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We present a detailed description of the extraction of the highly excited isovector meson spectrum
on dynamical anisotropic lattices using a new quark-field construction algorithm and a large varia-
tional basis of operators. With careful operator construction, the combination of these techniques is
used to identify the continuum spin of extracted states reliably, overcoming the reduced rotational
symmetry of the cubic lattice. Excited states, states with exotic quantum numbers (0+−, 1−+ and
2+−) and states of high spin are resolved, including, for the first time in a lattice QCD calculation,
spin-four states. The determinations of the spectrum of isovector mesons and kaons are performed
on dynamical lattices with two volumes and with pion masses down to ∼ 400MeV, with statistical
precision typically at or below 1% even for highly excited states.
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I. INTRODUCTION

Computing the bound states of QCD is vital if we
are to claim a complete description of the strong inter-
actions. Confronting high-precision calculations of the
spectrum with future experimental measurements will
test the theoretical framework for such a description rig-
orously. There has been a resurgence of interest in the
experimental investigations of the spectrum, notably in
the charmonium sector where a wealth of high-quality
data from the B-factories has challenged our understand-
ing of spectroscopy. A comprehensive investigation of the
spectrum of mesons composed of light quarks is the goal
of the GlueX collaboration, after the 12 GeV upgrade
of Jefferson Laboratory. Here the aim is to photopro-
duce mesons, and in particular those with exotic quan-
tum numbers, as a means of revealing the role of gluonic
degrees of freedom in the spectrum.

Lattice calculations offer a method of performing a
first-principles computation of the spectrum of QCD and
the calculation of the masses of the lowest-lying states
has been an important benchmark of lattice studies since
their inception. However, recently there has been con-
siderable progress aimed at extracting the spectrum of
excited states, both for mesons and for baryons. This
has been accomplished through the use of the varia-
tional method, employing a large basis of interpolating
operators satisfying the symmetries allowed by the cubic
lattice[1–4]. In a series of recent papers, we have applied
this methodology to the extraction of the meson spec-
trum [5], and the radiative transitions between excited
and low-lying meson states [6, 7]. The first studies were
performed in the quenched approximation to QCD, for
mesons composed of the heavier charm quark and its anti-
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quark, a system which is computationally less demanding
yet for which there is a wealth of high-quality experimen-
tal data. In this paper, we investigate the spectrum of
mesons for quark masses below the strange quark mass,
going down to pion masses of around 400MeV, and ex-
pand on our earlier letter [8] focused on the spectrum of
mesons in full QCD with three mass-degenerate quark
flavors.
Several previous studies of the spectrum have focussed

on obtaining precision results for ground state masses
through controlling systematic errors[9–12]. Others have
aimed at extracting the masses of some of the excited
states[13–19]. The extraction of excited state masses
is more difficult owing to the decrease in the signal-to-
noise ratio with increasing time as we move progressively
higher in the spectrum. To circumvent this difficulty, we
use anisotropic lattices, with finer temporal than spatial
lattice spacing, enabling the behavior of the Euclidean-
space correlation functions to be examined at small tem-
poral separations.
The (hyper-) cubic lattice does not possess the full ro-

tational symmetry of the continuum. Thus in a lattice
calculation, states at rest are classified not according to
the spin (J, Jz), but rather according to the irreducible
representations (irreps) of a cube; for states of higher
spin, the different continuum degrees of freedom are dis-
tributed across several lattice irreps. In this study, we use
a large basis of interpolating operators, decomposed into
their lattice irreps, that enable us to explore all JPC up to
spin 4, except for the exotic 4+−, with as many as 26 op-
erators in a given symmetry channel. Our ability to cal-
culate correlation functions efficiently for such a large ba-
sis of operators relies on a new method, “distillation”[20],
for the construction of quark-antiquark operators, includ-
ing those with non-local construction.
As the lattice spacing approaches zero, full rotational

symmetry is restored and thus in principle the spins can
be identified through the emergence of energy degenera-
cies between different irreps. The increasing density of
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states in each irrep as we rise in the spectrum makes the
identification of such degeneracies a challenging task, and
thus the assignment of the continuum spins has been a
formidable barrier to the interpretation of lattice calcula-
tions. In this paper, we adopt a very different approach,
in which by judiciously constructing operators so as to
have a known continuum behavior, the spins of the ex-
cited states are determined and thus the barrier imposed
by the reduced cubic symmetry of the lattice is overcome.

A particularly interesting class of mesons are those
with exotic JPC , such as the 1−+ channel. Extracting
clean signals for even the lightest state with these quan-
tum numbers has proven difficult [18, 21–26], with statis-
tical noise levels typically being significantly higher than
for other states. There is also a requirement to determine
that any such extracted state is, in fact, the exotic spin
1 and not a non-exotic 4−+ state which would live in the
same lattice irreducible representation. We found that
we can extract information about exotic state masses at
the same level of precision as excited non-exotic states
(. 1%), with the spins clearly identified.

First results, exploiting the full planopy of anisotropic
lattices, “distillation” for efficient computation of the in-
terpolating operators, and the identification of the con-
tinuum spins, have been presented for the case of three
degenerate “strange” quarks [8]; the spectrum of excited
states, including those with high spin, was extracted with
confidence.

In this paper, we expand on the earlier work (at
mπ ≈ 700 MeV) to include calculations in full QCD
both with three degenerate flavors of quark, and with
a strange quark and two light quarks (Nf = 2⊕ 1), cor-
responding to pion masses mπ ≃ (520, 440, 400) MeV.
Furthermore, we perform calculations at two spatial vol-
umes, enabling us to seek possible finite-volume effects,
and potentially the presence of multi-hadron states in the
calculated spectrum. Precise extraction of such states is
required in order to carry out analyses of resonances in
the manner suggested by Lüscher [27].

The structure of the paper is as follows. We begin in
Section II by presenting details of the QCD gauge-field
configurations to be used. We describe the technology of
two-point correlator measurement using distillation on
dynamical gauge-field configurations in Section III. In
Section IV the construction of a set of composite QCD
operators suitable for use in the extraction of the me-
son spectrum is outlined, along with a description of the
procedure used to make these operators transform irre-
ducibly under the limited rotations allowed on a cubic lat-
tice. In Section V we present the methodology utilised to
extract meson spectral information from correlation func-
tions. Section VI discusses the possibility of using the
information embedded in vacuum-operator-state matrix
elements to determine the spin of a meson, overcoming
ambiguities introduced by the reduced rotational sym-
metry of a cubic lattice. The stability of the extracted
spectral quantities to changes in the details of the cor-
relator analysis is considered in Section VII, where it is

mℓ
ms

mπ

/MeV mK/mπ volume Ncfgs Ntsrcs Nvecs
Ninv.

/106

743 −0.0743
−0.0743 702 1

163 × 128 536 9 64 1.2

203 × 128 198 6 128 0.6

808 −0.0808
−0.0743 524 1.15

163 × 128 500 7 64 0.9

203 × 128 382 4 96 0.6

830 −0.0830
−0.0743 444 1.29 163 × 128 601 10 64 1.5

840 −0.0840
−0.0743 396 1.39

163 × 128 479 32 64 3.9

203 × 128 600 6 128 1.8

TABLE I: The lattice data sets and propagators used in this
paper. The lattice size and number of configurations are
listed, as well as the number of time-sources and the number
of distillation vectors Nvecs. The total number of inversions
for each quark mass = 4×Ntsrcs ×Nvecs ×Ncfgs is shown.

seen that we can extract results of considerable robust-
ness. In Section VIII we report meson spectrum results
extracted from calculations at four pion masses and two
different lattice volumes. Results for isovector mesons,
kaons and the connected part of ss̄ (“strangeonium”)
are shown. Section IX considers the apparent absence
of multi-particle states within our extracted spectra. Fi-
nally, in Section X we summarise our observations and
suggest future directions.

II. LATTICE GAUGE FIELDS

In Euclidean space, excited state correlation functions
decay faster than the ground state, and at large times
are swamped by the signals of lower states, thus com-
plicating the resolution of excited states. To ameliorate
this problem we have adopted a dynamical anisotropic
lattice formulation whereby the temporal extent is dis-
cretized with a finer lattice spacing than in the spatial
directions [28, 29]; this has proven crucial to obtain the
results shown in this paper. This method avoids the
computational cost that would come from reducing the
spacing in all directions. Improved gauge and fermion
actions are used, corresponding to two light dynamical
quarks and one strange dynamical quark. Details de-
scribing the formulation of the actions as well as the
techniques used to determine the anisotropy parameters
can be found in Refs. [28, 29]. The lattices have a spatial
lattice spacing as ∼ 0.12 fm with a temporal lattice spac-
ing 3.5 times smaller corresponding to a temporal scale
a−1
t ∼ 5.6 GeV.
Previous work [8] showed results using the three-flavor

degenerate quark-mass dataset corresponding to bare
light and strange quark masses atml = atms = −0.0743
and lattice size 163 × 128. The pion mass (degenerate
with the kaon and η masses) is roughly 700 MeV. In
this work, results are extended to lighter masses atml =
(−0.0808,−0.0830,−0.0840) and atms = −0.0743 corre-
sponding to 2+1 flavors of dynamical quarks, and lattice
sizes 163 × 128 as well as 203 × 128. These fully dynam-
ical datasets, described in more detail in Table I, allow
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for some investigations of the quark mass dependence as
well as finite volume dependence of the spectrum.
The lattice scale, quoted above, is determined in the

physical quark mass limit using the Ω baryon mass (de-
noted by atmΩ). As noted, these calculations are carried
out away from this limit. To facilitate comparisons of the
spectrum at different quark masses, the ratio of hadron
masses with the Ω baryon mass is used to remove the
explicit scale dependence [29].

III. CORRELATOR CONSTRUCTION

The determination of the excited spectrum proceeds
from the calculation of correlation functions between a
basis of hermitian creation and annihilation operators O
at Euclidean times 0 and t,

Cij(t) =
〈
0
∣∣∣Oi(t)Oj(0)

∣∣∣0
〉
.

Inserting a complete set of eigenstates of the Hamilto-
nian, such that Ĥ|n〉 = En|n〉, this correlation function
decomposes into a sum of contributions from all states
in the spectrum with the same quantum numbers as the
source operators,

Cij(t) =
∑

n

1

2En

〈0|Oi|n〉〈n|Oj |0〉 e−Ent,

where the discrete character of the spectrum follows be-
cause the calculation is performed in finite-volume. In
order to measure energies of low-lying states, it is crucial
to construct operators that overlap predominantly with
light modes.
Smearing is a well-established means to improve op-

erator overlap, whereby a smoothing function is applied
to the quark fields used in the creation operators. This
smoothing function should effectively remove noisy short-
range modes which should not make a significant contri-
bution to the low-energy correlation functions. The Ja-
cobi method [30] uses the gauge-covariant second-order
three-dimensional lattice Laplacian operator

−∇2
xy(t) = 6δxy−

3∑

j=1

(
Ũj(x, t)δx+̂,y + Ũ †

j (x− ̂, t)δx−̂,y

)
,

where the gauge fields, Ũ may be constructed from an ap-
propriate covariant gauge-field-smearing algorithm [31].
To suppress high-energy modes of ∇2, this operator is
exponentiated, exp (σ∇2), with some smearing weight σ.
The resulting smoothed operator is then applied to the
quark fields ψ.
The suppression of the high energy modes of the Jacobi

smearing operator exp (σ∇2) means that only a small
number of modes contribute significantly to the construc-

tion of the smeared quark fields, ψ̃. As suggested in
Ref. [20], this smearing function can be replaced with

a low-rank approximation. The “distillation” operator
defines a smearing function

✷xy(t) =

N∑

k=1

ξ(k)x (t)ξ(k)†y (t), (1)

where ξ
(k)
x are a finite number, N , of eigenvectors of ∇2

evaluated on the background of the spatial gauge-fields
of time-slice t, once the eigenvectors have been sorted
by eigenvalue. This is the projection operator into the
subspace spanned by these eigenmodes, so ✷

2 = ✷.

This smearing function is used in the construction of

isovector meson operators of the form ˜̄ψΓψ̃, where Γ acts
in spin and color as well as coordinate space. Applying

the distillation operator ✷ onto each quark field, ψ̃ ≡
✷ψ, the creation operators at zero three-momentum are
written as

Oi(t) = ψ̄x(t)✷xy(t) · Γi
yz(t) ·✷zw(t)ψw(t),

where there is an implied volume summation over re-
peated spatial indices. In a shorthand notation the cor-
relation function can be written as

Cij(t) =
〈
ψ̄t✷tΓ

i
t✷tψt · ψ̄0✷0Γ

j
0✷0ψ0

〉
.

After evaluating the quark-field path-integral and insert-
ing the outer-product definition of the distillation oper-
ator ✷ from Eq. 1, the correlator can be written

Cij(t) = Tr
[
Φj(t) τ(t, 0)Φi(0) τ(0, t)

]
,

where

Φi
αβ(0) = ξ†(0)

[
Γ
i(0)

]
αβ
ξ(0),

encodes the structure of the operator and

ταβ(t, 0) = ξ†(t)M−1
αβ (t, 0)ξ(0),

is the “permabulator”, withM the lattice representation
of the Dirac operator and where the quark spin indices,
α, β of Φ and τ have been explicitly written. Φ has a well-
defined momentum, while there is no explicit momentum
projection in the definition of τ . The Φ and τ are square
matrices of dimension NNσ where Nσ = 4 are the num-
ber of spin components in a lattice Dirac spinor. Con-
struction of the τ require NNσ inversions of the fermion
matrix to compute all elements. These matrices are small
compared to the dimension of the space of quark fields.
Once the τ have been computed and stored, the correla-
tion of any source and sink operators can be computed
a posteriori. The method straightforwardly extends to
the determination of multi-hadron two-point correlation
functions [32] as well as three-point functions [20].
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IV. CONSTRUCTION OF MESON OPERATORS

Meson spectral information will follow from analysis of
two-point correlators featuring a large basis of composite
QCD operators having mesonic quantum numbers. The
simplest such operators are color-singlet local fermion bi-
linears, ψ̄iα(~x, t)Γαβψiβ(~x, t) where the quantum num-
bers are determined by the choice of gamma matrix, Γ.
In distillation [20] the quark fields, ψ are replaced by

the smeared quark fields ψ̃ but the rotationally symmet-
ric nature of the smearing does not change the quan-
tum numbers of the bilinear operators. These simple
local operators are extremely limited in that they allow
access only to the set JPC = 0−+, 0++, 1−−, 1++, 1+−

and they do not offer significant redundancy within any
JPC . In order to consider higher spins, exotic JPC and
to produce multiple operators within a given symmetry
channel, one must consider extending to the use of non-
local operators[13–18]. Our approach is to use spatially-
directed gauge-covariant derivatives within a fermion bi-
linear, that is to construct operators of essential structure

∑

~x

ψ̄(~x, t)Γ
←→
D i
←→
D j . . . ψ(~x, t)

where
←→
D ≡ ←−D − −→D and where spin and color indices

are suppressed for clarity. The use of the “forward-

backward” derivative,
←→
D is not strictly necessary at zero

momentum (projected by the sum over spatial sites), the
only case we consider here, but it does somewhat simplify
the construction of eigen-operators of charge-conjugation
as will be discussed below.
With the continuum SO(3) rotational symmetry it is

straightforward to produce operators of this type that
are of definite spin, parity and charge-conjugation at zero
momentum. This follows from forming a circular basis of
the cartesian-vector-like derivatives and gamma matri-

ces,
←→
D i, γi, γ5γi, γ0γi, ǫijkγjγk, e.g.

←→
Dm=−1 = i√

2

(←→
D x − i

←→
D y

)

←→
Dm=0 = i

←→
D z

←→
Dm=+1 = − i√

2

(←→
D x + i

←→
D y

)
.

Once expressed in this basis, which transforms like spin-
1, operators of definite spin can be constructed using the
standard SO(3) Clebsch-Gordan coefficients. For exam-
ple, with a vector-like gamma matrix and one covariant
derivative, operators of J = 0, 1, 2 can be formed

(Γ×D[1]
J=1)

J,M =
∑

m1,m2

〈
1,m1; 1,m2

∣∣J,M
〉
ψ̄Γm1

←→
Dm2

ψ.

The choice of Γ plays a role in setting the parity and
charge-conjugation quantum numbers of the operator -
our naming scheme for these matrices is given in Table
II.

a0 π π2 b0 ρ ρ2 a1 b1

Γ 1 γ5 γ0γ5 γ0 γi γiγ0 γ5γi γiγj

TABLE II: Gamma matrix naming scheme.

At the two-derivative level we adopt the convention of
first coupling the two derivatives to a definite spin, JD,
then coupling with the vector-like gamma matrix (if any)
as

(Γ×D[2]
JD

)J,M =
∑

m1,m2,
m3,mD

〈
1,m3; JD,mD

∣∣J,M
〉

×
〈
1,m1; 1,m2

∣∣JD,mD

〉
ψ̄Γm3

←→
Dm1

←→
Dm2

ψ.

It is worth noting here that while the Clebsch-Gordan for

1 ⊗ 1 → 1 is antisymmetric and
←→
Dm1

←→
Dm2

appears to
be symmetric, there are non-zero operators with JD = 1
because the gauge-covariant derivatives do not commute
with each other in QCD. Rather these “commutator”
operators are proportional to the gluonic field-strength
tensor which does not vanish on non-trivial gluonic field
configurations.
At the three-derivative level we need to choose a con-

vention for the ordering in which we couple the deriva-
tives. A natural choice comes from insisting the op-
erators have definite charge-conjugation symmetry. By
exchanging the quark and anti-quark fields, the charge-
conjugation operation effectively acts as a transpose of
the operators between the quark fields - for three deriva-
tives then, one ensures definite charge conjugation by
coupling the outermost derivatives together first since
this gives them a definite exchange symmetry (even for
J13 = 0, 2, odd for J13 = 1). This simple formulation is
possible because we have used the “forward-backward”

derivatives,
←→
D .

(Γ×D[3]
J13,JD

)J,M =
∑

m1,m2,
m3,m4,
m13,mD

〈
1,m4; JD,mD

∣∣J,M
〉〈
1,m2; J13,m13

∣∣JD,mD

〉

×
〈
1,m1; 1,m3

∣∣J13,m13

〉
ψ̄Γm4

←→
Dm1

←→
Dm2

←→
Dm3

ψ.

Clearly this procedure can be extended to as many
covariant derivatives as one wishes. In this paper we
will use operators with up to three derivatives providing
access to all JPC with J ≤ 4.1

The operators as formed are eigenstates of charge-
conjugation in the case that the ψ and ψ̄ fields are of
the same flavour. In the case that the fields are degen-
erate but not identical (e.g. the u and d quarks in our

1 except the exotic 4+− which requires a minimum of four deriva-
tives.
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J irreps

0 A1(1)

1 T1(3)

2 T2(3)⊕ E(2)

3 T1(3)⊕ T2(3)⊕A2(1)

4 A1(1)⊕ T1(3)⊕ T2(3)⊕ E(2)

TABLE III: Continuum spins subduced into lattice irreps
Λ(dim).

calculation), the C-parity is trivially generalised to G-
parity. For kaons, where the light and strange quarks are
not degenerate, there is no C-parity or any generalisation
of it. In this case the symmetry channels are labelled by
JP and operators of both C can be used.

A. Subduction into lattice irreps.

In lattice QCD calculations the theory is discretized on
a four-dimensional hypercubic Euclidean grid. The full
three-dimensional rotational symmetry that classifies en-
ergy eigenstates in the continuum is hence reduced to the
symmetry group of a cube (the cubic symmetry group, or
equivalently the octahedral group). Instead of the infinite
number of irreducible representations labelled by spin J ,
the single-cover cubic group relevant for integer spin has
only five irreducible representations (irreps): A1, T1, T2,
E, A2. The distribution of the various M components of
a spin-J meson into the lattice irreps is known as sub-

duction, the result of which is shown in Table III.
To be of any use in lattice computations, the contin-

uum operators described above must be subduced into
lattice irreps. Noting that each class of operator is closed
under rotations, the subductions can be performed using
known linear combinations of theM components for each
J :

O[J]
Λ,λ ≡ (Γ×D[nD]

... )JΛ,λ =
∑

M

SJ,MΛ,λ (Γ×D[nD]
... )J,M ≡

∑

M

SJ,MΛ,λ OJ,M ,

where λ is the “row” of the irrep (1 . . . dim(Λ)). Note

that, although O[J]
Λ,λ can have an overlap with all spins

contained within Λ (as listed in Table III for J ≤ 4)
it still carries the memory of the J from which it was
subduced, a feature we exploit in Section VI. The sub-

duction coefficients, SJ,MΛ,λ , form an orthogonal matrix,
∑

M S
J,M
Λ,λ S

J,M∗
Λ′,λ′ = δΛ,Λ′δλ,λ′ , and this fixes their nor-

malisation.
The subduction coefficients can be constructed in a

number of different ways and here we give a simple
derivation. More details and an alternative method us-
ing a group-theoretic projection formula can be found in
Appendix A.
The simplest case is the subduction of the J = 0 oper-

ator; from Table III this only subduces into the A1 irrep

A++
1 13 A+−

1 5 A−+
1 12 A−−

1 6

T++
1 22 T+−

1 22 T−+
1 18 T−−

1 26

T++
2 22 T+−

2 14 T−+
2 18 T−−

2 18

E++ 17 E+− 9 E−+ 14 E−− 12

A++
2 5 A+−

2 5 A−+
2 4 A−−

2 6

TABLE IV: Number of operators in each lattice irrep ΛPC ,
using all operators with up to three derivatives.

and so trivially we have S0,0A1,1
= 1. The J = 1 opera-

tor is also relatively straightforward, only subducing into
the the T1 irrep with subduction coefficients shown in

Appendix A. Note that S1,MT1,λ
= δλ,2−M , where the shift

by 2 places λ in the range 1 . . . dim(Λ).

Subduction coefficients for all higher spins can be con-
structed by iteration, starting from the J = 0 and J = 1
coefficients and using

SJ,MΛ,λ = N
∑

λ1,λ2

∑

M1,M2

SJ1,M1

Λ1,λ1
SJ2,M2

Λ2,λ2

C
(
Λ Λ1 Λ2

λ λ1 λ2

)
〈J1,M1; J2,M2|J,M〉 .

Here 〈J1,M1; J2,M2|J,M〉 is the usual SO(3) Clebsch-

Gordan coefficient for J1 ⊗ J2 → J and C
(
Λ Λ1 Λ2

λ λ1 λ2

)

is the octahedral group Clebsch-Gordan coefficient for
Λ1 ⊗ Λ2 → Λ. N is a normalisation factor, fixed by
the requirement that the subduction coefficients form an
orthogonal matrix as discussed above. We give explicit
values for the subduction coefficients up to J = 4 in
Appendix A.

In Table IV we show the number of operators we have
in each lattice irrep, i.e. using all operators with up to
three derivatives. We have performed extensive tests of
this operator set to check that two-point correlators hav-
ing operators in differing irreps at source and sink are
consistent with zero and that similarly within an irrep,
correlators of differing rows at source and sink are consis-
tent with zero. All such “orthogonality tests” are passed
in explicit calculation.

For our final spectral extractions, we form a correlator
matrix in a given irrep Λ and average over equivalent
rows, λ,

CΛ
ij ≡ 1

dim(Λ)

dim(Λ)∑

λ=1

CΛ
iλ,jλ ≡ 1

dim(Λ)

∑

λ

〈0|O[J]
i(Λ)λO

[J]
j(Λ)λ|0〉,

where i, j labels the different operator constructions
within the irrep Λ.
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V. CORRELATOR ANALYSIS

The variational method for spectral extraction [33, 34],
which takes advantage of a redundancy of operators
within a given symmetry channel, is now in common
usage [5, 13, 15–17]. This method finds the best (in a
variational sense) linear combination of operators within
a finite basis for each state in the spectrum. Mathemat-
ically it boils down to the solution of a linear system of
generalised eigenvalue type:

C(t)vn(t) = λn(t)C(t0)v
n(t) (2)

where λn(t0) = 1 and where there is an orthogonality
condition on the eigenvectors of different states (n, n′),
vn

′†C(t0)vn = δn,n′ . As discussed in Ref. [5] this or-
thogonality condition is very powerful in extracting near
degenerate states which would be difficult to distinguish
by their time dependence alone.
In our particular implementation of this method, equa-

tion 2 is solved for eigenvalues λn and eigenvectors vn,
independently on each timeslice, t. Ensuring the same
ordering of states between timeslices requires some care
owing to the high degree of mass degeneracy in the me-
son spectrum. Rather than the obvious ordering by size
of eigenvalue which might fluctuate timeslice-by-timeslice
for nearby masses, we associate states between timeslices
using the similarity of their eigenvectors. We choose a
reference timeslice on which reference eigenvectors are de-
fined, vnref ≡ vn(tref), and compare eigenvectors on other

timeslices by finding the maximum value of vn
′†

ref C(t0)v
n

which associates a state n with a reference state n
′. Us-

ing this procedure we observe essentially no “flipping”
between states in either the principal correlators, λn(t)
or the eigenvectors vn(t), as functions of t.
Within finite-volume field theory, which has only dis-

crete eigenstates, any two-point correlator can be ex-
pressed as a spectral decomposition,

Cij(t) =
∑

n

Zn∗
i Zn

j

2mn

e−mnt (3)

where this is an approximation valid providing t ≪ Lt,
the temporal length of the box. The “overlap factors”,
Zn
i ≡ 〈n|Oi|0〉 are related to the eigenvectors by Zn

i =√
2mne

mnt0/2 vn∗j Cji(t0). The state masses follow from
fitting the principal correlators, λn(t), which for large
times should tend to e−mn(t−t0). In practice we allow a
second exponential in the fit form and use even relatively
low timeslices in order to stabilise the fit. The fit function
is

λn(t) = (1−An)e
−mn(t−t0) +Ane

−m′

n
(t−t0), (4)

where the fit parameters are mn,m
′
n and An. Typical fits

for a set of excited states within an irrep are shown in
figure 1 where we plot the principal correlator with the
dominant time-dependence due to state n divided out. In
such a plot one would see a horizontal line of value 1.0 in
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FIG. 1: Principal correlator fits according to eqn(4).
Eight states from the T−−

1 irrep (743, 163). Plotted are

λn(t) · emn(t−t0) data and the fit for t0 = 8. Data used
in the fit are shown in black, while points excluded from the
fit are in grey.

the case that a single exponential dominates the fit and
clearly the data shows flat behaviour for t > t0.

Empirically we find that the size of the second expo-
nential term decreases rapidly as one increases t0. Fur-
ther we find, in agreement with the perturbative analysis
of Ref. [35], that for large t0 values the m′

n extracted are
larger than the value of mn=dim(C), the largest “first” ex-
ponential mass extracted. At smaller t0 values this is not
necessarily true and is indicative of forcing an incorrect
orthogonality as discussed below. The values of An and
m′

n are not used elsewhere in the analysis.

From the spectral decomposition of the correlator,
equation 3, it is clear that there should in fact be no time
dependence in the eigenvectors, while our independent
solution of the generalised eigenvalue problem as a func-
tion of t has allowed there to be. The time-independent
overlap factors, Zn

i , which will be used later to identify
the spin of extracted states, follow from fitting the Zn

i (t),
obtained from the eigenvectors, with a constant or a con-
stant plus an exponential (in the spirit of the perturbative
corrections outlined in [35]).

The importance of choosing an appropriately large
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0.2 0.4 0.6 0.8 1.0

FIG. 2: Normalised corrrelation matrix (Cij/
√

CiiCjj) on

timeslice 5 in the T−−
1 irrep (743, 163). Operators are ordered

such that those subduced from spin 1 appear first followed by
spin 3 then spin 4.

value of t0 was emphasised in Ref. [5]. In this paper we
will follow the “reconstruction” scheme outlined therein
in the selection of t0. In short, the masses, mn, extracted
from fits to the principal correlators and the Zn

i extracted
from the eigenvectors on a single timeslice are used in
equation 3 to “reconstruct” the correlator matrix. This
reconstructed matrix is compared to the original data
for all t > t0 with the degree of agreement indicating the
acceptability of the spectral description. The description
generally improves as one increases t0 until at some point
the increase in statistical noise prevents further improve-
ment. In particular see figure 6 in Ref. [5] where the
effect of choosing t0 too small is clearly seen. Forcing
the dim(C)-state orthogonality, vm† C(t0) vn = δn,m, in
a situation where accurate description of C(t0) requires
more than dim(C) states leads to a poor description of
the correlator matrix at times t > t0. The reconstruction
procedure gives a guide to the minimal t0 for which the
correlator matrix is well described by the variational so-
lution. The sensitivity of extracted spectral quantities to
the value of t0 used will be discussed in detail in section
VIIA, but in short it is usually necessary for us to use
t0 & 7.
The reconfit2 code used for variational analysis is

available within the adat suite [36].

VI. DETERMINING THE SPIN OF A STATE

In principle the most rigourous method to determine
the spin of a state is to perform the extraction of the
spectrum for each lattice irrep at successively finer lat-
tice spacings, and then to extrapolate the energies in
each irrep to the continuum limit. There one expects
to see degeneracies emerge according to the pattern of
subduction, free of splittings arising from the discreti-

FIG. 3: Overlaps, Z, of a selection of operators onto states
labelled by m/mΩ in each lattice irrep, Λ−− (743, 163). Z’s
are normalised so that the largest value across all states is
equal to 1. Lighter area at the head of each bar represents
the one sigma statistical uncertainly.

sation effects. Thus, for example, a spin-3 state would
appear as degenerate energies within the A2, T1 and T2
irreps. This procedure has been successfully applied to
identify a number of low-lying states in the calculation
of the glueball spectrum within pure SU(3) Yang-Mills
theory[37].
There are two reasons why this technique is not cur-

rently practical for the QCD meson spectrum. Firstly,
the procedure relies on a series of calculations on pro-
gressively finer lattices, and hence at increasing computa-
tional cost. Secondly, the continuum spectrum, classified
according to the continuum quantum numbers, exhibits
a high degree of degeneracy; when classified according
to the symmetries of the cube, the degree of degener-
acy is vastly magnified. Identification of degeneracies
between irreps would require a statistical precision far
beyond even that of the high-quality data presented here,
as seen in Figure 10 and subsequent figures.
To alleviate these difficulties it would be useful to have

a spin-identification method that is effective when us-
ing data obtained at only a single lattice spacing. Ob-
viously this lattice spacing should be fine enough that
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FIG. 4: A selection of Z values across irreps Λ−− for states suspected of being J = 2, 3, 4 (743, 163). Left to right the operators

are (a1 × D
[1]
J=1)

J=2, (ρ × D
[2]
J=2)

J=2, (ρ2 × D
[2]
J=2)

J=2, (a0 × D
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J=2, (b0 × D
[3]
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[3]
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J=2, (ρ ×

D
[2]
J=2)

J=3, (ρ2 ×D
[2]
J=2)

J=3, (a0 ×D
[3]
J13=2,J=3)

J=3, (a1 ×D
[3]
J13=2,J=3)

J=3, (a1 ×D
[3]
J13=2,J=2)

J=3, (b1 ×D
[3]
J13=1,J=2)

J=3 and (a1 ×

D
[3]
J13=2,J=3)

J=4.

rotation symmetry has been restored to a sufficient de-
gree in order that it be describing QCD. The mass de-
generacy complications outlined above suggest that any
alternative method needs to use state information beyond
just the mass. Our suggestion is to consider the values
of the vacuum-to-state matrix elements, or “overlaps”
(
〈
n
∣∣O
∣∣0
〉
) of our carefully constructed subduced opera-

tors.

The operators constructed in Section IV transform ir-
reducibly under the allowed cubic rotations, that is they
faithfully respect the symmetries of the lattice. How-
ever it is also clear from the method of construction that
each operator O[J]

Λ carries a “memory” of the contin-
uum spin, J , from which it was subduced. If our lat-
tice is reasonably close to restoring rotational symmetry
we would expect an operator subduced from spin J to
overlap strongly only onto states of continuum spin J .
In fact this is clearly apparent even at the level of the
correlator matrix as seen in figure 2. Here the correlator
matrix for T−−

1 is observed to be approximately block di-
agonal when the operators are ordered according to the
spin from which they were subduced. The elements out-
side the diagonal blocks are smallest when the operators
feature zero, one or two derivatives and are somewhat
larger for three-derivative operators, possible reasons for
this will be discussed later in this section.

The effect is seen even more strongly at the level of
individual states, where the “overlaps”, Zn

i = 〈n|Oi|0〉
for a given state show a clear preference for overlap onto
only operators of a single spin. In figure 3 we show the
overlaps for a set of low-lying states in the Λ−− irreps of
the 743 163 calculation, the mass spectrum being shown
in the second pane of figure 10. While we show only a
subset of the operators for clarity, the same pattern is
observed for the full operator set.

In fact we can be more quantitative in our analy-
sis and compare the overlaps obtained in different ir-
reps. In the continuum our operators are of definite spin
such that 〈0|OJ,M |J ′,M ′〉 = Z [J]δJ,J ′δM,M ′ and there-

fore 〈0|O[J]
Λ,λ|J ′,M〉 = SJ,MΛ,λ Z

[J]δJ,J ′ so that only the spin
J states will contribute, and not any of the other spins
present in the irrep Λ. Inserting a complete set of me-
son states between the operators in the correlator and
using the fact that the subduction coefficients form an

orthogonal matrix,
∑

M S
J,M
Λ,λ S

J,M∗
Λ′,λ′ = δΛ,Λ′δλ,λ′ , we ob-

tain terms in the correlator spectral decomposition pro-
portional to Z [J]∗Z [J]; these terms do not depend upon
which Λ we have subduced into, up to discretisation un-
certainties as described below. Hence, for example, a
J = 3 meson created by a [J = 3] operator will have
the same Z value in each of the A2, T1, T2 irreps. This
suggests that we compare the independently obtained Z-
values in each irrep. In figure 4 we show the extracted Z
values for states suspected of being spin 2,3 and 4 across
the Λ−− irreps.

As seen in figure 4, at finite lattice spacing there are
deviations from exact equality. Some discretisation ef-
fects scale with positive powers of the lattice spacing,
such as the effect of using finite differences to represent
derivatives. There are no dimension-five operators made
of quark bilinears that respect the symmetries of lattice
actions based on the Wilson formalism and that do not
also transform trivially under the continuum group of
spatial rotations. Thus, rotational symmetry breaking
terms do not appear until O(a2). This argument holds
even though the action used in this work describes an
anisotropic lattice. As a result, we expect the rotational
breaking between lattice irreps to be suppressed in both
the spectrum as well as for the wave-function overlaps.
On the other hand, renormalisation mixing of high mass-
dimension operators with lower mass dimension opera-
tors can give rise to effects scaling with negative powers
of the lattice spacing and these we would expect to cause
more trouble when Z values are to be used to determine
spin. In practice we do see the largest discrepancies for
operators with three derivatives, but even here the ef-
fects are not so large as to prevent use of the method.



9

0 2 4 6 8 10 12 14
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

0 2 4 6 8 10 12 14
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

FIG. 5: Fit to the four subduced principal correlators of a 4++ meson using a common mass (743, 163). Plotted is λ(t)·em(t−t0).
Grey points not included in the fit.

We suggest that it is our use of smoothed fields2 that has
rendered these mixings relatively small, sensitive as they
are to high-energy physics which has been filtered out.

In summary, we have demonstrated that the Z values
of carefully constructed subduced operators can be used
to identify the continuum spin of states extracted in ex-
plicit computation, as least on the lattices we have used.

Given that this is possible, suppose we confidently
identify the components of a spin-J meson subduced
across multiple irreps; what then should we quote as our
best estimate of the mass of the state? The mass de-
termined from fits to principal correlators in each irrep
can differ slightly due to unavoidable discretisation ef-
fects and avoidable fitting fluctuations (such as variations
in fitting time-region). In practice we have found that
variations due to changes in the fitting of principal cor-
relators are typically much larger than any discretisation
differences and we propose a simple scheme to minimise
these in a final quoted mass. Rather than averaging the
masses from independent fits to multiple principal corre-
lators, we perform a joint fit to the principal correlators
with the mass being common. We allow a differing sec-
ond exponential in each principal correlator so that the
fit parameters are mn, {m

′Λ
n } and {AΛ

n }. These fits are
typically very successful with correlated χ2/Ndof close to
1. An example for the case of 4++ components identified
in A++

1 , T++
1 , T++

2 , E++ is shown in figure 5. When we
present our final, spin-assigned spectra it is the results of
such fits that we show.

VII. STABILITY OF SPECTRUM
EXTRACTION

In this section we consider to what extent the extracted
spectrum changes as we vary details of the calculation,
“keeping the physics constant”. Variations to be consid-
ered are the specific reference timeslice, t0, used in the
variational analysis, the set of meson operators used and
the number of distillation vectors. We will use the T−−

1

irrep in the 743, 163 dataset to demonstrate our findings.

2 All gauge links are stout-smeared and the distilled quark fields
are effectively low-momentum filtered

A. Variational analysis and t0

Our fitting methodology was described in Section V
where reconstruction of the correlator was used to guide
us to an appropriate value of t0. As seen in Figure 6,
for t0 & 6, the low-lying mass spectrum is rather stable
under variations of t0. This appears to be mostly due to
the inclusion of a second exponential term in equation 4
which is able to absorb much of the effect of other states
“leaking” into this principal correlator through use of an
inaccurate orthogonality. The contribution of this second
exponential typically falls rapidly with increasing t0 both
by having a smaller A and a larger m′.
Overlaps, Zi

n =
〈
n
∣∣Oi

∣∣0
〉
, can show more of a sensitiv-

ity to t0 values being too low as one might expect given
the argument of an incorrect orthogonality in the gen-
eralised eigenvector space at small t0. In Figure 7 we
present overlaps of various J = 1 states onto an operator
subduced from J = 1 and the overlap of an extracted
J = 4 state onto the only JPC = 4−− operator in our
basis. Clearly in the J = 4 case one only extracts a stable
Z for large t0, which is likely due to heavier J = 4 states
only here becoming negligible contributions to C(t0).

We note that one may fit the extracted Z(t0) with
either a constant or a constant plus an exponential as
shown in figure 7. Since the data between t0 values are
strongly correlated, the statistical uncertainty is not sig-
nificantly decreased by this procedure, but it does seem
to “average out” some of the fluctuations in fitting at
each t0.

In summary it appears that variational fitting is
reliable provided t0 is “large enough”. Using two-
exponential fits in principal correlators we observe rel-
atively small t0 dependence of masses, but more signif-
icant dependence for the Z values which we require for
spin-identification.

B. Changing the operator basis

Our approach, as described in Section IV, is to con-
struct a variational correlator matrix featuring all opera-
tors available to us in a given irrep at up to three deriva-
tives. Here we consider the effect on the extracted spec-
trum of reducing the size of this operator basis. In the
plots that follow we will use the color-coding described
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FIG. 6: Extracted T−−
1 mass spectrum as a function of t0.

Horizontal bands to guide the eye.

in Table V to indicate spin-assignments.
In the first four columns of Figure 8, the operator basis

is reduced by discarding operators, first discarding those
whose diagonal correlators are noisiest and then, in col-
umn (d), discarding all three-derivative operators except
the one J = 4 operator. We observe that it is only high
in the spectrum that any change takes place and that
there it is only at the level of statistical fluctuations. In
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FIG. 7: Extracted overlaps as a function of t0. Fits to a
constant or to a constant plus a decaying exponential shown
by the coloured regions.

(a) JPC = 1−− overlaps onto (a1 ×D
[1]
J=1)

J=1

(b) JPC = 4−− overlap onto (a1 ×D
[3]
J13=2,J=3)

J=4.

(d) the first excited J = 3 state is no longer extracted
- this is most likely due to the basis only retaining two
J = 3 operators.
In the next four columns we deliberately discard oper-

ators we believe are important. In column (e), all opera-
tors featuring commutators of derivatives are discarded.
As discussed later in this manuscript these operators
may have good overlap onto states containing an excited
gluonic field. The state at m/mΩ ∼ 1.35 is observed,
using the full basis of operators, to have large overlap

onto a commutator operator, (π ×D[2]
J=1)

J=1 along with
smaller overlaps onto non-commutator operators such as
ρ. In column (e), the commutator operators being dis-
carded, we find that this state is less cleanly extracted
when it can only be produced through its suppressed non-
commutator overlaps. Otherwise the spectrum in (e) is
rather similar to that obtained with the full operator ba-
sis.
In column (f) all operators subduced from spin J = 3

are discarded. The observed spectrum is almost identical

(a) (b) (c) (d) (e) (f) (g) (h)
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FIG. 8: Extracted T−−
1 mass spectrum for various operator

bases. (a)-(d) are “reasonable” operator bases, (e)-(h) discard
important operators.
(a) Full basis (dim = 26), (b) Full basis less two noisiest OJ=1

and noisiest OJ=3 (dim = 23), (c) Full less four noisiest OJ=1

and two noisiest O
J=3 (dim = 20), (d) No three-derivative

operators except O
J=4 (dim = 13), (e) No operators with

commutators of derivatives (dim = 15), (f) No O
J=3 (dim =

20), (g) No O
J=3,4 (dim = 19), (h) No O

J=4 (dim = 25).



11

20 30 40 50 60

0.6

0.8

1.0

1.2

1.4

1.6

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

FIG. 9: Extracted T−−
1 mass spectrum as a function of number of distillation vectors. Green points and inset show the effect

of using a modified smearing operator ✷w =
∑N

n=1 w(λn)ξ
nξn† with w(λn) = e−σ2λ2

n
/4.

to that with the full basis with the expected exception
of the previously identified J = 3 states. This would ap-
pear to suggest that one cannot rely upon discretisation
corrections to continuum J = 1 operators to reliably pro-
duce J = 3 states. In column (g) the continuum J = 4
operator is also discarded and the J = 4 state vanishes.
Finally, in column (h), the full operator basis, less the
continuum J = 4 operator is used yielding a spectrum
that lacks only the J = 4 state.

In summary one should be sure to have operators with
continuum overlap on to all the spins you expect to see.
There is apparently little benefit, in terms of improving
the precision of determination of the low-lying spectrum,
of reducing the operator basis size by discarding opera-
tors.

C. Number of distillation vectors

The results presented so far came from analysis of cor-
relators computed on 163 lattices using 64 distillation
vectors. We might wonder how the determination of the
spectrum varies if one reduces the number of distillation
vectors and thus reduces the computational cost of the
calculation. This is particularly important given that,
as shown in [20], to get the same smearing operator on
larger volumes one must scale up the number of distil-
lation vectors by a factor equal to the ratio of spatial
volumes. To scale up to a 323 lattice this would require

64×
(
32
16

)3
= 512 vectors which is not currently a realiz-

able number without using stochastic estimation [38].

In figure 9 we show the low-lying part of the extracted
T−−
1 spectrum on the 743 163 lattice as a function of

the number of distillation vectors used in the correlator
construction. It is clear that the spectrum is reasonably

stable for N & 32 but that the spectrum quality degrades
rapidly for fewer vectors.

It is also possible within distillation to implement a

smearing operator other than ✷ =
∑N

n=1 ξnξ
†
n. This

is particularly relevant for large N where this smearing
choice tends toward the identity and hence does not actu-
ally filter out high-energy modes. An alternative smear-

ing includes a weight function as ✷w =
∑N

n=1 w(λn)ξnξ
†
n

where w(λn) might, for example, be a gaussian damping

e−σ2λ2

n
/4. In figure 9 we also show the spectrum obtained

using N = 64 and σ = 5.7 which, as shown in the inset, is
a smearing radius that crudely approximates using only
24 distillation vectors. The thus extracted spectrum dif-
fers very little from the N = 64 spectrum, suggesting
that with 64 vectors we are still far away from the “un-
smeared” limit.

One place (not shown in figure 9) where the effect of
reduction of the number of distillation vectors is seen
clearly is for high-spin states. In particular the 4−−

state seen at m/mΩ ∼ 1.6 in T−−
1 is not reliably ex-

tracted for N < 48. The need to have large num-
bers of distillation vectors to reliably extract high spin
mesons can be described in a simple free-field picture:
In the continuum without gauge-fields, the eigenvec-
tors of the laplacian (−∇2ξ = k2ξ) can be expressed

as ξ(~r) = ei
~k·~r = 4π

∑
ℓ i

ℓjℓ(kr)
∑

m Y m∗
ℓ (θ, φ)Y m

ℓ (k̂).
From this expression it would appear that all ℓ values
should contribute for any value of the eigenvalue k2 and
that high-spin states should be excited even by low eigen-
vectors. But this argument does not take account of the
radial behaviour which must be compared to the typical
size of hadrons. The spherical Bessel function jℓ(kr) is
peaked at low values of kr with the peak position moving
out to larger kr for larger ℓ. Thus, since hadrons are only
of finite size, R, in order that the peak of jℓ(kr) remain
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within r < R as ℓ increases, one must also increase the
value of k. Thus, to have considerable amplitude multi-
plying Yℓ and hence large overlap onto high-spin mesons,
as ℓ increases one must include eigenvectors of higher
eigenvalue, k.3

In summary one is limited as to how few distillation
vectors can be used if one requires reliable extraction
of high-spin states. The results shown here suggest 48
distillation vectors on a 163 lattice is the minimum, so
96 distillation vectors on a 203 lattice are likely to be
required.

VIII. RESULTS

As outlined in Section II, our first results are obtained
on lattices with pion masses between 400 and 700 MeV.
The heaviest pion mass corresponds to the three-flavour
symmetric point, while the lower masses have lower light-
quark masses but the same bare strange quark mass;
these are found to have only mild SU(3)F breaking, as
indicated by mK/mπ which reaches only 1.4 on the light-
est lattice, well below the physical value of 3.5. For each
lattice (except one) we compute correlators on two vol-
umes, 163× 128 and 203× 128. More complete details of
the number of configurations, time sources and distilla-
tion vectors used are given in Table I.

A. mπ ∼ 700 MeV results (743)

This is an example of an exact SU(3)-flavour symmet-
ric calculation. Since we are computing only the con-
nected two-point correlators we will obtain the mass spec-
trum of degenerate octets (e.g. degenerate pions, kaons
and η8). Results on 163 lattices have already been re-
ported in Ref. [8]. To obtain singlet states like the η1,
which with exact flavour symmetry cannot mix with the
η8, we would need disconnected two-point correlators.

Variational analysis as described in previous sections
leads to the irrep spectra from 163 lattices shown in fig-
ure 10. The colour-coding, tabulated in table V, indicates
the continuum spin as determined by methods described
in section VI. The Λ−− overlaps are shown in figures 3
and 4. If the spin of a state is not unambiguously deter-
mined by the methods of section VI, it is represented by
an orange box. On the other hand, if a state is extracted
in the variational analysis but its mass cannot be accu-
rately determined from fits to the principal correlator, it
is represented by a grey box.

In figure 11 we show side-by-side the spectra obtained
from 163 and 203 lattices. We note that there is really

3 this analysis is somewhat oversimplified since in fact the size of
hadrons is likely to increase with increasing spin

black J = 0

red J = 1

green J = 2

blue J = 3

yellow J = 4

orange undetermined J

grey badly determined mass

TABLE V: Colour-coding used in spectrum irrep plots.
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FIG. 10: Extracted spectra by irrep from 743 163 lattices.

no change significantly outside statistical fluctuations be-
tween the two volumes. We also note in passing that the
128 distillation vectors used on the 203 lattices give a
smearing that is essentially equivalent to that obtained
by using 64 distillation vectors on the 163 lattices. In
fact we observe that the independently extracted Z val-
ues between the two volumes scale rather accurately as√

163

203 .

Given the success of spin-identification we can sum-
marise the results in a spectrum labelled by continuum
JPC quantum numbers, figure 12. Here we show only
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FIG. 11: Extracted spectra by irrep from 743 163 and 203 lattices.

well-determined low-lying states.

There are a number of notable features within this
spectrum. Firstly there appears to be much of the
n2S+1LJ distribution of non-exotic states predicted by
the qq̄ quark model (e.g. [39]). The left-hand pane of
figure 12 has candidates for a ground-state S-wave pair
(0−+, 1−−) and a radial excitation at around m/mΩ ∼
1.1. There is a complete (1, 2, 3)−−, 2−+ D-wave set
around m/mΩ ∼ 1.2. The region around m/mΩ ∼ 1.6
appears to contain parts of a D-wave radial excita-
tion and a G-wave ((3, 4, 5)−−, 4−+)4. In the middle
pane there is a clear P -wave, ((0, 1, 2)++, 1+−) around
m/mΩ ∼ 0.9 and a probable radial excitation near
m/mΩ ∼ 1.3. At m/mΩ ∼ 1.4 there is a complete F -
wave, (2, 3, 4)++, 3+−.

In the right pane we see clearly a set of exotic JPC

states, not accessible to a simple qq̄ pair. Such states
can be described in terms of constituents if additional
degrees-of-freedom, either gluonic or extra qq̄ pairs are
included. If the extra component is gluonic the states
are known as hybrid mesons and within models of glu-
onic excitation, such as the flux-tube model [40], there is
usually a roughly degenerate set of 1−+, 0+− and 2+−

states. A hybrid nature for these states is suggested by
the large overlap onto operators with essential non-trivial
gluonic structure as described below. In this calculation
we observe a 1−+ lightest, with a pair of 0+− and 2+−

states nearly degenerate a little higher in mass. A second
2+− is then close to a second 1−+. States with exotic 0−−

and 3−+ quantum numbers are found to be considerably
heavier, well above m/mΩ = 1.6.

4 we have no operators capable of producing a spin-5 meson in the
continuum.

There are also a number of non-exotic quantum num-
bered states which do not appear to fit into the qq̄
n2S+1LJ classification. The 0−+, 1−− pair at m/mΩ ∼
1.3 is probably too light to be the second radial excitation
of the S-wave (most likely the pair near m/mΩ ∼ 1.55)
and is partnered with a totally unexpected 2−+ state.
There may be excess states too in the positive par-
ity sector but the situation is not totally clear above
m/mΩ ∼ 1.4. We note that the mass scale of these first
excess states is comparable to that of the lowest lying
exotic states shown in the right-hand pane. Further-
more, these states have characteristically different over-
lap behaviour compared to most other extracted states:
they all overlap considerably onto operators featuring the
commutator of two derivatives, that is the gluonic field-
strength tensor.

Given the large overlap onto operators requiring a non-
trivial gluonic field distribution, we identify these states
as hybrid mesons with non-exotic quantum numbers.
Such non-exotic hybrids are predicted in models that as-
sume non-trivial gluonic field configurations like the flux-
tube model or constituent gluon models. In principle,
such states can mix strongly with regular quark-model
qq̄ states leaving a spectrum which is not simple to in-
terpret. In our results such large mixing may be present
for the “excess” 0−+ state which has a large overlap also
onto operators like ψ̄γ5ψ; however, this mixing does not
appear to be present to the same degree for the 1−− state.

Detailed model-dependent interpretation of the spec-
trum, comparing the overlap values with the expectations
of a bound-state quark model (analogous to that done for
charmonium in [41]) and considering the degree of mixing
of non-exotic hybrids and quark model states will follow
in a subsequent publication.
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FIG. 12: Spin-identified spectrum of isovector (octet) mesons from the 743 lattices. 163(solid) and 203(dashed) spectra agree
well. Ellipses indicate that there are heavier states with a given JPC but that they are not well determined in this calculation.

B. Quark mass dependence

Here we move away from the SU(3) flavour point by
lowering the mass of two degenerate “light” flavours and
keeping one remaining strange flavour heavy. We have
access to isovector mesons from the connected correla-
tors with a light quark and a light antiquark, and kaons
from the connected correlators with a light quark and a
strange antiquark. It is also possible for us to compute
the connected part of correlators with both quark and an-
tiquark being strange, the so-called “strangeonium”. We
recognise that neglecting the disconnected contributions
to these diagrams leads to a non-unitary description of
this particular element of our calculation. Of course it
is also true that “strangeonium” states are not necessar-
ily QCD eigenstates since being isoscalars they can mix
with light-light isoscalars and pure-glue states through
disconnected diagrams5. The classic extreme examples
are the η, η′ system which is mixed almost as SU(3)F
octet-singlet and the ω, φ system which is mixed almost
as ℓℓ̄, ss̄.

In the figures we show extracted state masses as a

function of ℓΩ ≡ 9
4
(atmπ)

2

(atmΩ)2 which we use as a proxy for

the quark mass [29]. The state masses are presented via

5 work is ongoing within the Hadron Spectrum Collaboration [20]
to utilise distillation methods to efficiently compute disconnected
two-point functions, allowing extraction of the true QCD eigen-
states

atmH

atmΩ
mphys.

Ω . The ratio of the state mass (mH) to the Ω-
baryon mass computed on the same lattice removes the
explicit scale dependence and multiplying by the phys-
ical Ω-baryon mass conveniently expresses the result in
MeV units. This is clearly not a unique scale-setting
prescription, but it serves to display the data in a rela-
tively straightforward way. We remind the reader that
the data between different volumes and quark masses are
uncorrelated since they follow from computations on in-
dependently generated dynamical gauge-fields.

1. Isovector mesons

Figures 13, 14, 15, 16 show the extracted spin-assigned
spectra for mesons of isospin-1 having a range of JPC

quantum numbers (the neutral members of the I = 1
triplet are eigenstates of C, the charged members are
eigenstates of G-parity with G = −C). We use the PDG
[42] nomenclature for meson states throughout. In those
cases where two states are almost degenerate we shift one
in the horizontal direction by an amount δℓΩ = 0.005 for
clarity. In some cases, for comparison, we plot the mass
of the lightest meson-meson pair which in S-wave would
have the appropriate quantum numbers - the mass follows
from the simple sum of the extracted masses on these
lattices. This may involve a so-far undetermined isoscalar
mass and in these cases we use the approximations mω ≈
mρ, mf2 ≈ ma2

and the crudely estimated η mass from
[29]. Occasionally we extract a low-lying state that is
reasonably robust against the changes in analysis detailed
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FIG. 13: Lightest isovector states, ρJ ; neutral members with quantum numbers J−−.
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FIG. 14: Lightest isovector states, aJ ; neutral members with quantum numbers J++ (the a0 states are shown in Figure 16).
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FIG. 15: Lightest non-exotic isovector states, πJ(J
−+) and bJ(J

+−); the ground state π is not shown.
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FIG. 16: Lightest isovector states: scalar and exotics, a0(0
++), π1(1

−+), bJ(J
+−).
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in section VII, but whose principal correlator is quite
noisy leading to a relatively poorly determined mass - we
show these states with dashed symbols.

Not shown are results for 0−− isovectors, the ρ0, which
are exotic. The lightest such state we extract is at least
2 GeV heavier than the ρ at all our quark masses. The
exotic 3−+, the π3, is found to be similarly heavy.

2. Kaons

In the kaon sector, we no longer have charge-
conjugation as a good quantum number, with only JP

remaining in the continuum which is then subduced into
ΛP on a cubic lattice. We compute a correlator matrix
for a given ΛP using the concatenated list of all ΛP+ and
ΛP− operators.

Using a combination of experiment and models[43, 44]
there are suggestions that resonant kaon states are
mixtures of basis states of opposite C with a rather
large mixing angle. For example the axial kaons,
K1(1270),K1(1400), are suggested to be mixtures of ba-
sis states K1A(C = +), K1B(C = −) with a mixing angle
near 45◦. Clearly this mixing relies upon being far away

(mphys
K /mphys

π = 3.5) from the SU(3)F limit, since in that
limit there is effectively restoration of (a generalisation
of) C-symmetry. All the lattices presented in this paper
can be considered to be rather close to the SU(3)F limit
(1 ≤ mK/mπ ≤ 1.39) and we observe little or no mixing.
This is suggested at the correlator level (see figure 17 for
the 840 163 correlator), and verified in the Z values of
the spectrum extraction (see figure 18 for the 808 163

lattice (left) and the 840 163 lattice (right)). While the
840 lattice shows a greater degree of opposite C mixing
than the 808, indicating an increased breaking of SU(3)F
symmetry, the mixing is still very small in absolute terms
and states are approximately eigenstates of C. The 840

kaon spectrum is shown in figure 19 with the dominant
C-eigenstate noted for each state.

The light-quark mass dependence of kaon states is dis-
played in figures 20, 21, 22 where color-coding indicates
the dominance of C-eigenstates within the spectrum.

3. “Strangeonium”

In figure 23 we show only a subset of possible
“strangeonium” JPC , those for which there is some phe-
nomenological evidence that the QCD eigenstates are in
fact close to being pure ss̄. We note that using this par-
ticular scale-setting scheme we observe light-quark mass-
dependencies that are very flat.

0.2 0.4 0.6 0.8 1.0

FIG. 17: Normalised corrrelation matrix (Cij/
√

CiiCjj) on

timeslice 5 in the T+
1 kaon irrep on 840 163 lattice. Operators

with C = − first, C = + second.

FIG. 18: Overlaps, Z, of T+
1 kaon operators onto lightest two

J = 1, lightest two J = 3 and lightest J = 4 states for 808

163 (left) and 840 163 (right) lattices. Operators with C = ±

are grouped to show clear separation. Normalisation as in
figure 3.
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FIG. 19: Spin-identified spectrum of kaons from the 840 lattices. 163(solid) and 203(dashed) spectra mostly agree well. The
plus and minus symbols indicate the dominance of a C = ± eigenstate in that state. Ellipses indicate that there are heavier
states with a given JPC but that they are not well determined in this calculation. The rather dense spectrum of axial kaons
above m/mΩ ∼ 1.3 is suppressed for clarity.
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FIG. 20: Lightest negative parity kaons. Color coding indicates dominance of a particular charge-conjugation eigenstate.
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FIG. 21: Lightest positive parity kaons. Color coding indicates dominance of a particular charge-conjugation eigenstate.
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FIG. 22: Lightest spin-4 kaons. Color coding indicates dominance of a particular charge-conjugation eigenstate.
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FIG. 23: Lightest “strangeonium” states with JPC =
1−−, 3−−, 2++.

IX. MULTI-MESON STATES

In the previous section we presented the extracted
spectra from calculations with four different light quark
masses on two different lattice volumes. In each case we
were able, using the operator overlaps, to match states
across irreps that we believe are subduced from the same
continuum spin state. This suggests an interpretation
of the spectrum in terms of single-hadron states, while
in principle our correlators should receive contributions
from all eigenstates of finite-volume QCD having the ap-
propriate quantum numbers. This includes multi-meson
states which in finite volume have a discrete spectrum. In
fact, in a theory of non-interacting mesons the spectrum

is rather simple, being approximately6

m
[
A(~p)B(−~p)

]
=
√
m2

A + |~p|2 +
√
m2

B + |~p|2, (5)

where only discrete values of the momentum ~p are allowed
by the boundary conditions: as~p =

2π
Ls

(
nx, ny, nz

)
(Ls is

the spatial lattice extent in lattice units, i.e. 16 or 20 for
the lattices we are using). Clearly this spectrum, with
the exception of the states with ~p = (0, 0, 0), will change
considerably under changes in volume. Ongoing work
by the Hadron Spectrum Collaboration is presented in
Ref. [32].
Within QCD mesons interact and this interaction has

a range of possible forms, for example: the repulsive in-
teraction of two pions in the isospin 2 channel, the some-
what attractive interaction of two pions in isospin 0 that
gives rise to the σ enhancement and the strong attraction
in isospin 1 that corresponds to the relatively narrow ρ
resonance. As shown by Lüscher[27], taking account of
hadron interactions, the finite volume energy spectrum
will be modified with respect to equation 5. The mod-
ification (at least in the elastic case) can be related to
the hadron-hadron scattering phase shift which encodes
details of attractive or repulsive interactions and even of
resonant behaviour.
A simple schematic framework in which to view the

finite-volume eigenstates is in terms of admixtures of ide-
alised non-interacting basis states. For example, at low
energy in the T−−

1 channel, one might consider there
to be a space of non-interacting pion-pair states with
the various relative momenta allowed in a finite cubic
box. In addition we can allow a space of single-hadron
vector bound states like the ρ, which we assume to be
localised to a region of space somewhat smaller than
the size of the lattice box. The pion-pair state ener-
gies vary rapidly with changing box-size while the “ρ”
bound-states would be essentially volume-independent
for volumes larger than the size of the bound-states. If
one supplies a resonant phase shift (such as the ρ in
ππ scattering), Lüscher’s formulae give rise to avoided
level crossings as a function of lattice size that resemble
the behaviour of approximate eigenstates within time-
independent quantum mechanical perturbation theory.
The finite-volume eigenstates can be viewed then as ad-
mixtures of the “ρ” bound-states and the pion-pair states
where the degree of mixing is determined by the phase-
shift and the volume of the box.
In figures 24 and 25 we show the extracted 743 spec-

trum superimposed with the positions of non-interacting
meson-meson states for 163 and 203 lattices. The distri-
bution across irreps is determined using the “in-flight”
cubic symmetry group theory tables from [45, 46]. We
show only pairs of SU(3)F octet states (since we have

6 we are neglecting small discretisation effects in the dispersion
relation.
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FIG. 24: 743 spectrum on 163 and 203 lattices. Boxes show
the extracted Λ−+ spectrum. Lines are the non-interacting
two-meson state positions estimated from equation 5 and the
tables of [45, 46](solid lines at ~p = (000)), the small numbers
indicate the multiplicity. Additional flavour multiplicity not
shown. Also shown is the position of the lowest three-meson
threshold.

not determined the masses of the singlets or any other
possible multiplets) and do not indicate the multiplicity
of flavoured states for each level (which follows from the
SU(3) Clebsch-Gordan series for 8⊗ 8→ 8).

What is clear from Figures 24 and 25 is that the ex-
tracted spectrum does not seem to be related in any ob-
vious way to the non-interacting two-particle spectrum.
The distribution of two-particle states across different ir-
reps is determined not by the cubic symmetry of our
discretized lattice, but rather by the spatial momenta al-
lowed by the boundary conditions on the cubic volume
in which we are performing our calculations. We have
seen that the observed spectrum split across the differ-
ent irreducible representations conforms to that expected
for single-particle states, with only negligible effects from
cubic symmetry on the scale as. In contrast, the pattern
across different irreps expected for multi-particle states
would be quite different. This leads further credence to
our assertion that two-particle states are contributing lit-
tle to the calculated correlators.
How can we explain the lack of two-meson states in

the spectrum we observe? Clearly, the basis set of op-
erators employed has a very small overlap with states
that predominantly resemble a composite of two mesons
with well-defined and opposite momentum. This small
overlap means the contribution to the correlation func-
tion coming from the significant number of two-meson
states is not resolved within the statistical precision of
our calculation.
This effect has been observed before in other

dynamical-quark Monte Carlo measurements [47, 48] of
the energies of states that are above threshold, although
perhaps not to the dramatic degree seen in this study.
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FIG. 25: As figure 24 for Λ++.

One cause of this supression may come directly from con-
finement dynamics of strongly interacting gluons. The
inter-quark gluon flux shows considerable reluctance to
break in the regime where it is energetically favourable
to form two well-separated color singlets. This has been
seen [49, 50] as a very small overlap of an operator com-
prising a gluonic string onto the ground-state of this sys-
tem.
The overlap of a localised quark-bilinear operator onto

a two-meson state will be supressed by 1/
√
V , where V

is the lattice volume, if the operator creates a resonance
with a finite width in the infinite volume limit. This fall-
off is matched by a growth in the density of states with
the volume and the resonant state thus maintains a finite
width as the mixing with each discrete state falls. The
simulations in this study are carried out in cubic vol-
umes with side-lengths bigger than 2 fm, which might be
sufficiently large that the mixing between one of the low-
lying two-particle states and a resonance is suppressed
sufficiently for it to be undetectable with the quark bi-
linear operator basis.
Even if the mixing between localised single-hadron

states and two-meson states to form resonance-like finite
volume eigenstates is not small, there still remains a prac-
tical difficulty associated with using only quark bilinear
operators. In this case the state can be produced at the
source timeslice through its localised single-hadron com-
ponent, while the correlator time dependence obtained
from e−Ht will indicate the mass of the resonant eigen-
state. Consider a hypothetical situation in which a sin-
gle two-meson state, denoted by |2〉, mixes arbitrarily
strongly with a single localised single-hadron state, |1〉,
with all other states being sufficiently distant in energy
as to be negligible. There will be two eigenstates

∣∣a
〉
= cos θ

∣∣1
〉
+ sin θ

∣∣2
〉

∣∣b
〉
= − sin θ

∣∣1
〉
+ cos θ

∣∣2
〉
,
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with masses ma,mb. At the source (and sink) only the
localised single-hadron component of each state overlaps
with the operators in our basis and hence the overlaps,

Za,b
i ≡ 〈a, b|Oi|0〉, will differ only by an overall multi-

plicative constant, Za
i = cos θZ

|1〉
i , Zb

i = − sin θZ
|1〉
i . As

such the eigenvectors va, vb point in the same direction
and cannot be made orthogonal. Thus the time depen-
dence of both states will appear in the same principal
correlator as

λ(t) ∼ Aae
−ma(t−t0) +Abe

−mb(t−t0) + . . .

Since ma and mb most likely do not differ significantly
(on the scale of a−1

t ) it will prove very difficult to ex-
tract a clear signal of two-exponential behavior from the
principal correlator. This is precisely why the varia-
tional method’s orthogonality condition on near degen-
erate states is so useful, but we see that it cannot work
here and we are left trying to extract two nearby states
from a χ2 fit to time-dependence. Typically this is not
possible and reasonable looking fits to data are obtained
with just one low-mass exponential.
If this is what is occurring in parts of our extracted

spectrum, that we are extracting states which are ad-
mixtures of “single-particle” and multi-meson states, but
that we are not extracting the orthogonal mixtures, how
should we interpret the mass values we are extracting?
One conservative approach would be to suggest that our
mass values are accurate only up to the hadronic width
of the state extracted, since this width is correlated with
mixing with multi-meson states via the scattering phase-
shift.
We would like to explicitly observe resonant behaviour

of states in our calculations and as such we must coun-
tenance the inclusion in our operator basis of operators
with larger numbers of fermion fields in order to obtain
healthy overlap with multi-hadron states. This can be
done while respecting the lattice symmetries using the
tables in [45, 46]. By using single-meson operators sub-
duced into the ‘in flight’ little-group irreps from opera-
tors of definite continuum helicity, it may prove possi-
ble to utilise something similar to the spin-identification
carried out in this paper. These constructions are under-
way, and distillation, with the possible use of a stochastic
estimator[38], affords an efficient numerical means of im-
plementing them[32].

X. SUMMARY

We have described in some detail our method for ex-
tracting a large number of excited states using dynamical
anisotropic lattices, distillation technology and a varia-
tional analysis with an extensive basis of carefully con-
structed operators. We have demonstrated the stability
of the spectra with respect to changing the specific set of
meson operators used, the number of distillation vectors
and the details of the variational analysis. Our method

of spin identification based on operator overlaps has en-
abled us to confidently assign continuum spin to many
states.

We have successfully applied these techniques for two
volumes on multiple mass sets: one with three degen-
erate flavours of quark (743 ) and three with lighter u
and d quarks giving mild breaking of SU(3)F and pion
masses down to ∼ 400 MeV. In all cases we see mostly
no significant volume dependence. On all mass sets and
volumes we are able to reliably extract a large number of
excited states with all PC combinations, states with high
spin, up to and including spin four (4++, 4−+ and 4−−),
and states with exotic quantum numbers (0+−, 1−+ and
2+−). The exotic states are particularly interesting and
their presence points to the influence of explicit gluonic
degrees of freedom. In Fig. 26 we summarise our results
on exotic states and compare with previous lattice QCD
results from Refs. [21–26].

The extracted spectra show features of the n2S+1LJ

state assignment of bound-state quark models, along
with states (both exotic and non-exotic) which do not
seem to lie within that classification. A detailed model-
dependent interpretation of these spectra is called for,
comparing overlaps with quark model expectations and
determining the degree of mixing of non-exotic hybrids
and quark model states. This work is ongoing.

We have presented kaon spectra and observe little or no
mixing between the two charge conjugation eigenstates
(C = + and C = −); the resulting spectrum largely
corresponds to the superposition of the C = − and C =
+ isovector spectra modulo the mass shift due to the light
quark - strange quark mass difference. In the SU(3)F
limit there can be no such mixing and on the mass sets
considered we are still rather close to this limit (1 ≤
mK/mπ ≤ 1.39), so it is therefore not surprising that the
mixing is small. Of particular interest at lighter quark
masses, closer to the physical mK/mπ = 3.5, will be the
mixing between the axial kaons, K1(1270) and K1(1400),
which, using a combination of experiment and models[43,
44] is expected to be large.

We have argued that we see little evidence for two-
particle states in our spectra and that to study such
states we need to construct operators with a larger num-
ber of fermion fields. Such constructions are in progress
and we believe that the addition of these operators
will lead to a denser spectrum of states which can be
interpreted in terms of resonances via techniques like
Lüscher’s and its inelastic extensions.

With the excited state spectra extracted herein, we ar-
gue that it does not make sense to attempt chiral extrap-
olation given that we cannot form a clear field-theoretic
interpretion of the extracted energy levels. Once we have
a handle on the two-meson levels, we can apply the tech-
niques mentioned above to extract something like a phase
shift, or more generally elements of the S-matrix, at dis-
crete energy values. The phase shift may show resonant
behaviour, which can be fitted with, in the simplest case,
a Breit-Wigner form. The mass and width parameters
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FIG. 26: Summary of extracted isovector exotic states. For comparison 1−+ results from Refs. [21–26] are also plotted.

of this Breit-Wigner are quantities which should be more
amenable to chiral extrapolation.
A further avenue of study is the computation of dis-

connected two-point correlators giving access to isoscalar
mesons; here we are interested in determining how QCD
decides to mix light and strange. In addition, methods
similar to those detailed in this paper are being applied in
the baryon sector where the lattice irrep spectrum suffers
from an even greater degree of degeneracy. An important
aim of the Hadron Spectrum Collaboration is the calcu-
lation of light meson photocouplings which are relevant
for, amongst other things, the GlueX experiment at the
JLab 12 GeV upgrade where light mesons will be studied
in photoproduction, with particular interest in exotics.
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Appendix A: Subduction Coefficients

Here we give a derivation of the subduction coefficients
before listing their explicit values for all integer spins up
to J = 4. An alternative derivation using the group
theoretic projection formula is also described.
The continuum spin J is reducible under the group

of lattice rotations (the octahedral group or equivalently
the cubic group). We use “subduction” coefficients to
project the continuum based operators onto their suitable
octahedral group based versions via

O[J]
Λ,λ =

∑

M

SJ,MΛ,λ OJ,M , (A1)

where OJ,M are the continuum operators with some defi-
nite total spin J and spin componentM . For each J → Λ
there is a matrix in the values of M and the rows of the
irrep, λ, that performs this mapping, i.e. the subduction

coefficients, SJ,MΛ,λ .
As shown in Table III, the J = 0 continuum spin sub-

duces only onto the one-dimensional A1 irrep and so triv-
ially we have S0,0A1,1

= 1. The simplest non-trivial subduc-
tion is that of continuum J = 1 into the T1 irrep and this
is given by

(J = 1)→ T1 :

M
λ 1 0 -1

1 1 0 0

2 0 1 0

3 0 0 1

(A2)

where the T1 is a faithful representation of J = 1 (The
basis used here follows Ref. [2]).

The subduction coefficients for higher spins can be built up using continuum and octahedral group Clebsch-Gordan

git://git.jlab.org/pub/lattice/usqcd/adat.git
git://git.jlab.org/pub/lattice/usqcd/adat.git
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coefficients using

SJ,M
Λ,λ = N

∑

λ1,λ2

∑

m1,m2

C

(
Λ Λ1 Λ2

λ λ1 λ2

)
SJ1,m1

Λ1,λ1
SJ2,m2

Λ2,λ2
〈J1,m1; J2,m2|J,M〉 . (A3)

Here 〈J1,M1; J2,M2|J,M〉 is the usual SO(3) Clebsch-Gordan coefficient for J1 ⊗ J2 → J and C
(
Λ Λ1 Λ2

λ λ1 λ2

)
is the

octahedral group Clebsch-Gordan coefficient for Λ1 ⊗ Λ2 → Λ. N is a normalisation factor, fixed by the requirement

that the subduction coefficients form an orthogonal matrix,
∑

M S
J,M
Λ,λ S

J,M∗
Λ′,λ′ = δΛ,Λ′δλ,λ′ .

This iteration formula can be constructed by noting that, for appropriately normalised states, SJ,MΛ,λ = 〈Λ, λ|J,M〉
and so

SJ,MΛ,λ = N
∑

λ1,λ2

∑

m1,m2

〈Λ, λ|Λ1, λ1; Λ2, λ2〉 〈Λ1, λ1; Λ2, λ2|J1,m1; J2,m2〉 〈J1,m1; J2,m2|J,M〉 . (A4)

Substituting for the continuum and octahedral group Clebsch-Gordan coefficients and 〈Λ1, λ1; Λ2, λ2|J1,m1; J2,m2〉 =
〈Λ1, λ1|J1,m1〉 〈Λ2, λ2|J2,m2〉 = SJ1,m1

Λ1,λ1
SJ2,m2

Λ2,λ2
gives the result in Eq. A3.

For J = 2 to J = 4 the subduction coefficients are shown below:

(J = 2)→ T2
M

λ 2 1 0 -1 -2

1 0 1 0 0 0

2 1√
2
0 0 0 - 1√

2

3 0 0 0 1 0

(J = 2)→ E
M

λ 2 1 0 -1 -2

1 0 0 1 0 0

2 1√
2
0 0 0 1√

2

(J = 3)→ T1
M

λ 3 2 1 0 -1 -2 -3

1 0 0
√

3
8 0 0 0

√
5
8

2 0 0 0 -1 0 0 0

3
√

5
8 0 0 0

√
3
8 0 0

(J = 3)→ T2
M

λ 3 2 1 0 -1 -2 -3

1 0 0
√

5
8 0 0 0 -

√
3
8

2 0 - 1√
2

0 0 0 - 1√
2

0

3
√

3
8 0 0 0 -

√
5
8 0 0

(J = 3)→ A2

M
λ 3 2 1 0 -1 -2 -3

1 0 1√
2
0 0 0 - 1√

2
0

(J = 4)→ A1

M
λ 4 3 2 1 0 -1 -2 -3 -4

1
√

5
24 0 0 0

√
7
12 0 0 0

√
5
24

(J = 4)→ T1
M

λ 4 3 2 1 0 -1 -2 -3 -4

1 0 0 0 -
√

7
8 0 0 0 - 1√

8
0

2 1√
2

0 0 0 0 0 0 0 - 1√
2

3 0 1√
8
0 0 0

√
7
8 0 0 0

(J = 4)→ T2
M

λ 4 3 2 1 0 -1 -2 -3 -4

1 0 0 0 - 1√
8
0 0 0

√
7
8 0

2 0 0 1√
2

0 0 0 - 1√
2

0 0

3 0
√

7
8 0 0 0 - 1√

8
0 0 0

(J = 4)→ E
M

λ 4 3 2 1 0 -1 -2 -3 -4

1
√

7
24 0 0 0 -

√
5
12 0 0 0

√
7
24

2 0 0 1√
2
0 0 0 1√

2
0 0

An alternative method for constructing the subduction coefficients is by using the group theoretic projection formula:

O[J]
Λ,λ =

dΛ
gG

∑

R∈G

ΓΛ
λ,µ(R)

∑

M ′

RMM ′OJ,M ′

, (A5)
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where G is the octahdedral group, gG is the order of the group G (i.e. 24), dΛ is the dimension of octahedral group

irrep Λ, RMM ′ is an element of G acting on OJ,M ′

and ΓΛ
λ,µ(R) is the representation of R in Λ. Here the operators

OJ,M ′

have definite spin and so RMM ′ = D
(J)
M ′M (R) (a Wigner-D matrix). The ΓΛ

λ,µ(R) are found, for example, by

considering a basis for the irreps in terms of spherical harmonics[2] and then using the transformation properties of

spherical harmonics under rotations. Once all possible operators O[J]
Λ,λ have been found (considering allM and λ), the

linearly independent combinations are constructed. These combinations then give the subduction coefficients which
are identical, up to possible phases and choice of basis, to those obtained using the method described above.
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