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ABSTRACT: In this article, we investigate the multiple-scale structure of methyl side chain dynamics in proteins. We show that
the orientational correlation functions of CH3 methyl groups are well described by a fractional Brownian dynamics model.
Typical angular correlation functions involved in NMR relaxation were computed from MD simulations performed on two
different proteins. These correlation functions were shown to be very well fitted by a fractional Ornstein−Uhlenbeck process in
the presence of effective local potentials at the C−H and C−C methyl bonds. In addition, our analysis highlights the presence of
the asymptotic power law decay of the waiting time probability density of the stochastic process involved, thereby illustrating the
connection between approaches based on fractional diffusion equations and the continuous time random walk.

I. INTRODUCTION

Internal motions in proteins have been recognized as an essential
ingredient of their functions, in addition to the well-known role
played by their three-dimensional structures. In order to study
these dynamical aspects, nuclear magnetic resonance (NMR)
spectroscopy has emerged as a unique tool allowing one to probe
processes taking place on the pico- to millisecond time scale via
the measurement of spin relaxation rates.18 Thus, backbone as
well as side chain dynamics, where the functional implication of
methyl groups has been largely discussed (for a review, see ref
16), can be investigated. The dynamics of methyl groups in
proteins on fast time scales, i.e., in the subnanosecond range, is
extremely rich. Moreover, it is also rather complex, which makes
it more difficult to analyze and interpret NMR relaxation
measurements in terms of pertinent dynamical variables. Thus,
various assumptions must be made, regarding the geometry of
themethyl group, potential symmetry of themethyl axis motions,
or time scale separation between axis and about axis motions,
which are typical of model-free-like approaches.7,23,26,27,32,37

However important, these points do not represent the main
subject of this article. Here, we will be concerned with the
structure of the underlying stochastic process that drives the
bond vector motions and eventually leads to the process of spin
relaxation, rather than with the geometrical aspects of their
motions. We will show, based on MD simulations, that a certain
kind of non-Markovian stochastic process can be assumed, which

reflects the effect of a complex local environment on the diffusion
process at work.
Some time ago, it was suggested that internal dynamics in

proteins could be characterized by asymptotic power-law decays
of correlation functions and could be idealized as fractional
stochastic dynamics14,20,21 or continuous time random walk
(CTRW) processes.14,31Time self-similarity of backbone protein
dynamics was also recently investigated based on MD
computations.9 Such models give rise to correlation functions
characterized by a superposition of exponential functions with a
broad and continuous distribution of relaxation times.
MD simulations actually represent an attractive method

against which a model can be tested in order to get deeper
insight into the details of the underlying dynamical processes. In
this context, we recently introduced a fractional Brownian
dynamics (fBD) approach in the perspective of NMR spectros-
copy, which focused on the description of fast backbone
dynamics in proteins on the picosecond−nanosecond time
scale.3,4,6 Using MD simulations, we were able to show that the
relevant amide NH bond angular correlation functions for NMR
relaxation could be well reproduced by a simple fractionnal
Ornstein−Uhlenbeck (fOU) diffusion process in a harmonic
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potential.4,6 Based on the analysis of these MD simulations, we
also suggested the possibility to use this approach to analyze
experimental relaxation rates.6

In this article, we investigate the possibility to describe the
motions of methyl groups, represented by CH and CC bond
vectors, through a fBD approach, based on MD simulations. We
show that methyl CH and CC bond vector angular
autocorrelation functions can be described in the framework of
fractional diffusion in harmonic or multiple-well potentials. To
this aim, we analyzed the motions of methyl groups computed
from all-atom MD simulations of two proteins, ubiquitin and
matrix metalloproteinase-12 (MMP-12). Our results clearly
show the multiple time scale character of bond vector
fluctuations, occurring even in the fast, pico- to nanosecond
range. Specifically, bond vector internal correlation functions
were fitted by the kind of Mittag−Leffler (ML) functions that are
typically involved in solutions of fractional Fokker−Planck
diffusion equations, showing excellent agreement. More
importantly, in this context where the local potentials at the
methyl groups have complex shapes and the harmonic
approximation may not be justified, the correlation functions
of the bond vectors are well accounted for by a single ML
function that depends on a characteristic time. Moreover, we
were able to establish in specific cases the connection between
ML decays of the correlation functions and the statistics of the
underlying process, as described in the CTRW theory.31,36

Namely, waiting time probability density functions (pdf) with
power law decays could be extracted from the MD trajectories,
thereby confirming the fractional Brownian dynamics process at
a more fundamental level.

II. METHODS

A. Review of the Theory. In complex systems, relaxation
may be characterized by fractional dynamics, which has been
evidenced by several techniques, such as fluorescence correlation
spectroscopy or kinetic studies.14,22,28 This kind of dynamics has
been shown to be already present on the nanosecond time scale
in quasielastic neutron scattering (QENS) and MD simulations
studies of proteins.20,21 At the microscopic level, it can be
interpreted as the consequence of energetic obstacles and traps
that slow down translation and/or rotation of the diffusing
particle and is described by a CTRW, where the waiting time
probability distribution function has a power law time depend-
ence. This leads to a diverging first moment of the waiting time,
which therefore does not permit the definition of a time scale of
the random process,31 in contrast to Brownian diffusion.
At a different level of description, this process introduces

memory effects into the motion36 which can be described by a
fractional diffusion equation.1 This approach can be formulated
for rotational diffusion, which is relevant for dielectric
relaxation19 and NMR.3,4,6 For a potential of arbitrary shape,
the appropriate fractional Fokker−Planck equation (FFPE) for
the probability density function P(θ, ϕ) as a function of the polar
angles in a molecule fixed frame gives
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where L is the Fokker−Plank operator in spherical coor-
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where Γ(.) is the Gamma function. One of the practical
advantages of the fBD approach is its ability to take into account
the presence of multiple time scales with a limited and fixed
number of parameters, as was recently demonstrated on 15N spin
relaxation.3,4,6 In this approach, internal motions are statistically
independent of global tumbling of the protein, which is safely
assumed for methyl groups. Therefore the total correlation
function C(t) factorizes into the correlation functions CI(t) and
Cg(t) of internal and isotropic global motions: C(t) = Cg(t)CI(t).
In the case of fOU process, CI(t) can be expressed in terms of a
single Mittag−Leffler (ML) function Eα(−[t/τ]

α) through the
expression3,4,6
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where the squared-order parameter S2 is defined as
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Here, Y2m(θ, ϕ) are the second-order spherical harmonics which
are relevant to the interaction. The ML function
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is an entire function in the domain of complex numbers.11 For 0
< α≤ 1, the stretchedML function in eq 3 can be expressed as the
continuous superposition of exponential relaxation functions
exp(−λt), with the relaxation rate distribution function pα,τ(λ)

∫τ λ λ λ− = −α
α

α τ

∞
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0
, (6)

The spectrum of relaxation rates is positive and has the form14,20
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with the normalization condition ∫ 0
∞dλ pα,τ(λ) = 1. The scaling

parameter τ is related to the median λ1/2 of pα,τ(λ) through λ1/2 =
τ−1.3 For α = 1, pα,τ(λ) reduces to a Dirac distribution centered at
the value τ−1 and the ML function reduces to an exponential,
whereas for 0 < α < 1 it exhibits a power law decay at long times.
This is characteristic of non-Markovian processes with power law
memory kernels. Note that in practice, however, it could be
possible in some cases to replace the continuous decomposition
of the ML function onto the exponential basis, given by pα,τ(λ),
by a discrete approximation thereof, and represent the
correlation functions as sums of multiple Lorentzians (in the
sense of discrete sums). However, in this approximation of
pα,τ(λ), the meaning of the α, τ parameters and of the underlying
physical model would be completely lost.
The parameter cel, S

2 < cel < 1, appearing in eq 3 was
introduced4,6 in order to account for the presence of initial
rapidly damped oscillations, which occur for time lags typically
shorter than ≈1 ps. These are commonly observed in MD
simulations and attributed to the presence of very fast dynamical
processes. cel therefore represents the value of the correlation
function at the minimum time lag where the theory is assumed
valid (∼1 ps). Finally, the spectral density function associated
with eqs 3, 6, and 7 is given by4
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where cos β = (τ0γ)
−1, sin β = ω/γ, and γ = (τ0

−2 + ω2)1/2.
For a potential of arbitrary shape, eq 1 can be formally solved

by using the separation ansatz: P(θ, ϕ) = ∑n = 0
∞

Φn(θ, ϕ)Tn(t).
The decay and spatial modes satisfy the equations31
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where λn,α = λnτ
1−α and λn are the eigenmodes of the Fokker−

Plank operator L. The decay modes are thus the ML functions:
Tn(t) = Eα[−λn,αt

α] = Eα[−λnτ(t/τ)
α]. It is then straightforward

to show that, in analogy with eq 3, the part of the correlation
function that decays to zero, δCI(t) = (CI(t) − S2)/(ce l− S2), is a
superposition of ML functions of the various modes:
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In some favorable cases, it may be useful to approximate the exact
correlation function by a single ML decay with an effective
eigenmode as δCI(t) ≈ Eα[−λeffτ(t/τ)

α]. Thus, defining τeff
−α =

λeffτ
1−α, one gets from eq 3
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B. Computations. 1. MD Simulations. MD simulations of
ubiquitin and MMP-12 were performed with the NAMD
program package,34 starting from their respective NMR and X-
ray structures (PDB entries 1D3Z and 2OXU). The all-atom
force fields (AMBER99SB15 for ubiquitin and CHARMM2730

for MMP-12) were used with periodic boundary conditions.
These two different force fields were used to confirm that the
fractional character of the stochastic processes is observed,
irrespective of the details of the potential. This is expected, as
fractionarity is a consequence of the complex, heterogeneous,
local environment in which fluctuations take place. Electrostatic
interactions were computed by using the PME method10,12 with
a fourth-order B-spline interpolation over a 1 Å-spaced grid. The
integration time step was set to 1 fs, and coordinates were saved
every 0.5 ps (ubiquitin) or 1 ps (MMP-12). The water models
used were SPC/E and TIP3P for ubiquitin and MMP12,
respectively. Bond lengths involving H atoms were not
constrained during the simulations; therefore, no fixed geo-
metries were assumed for the methyl groups. After a preliminary
minimization of the PDB structure, all simulations were first
equilibrated at constant temperature (298 K) and constant
pressure (1 bar) using a Langevin thermostat17 coupled with a
Nose−́Hoover barostat.13 The damping coefficient for the
Langevin thermostat was 2.5 ps−1 . The obtained equilibrated
system will be used as starting point for the production runs: 50
ns for ubiquitin and 200 ns for MMP-12.
2. Correlation Function Computation and Fitting. Internal

angular correlation functions were calculated using the formula

∫ τ τ= · −C t
T

P u t u t( )
1

( ( ) ( )) d
T

I
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2
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(13)

where P2(.) is a second-order Legendre polynomial, TMD is the
total trajectory length, and u(t) is the unit vector corresponding
to the bond vector orientation at time t. It is worth noting that
here the average over time is equivalent to an ensemble average
based on the ergodic hypothesis.
Internal rotational correlation functions of C−H bond vectors

were thus computed from the MD trajectories.5

The maximum time lag tm up to which the correlation
functions can be computed with good enough statistics
corresponds to the first ≈10% of the total trajectory length.39

Whenever CI(t) did not reach a plateau value within tm, or when
the plateau value CI (∞) of the internal correlation function
remained significantly different from the value of SMD

2 (|CI(∞) −
SMD
2

| ≥ 0.1), insufficient sampling of internal motions during the
50 ns trajectory33 was assumed, and CI(t) was discarded from
further analysis.
Order parameters SMD

2 were computed by direct implementa-
tion of the following equation
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where Y2m(θ, ϕ) are the second-order spherical harmonics which
are relevant to the interaction. The ensemble average in eq 14
was computed by time-averaging over the whole MD trajectory.
Internal correlation functions CI(t) computed from MD were
fitted to eq 12 in the manuscript with the following procedure.
First the cost function X2 = [CI(t) − CI

ML(t)]2 was minimized
over a limited region of the {α, τ, cel} parameter space by a grid
search, while keeping S2 fixed to the value SMD

2 computed from
MD (see eq 14). Second, the obtained {α, τ, cel} values, together
with SMD

2 , were used as inputs of a constrained four-parameter X2

minimization using the so-called bound-constrained “limited
memory Broyden−Fletcher−Goldfarb−Shanno” (L-BFGS-B)
optimization algorithm.2 The outcome did not seem to be
influenced by the initial values of the parameters.

Relaxation Rate Computation and Fitting. Synthetic
quadrupolar 2H and dipolar 13C spin relaxation rates were
obtained by using evaluations of the spectral density function
J(ω) based on eq 8 where the fOU parameters (S2, α, τi, cel)
obtained from the fitted internal correlation functions were
used.6

Assuming an axially symmetric electric field gradient around
the CD bond, both 2H quadrupolar and 13C 1H dipolar relaxation
rates depend on the same spectral density function of the methyl
CH (or CD) bond. Thus, the following 2H relaxation rates were
simulated according to32
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where cQ = (e2dQ)/ℏ = 167 kHz is the quadrupolar coulping
constant, and the spectral density function J(ω) is sampled at
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frequencies 0, ωD, and 2ωD. Longitudinal R1 and NOE 13C
relaxation rates were calculated from the expressions
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where γH and γC are the proton and
13C gyromagnetic ratios, ωC

is the 13C Larmor frequency, and ℏ = h/2π is the reduced Planck
constant. The CH bond length is denoted by rCH = 1.115 A and is
assumed constant, and dCH = (μ0/4π)((ℏγHγC)/(10rCH

3 )1/2).
The chemical shift tensor s is assumed to be axially symmetric
with its principal axis along the CH bond, and ΔσC = 25 ppm
denotes the chemical shift anisotropy.
NMR relaxation rates were calculated for a magnetic field B0 =

21.1 T (1H resonance frequency ν0 = 900 MHz). The overall
diffusion correlation time of ubiquitin was set to τ0 = 4.03 ns.

25 In
the case of MMP12, τ0 = 8.27 ns, which was adapted from ref 24
to the temperature T = 298 K of the MD simulations.

Measurement uncertainties were simulated by adding
realizations of noise, drawn from a Gaussian distribution (μ,
σ), to the computed relaxation rates. The standard deviations of
each of the MD computed rates were equal to 3% of the rate
value, which is typical of experimental measurement. ML
parameters were estimated for each realization of the Gaussian
noise (μ, σ) by minimizing the target function:

∑ ∑χ
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ij ij
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2
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0 2
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where Rij = R1j, NOEj, Ridz, Rid+, Ri dx2−dy2, on the one hand, denote

the computed “noisy” relaxation rates at magnetic field B0j, and
Rij
0, on the other hand, are the theoretical relaxation rates at the

same magnetic field. The associated standard deviations are
denoted by σRij. Minimization was performed using either a
Levenberg−Marquardt algorithm35 associated with a parameter
grid search or the differential evolution method,38 both
implemented in the Scilab software.8

III. RESULTS AND DISCUSSION

A. The Effective Potential of Methyl Bond Vectors. The
motions of the methyl groups are governed by interactions with

Figure 1.Dot-plots of polar coordinates of CCγ of residues Ile13 (top left) and CCβ of Ala28 (top right), CγCδ of Ile43 (bottom left) and CβCγ2 of Val70
(bottom right) obtained from theMD simulation of ubiquitin. Top and right margins show the histograms of (θ,ϕ) angles in the respective local frames
(see text). For Ile13 and Ala28, the respectively unimodal and nearly uniform (θ, ϕ) distributions indicate nearly symmetrical motions about the ⟨ CC⟩
axis. For Ala28, theϕ distribution is close to uniform despite the presence of two very broadmaxima (ϕ∼ π/2 andϕ∼ 3π/2). The case is similar for CCγ

in Ile13, clearly negligible population in the direction (θ≈ π/2, ϕ≈ π) (see θ histogram). Two major orientations of CγCδ of Ile43 (∼π/6; ∼3π/2) and
(∼ π/3; ∼π/3) are observed. This is also the case for CβCγ

2 of Val70, which also exhibits two main orientations (∼ π/6; ∼5π/4) and (∼ π/3; ∼π/4).
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the surroundingmolecular environment, which can be accounted
for by effective local potentials Ueff at the CC and CH bond
vectors. These potentials can be related to the population
distribution peq(θ, ϕ) of the polar angles defining the CC
(respectively CH) bond vector in a reference frame where z is

aligned with ⟨
⎯ →⎯⎯
CC ⟩ (respectively ⟨

⎯ →⎯⎯⎯
CH ⟩) through the expression

peq(θ, ϕ) ∝ e−Uloc(θ, ϕ)/kT. Typical examples of orientation
distributions of the bond vectors obtained from our 50 ns MD
simulation of ubiquitin are depicted in Figure 1. These illustrate
the variety of CC motions: while the methyl groups of certain
residues exhibit angular distributions centered on a single
orientation (such as CCγ and CCβ of residues Ile13 and Ala28),
for several other residues, the presence of multiple preferential
directions (CγCδ of Ile43 or CβCγ2 of Val70, for instance) is
observed. These translate into single- and multiple-well local
potentials. This also indicates that the distinction between
harmonic and anharmonic local potentials can be rather fuzzy in
practice, and the border between both definitions arbitrary to
some extent.
From the NMR spectroscopist viewpoint, it is important to

determine the degree to which dynamical complexity can be
indeed captured by spin relaxation. Therefore, the internal
autocorrelation functions CI(t) = ⟨P2(u(τ)·u(0))⟩, of the unit
bond vector u = uCC or uCH, which are relevant when overall and
internal motions of the protein are statistically decorrelated, were
computed in both ubiquitin and MMP-12 (see Methods). In this
expression, P2(.) denotes the second Legendre polynomial.
Overall, ≈70% of CC, and all but one of the CH, bond vector
correlation functions, converged to well-defined plateau values
(the criteria used to define convergence are detailed inMethods),
and were used for subsequent analysis.
Despite the complexity of the local potentials, we investigated

the possibility to fit CI(t) to the model of eq 12 (formally
identical to eq 3), characterized by a single ML decay.
Surprisingly, the agreement was in general excellent and the
single ML decay fully satisfactory, as shown in Figure 2. Different
types of behavior of the correlation functions are illustrated for

methyl CH bond vectors of Leu15δ2 and Thr 66γ in ubiquitin (top
traces of Figure 2). Interestingly, it is seen that for values of α
even slightly different from unity, multiple-scale dynamics3,4,6 are
clearly present, as shown by the rather broad distribution pα,τ(λ)
for Thr66γ (α = 0.96). This therefore demonstrates efficient
modeling by a single ML function according to eq 12, even
outside of the harmonic potential approximation, and supports
the description of the dynamics in terms of an fBD process in a
local effective potential. In addition, it is interesting to note that
the correlation functions corresponding to residues Leu15δ2 and
Leu43δ1 are characterized by the same value α = 0.7. Thus, the
profiles of the associated rescaled densities pα,τ(λτ) are identical.
However, the τ values are dramatically different, and so are the
medians λ1/2 of pα,τ(λ), since, as mentioned above, λ1/2 = τ−1.3

Therefore, although both correlation functions exhibit the same
overall shapes, their decays occur with different characteristic
times.
For CC correlation functions, wide ranges of α and τi values

were obtained in ubiquitin (0.07 ≤ α ≤ 0.99 and 11.3 ps ≤ τ ≤
615.6 ps) and in MMP-12 (0.10 ≤ α ≤ 0.99 and 0.002 ps ≤ τ ≤
6037.92 ps), revealing the dramatic site to site variations of the
frequency distribution profile relative to side chain dynamics
across the proteins.
For methyl CH, a significant number of values α ≲ 0.85 were

obtained (∼14% for ubiquitin and ∼20% for MMP-12). These
correspond to broad pα,τ(λ) distributions that clearly reflect the
nonexponential decay of the correlation functions with
asymptotic power law behavior at long times. These findings
support the presence of multiple time scale processes, even for
such bond motions typically modeled by Markovian very fast
jump processes. Moreover, the broad range of (α, τ) parameters
illustrates the heterogeneity of methyl group dynamics across the
protein as already observed in the case of CC bonds (see Tables
S1 and S2), a feature previously noticed for backbone amide NH
bond vectors.4 In this respect, one may raise the question
whether CH and CC bond vectors in the same methyl group
share common dynamical properties or not. To investigate this
point, we plotted the graph of αCH versus αCC (Figure 3). About

Figure 2. MD-computed CI(t) and their single ML fitted counterparts showing excellent agreement. CH autocorrelation functions of (top graphics)
methyl CH of Leu15δ2 (α = 0.70, τ = 26.96 ps, cel = 0.84, S2 = 0.020) and Thr66γ (α = 0.96, τ = 17.13 ps, cel = 0.80, S2 = 0.087) and CC bond vectors of
Ile13γ (α = 0.99, τ = 610.65 ps, cel = 0.76, S2 = 0.74) and Leu43δ1 (α = 0.70, τ = 354.65 ps, cel = 0.85, S2 = 0.18).
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80% of the points are located into the region αCH≳ 0.8 and αCC≳
0.6 for both ubiquitin and MMP-12, which may therefore be a
general property of methyl groups in proteins. No apparent
correlation between the two α parameters seems to exist, which
suggests that the fractional characteristics of CH bond vectors
dynamics are essentially influenced by the closest molecular
environment and that their motions are sensitive to different
local features. One might expect identical values of αCH and αCC
in the unlikely situation of a nonfractional rotational diffusion of
the CH3 group, with a fixed CCH angle.
B. Fractal Time Behavior in Multiple-Well Potentials. In

order to clarify the conditions of validity of the single ML
approximation of the correlation function, and in order to
provide better understanding of the fundamental processes in
hand, we investigated the bond vector dynamics restricted to
motions about each of the potential minima. In addition,
determining under what conditions this approximation is
acceptable clearly represents a matter with practical implications.
As expected, multiple minima were found for all the CH

vectors, which explore at least the three expected preferential
directions with ϕ ≈ ϕ0 + 2kπ/3 upon rotation of the methyl

group. A similar situation is also encountered for numerous
methyl CC bond vectors (see Figure 1, where, for residue Ile43δ,
one obtained α = 0.67 and τ = 355 ps).
The case of CCγ2 of residue Val243 in the protein MMP-12 is

both interesting and illustrative. The corresponding (θ, ϕ)
angular distribution exhibits three preferential orientations
defining three minima of the local potential (see Figure S1).
Investigation of the dynamical process in hand was performed by
analyzing separately the fragments of the MD trajectory relative
to the CC bond fluctuations about each of these orientations
individually. The internal correlation functions CI(i)(t) of
motions about each minimum (i) were computed from the
associated fragments of the total trajectory and subsequently
averaged in order to reduce statistical errors to values comparable
with those of CI(t) obtained from the whole trajectory. Note that
although each substate corresponds to a single minimum of the
local potential, its harmonicity is not granted. For this reason, the
CI(i)(t) were then fitted to the ML with effective τeff model (eq
12) for each site independently, yielding a set of (S(i)

2 , cel(i)α(i),
τeff(i)) for each substate. Results are shown in Figure 4. The values
of the order parameters calculated for the subconformations
were S(1)

2 = 0.83 and S(2)
2 = 0.84 and S(3)

2 = 0.86, respectively. As
could be expected, these were much higher values than the S2 =
0.05 characterizing the overall process. In addition, the values of
α calculated in these conditions were α(1)≈ 0.57, α(2)≈ 0.58, α(3)

≈ 0.57. Interestingly, all of these were rather close to the expected
value α≈ 0.65 that was determined for the overall process. This is
a very important observation, which clearly indicates that the
same kind of fractality, as determined by the parameter α, equally
characterizes all the potential wells. This therefore shows that
same fractional diffusion process is at work in all the minima of
the local potential. The associated time constants were found to
be τeff(1) = 50.51 ps, τeff(2) = 128.69 ps, and τeff(3) = 23.68 ps. These
different, although similar, τeff(i) values can be ascribed to the
different shapes and depths of the (θ, ϕ) distribution of the CCγ2

bond. These values are significantly smaller than τeff = 3.75 ns
obtained by fitting CI(t) to eq 12, which is also an important
observation. Indeed, these results mean that the correlation
function for the whole dynamical process contains some of the

Figure 3.Correlation plot {αCH; αCC}. Methyl groups with at least one α
equal to unity were excluded from this analysis.

Figure 4. Autocorrelation function of CC bond vector of Val243 in MMP-12 (see text for details).

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp307050v | J. Phys. Chem. B 2012, 116, 12955−1296512960



characteristic features of the motions inside the wells, but not all
of them. In particular, fitting CI(t) to an effective fOU model
yields a time constant which is absent from the dynamics within
the minima. This value τeff is essentially contributed by the time
constant characterizing the fractional transition process between
the wells. And the fact that the fractional parameter α is nearly
identical for all processes attests for the presence of the same
stochastic process, albeit in a more complex potential.
From the example above, we propose the following empirical

rationale. Here, all three sites can be characterized by nearly
identical parameters (S(i)

2 , cel(i)α(i)) and similar time constants
τeff(i) which, most importantly, are all much smaller than the time
constant that characterizes the internal correlation function: τeff(i)
≪ τeff. Therefore, the three fast regimes may be associated to a
single fast decay of CI(t) characterized by an effective intrawell
mode λw ≡ λeff(i), while the slower jumps over the potential
barriers are accounted for by the slowest relaxation mode λ1 in eq
9

λ τ τ

λ τ τ
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α
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Although eq 18 could be helpful to interpret our data
qualitatively, the above analysis shows that the correlation
function can be adequately fitted to the model of eq 12, i.e., with a
single ML function. This thus demonstrates the possibility to
actually use the approximate and simplified model of fractional
diffusion in an ef fective potential, as suggested so far. It should be
emphasized that the presence of twomodes is by itself not related
to the existence of a fractional diffusion process. Rather, this
reflects the presence of potentials with more complex features

than the simple harmonic case. It should be noted that the second
term in the rhs of eq 18 can be easily neglected when cel − Sw

2 ≪
Sw
2 − S2, a condition often met in practice for methyl groups. In
this case, CI(t) decays with a (single) rescaled time constant τ ̃ =
(λ1τ)

−1/ατ. Interestingly, one therefore retains the actual α, which
characterizes the kind of rate constant distribution and the shape
of pα,τ(λ) (eq 7). Numerical simulations indicate that this is
actually the case for typical conditions, and eq 18 can be fitted by
a single ML function to provide the actual α parameter with
satisfactory accuracy.

C. Fractionarity of the Apparent Markovian Case. For a
number of residues, the values of the fOUmodel parameters (see
Tables S1−4) indicated correlation function characterized by
values of α ∼ 1. This kind of exponential decay, which is in
principle indicative of a Markovian process, was in sharp contrast
to the fractional Brownian dynamics observed so far and required
further investigation. In order to illustrate this point, two such
examples are now analyzed in detail.
In the case of the methyl CC bond of residue Val70 in

ubiquitin, the (θ, ϕ) angular distribution exhibited two distinct
orientations, as attested by the θ and ϕ histograms, which are
estimates of their probability density functions and are depicted
in the margins of Figure 1. Investigating the dynamics along the
same lines as for Val243 in MMP-12, the correlation functions of
the “restricted” motions yielded the values S(1)

2 = 0.84 and S(2)
2 =

0.89, while the associated values of α were both on the order of α
≈ 0.6 (see Figure 5) and characteristic of the fractional stochastic
process undergone by the bond vector. Again, as noted above, the
different shapes of the (θ, ϕ) distribution of the CCγ2 bond in
Figure 1, therefore of the wells, may explain the different values
obtained for the time constants τeff(1) = 2.4 ps and τeff(2) = 47.7 ps.

Figure 5. Residue Val70 of ubiquitin. Correlation functions and corresponding fit with fOUmodel. Top traces: Full 50 ns MD simulation (α = 0.99, τ =
476 ps, S2 = 0.21, cel = 0.86) and “jumps” between the two substates (α = 0.99, τ = 463.07 ps, S

2 = 0.16, cel = 0.82). Bottom traces: Correlation functions
for substates “1” and “2”, with parameters (α = 0.66, τ = 2.40 ps, S2 = 0.84, cel = 0.91) and (α = 0.61, τ = 47.74 ps, S2 = 0.89, cel = 0.92).
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A derived stochastic process was obtained by considering only
“jumps” between the average directions of the CC bond vector
calculated during sojourns in each site independently during the
MD trajectory (Figure 5 B). This lead to parameters essentially
identical to those of the original process, with SJ

2 = 0.16, αJ = 0.99,
τJ = 463 ps, and cel J = 0.92. Note also that τ ≈ τJ ≫ τeff(i).
However, the value αJ = 0.99 is in harsh contrast to the one
expected from the analysis of the “intrawell” processes, α ≈ 0.6.
The presence of such conflicting α values was found on several
occasions in the simulations, and seemed to be related to the
limited length of the MD trajectory. Indeed, in the case of MMP-
12, on the order of 50% of the CH bonds associated with α = 1 in
a 30 ns fragment of theMD simulation were assigned a significant
α < 1 when the total 200 ns was considered. This is perfectly
illustrated in the case of CγH in residue Thr145 in the protein
MMP-12. In this case, when only the first 30 ns of the trajectory
were used, fitting of the correlation function to eq 3 yielded the
value of α≈ 1. In contrast, the analysis leads to the value α = 0.78
for the whole trajectory (200 ns), thus revealing the signature of
the fOU process. In order to get a better insight into this
phenomenon, (θ, ϕ) distributions obtained from the partial (30
ns) and total (200 ns) trajectories are plotted in Figure 6. For the
shorter trajectory, the distribution of θ is monomodal and
centered on a value close to the ideal tetrahedral value θ = 109.5°,
while the ϕ histogram shows a trimodal distribution about three
different values that are separated by 120° and therefore typical
of the threefold symmetry of CH3 rotations. Thus, the CH bond
samples hardly any intermediate orientation between these. This
attests for the much slower time scales on which transitions
between these directions of the CH bond occur, as compared to
intrawell motions. In contrast, when the total trajectory is
analyzed, this simple and ideal three-state feature disappears, and
the more complex angle distribution is revealed. Here, the (θ, ϕ)
distribution appears broadened, with additional regions sig-
nificantly populated. The associated local potentials recon-

structed from these trajectories are shown in Figure 6 (bottom
traces). Clearly, the simplistic three-well representation of the
potential is replaced by a local potential with a more complicated
shape, owing to a more extensive sampling of the CH bond
orientations. Moreover, for the total 200 ns trajectory, potential
barriers between the wells seem lower, which is consistent with a
better sampling of processes with long waiting times and the
departure from an ideal Kramers kind of problem with a clear-cut
separation between the assumed very fast intra-well and the
slowest, interwell, modes. Thus, this example illustrates the
presence of characteristic times of the stochastic process that are
too long to be correctly sampled during the shorter MD
simulation.
As will now be shown, this is also related to the misleading α =

1 value found in the 30 ns trajectory. These apparent
discrepancies are more clearly explained by using an alternative
description of fractional diffusion based on the continuous time
random walk (CTRW) approach. Here, the diffusing particle
evolves according to jumps between nodes located on a grid,
where it remains for a random time t before the next jump occurs.
This waiting time is characterized by a probability distribution
function ψ(t) that decreases for t→ ∞ as ψ(t) ∼ (t/τ)−(α+1).29

The discussion is based on this asymptotic behavior of ψ(t) or,
equivalently, of its moment generating function ψ̂(s) (the
Laplace transform of ψ(t)). Thus, ψ̂(s) ∼ 1 − (τs)α for s → 0.1

When 0 < α < 1, the first moment of the waiting time probability
distribution function diverges, so that ⟨t⟩ = ∫ 0

∞tψ(t) dt = +∞. It
is shown in this case that when 0 < α < 1, the process gives rise to
the fractional diffusion equation of eq 1. Alternatively, when α =
1, ψ̂(s) ∼ 1 − ⟨t⟩s + ..., which leads to the ordinary Fokker−
Planck equation.1

In the present context, the issue is whether the long-time tail of
the waiting time pdf ψ(t) is sufficiently well sampled during the
MD simulation. The answer was so far empirically given by the
ability to retrieve a characteristic α parameter strictly lower than

Figure 6. Top: Dot-plots and distributions of (θ, ϕ) angles obtained from partial (30 ns) and total (200 ns) trajectories for Thr145γ in MMP-12.
Bottom: Associated local potentials.
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unity through fitting the computed CI(t) to eq 12. This is
illustrated in Figure 7, where only the first 300 ps of CI(t)
obtained from the 200 ns and a 30 ns fragment of the MD
simulation are fitted, for CγH in residue Thr145 of MMP-12.
Both fits are excellent but provide different values, α = 0.78 and α
= 1. This indicates that the fractional character is recovered only
for satisfactory sampling of the stochastic process during the
trajectory length.
The largest waiting time that can be in principle sampled at

least once during an MD simulation of time duration TMD is
precisely TMD. Therefore, in cases where internal correlation

functions with α < 1 are obtained, it may be inferred thatTMD/τeff
is so large as to allow for good enough sampling of the power law
decaying long waiting time tail of ψ(t). If this condition is not
met, the resulting truncation of the long time tail of the ψ(t)
yields a pdf with a first moment ⟨t⟩ < ∞, therefore leading to
ordinary Brownian diffusion and α = 1.
This conjecture was tested for CγH of Thr145 in MMP-12. To

this aim, waiting times were estimated from the trajectory by
determining the intervals during which the unitary CH bond
vector uCH did not appreciably change direction. A threshold
condition (δ|uCH| ≤ 0.3) was imposed for the minimum

Figure 7.Thr145 of MMP-12. Left: MD-computed (dashed line) and fitted (open circles) correlation functions of the methyl CH bond vector obtained
from the first 300 ps of the 30 ns and 200 trajectories. Right: Histogram of the waiting time probability density function ψ(t). The inset shows the
superposition with a fit (τ/t)1+α (α ≈ 0.8) of the tail of the distribution.

Figure 8.Distribution of (S2, cel, α, τ) parameters obtained fromMonte Carlo simulations on synthetic NMR relaxation rates from theMD simulation of
MMP-12.
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significant norm of the vector change. This condition was set so
as to achieve a compromise, since obviously, if this threshold is
too low, no large waiting times in the range [0; TMD] occur. The
extreme case would be δ|uCH| = 0, where virtually all the waiting
times would be equal to the time step of the simulation. This
mainly produces a truncation of ψ(t) for short t, which is not
critical for our purpose. Alternatively, too large threshold values
of δ|uCH| would result in too few jumps occurring during the
simulation to allow for a satisfactory estimate of ψ(t) for values of
t approaching TMD and to adequately sample the long-time tail of
ψ(t). Using this kind of strategy, ψ(t) was then estimated from
the histograms of the waiting time values obtained from both the
200 ns MD simulation and a 30 ns fraction thereof. The
maximum value of the waiting time ψ(t) and the mean and
median of its distribution computed from the 200 ns trajectory
were 350, 4, and 9.7 ps, respectively. Alternatively these values
became 350, 5, and 12.5 ps for the 30 ns fragment. The “long-
time” part of the distribution was then fitted by the power law
decay function of the above type. This was achieved by fitting the
distribution over 180 ps time intervals and systematically
increasing the lower bound. In the case of the 200 ns simulation,
values of α ≈ 0.6 ± 0.2 were obtained, for intervals with lower
bounds comprised between 105 and 134 ps. In any event, these
values were close to the one extracted from the correlation
function analysis and significantly lower than unity. Moreover, as
expected, the fitted ψ(t) ∼ (t/τ)−(α+1) distribution was not
consistent with the region of shorter waiting times (see Figure 7).
Alternatively, using the same approach, no satisfactory fitting
with a (τ/t)1+α function could be obtained for the 30 ns
trajectory.
Thus, these results highlight the connection between the

fractional differential equation underlying our analysis of the
bond vector correlation functions and the CTRW picture of
fractional diffusion. Note that this situation is reminiscent of
recent CTRW simulation studies29 which showed that, although
it was due to a different mechanism, the expected time
dependence of the ensemble average of the displacement ⟨x2⟩

∼ tα could not be reproduced by the computed time average x2.
D. Methyl Dynamics from NMR Relaxation Rates. In

view of practical implementations, we tested the possibility of the
fOU model to extract dynamical information from NMR
relaxation experiments. So far, our analyses of MD simulations
have been supporting the assumption that protein fast internal
dynamics is driven by fractional diffusion processes. Therefore
the fBD model provides a reasonable tool for the interpretation
of experimental data. Specifically, the characterization of the
decay rate distribution pα,τ(λ) of the correlation functions (eq 7),
which is associated with non-Markovian diffusion with a power
law memory kernel, is expected. Thus, a value α < 1 obtained
from the fitting of the relaxation rates reveals the fractionarity of
the underlying diffusion process, therefore its departure from the
Markovian case. These indicators are absent from conventional
analysis of NMR relaxation data.
To this aim, in analogy with a recent study,6 synthetic NMR 2H

and 13C relaxation rates were computed from the spectral density
function of eq 8 with (S2, cel, α, τ) parameters fitted from MD
correlation functions. Model parameters could be extracted by
Monte Carlo simulations on synthetic relaxation rates with
pseudoexperimental noise. Statistical properties of the fitted
values could be estimated from the obtained distribution of
values, and the associated medians were found in satisfactory
agreement with the values determined from the MD angular

autocorrelation functions of CH bond vectors (see Tables S1−
4). Illustrative examples are shown in Figure 8. The three
parameters S2, α, and τ are extracted with relatively modest
dispersion about their medians, although cel parameters exhibit
larger spread, with a significant number of them lying outside the
range of physically acceptable values. It is interesting to compare
these results with ones obtained previously on 15N amide
backbone relaxation rates.6 There, it was shown that the smaller
the difference between parameters cel and S2, the larger the
dispersion of α and τ, which was ascribed to less favorable fitting
configurations of the parameters. This is quite different for the
present case where the S2-order parameters of CH correlation
functions are often very low (i.e., lower than approximately 0.1).
From the model parameters α and τ, and within the effective

relaxation time approximation (τ = τeff), it is then possible to
reconstruct the relaxation rate distribution function pα,τ(λ),
which actually defines a distribution of time scales and
completely characterizes the fractional diffusion process with
memory kernel K(t) = ((α−1)/(τ2Γ(α)))(t/τ)α−2.21

Overall, the present study suggests that the multiscale
character of the stochastic process embodied in the value of α
can be extracted from relaxation measurements, thereby
providing insight into the structure of the underlying random
process.

IV. CONCLUSION

In the present study, the multiscale character of the stochastic
process underlying methyl dynamics in proteins has been
characterized based on the analysis of MD simulations. In
addition to the important parametrization of the internal
correlation functions by functions of the Mitag−Leffler type,
the connection between average properties embedded in the
correlation functions and the stochastic process, which is
characterized by the waiting time pdf associated to the process,
was demonstrated. Therefore, the approach described in this
work provides an important conceptual advance that should be
particularly useful in dealing with actual measurements, by
providing renewed insight into the interpretation of NMR
relaxation data.
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