gradient features. Also in 2D MRI,
Bach Cuadra et al., [2009] developed an automatic labeling
method for the main tissues that was performed indepen-
dently in each slice using EM-MRF and anatomical priors
in form of a cortical distance map. Bayesian segmentation
was first performed to segment the fetal brain in seven dif-
ferent classes. GM and WM were modeled as a mixture of
two Gaussians each, and two classes for mislabeled partial
volume voxels, which were to be correctly classified dur-
ing the MRF stage.

Among pioneering works in addressing the segmenta-
tion of fetal brains in 3D reconstructed MRI, Gholipour
et al., [2011] used a semi-automated method with little
user interaction based on intensity information, level sets,
and morphological operations to deal with PVEs. Given
that intensity information is insufficient to isolate cortical
GM from WM, Caldairou et al., [2011] included anatomical
priors through a topological K-means clustering algorithm
to segment the cortex in an atlas-free approach. In Habas
et al., [2008], the GMAT was segmented in fetuses at a
reduced age range (20.5–22.5 GWs) using the EM frame-
work with a single probabilistic atlas. However, with the
advent of spatio-temporal atlases of the fetal brain, age-
specific atlases can be generated at any GA to serve as pri-
ors in the segmentation process [Habas et al., 2010; Serag
et al., 2012b]. Multiatlas segmentation approaches were
also used in Gholipour et al., [2012] and Koch et al.,
[2014]. Gholipour et al., [2012] developed a method built
over multiatlas segmentations that incorporates a shape
model of structures and regional intensity values within a
probabilistic framework to achieve automatic segmentation

of multiple shapes with similar intensities. The main pur-
pose was to accurately segment the lateral ventricles in
subjects with normal, dilated, or fused ventricles. In Koch
et al., [2014], a semi-supervised graph-based method was
proposed to overcome the unavailability of subjects within
certain GA ranges. After a first labeling stage where only
atlases are able to propagate information, label probabili-
ties of test images in subsequent iterations are also used to
improve the labeling of images whose GA is not available
in the training set. It is worth mentioning that several of
the aforementioned segmentation methods for neonates
and fetuses can be used interchangeably as long as the pri-
ors and the spatial constraints are consistent with the data-
set under study. In fact, the method proposed in Ledig
et al., [2012] for neonates was used by Wright et al., [2014]
to segment fetal brain MRI.

QUANTIFICATION OF EARLY NORMAL BRAIN

DEVELOPMENT

Quantifying the patterns of normal gyrification and the
underlying growth processes in the developing fetal brain
from in utero MRI may offer insights into the changes that
occur during normal fetal brain development, and provide
a baseline for comparison to abnormal development. Dur-
ing early stages of fetal cerebral development the brain is
lissencephalic in appearance [Rutherford, 2001]. However,
as growth proceeds the brain undergoes drastic changes in
its morphology. In the latter half of gestation, the normal
process of human brain maturation is manifested by sub-
stantial increases in volume without equivalent changes in

TABLE II. Fetal brain MRI segmentation methods

Method MRI Spatial priors/constraints Structures

[Claude et al., 2004] Region growing 2D – Posterior fossa
Semi-automatic (one slice) Brainstem

Vermis
[Bach Cuadra et al., 2009] EM-MRF 2D Cortical distance map Cortical GM

Central GM
WM
CSF

[Gholipour et al., 2011] Level sets 3D – Brain
Morphological op. CSF

[Caldairou et al., 2011] Topological K-means 3D Anatomical priors Cortical GM
[Habas et al., 2008] EM-MRF 3D Probabilistic atlas GMAT
[Habas et al., 2010] EM-MRF 3D Probabilistic atlas Cortical GM

WM
GMAT
Ventricles

[Serag et al., 2012b] – 3D Probabilistic atlas Cortical GM
Lateral ventricles
Hemispheres

[Gholipour et al., 2012] Multiatlas multishape 3D Multiple atlases Lateral ventricles
[Koch et al., 2014] Graph-based label propagation 3D Multiple atlases Lateral ventricles

Unavailable information or not used is marked as –.
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thickness, and an increasing complexity of the CP follow-
ing a highly orchestrated sequence of gyral-sulcal forma-
tion [Clouchoux et al., 2012; Rajagopalan et al., 2011a;
Wright et al., 2014]. In particular, this sequence occurs in a
hierarchical manner in which primary and secondary sulci
form in a consistent spatio-temporal pattern during normal
gestation, followed by tertiary sulci that show increasing var-
iability across individuals [Bendersky et al., 2006; Studholme,
2011]. The timing of this has been considered an accurate
marker of brain development [Garel et al., 2003], with any
divergence from this pattern being conceived as a potential
stable biomarker for abnormal functional development.

Several works inspect the global and regional patterns
of tissue maturation in the developing brain to provide a
comprehensive understanding of the maturational process
the human brain embarks on from early weeks of gestation
[Gholipour et al., 2011; Scott et al., 2013] up to approximate-
ly the second postnatal year [Aljabar et al., 2008], period
where the majority of brain growth occurs [Rutherford,
2001]. Other studies reported the patterns of cortical convo-
lutions [Clouchoux et al., 2012; Wright et al., 2014] that take
place in the human brain during this period. This section
offers an overview of the role MRI plays in the quantitative
study and assessment of in utero brain development.

Cortical Folding

The study of cortical folding is important because will
aid clinicians in the understanding of normal gyrification
and the detection of cortical maldevelopment. Evidence
from MRI studies of preterm neonates [Dubois et al., 2008]
may not be consistent with fetal brain development as pre-
maturity per se may be considered a limitation in the repre-
sentation of normal in utero neurodevelopment [Rutherford
et al., 2008]. Indeed, preterm-born infants compared with
term-born controls at term equivalent age showed altera-
tions in cortical volume [Padilla et al., 2014] and folding
[Melbourne et al., 2014]. When compared to fetal brains,
prematurity also showed an impact on cortical folding
[Lefèvre et al., 2015]. In fetuses, conclusions drawn from ex
vivo studies [e.g., Bendersky et al., 2006] about sulcal emer-
gence might be influenced by deformations inherent to
brain fixation and the substantial fluid loss during histologi-
cal processing [Dubois et al., 2008; Habas et al., 2012],
which may slightly affect the measurements. With the pos-
sibility to perform in vivo fetal MRI, mapping of cortical
folding has been initially restricted to analysis of 2D slices
[Garel et al., 2003; Prayer et al., 2006]. This approach exhib-
its significant limitations in that 2D measurements are very
dependent on the use of consistent 2D planes, which is sus-
ceptible to motion during acquisition. Furthermore, exact
tissue boundaries may be difficult to find on thick 2D MRI
slices due to PVEs. Volumetric reconstructions of the fetal
brain, conversely, ensure selection of the appropriate planes
and enable measurements that take advantage of the 3D
anatomy of the brain.

To provide a reliable timeline of the normal in utero
brain development, researchers have taken benefit of
motion-corrected 3D reconstruction techniques, which can
be easily integrated into an automated pipeline for the
assessment and quantification of the timing of cortical
folding. Using only cohorts of healthy fetuses, Clouchoux
et al., [2012] delineated sulcal fundi in 12 fetuses between
25 and 35 GWs, Habas et al., [2012] presented a temporal
mapping of the emergence of individual sulci in 40 MRI
scans from 38 fetuses with age ranging 20–28 GWs, and
Wright et al., [2014] studied global and regional gyrifica-
tion measures in 80 fetuses over a wider age range of
22–39 GWs. All of these works used a surface-based
approach, where curvature information was estimated on
the inner CP surfaces extracted from WM segmentation.
Following the pipeline illustrated in Figure 1, segmenta-
tions in Clouchoux et al., [2012] were obtained after 3D
volume reconstruction [Gholipour et al., 2010] using an
atlas-based approach with manual correction. In Habas
et al., [2012], images were first reconstructed with the
method in Kim et al., [2010] and automatically segmented
using priors from a spatio-temporal atlas [Habas et al.,
2010]. Also in Wright et al., [2014], images went through
3D volume reconstruction [Jiang et al., 2007] and automat-
ic segmentation [Ledig et al., 2012].

Among their findings, Habas et al., [2012] showed that
the increase in surface area related to gyrification is linear
from 20 to 28 GWs. After the 28th GW, gyrification accel-
erates and becomes more complex [Clouchoux et al., 2012],
following a non-linear growth model. In particular, a
Gompertz model showed to best fit the folding measures
studied in Wright et al., [2014]. Furthermore, they found a
positive correlation of these folding measures with GA,
which was stronger than that of GA and volume. Clou-
choux et al., [2012] also created four average cortical tem-
plates evenly distributed along the age range of the
subjects that showed the major changes in gyrification
occurring during normal fetal brain development. A more
precise timetable of early sulcation was reported in Habas
et al., [2012], demonstrating that 3D MRI provided more
sensitivity than 2D MRI in the detection of sulcal emer-
gence. Establishing normative timing for gyrification in the
fetal brain will allow identification of deviations in devel-
opment and early treatment.

Patterns of Tissue Maturation

Similarly as in the case of cortical folding, there exists a
vast literature from postmortem [Huang et al., 2009], ex
utero [Aljabar et al., 2008; Murgasova et al., 2011; Xue
et al., 2007] and, in vivo fetal MRI [Kazan-Tannus et al.,
2007; Limperopoulos et al., 2010; Prayer et al., 2006] and
US [Endres and Cohen, 2001; Roelfsema et al., 2004] on tis-
sue growth and laminar organization of the developing
brain. However, as discussed in 5.1, generalizing the evi-
dence from these studies to normal in utero brain matura-
tion might render inadequate.
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Based on reconstructed 3D MRI of the fetal brain, Gholi-
pour et al., 2011] carried out a volumetric study using auto-
mated segmentations of brain tissue in a cohort of 25 fetuses
ranging from 19 to 39 GWs. In Corbett-Detig et al., [2011],
global and local patterns of SP growth were studied through
quantitative analyses of temporal changes in SP volume and
thickness in 21 fetuses within the age of 20 to 26 GWs.
From manual segmentations of the SP and supratentorial
brain volume (as a sum of CP, WM, and GMAT), they also
analyzed the relationship between volume and GA. From
automatic segmentation of 48 scans of 39 fetuses with age
between 21 and 31 GWs, Scott et al., [2011] presented volu-
metric growth trajectories of CP, SP and IZ, GMAT, deep
gray nuclei, and ventricles. Morphometry was also used to
study the complex series of local tissue volume changes the
developing brain undergoes in its normal course toward
acquiring its gyrencephalic adult aspect. Aljabar et al., [2008]
had previously used tensor based morphometry (TBM)
[Davatzikos et al., 1995] in a longitudinal study to provide
global and local growth factor estimates of GM and WM for
a cohort of 25 preterm subjects scanned at 1 and 2 years.
TBM uses accurate spatial normalization of brain anatomy
into a common reference space to capture the pattern of
regional structural differences across a set of anatomies by
computing the derivatives (i.e., Jacobian map) of the defor-
mation fields required to bring each anatomy to the same
stereotaxic space [Studholme, 2011]. For the in utero fetal
brain, Rajagopalan et al., [2011a] provided a mapping of
growth patterns by quantifying tissue locations that were
expanding at a different growth rate than the overall cere-
bral tissue. TBM analysis combined with a linear model of
age was used to create these maps from fetuses between 20
and 28 GWs. However, beside modeling magnitude of local
tissue volume increase with scalar TBM [e.g., Dubois et al.,
2008; Habas et al., 2012; Rajagopalan et al., 2011a], direction-
al growth information is valuable to acquire more knowl-
edge about fetal brain development. Rajagopalan et al.,
[2011b] extended the study beyond volume increase by
incorporating its normal and tangential components on
either side of the SP-CP interface, which permitted to model
the variational growth patterns that underlie the mechanism
of sulcation between both tissues. Furthermore, Rajagopalan
et al., [2012] quantified brain development as a combination
of volume and direction change patterns, and provided the
principal growth direction at a particular location.

According to these studies, supratentorial brain volume
increased quadratically with GA [Gholipour et al., 2011].
From 20 to 26 GWs, the increase in SP tissue was propor-
tional with the increase in supratentorial volume, although
at different rates among brain regions [Corbett-Detig et al.,
2011]. Tissue-dependent growth rates were found in Scott
et al., [2011], with CP growing faster than all other tissue
zones, especially along the midline surface of the frontal
and parietal lobes [Rajagopalan et al., 2011a]. Also, signifi-
cant changes in direction of growth were found to occur
primarily in the CP at locations corresponding to the for-
mation of primary sulci. When the direction of cortical

growth at any sulcus changes rapidly, it occurs in conjunc-
tion with change in direction of growth in the underlying
cerebral mantle [Rajagopalan et al., 2012]. Finally, slower
growth was found in the ventricular regions adjacent to
the CP, and the GMAT, which begins to regress after 25
GWs [Corbett-Detig et al., 2011; Rajagopalan et al., 2011a].

Interhemispheric Structural Asymmetries

Interhemispheric asymmetries have also been studied in
fetal brain MRI to establish a precise timing for their in
utero emergence. These asymmetries may be indicators of
cortical functional specialization [Dubois et al., 2008], and
alterations of this pattern may be useful as an early bio-
marker for abnormal neurodevelopment [Studholme and
Rousseau, 2014]. Using fractal dimension analysis in outer
cortical surfaces reconstructed from 2D slices, Shyu et al.,
[2010] found earlier development of cortical complexity in
the right hemisphere than in the left in a cohort of 32
fetuses with GA between 27 and 37 weeks. This was also
reported in preterm [Dubois et al., 2008] and term [Hill
et al., 2010] neonates, particularly evident at the level of
the superior temporal sulcus. Interhemispheric asymme-
tries were also analyzed in 3D reconstructed fetal brain
MRI by Rajagopalan et al., [2011a], where the emergence
of asymmetries was detected using TBM analysis based on
symmetric groupwise registration of tissue maps of 40
fetal brains and their reflected versions along the sagittal
midline. A similar approach was carried out in Rajagopa-
lan et al., [2012] to detect directional asymmetries in the
same cohort with GA between 20 and 28 weeks. They
found significant local asymmetries in volume and growth
direction in the periSylvian fissure, showing that asymme-
tries in this area start around 20 GWs. Among their find-
ings, Habas et al., [2012] reported statistical significance of
interhemispheric asymmetries in the periSylvian region by
23 GWs and in the parieto-occipital sulcus after 26 GWs.

In accordance with ex vivo studies and in conformity
with asymmetries reported in adult and neonatal brains
[Hill et al., 2010], these findings confirm that gyrogenesis
occur earlier in the right hemisphere than in the left, and
that cerebral interhemispheric asymmetries start during
the intrauterine period.

EXAMPLES OF CLINICAL APPLICATIONS

Brain malformations account for one third of fetal anom-
alies and 60% have no identifiable etiology [Rodr�ıguez
et al., 2010]. Although US is the standard imaging modali-
ty for fetal evaluation, it is well demonstrated that fetal
MRI has a greater sensitivity to detect specific brain abnor-
malities that could be occult on prenatal US [Banović
et al., 2014]. In this section, several contributions of fetal
MRI to the diagnosis of brain abnormalities in utero are
described. We will focus on quantification studies of
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Intrauterine growth restriction (IUGR), congenital heart
disease (CHD), and ventriculomegaly (VM).

Intrauterine Growth Restriction

IUGR refers to a condition in which the weight of the
fetus is below the 10th percentile for GA. This condition
affects 10–15% of the population [Gardosi, 2011] and it is
associated with a wide range of short- and long-term neu-
rodevelopmental disorders. The effect of late-onset IUGR
in the in utero development of the brain was studied by
Ega~na-Ugrinovic et al., [2013, 2014] from 2D MRI slices. In
Ega~na-Ugrinovic et al., [2013], differences in cortical devel-
opment were assessed in 52 late-onset IUGR and 50 control
fetuses. Late-onset IUGR fetuses, compared with controls,
presented deeper fissures, more pronounced right asymme-
try and smaller brain volumes. Corpus callosum develop-
ment was analyzed in Ega~na-Ugrinovic et al., [2014] using
117 late-onset IUGR and 73 control fetuses. The area of the
corpus callosum was significantly smaller in IUGR fetuses
compared to the control group. Furthermore, they found
that these morphometric differences were in correlation
with worse neurobehavioral performance. These findings
reflect a perturbation in normal fetal brain development
and can be used as potential biomarkers to predict abnor-
mal neurodevelopment in pregnancies at risk.

Congenital Heart Disease

CHD refers to a structural abnormality of the heart pre-
sent at birth. A wide spectrum of brain abnormalities has
been identified with CHD in preterm and term neonates
before they undergo cardiac surgery, which may suggest the
occurrence of abnormal brain development in utero [Dono-
frio and Massaro, 2010]. To better understand the impact of
CHD in impaired neurodevelopment outcome, Limperopou-
los et al., 2010] performed the first in vivo quantitative MRI
study of 55 fetuses with CHD and 50 healthy fetuses
between 25 and 37 GWs. Volumetric MRI analysis and spec-
troscopy showed a progressive deceleration in global brain
growth (i.e., intracranial cavity and total brain volumes) and
metabolism in the cohort with CHD over the third trimester
of gestation. Using in utero MRI, Mlczoch et al., [2013]
reported a 39% incidence of brain abnormalities in a cohort
of 53 fetuses with age between 20 and 37 GWs with CHD.
In Brossard-Racine et al., [2014], MRI scans of 144 fetuses
with CHD and 194 controls of age ranging between 18 and
39 GWs were also studied for brain anomalies. Their find-
ings showed a significantly higher frequency (23%) of struc-
tural brain abnormalities in the CHD group compared with
less than 2% of recurrence in fetuses from the control group.
This highlights the close relationship between heart and
brain development. Based on segmentations of 3D high-
resolution reconstructed volumes of 30 control fetuses and
18 fetuses diagnosed with hypoplastic left heart syndrome,
Clouchoux et al., [2013] demonstrated a progressive third-

trimester decline in volumetric growth of cortical GM, sub-
cortical GM and WM, in addition to significant region-
specific cortical development delays in the hypoplastic left
heart syndrome group. These findings are consistent with
postnatal data demonstrating that delayed fetal brain matu-
ration and development in utero appears to begin in the
third trimester [McQuillen et al., 2010].

Ventriculomegaly

VM is one of the fetal brain anomalies that is frequently
diagnosed during the gestational period. When no other
anomalies are present, it is called isolated VM. VM is
defined as a ventricular atrial diameter greater than 10 mm
at any GA [Cardoza et al., 1988], while the width in normal
subjects lies between 6 and 9 mm [Scott et al., 2013]. Atrial
diameter measurements larger than 15 mm constitute
severe VM, whilst measurements between 10 and 15 mm
are classified into mild VM (10–12 mm) and moderate VM
(12.1–15 mm) [Kyriakopoulou et al., 2014]. In case of isolat-
ed VM, this latter dichotomy is typically used as a prognos-
tic biomarker of the neurodevelopmental outcome of the
fetuses. That is, cases with isolated mild VM are generally
associated with good outcomes, although some will have
abnormal outcomes. A robust method to clearly distinguish
between both cohorts is therefore critical in counseling
pregnancies [Scott et al., 2013].

Whether in antenatal US or fetal MRI, routine assess-
ment of VM relies on a simple 2D measurement of the
atrial diameter (see Fig. 6) on a particular plane at the lev-
el of the atrium [Cardoza et al., 1988]. Nonetheless, repro-
ducibility of these measurements is known to be variable,
especially in US. The possibility of 3D fetal MRI simplifies
volumetric measurements, and promotes computation of
other features such as shape measurements. To the best of

Figure 6.

Measurement of the atrial diameter in US. [Color figure can be

viewed at wileyonlinelibrary.com]
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our knowledge, VM has been studied in three works in the
literature using motion-corrected 3D reconstructions of the
fetal brain [Gholipour et al., 2012; Kyriakopoulou et al.,
2014; Scott et al., 2013]. The volume of the ventricles has
been shown to be more distinctive than the atrial diameter
in diagnosing VM [Gholipour et al., 2012]. In Scott et al.,
[2013], volumetric and curvature analyses were performed
to compare a group of isolated mild ventriculomegaly
(IMVM) to a cohort of healthy fetuses between 22 and 25.5
GWs by identifying potential IMVM-specific deviations in
tissue volume, and cortical and ventricular local surface
curvature during fetal brain development. Except enlarged
ventricular volume in IMVM, no significant difference was
found in brain tissue or cortical volume between groups.
However, evidence of cortical GM enlargement in IMVM
fetuses was found in Kyriakopoulou et al., [2014] after ana-
lyzing the differences between 60 normal fetuses and 65
with IMVM across a wider age range of 22–38 GWs.

DISCUSSION

The emergence of fast-sequence MRI combined with
advanced techniques for motion correction [e.g., Jiang
et al., 2007; Murgasova et al., 2012] has enabled the forma-
tion of 3D volumes of the in vivo fetal brain. This has sup-
posed an immense step toward the understanding of the
early cerebral maturational processes compared to conven-
tional prenatal US, and the discovery of new 3D bio-
markers associated with fetal brain anomalies that are
more distinctive and reproducible. However, in contrast to
the widespread techniques existing in the literature for
adult brains, fetal brain MRI needs to be approached in a
different manner due to the complex and rapid changes
that occur in the brain. Methods working with MR images
of the fetal brain must take into consideration the transient
nature of several tissues (e.g., GMAT), the inverted con-
trast between tissues, and the substantial shape variation
of the brain as growth proceeds. These challenges have
stimulated the development of new methodological
approaches that permit the study of the developing brain.

To better capture the dynamics of the laminar pattern
and the changes in cortical folding, literature in fetal brain
MRI encourages the creation of spatio-temporal atlases
[e.g., Gholipour et al., 2014; Serag et al., 2012b], which
shed light onto the fetal brain growth patterns by encod-
ing temporal and inter-subject variability, and provide a
common reference space for the study of the developmen-
tal process in the fetus. In addition, image processing tech-
niques such as registration and segmentation may take
advantage of these atlases to achieve better accuracy. Con-
cerning segmentation methods of the fetal brain in MRI,
the frequent PVE problem present in the boundary
between CSF and GM, and the existing tissues at a partic-
ular GA have to be considered. Hence, atlas-based seg-
mentation is highly useful in these scenarios to aid in

segmentation, and spatio-temporal atlases have proved to
be of great benefit.

State of the art segmentation methods allow to perform
accurate volumetric analyses, providing a broader view
than the standard 2D measurements used in clinical set-
tings. Furthermore, studies concerning sulcation and gyri-
fication of the cerebral cortex in the fetus are now easily
viable through MRI, allowing for both qualitative and
quantitative inspection. Segmentation of CP and SP is nec-
essary for the study of cortical folding. Mapping and
ordering the normal patterns of cortical folding [e.g., Clou-
choux et al., 2012; Habas et al., 2012] can be used as a
baseline to help detect regions of abnormal or delayed
folding correlated with possible neurological disorders.
Recently, spatio-temporal cortical surface atlases of the
developing brain were created in Li et al., [2015] and
Wright et al., [2015], providing patterns of cortical devel-
opmental trajectories at every point in the cortical surface
and, therefore, establishing an accurate normative timing
for gyrification.

In clinical settings, fetal brain MRI has become an
important tool in confirming and complementing prior
findings in US. Furthermore, now it is possible to develop
automatic methods to facilitate the diagnosis of brain
abnormalities in utero, and provide scalability to study
large populations.

There are still many open directions to explore for
researchers in fetal brain MRI. Reconstruction algorithms
from motion-corrupted stacks rely on the segmentation of
the brain from 2D slices. However, there exist no well-
established segmentation approaches. In 3D reconstructed
images of the fetal brain, the posterior medial part near
the ventricles, for example, is a complicated region for the
segmentation of the cortex. The availability of public data-
bases with ground truth annotations and segmentation
challenges, such as the NeoBrains12 [Isgum et al., 2015],
for the fetal brain may boost research advances in this
area. Regarding spatio-temporal modeling, existing atlases
were created from healthy subjects and, therefore, only
capture the morphological changes of the in utero brain in
its normal course. A promising direction of future work
could be the construction of disease-specific spatio-tempo-
ral atlases that show the dynamic disease-related changes
in the brain and help understand disease progression.
Another interesting direction of future work is to analyze
the impact of congenital diseases in neurodevelopmental
outcome. Longitudinal studies will allow neuroscientists to
assess the effect of in utero brain anomalies in cognitive
development and link the findings in structural MRI with
brain connectivity and measurements from other
modalities.

This work was restricted to T1w and T2w MRI. Howev-
er, other imaging modalities, such as fMRI and DTI, can
also be used to study the in vivo fetal brain. In Huang
et al., [2009], DTI allowed both macro- and microscopic
characterization of brain development, while fMRI was
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also used to capture the emerging connectivity patterns in
the fetal brain [Jakab et al., 2014]. Computational growth
models conform another type of approach to understand
the physical forces behind the formation of the cortical
convolutions in the developing brain [Nie et al., 2010,
2011; Tallinen et al., 2016]. Combining the heterogeneous
findings from all these modalities and approaches could
synergistically improve the understanding of in utero
brain development.

CONCLUSIONS

In this article, we presented a thorough review of meth-
odological advances to study early brain development
from in utero structural MRI. The review outlined the
challenging context for neuroscience research to achieve
an improved understanding of in vivo fetal brain matura-
tional mechanisms, motivated the need for the implemen-
tation of novel processing approaches, and reported the
potential gains resulting from quantitative fetal MRI stud-
ies that can be realized in clinical practice.

REFERENCES

Aljabar P, Bhatia KK, Murgasova MK, Hajnal JV, Boardman JP,

Srinivasan L, Rutherford MA, Dyet LE, Edwards AD, Rueckert
D (2008): Assessment of brain growth in early childhood using

deformation-based morphometry. NeuroImage 39:348–358.
Altaye M, Holland SK, Wilke M, Gaser C (2008): Infant brain

probability templates for MRI segmentation and normalization.
NeuroImage 43:721–730.

Anbeek P, I�sgum I, van Kooij BJM, Mol CP, Kersbergen KJ,
Groenendaal F, Viergever MA, de Vries LS, Benders MJNL

(2013): Automatic segmentation of eight tissue classes in neo-
natal brain MRI. PLoS One 8:e81895.

Avants BB, Yushkevich P, Pluta J, Minkoff D, Korczykowski M,
Detre J, Gee JC (2010): The optimal template effect in hippo-

campus studies of diseased populations. NeuroImage 49:
2457–2466.

Bach Cuadra M, Schaer M, Andre A, Guibaud L, Eliez S, Thiran
JP, 2009. Brain tissue segmentation of fetal MR images. In:

MICCAI Workshop on Image Analysis for Developing Brain.
Available at: https://infoscience.epfl.ch/record/141281/files.
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