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Abstract

Motivated by the long-term goal of theoretically analyzing long-range proton transfer (PT) kinetics
in biomolecular pumps, a number of technical developments were made in the framework of QM/
MM simulations. A set of collective reaction co-ordinates is proposed for characterizing the progress
of long-range proton transfers; unlike previous suggestions, the new coordinates can describe PT
along highly non-linear three-dimensional pathways. Calculations using a realistic model of carbonic
anhydrase demonstrated that adiabatic mapping using these collective coordinates gives reliable
energetics and critical geometrical parameters as compared to minimum energy path calculations,
which suggests that the new coordinates can be effectively used as reaction coordinate in potential
of mean force calculations for long-range PT in complex systems. In addition, the generalized solvent
boundary potential was implemented in the QM/MM framework for rectangular geometries, which
is useful for studying reactions in membrane systems. The resulting protocol was found to produce
water structure in the interior of aquaporin consistent with previous studies including much larger
number of explicit solvent and lipid molecules. The effect of electrostatics for PT through membrane
protein was also illustrated with a simple model channel embedded in different dielectric continuum
environments. The encouraging results observed so far suggest that robust theoretical analysis of
long-range PT kinetics in biomolecular pumps can soon be realized in a QM/MM framework.

1 Introduction

Proton transfer (PT) is a crucial step in many biochemical processes. In many enzymes, local
PT between the substrate and amino acids forms the basis for the general acid-base catalysis
[1]. Long-range proton exchange between distant active sites has been recently proposed to be
a mechanism for catalytic co-operativity [2]. In bioenergetics, protons are pumped across the
lipid membrane through specific proteins [3–6] to create a proton concentration gradient, which
may then be utilized in other energy consuming processes such as ATP synthesis [7]; similarly,
a number of technical applications, such as fuel cells [8], require well-controlled long-range
PTs.

With major efforts from both the experimental [9,10] and theoretical community [11–15] in
the past several decades, basic mechanisms for localized PT in enzyme active sites are rather
well understood: e.g., it is accepted that the rate of the proton transfer is largely modulated by
the electrostatics in the active site [16]. Proton donor-acceptor dynamics, which is likely
coupled to the overall fluctuation of the enzyme, also plays an important role [17].
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Long-range PTs, by contrast, are more challenging to understand at a quantitative level. It is
generally accepted that long-range PT occurs through the help of hydrogen-bonded ”wires”
formed by water molecules [18–20], in many cases with participation of titratable amino acid
sidechains [21]. However, the precise transfer pathway(s) and rate-limiting factors are often
difficult to unravel due to the large number of solvent and protein residues involved.
Understanding these factors is crucial for the investigation of many fundamentally important
issues such as efficiency of energy transduction in proton pumps.

From the experimental point of view, a large number of mutagenesis experiments and kinetic
measurements for the corresponding mutants can in principle be used to probe the transfer
pathway and important interactions that regulate the transfer kinetics. Yet the fact that mutation
may introduce non-trivial perturbation to the solvent and protein structure always leaves some
degree of ambiguity in the interpretation.

In carbonic anhydrase, a relatively small enzyme, for example, the precise nature of the rate-
limiting event for an 8 Å long-range PT remains controversial even after many experimental
studies over the last two decades [22–29]. Issues of debate include the role of water wire
formation and the importance of water wire geometry, specifically, the number of water
molecules and their orientations along the wire. Theoretical analysis, therefore, is highly
desirable as a complementary technique and can, eventually, provide mechanistic insights on
an atomistic level. Indeed, a large number of theoretical studies have been applied to several
systems involving long-distance PT, such as carbonic anhydrase [24–29], gramicidin [30,30–
33], bacteriorhodopsin [34,35], aquaporin [36–38], the synthetic LS2-channel [39] and
cytochrome c oxidase [40–43]. These theoretical studies certainly provided valuable
mechanistic information, but it is perhaps fair to state that a quantitative understanding has not
been obtained in any of those systems. For instance, in gramicidin [30,32,44] and aquaporin
[36–38], studies from a number of groups using different simulation protocols proposed rather
different rate-limiting events.

These controversies reflect the fact that a number of technical challenges have to be overcome
for generally robust theoretical analysis of long-range PT.

First, since a large number of bond-breaking and formation events are involved, an accurate
description of the reaction energetics requires a quantum mechanical treatment of a large
number of atoms. This is particularly true for PT coupled to fairly complex chemical reactions,
such as in cytochrome c oxidase [45]. Most previous simulation studies employed empirical
models for proton transfer along water wires, which may not be sufficiently accurate or flexible.

Second, since a large number of shuttling groups are explicitly involved in the long-range PT,
sufficient conformational sampling of the protein and solvent atoms at a relevant temperature
is required for quantitative estimate of the transfer kinetics. In many previous studies minimum
energy paths (MEP) were computed using the nudged elastic band (NEB) [46] or conjugated
path refinement (CPR) [47] algorithms. These MEPs are useful for qualitative analysis but
inadequate for a more quantitative comparison with experiments. With more demanding
computational cost, potential of mean force (PMF) was evaluated for the PT in several studies
[30–33,36–39]. In this way the effect of thermal fluctuations can be included. In addition to
limitations in the potential functions used in those studies, another rather general problem
concerns the choice of reaction coordinate in the PMF calculations; most previous choices
either assume a specific pattern of transfer pathways (e.g., step-wise) or work best only for
transfers across linear water chains.

Finally, long-range PT involves significant charge separation, thus careful treatment of
electrostatics in the highly heterogeneous protein, solvent, and possible lipid environment is
of great importance. Although this issue has been addressed in some studies using either Ewald
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summation [48] or Langevin dipole models [49], many studies, especially those involving QM/
MM potentials, use very approximate electrostatics schemes that compromise the reliability
of the results.

Our long-term goal is to understand the mechanism of vectorial proton pumping involved in
biochemical energy transductions using QM/MM simulations. Here we describe a number of
technical developments we have made towards this goal. Specifically, we introduce a set of
new collective coordinates based on the center of excess charge [31,50] to characterize the PT
process. Their collective nature allows the calculation of potential of mean force without
assuming a priori the pathway of the transfer, and they are sufficiently flexible to cope with
non-linear PT pathways. Moreover, the generalized solvent boundary potential approach [51]
has been implemented in the QM/MM framework, which made it possible to study long-range
PT in heterogeneous environments with reliable potential functions. These technical advances,
in conjunction with the developments and benchmark of effective QM methods in our groups,
will soon allow reliable theoretical analysis of proton transfer kinetics in complex biomolecular
pumps.

In the following, we first describe the new reaction coordinates and compare them to earlier
suggestions in Sect. 2, which is followed by a brief summary of the GSBP implementation in
the QM/MM framework. We then test and illustrate these new protocols using a number of
systems in Sect. 3, which include carbonic anhydrase, a model channel and aquaporin. Finally,
we highlight a number of conclusions in Sect. 4.

2 Computational methods

As emphasized in the Introduction, a reliable description of long-range PT kinetics requires
state-of-the-art treatment of electronic structure of the system as well as sufficient and effective
sampling of the heterogeneous protein, solvent, and possibly lipid degrees of freedom. For the
electronic structure, our general strategy is to use the hybrid QM/MM potential. In addition to
the typical technical details concerning the QM/MM scheme [52–58], the major challenge is
to develop and benchmark a QM method that is both fast and accurate for the problem at hand.
An attractive method in this regard is the self consistent charge density functional tight binding
(SCC-DFTB) method [52,59], which has been successfully applied to a number of biological
systems [60–67] including those involving proton or hydride transfer reactions. The method
has been parameterized for C, N, O, H, P, S and Zn [61], and has been shown to often give
more accurate results than commonly used semi-empirical methods such as AM1 and PM3
[60,61,68–71]. On-going efforts in our groups will further improve the accuracy of the SCC-
DFTB approach for proton affinity and proton transfer reactions, which will not be discussed
here. Instead, we focus here on two technical aspects that are related to the sampling of
conformational space relevant to the long-range PT. The first issue concerns the definition of
a reaction coordinate that characterizes the PT process, which is crucial in meaningful
calculations of PMF in systems with complex PT pathways. The second aspect deals with the
implementation of a boundary potential for QM/MM simulation of reactions in membrane
proteins. Specifically, the generalized solvent boundary potential (GSBP) approach proposed
by Roux and co-workers [51] has been implemented in the SCC-DFTB/MM framework. The
GSBP approach treats the most important degrees of freedom at the microscopic level and
describes effects due to other regions of the protein, solvent and lipid membrane with
continuum electrostatics, making it possible to sample the reactive degrees of freedom in a
very efficient manner. In the following, we first introduce the reaction coordinate and make
comparisons to previous suggestions, then we briefly summarize the GSBP implementation in
the QM/MM framework for rectangular boundary.
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2.1 Reaction Coordinate for Long-range Proton Transfers

Although in some systems PT is fast and thus can be monitored with unbiased nanosecond MD
simulations [72], most PT processes have significant barriers and require alternative methods
for investigation. Powerful simulation methods such as the transition path sampling technique
[73] have been proposed to study the real-time dynamics of rare events in the condensed phase.
However their high computational cost limits their applicability. An alternative for studying
rare events, e.g., PT, is to compute the PMF along a well-chosen reaction coordinate. By ”well-
chosen”, we mean that the reaction coordinate captures the nature of the degree(s) of freedom
that most strongly regulate the reaction kinetics. Due to charge migration in long-range PT,
the protein and solvent environment undergo significant reorganizations; an appropriate
reaction coordinate, therefore, is the energy gap between different diabatic states that
correspond to localized proton coordinations, similar to the ”solvent coordinate” used to
describe electron transfers in solution. This energy gap coordinate was indeed used extensively
by Warshel and co-workers [11,26,74] in the study of long-range PT using EVB potentials
[75], in which the diabatic states are well defined. With adiabatic QM/MM potentials, however,
it is more difficult to define an energy gap coordinate; moreover, application of the energy gap
coordinate to simultaneous (concerted) multiple proton transfers is less straightforward.

Therefore, we choose to define the reaction coordinate in terms of the geometrical and charge
property of the PT reaction, i.e., the location of the center of excess charge (CEC) relative to
the proton donor and acceptor groups. We note that although this type of coordinate is
geometrical in nature, its dependence on the charge distribution of the ”proton wire” ensures
that the environment appropriately reorganizes as its value varies. Indeed, previous comparison
of the energy gap coordinate and a geometrical coordinate found very similar PMF results for
short-range proton transfer reactions. [76]. Moreover, activated dynamics simulations obtained
a transmission coefficient fairly close to unity (~ 0.4) for a number of studies of short-range
PT reactions in enzyme systems using geometrical coordinate to define the reaction coordinate
[77,78]. Whether the success applies quantitatively to long-range PT processes remains to be
investigated.

Generally speaking, when defining a geometric reaction coordinate, the task is to extract those
degrees of freedom best describing the reaction. Specifically for PT involving water molecules,
a rapid interchange takes place [79] between structures which are close to the ideal structures
of Eigen- and Zundel ions [80,81]. The defect, i.e. the excess proton coordinated to water
molecules, travels without any atom actually moving further than fractions of an Ångstrøm
[32,79]. Hence the challenge for long-range PT is to separate these subtle fluctuations
responsible for proton transfer from other motion in the immediate protein and solvent
environment.

2.1.1 Previous Suggestions—For a short-range PT, in which the location of the
transferring proton is well-defined, a commonly used reaction coordinate is the anti-symmetric
stretch involving the donor (D), the transferring proton (H) and the acceptor (A),

(1)

This in principle can be generalized to multiple proton transfers by using a linear combination
of anti-symmetric stretch coordinates for all sets of donor, transferring proton and acceptor
atoms. Although such a linear combination was indeed found useful in the study of PT through
two and three intervening water molecules in carbonic anhydrase [27], its use becomes
cumbersome and less robust for more complicated pathways.
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In the study of PT through the water wire in gramicidin A, a reaction coordinate based on the
CEC was used by Roux and coworkers [31,50], which involves the projection of the total dipole
moment of the water wire on the z-axis (the axis of the water wire),

(2)

where NH and NO are the total number of hydrogen and oxygen nuclei in the water wire, rz’s
are z coordinates and qH and qO are the partial charges of H (+1e) and O (−2e), respectively.
The CEC coordinate is hence defined by µz/e, where e is the unit charge. For an unprotonated
chain of water molecules (e.g. O10H20, Fig. 1a) the CEC gives the z component of the total
dipole moment; in a protonated wire (e.g.  Fig. 1b–e), on the other hand, it corresponds
to the projection of the center of excess charge (proton defect) along the z axis.

In contrast to the anti-symmetric stretch (δ), the CEC coordinate is a global, collective
coordinate, meaning that it reflects not only the location of the excess proton in a water wire
but also the configuration of all the water molecules in the wire. This sensitive dependence on
the orientation of individual water molecules makes µz/e easily ”contaminated” by the
fluctuation of the water wire (vide infra).

An alternative reaction coordinate suggested by Chakrabarti et al. [36] (denoted by v in the
following), which takes a local view at the problem, counts the number (wOi) of protons
coordinated to each oxygen atom Oi in the wire,

(3)

(4)

Here and in the following dA,B denotes the Cartesian distance between atoms A and B. The
switching function fsw(d) is given in the following equation with suggested values of rsw =1.4
Å and dsw =0.05 Å [36]:

(5)

Although this coordinate in its optimum yields a more precise description of the location of
the excess charge compared to µz/e, the limitation is that the information included is purely
local. As a result, the functional form introduced can’t distinguish between three hydrogen
atoms coordinated to an oxygen atom in an oxonium ion and three hydrogen atoms close to an
oxygen atom due to a collision of two water molecules. Although this problem can be partially
overcome either by choosing a better switching function or by a judicious choice of the
parameters in the switching function (Eq. 5), it is difficult to fully eliminate fluctuations of the
reactions coordinate due to water collisions. Even though close encounter of water molecules
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(r <1.4 Å) are not overwhelmingly frequent, the contamination effect of the reaction coordinate
is significant as illustrated below.

2.1.2 A new reaction coordinate—To take into account the advantages of global and local
considerations, we propose a reaction coordinate that unites the formulations discussed above.
This modified CEC (mCEC) coordinate for a linear proton wire (along the z axis), which may
include both water and protein groups, is defined as:

(6)

where Xj represents a coordinating atom for protons during the translocation,  is the projection
of the position vector of atom A on the z axis. wXj is the weight associated with the atom Xj

and is defined as the number of protons coordinated to that atom in its reference state. The
reference state is the least protonated state of the atom in both reactant and product. For
instance, if atom Xk has two protons coordinated in the reactant but only one in the product,
then wXk = 1. When the proton transfer is solely through water molecules as shown in Fig. 1,
the oxygen atoms have a wX of +2 (also see Sect. 3.1 for a more general example). In the more
general case, X can be any proton acceptor with a different weight (see below for more specific
examples). The correction (third term in Eq. 6) consists of the sum over all contributions to the
z-component of the bond vector from individual bonds. To establish the definition of a bond
in this context, we use the same switching function fsw (d) as Chakrabarti et al. (Eq. 5) for the
distance dXi

,Hj. Parameters of rsw =1.3 Å and dsw =0.03 Å were found to give the best results.

2.1.3 Comparison of different coordinates for linear proton wires—To illustrate
the difference between the newly proposed ξz coordinate and previous suggestions (µz/e, v),
we compare their behavior with different situations of protonated and non-protonated water
wires (Fig. 1). The coordinates were collected from molecular dynamics simulations of the
model channels described below (Sect.3.2).

When there is no excess proton in the water wire, the value of the CEC coordinate (µz/e) is
significantly different from 0 as expected (Table 1). The value of the mCEC coordinate (ξz),
by contrast, is very close to zero; this demonstrates that the correction (third term in Eq. 6)
appropriately removes contributions from any components irrelevant to the proton transfer as
designed. The reaction coordinate of Chakrabarti et al. [36] (v) gives unstable results (large
numerical value) for un-protonated water wire because the denominator in Eq. 3 approaches
zero in this case; this is not a significant shortcoming because no such instability is anticipated
for cases with excess proton(s).

For the water wire with a localized hydronium ion (Fig. 1b), ξz gives the z coordinate of the
oxygen atom in WAT4, which is the oxygen that bears the extra proton. Slight fluctuations in
the bond lengths are reflected in v, which is slightly displaced towards WAT3 (Table 1). With
a Zundel like ion in the wire (Fig. 1c), both v and ξz give values between the z coordinate of
the oxygen atoms in WAT4 and WAT5. The different distances from the central proton to the
two neighboring oxygen atoms (1.3 and 1.4 Å to O4 and O5, respectively) lead to slightly
different values of the two reaction coordinates due to different functional forms. With the
current set of parameters in fsw, both coordinates locate the excess proton closer to the WAT5
oxygen, which is consistent with the geometry.

The shortcoming of the v coordinate becomes clear with the case in Fig. 1d, in which one water
molecule (WAT8) was displaced to simulate a close collision between water molecules. The

König et al. Page 6

J Phys Chem A. Author manuscript; available in PMC 2009 August 18.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



mCEC coordinate is not affected by this, but the v coordinate changes significantly: the oxygen
in WAT8 appears to have more than two bonded hydrogens, leading to a non-vanishing weight
wOi that modifies the value of v. While configurations with such close collisions are not
frequently sampled, the large impact on the value of v is devastating to PMF simulations.
Moreover, the importance of this problem grows with the system size as the weight of even
miniscule collisions increases as a function of its distance to the actual location of the excess
proton.

As far as the original CEC coordinate (µz/e) is concerned, it does not give a value close to the
actual location of the excess proton in any cases in Fig. 1. Although this feature by itself does
not invalidate using µz/e for characterizing long range PTs, a problematic feature of µz/e is that
it fails to distinguish between degrees of freedom essential for the PT and fluctuations in the
environment. To illustrate this point, one water molecule (WAT10) at the end of the single file
was manually rotated (Fig. 1e). While the coordinates v and the ξz were not affected by this
change, the CEC coordinate showed a shift larger than that observed in the transition from an
oxonium ion (Fig. 1b) to a Zundel ion (Fig. 1b). This gets even more problematic when larger
systems with more water molecules are examined.

2.1.4 Generalization to complex proton wires in three dimensions—Test
calculations in the last subsection demonstrated that the mCEC coordinate, ξz, is robust for
describing proton transfer in a linear water chain. Although this is sufficient for long-range PT
in some membrane channels with nearly ideal transfer geometry, it is useful to extend ξz to a
three-dimensional vector such that PT along more complex pathways can be treated. The
proposed functional form is,

(7)

where notations are similar to those in Eq. 6 except for the trivial vector extension.

The discussions thus far assumed that each group along the PT pathway can either accept or
donate a proton, which is reasonable for water molecules. For long-range PT in proteins,
titratable groups may participate in the PT pathway, which may give rise to more complex
scenarios that further complicate the definition of the reaction coordinate. For example, in the
sidechains of glutamate and aspartate, the protonation and deprotonation of the two titratable
heavy atoms Xk,Xl (e.g., O∈ atoms in Glu) are coupled. In those cases, we propose further
revision of the mCEC: the weights for the donor/acceptor pair in (Eq. 7) are set as:

 where wpair is the number of protons coordinated to the residue in its

reference state (as described above for atoms). Moreover, the following term is added to  for
each donor-acceptor pair:

(8)

The term m(X,{H}) contains the information regarding whether there is at least one proton
coordinated to the respective atom. It is a differentiable approximation to the maximum
function for the switching functions (fsw (dX,Hi)) concerning distances between atom X and all
protons along the PT pathway:
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(9)

where a reasonably large integer (e.g., 15) works well for n.

To illustrate the physical significance of the terms in Eq. 8,9, consider the sequence of structures
depicted in scheme 1 a)–c). With idealized geometry in structures a,b and c, the weights m
(Xk, {H}) and m(Xl, {H}) are (0,1), (1,1) and (1,0), respectively. In the transitional structure

shown in 1b, the mCEC with the correction term  included locates the excess proton at
the midpoint between the two oxygen atoms. The switching functions in Eq. 8 ensure a smooth
transition for the reaction coordinate during the proton transfer. The maximum like function
m has to be used to allow an alternative PT mechanism as shown in Scheme 1d, which is
conceivable in the study of the bacterial photosynthetic reaction center (König et al., work in
progress). Here, m(Xk, {H}) and m(Xl, {H}) are 0 and 1 respectively.

Unlike ξz, the vectorial quantity  can not be readily used in PMF calculations. For this
purpose, we further define a collective reaction coordinate ζ for mapping the transfer of the

mCEC (as reflected by ) between an initial donor atom D and a final acceptor atom A,

(10)

where dξ,D and dξ,A represent the distance from mCEC to the initial donor and the final acceptor
atoms respectively; C is a coefficient defining the range of the reaction coordinate and is taken
as 1 unless otherwise stated. Apparently, ζ is a switching function dominated by dξ,D and
dξ,A at the lower and higher limits, respectively; as ζ evolves from negative to positive values,
the mCEC displaces from the initial donor to the final acceptor. The choice of functional form
in Eq. 10 is not unique and many other smooth switching functions could be used; e.g., another
possible expression is [82],

(11)

The value of ζR of 0 and 1 corresponds to the mCEC localized to the initial donor and final
acceptor, respectively.

Finally, we note that due to the collective nature of ζ and ζR, their values do not explicitly
depend on the number of shuttling groups (i.e., water and titratable residues) along the PT
pathway. Therefore, they are conveniently suited for studying PT in complex environments,
in which there are either many possible transfer pathways with different numbers of shuttling
groups existing at the same time or the number of shuttling groups fluctuates at a time-scale
faster compared to that of the PT process. A good example is carbonic anhydrase, for which
water wires of different lengths were consistently observed in different MD simulations [28,
29,83] and the typical life-time for such water wires is on the order of pico-seconds, as
compared to the µs time-scale for the PT.
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2.2 Electrostatics in QM/MM simulations

As emphasized in several recent studies [66,83–85], appropriate treatment of electrostatics is
utterly important to QM/MM simulations. The issue is most serious for the simulation of
processes that involve significant change in the charge distribution, such as oxidation-reduction
reactions and long-range proton transfers. Inappropriate treatment of electrostatics may not
only affect the quantitative aspect of the result, but also produce qualitative changes in the
behavior of biological systems. For example, water structure in the active site of enzyme
carbonic anhydrase was found to differ significantly with different electrostatic models used
in QM/MM simulations [83].

The most robust electrostatic model up to date involves Ewald summation (or related numerical
improvements) with the periodic boundary condition [48]. However, the necessity of including
a large number of explicit solvent molecules to avoid artifacts in such simulations limits its
use in QM/MM simulations of large systems [86,87]. Since the systems of interest in the context
of proton pumping are often rather large, it is desirable to adopt schemes that avoid periodic
boundary condition. In this regard, the generalized solvent boundary potential approach
proposed by Roux and co-workers [51] is very attractive. It treats a relatively small region of
the protein-solvent-membrane system in microscopic details, with the contribution from the
remaining degrees of freedom described at the continuum electrostatics level. This allows very
efficient sampling of the most relevant configuration space for the reaction of interest, without
significantly sacrificing important environmental effects. In a recent publication [83], we
described extension of the GSBP approach to a QM/MM framework and implementation for
spherical boundary condition. Here we further extended the implementation to rectangular
boundary condition, which is useful for membrane systems. In the following, for the sake of
completeness, we briefly review the GSBP approach in its original form [51] and then describe
our implementation in the QM/MM framework.

2.2.1 Generalized solvent boundary potential—In a system composed of biomolecules
in solution and membrane, interactions between charge distributions are shielded in a nontrivial
way due to complex boundaries between different dielectric environments. In the generalized
solvent boundary potential (GSBP) approach [51], the system is partitioned into an inner region
and an outer environment, where the dielectric property can vary (e.g., containing both bulk
solvent and a slab of membrane). Atoms in the inner region are allowed to move during the
simulation whereas atoms in the outer region are fixed.

Accordingly, the electrostatic solvation free energy ΔWelec can be partitioned into contributions
from the interactions of the outer-outer (oo), inner-outer (io), and inner-inner (ii) parts of the
system:

(12)

The outer-outer contribution is a constant and therefore is not of interest. The contribution of
the inner-outer part can be computed in a straightforward manner,

(13)

where  is the reaction field due to the outer region atoms, which have to be computed
only once (since the outer region is fixed) and saved on a set of grid points in the inner region.

Note that actually the total electrostatic potential due to the outer region atoms,  is saved
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instead of the reaction field potential  so that direct Coulombic interaction between the
inner and outer region atoms is included.

Since the inner region atoms move during the simulation, the electrostatic problem is solved
by using a basis set expansion for the charge distribution in the inner region,

(14)

where the expansion coefficients cm can be calculated using  The overlap matrix

elements Omn of the basis functions are computed as  and the vector of

generalized multipole moments Qn are defined as 

Correspondingly, the inner-inner contribution to the solvation free energy takes the following
form:

(15)

where M is termed the reaction field matrix and is the numerical representation of the Green’s

function for the Poisson-Boltzmann equation in the bm basis. Similar to , M only needs to
be computed once via solving the Poisson-Boltzmann equation and does not depend on the
instantaneous configuration of the inner region.

The choice of basis functions depends on the geometry of the problem. For membrane proteins,
a rectangular boundary (see below) is appropriate. Accordingly, Legendre polynomials are
taken as the basis functions.

2.2.2 Generalized solvent boundary potential in the SCC-DFTB/MM Framework

—As described in recent work [83], the GSBP approach can be easily extended to a general
QM/MM framework. It is natural to assume that all QM atoms are within the inner region.
Then, it is straightforward to show that the QM/MM contribution to the solvation free energy
has the form,

(16)

The elements of the vector QMM differ from the full charge vector by the fact that modifications
required at the QM/MM frontier [53] are accounted for [83]. In the spirit of SCC-DFTB [59],
the QM charge distribution is expressed in terms of Mulliken charges, which simplify the
calculation of the corresponding GSBP terms. The generalized multipole moments QQM are
computed as:
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The QM/MM related GSBP contributions are solved in a self-consistent manner by including
the GSBP terms in the Hamiltonian matrix elements Hµv for the QM region,

(17)

where Sµv is the overlap matrix element;  and  are defined as the following

(18)

(19)

The above formulation is exactly the same as that discussed in our recent work [83], in which
GSBP was implemented in the SCC-DFTB/MM framework for spherical boundary condition.
In the current work, we extended the implementation to rectangular boundary condition, which

involves computation of  and  using the Legendre polynomials. The
implementation is available in the latest developmental version of CHARMM (c32a2).

3 Test calculations

Several systems were chosen to systematically test the simulation protocols developed here.
First, two PT pathways in a realistic enzyme model for carbonic anhydrase were studied to test
the robustness of new reaction coordinates for long-range PT through non-linear water chains.
Next, PT in a model channel embedded in different dielectric environments was studied.
Finally, an aquaporin was used to further illustrate the reliability of the GSBP based QM/MM
simulation setup for the study of more realistic membrane systems.

3.1 Proton Transfer in carbonic anhydrase II

Carbonic anhydrase II (CAII) is a zinc-enzyme that has been widely used as a prototypical
model for studying long-range PT in proteins. Its biological function is to interconvert CO2
and  which makes it important in respiration processes [88,89].

An important step during the catalytic cycle is the transfer of a proton between a zinc-bound
water and a histidine residue (His 64) close to the surface of the protein; in the forward direction,
the PT generates a zinc-bound hydroxide, which is the catalytic species that reacts with CO2.
The distance between the zinc-bound water and His 64 is about 8 Å in the x-ray structure,
which led to the suggestion that PT has to be mediated by water molecules in the active site
[90–92]. Although two-water molecules have been observed in the x-ray structures that connect
the zinc-bound water and His 64 through hydrogen bonds, simulation studies with different
potential functions [28,29,83] have shown that the water structure in the active site is rather
dynamical and water bridges connecting the zinc site and His 64 typically include from two to
four water molecules. The on-going debate [22,23,25,26,28,29] concerns whether formation
of a specific type of water bridge contributes dominantly to the kinetic bottleneck of the PT
and whether the PT proceeds through a concerted or step-wise mechanism [24–27,93]. In the
current work, we only use CAII to illustrate the new reaction coordinates via comparison to
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minimum energy path results. Detailed discussions of mechanistic issues are reported
elsewhere [27] (Riccardi and Cui, work in progress).

3.1.1 Computational Setup—The enzyme model was set-up using the GSBP protocol: it
contained a 16 Å microscopic spherical region centered around Zn2+ in which all atoms were
allowed to move, and a 2 Å layer of Langevin region in which atoms were harmonically
constrained. The remaining protein atoms and x-ray water molecules formed the ”outer” region
were fixed in space. Spherical harmonics up through the 20th order were used as the basis
functions for the electrostatics in GSBP. The QM region included the zinc ion and all of its
ligands (His 94, 96, 119 plus a water), the His 64 sidechain and the bridging water molecules
(2 and 4, see below); they were treated using SCC-DFTB, while the rest atoms were described
with the CHARMM 22 force field for proteins [94]. For further details, refer to Ref. [27,83].

Two configurations collected from MD simulations, as described in an earlier publication
[83], were used as the starting geometry. The MD simulations were done in the ”COHH” state
[28], in which the zinc-bound water is deprotonated and His 64 is doubly protonated
(H64H+); thus the PT proceeds from H64H+ to the zinc-bound hydroxide in the present set of
results. The two starting configurations contain two and four bridging water molecules,
respectively, between the zinc-bound hydroxide and H64H+. Adiabatic mapping calculations
were carried out using both ζ (Eq.10) and ζR (Eq.11) to map out the potential energy profile
along these approximate reaction coordinates; the weights associated with the heavy atoms
along the water wire for ζ and ζR are illustrated in Scheme I. Minimum energy pathways were
determined using the conjugate peak refinement (CPR) algorithm [47] in CHARMM. The
results of the adiabatic mapping and the MEP, both the energetics and critical geometrical
parameters along the path, are compared in the following. In addition, adiabatic mapping
calculations were carried out for strictly step-wise PTs for the two-water bridge case, to
illustrate the importance of having a flexible reaction coordinate. These calculations used a
series of anti-symmetric stretch (δ, Eq. 1) to drive the sequential PTs; three possible sequences
of transfers were studied (see below). No mass-weighting was used in any calculations and no
zero-point energy correction was included in the energetics.

3.1.2 Results—For the two-water bridge configuration chosen here, the MEP calculations
identified only one unique saddle point (Fig. 2a) and the barrier height is approximately 8.7
kcal/mol. The transfer of the three protons occurred in a nearly concerted fashion, with the
transfer of the middle proton (H2) somewhat ahead of the other two (Fig. 3a, Table 3). The
distances between proton donor and acceptor atoms also varied significantly during the PT,
which is a well-known result [95] (Fig. 3b).

Results from adiabatic mapping using ζ and ζR are in very good agreement with the MEP data.
As shown in Fig. 2a and Table 2, barrier heights, exothermicity of the reaction and qualitative
shape of the energy profile from MEP calculations are well reproduced by both ζ and ζR based
adiabatic mapping calculations; e.g., the barrier using ζ and ζR is 9.7 and 9.3 kcal/mol,
respectively, compared to the value of 8.7 kcal/mol from MEP calculations. The evolution of
critical geometrical parameters along the path (i.e., those presented in Fig. 3) are also well
reproduced using both ζ and ζR based calculations (Table 3). This is quite satisfying considering
that ζ and ζR are collective coordinates that do not specify, a priori, the sequence of proton
transfers. Specifically, the structure of the saddle point from MEP calculations agrees well with
the highest-energy structures from adiabatic mapping calculations using the two reaction
coordinates (Fig. 4a). The critical distances shown in Table 3 further illustrated the concerted
nature of the PT transition state.

Adiabatic mapping calculations following a strictly step-wise transfer mechanism, by contrast,
showed very different energetics. As shown in Table 2, the energetics depend very sensitively
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on the sequence of the transfers. Transfer sequences that leave localized the hydroxide-
hydronium pair is highly unfavorable energetically with barriers on the order of 40 kcal/mol;
a sequence that involves the formation of a localized hydroxide is less demanding although the
barrier is still substantially higher (22 kcal/mol) than the concerted pathway (~ 9 kcal/mol)
revealed in both MEP and adiabatic mapping calculations using ζ and ζR. Although it is not
our intention to conclude based on these calculations that concerted PT in CAII is much
preferable than a strictly step-wise mechanism, it is worth mentioning that reaction path
calculations starting from multiple (~ 100) initial structures and PMF calculations do support
this scenario [27].

For the four-water bridge configuration it is striking that only one saddle point was found in
the MEP calculations as well. The broad feature of the MEP energy profile in the barrier region
is due to the small variations of MM atoms rather than major changes in the reactive degrees
of freedom, which is a limitation to the CPR algorithm in the absence of any special coordinate
weighting. The barrier height of 19.6 kcal/mol in this specific reaction path is substantially
higher than the barrier of 8.7 kcal/mol in the two-water-bridge case discussed above. We
emphasize that these results alone do not suggest that the barrier of PT through a longer water
bridge is necessarily higher than that through a shorter water bridge, because significant
variations in the behavior was found when multiple protein configurations were considered
(Riccardi, Cui, work in progress). The issue of interest here is whether ζ and ζR can reproduce
MEP results when the length of the water wire is long. The results suggest that this is the case,
as both energetics (Table 2) and transition state structures (Fig. 4b, Table 4) were well
reproduced by adiabatic mapping calculations; the agreement is more impressive using ζR.

In short, test calculations using CAII produced encouraging results suggesting that both
collective coordinates introduced here, ζ and ζR, can be used to describe the energetics and
mechanism of PT spanning a long-distance through water wires of rather complex geometries
(Fig. 4).

3.2 A model proton channel

As a second example, PT along a chain of water molecules confined in a model channel was
studied. The channel was embedded in different environments described by continuum models
to explore the dielectric effect on the PT energetics. The effect of positioning permanent dipoles
lining the channel was also briefly studied. This simple model was inspired by the recent heated
discussions regarding why some membrane water channels conduct protons whereas others do
not (see, e.g., a non-technical summary in Ref. [96]). For instance, PT through gramicidin is
rather facile. In fact, this is the functional mechanism of this antibiotic peptide. By contrast,
aquaporins, which are responsible for homeostasis in higher organisms, efficiently conduct
water molecules [97,98] yet exclude protons and other charged ions from passing through.
Different factors have been suggested to determine proton conductance, which include
structure of water wires inside the protein [98,99], electrostatic interaction between the protein
and the proton [100,101], the dielectric barrier [37] or combinations thereof [36]. Here, we
constructed a simple model channel (Fig. 5) to study the influence of different dielectric
environments on the energetics. However, the major goal is to illustrate the principles of the
QM/MM/GSBP simulation protocol.

3.2.1 Construct of the model—The model is similar to the one used in a previous study
[50] and was constructed using the following procedure. A linear water chain consisting of 10
water molecules and one excess proton was built, in which the distance from the first to the
last oxygen is 22.0 Å; the choice of the number of water molecules and the length of the chain
were motivated by the structures of aquaporin and gramicidin A, in which the single-file part
of the transmembrane water chain typically consists of 9–10 water molecules. The model
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”channel” that holds the water wire was introduced by applying a cylindrical potential to each
of the oxygen atoms in the water wire:

with kcyl =100 kcal mol−1 Å −2. The quantity r is the distance of the oxygen atom from the axis
of the channel, and r0 is 0.5 Å; Θ is the Heaviside step function. To ensure appropriate solvation
of the excess proton at the ends of the water chain, fifteen water molecules were added to each
end of the chain. The coordinates of these water molecules were taken from an equilibrated
box of water molecules at 300 K. The ”bulk” water molecules were subject to a set of quartic
constraints to maintain a cubic shape of 3×3×2.5 Å.

This ”dumb-bell” model system was then embedded into different dielectric environments
including vacuum, pure solution and membrane systems. Important geometrical parameters
are illustrated in Fig. 5 and their values are summarized in Table 5 for different environments.
In the membrane set-ups, the grids used in GSBP and midpoint of the membrane was centered
on the model channel. The grid dimensions were 92×92×185, and a coarse grid spacing of 1.6
Å and a finer spacing of 0.4 Å were used in focusing Poisson-Boltzmann (PB) calculations
required for the various quantities used in the GSBP computations. The dielectric constants
for the membrane and bulk water were set to be 2.0 and 80.0, respectively; although the PB
module in CHARMM allows the use of different dielectric constants for the lipid polar heads
and non-polar tails, this was not pursued here and will be tested more systematically in a more
quantitative study of pKa in membrane proteins in the future. The salt concentration was chosen
to be 150 mM. Although Im et al. [102] showed that the artifacts encountered with trilinear
interpolation should have a minor effect on molecular dynamics simulations, we used the
slightly more involved cardinal B-spline method for interpolating between the gridpoints. In
the GSBP calculations for the inner electrostatics, Legendre polynomials up to order 10 were
used as basis functions, which was found sufficient in previous studies for systems of similar
size [51,103].

To study the effect of polar residues on the PT energetics, dipoles were added in the lumen of
the model channel embedded in the 30 Å model membrane. Specifically, four dipoles with
rather modest dipole moments composed of two opposite charges (|q|=0.1e,d=1.5Å) were
circularly arranged around the channel at a radius of 3.3 Å. Three of these annuluses were
positioned at z=−1.4,1.2, 3.8 Å (Fig. 6b), which were motivated by the carbonyl groups in
gramicidin A; two extreme orientations of the dipoles were considered.

The chain of water molecules and the excess proton were described with the SCC-DFTB
method, while the rest explicit water molecules were described with the TIP3P model. PMF
calculations were carried out using the standard umbrella sampling technique [104] with ξz as
the reaction coordinate since the water wire here is highly linear. A total of ten windows was
used, and each window contained 40 ps of equilibration and 100 ps of production calculations.

3.2.2 PT energetics in different environments—In vacuum, the proton transfer in the
dumb bell model has a modest barrier of 6.5 kcal/mol (Fig. 6a); there is a barrier because the
excess proton is preferentially stabilized by the explicit solvent molecules at the ends of the
water wire. The barrier increases slightly to 8.1 kcal/mol, when the model is immersed in bulk
water represented using a dielectric medium of ∈ = 80. With the dielectric model for the
membrane, the effect of preferential solvation at the ends of the water wire becomes more
significant, which causes the PT barrier to increase even further; with the membrane thickness
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(or low-dielectric part of the membrane) of 20 and 30 Å, respectively, the barrier is 10.3 and
9.8 kcal/mol, respectively.

The results shown here are in qualitative agreement with electrostatic calculations of Burykin
et al. [37], who found a barrier of about 15 kcal/mol for transferring a proton through a water
wire in a cylindrical pore of radius 4 Å through a 30 Å thick membrane. However, the barrier
observed here includes only part of the dielectric barrier due to the membrane. Since the initial
position of the excess proton is close to the low-dielectric region in the current model, the
charge has already been partially desolvated. To include the entire dielectric barrier, the free
energy necessary for transporting the proton from the bulk to the minimum in the PMF has to
be computed [105].

The presence of the dipoles along the channel was found to have a major impact on the PT
energetics, which was qualitatively expected. With the positive charges of the dipoles facing
the center of the channel, the PT barrier is 23 kcal/mol (Fig. 6b). In contrast, the opposite
polarity lowers the PT barrier dramatically from ~ 10 kcal/mol for the non-polar channel to
nearly vanishing. In fact, the most stable configuration corresponds to the excess proton
localized in the center of the channel close to one sets of dipoles (z ~ 1:2 Å).

In short, study of this simple model showed that the GSBP approach is able to capture the
qualitative effect of different environments on the PT energetics along a chain of water
molecules. The transition from a high dielectric medium to a low dielectric medium modeled
in the slab model described above imposes a notable effect on the PT energetics, on the order
of a few kcal/mol. However, the effect of the polar groups mimicked by a set of dipoles of
rather small magnitude has a more significant effect. Hence, the results of our simple model
support the claim of Warshel and co-workers that non-polar membrane channels per se do not
conduct protons, unless the charged species can be stabilized within the channel as described
recently [37].

3.3 Water structure in aquaporin

Finally, we study the water distribution in aquaporin as an illustration of the simulation protocol
being developed here applied to a realistic membrane protein system. The ultimate goal is to
understand proton blockage in aquaporin. As mentioned above, although several studies [36–
38] have been carried out, there are still debates regarding the contribution of various factors
to the high barrier for the PT. All previous calculations used empirical models describing the
proton transfer process, thus it remains meaningful to carry out reliable QM/MM simulations
to better understand the importance of various factors that have been proposed. In this work,
however, we focus on the water structure, which has been proposed to contribute to the high
barriers for PT in aquaporins and other proton-blocking proteins [98,99]; the PT energetics and
mechanism of proton blockage will be discussed elsewhere (Hoffmann et al., work in progress).

Aquaporin water channels have been shown both experimentally [106] and through molecular
dynamics simulations [36,98,99,101,107] to have a pronounced water structure. Similar
observations were also made in gramicidin in simulation and experiment as reviewed in
[108]. Here we chose to investigate the aquaporin channel since the embedded water structure
has been confirmed by multiple simulations using different force fields (GROMACS,
CHARMM), water models (TIP3P, SPC, PM6) as well as different simulation protocols [36,
98,99,101,107]. For example, Tajkhorshid et al. [98] carried out simulations for a glycerol
conducting aquaporin [106]: an aquaporin tetramer was embedded in an explicit membrane-
water environment and the Ewald summation for long-range electrostatics was applied with
periodic boundary conditions. The simulations showed distinct water structure around
hydrogen-bond-forming moieties in the lumen region, and the locations of high water densities
match well with those identified from high-resolution x-ray structures presented in the same
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paper. For our purpose, comparing results to those previous calculations using explicit
membrane and bulk solvent molecules is expected to be a stringent test of the GSBP-QM/MM
simulation protocol being developed here.

3.3.1 Simulation set-up—The QM/MM-GSBP simulations were initiated from a snapshot
from the classical simulation of Tajkhorshid et al. [98] mentioned above. Only one monomer
was selected for simulation and the rest proteins and explicit membrane were discarded. As
shown schematically in Fig. 7, the GSBP set-up partitioned the system into inner and outer
rectangular cavities that contain 2473 and 1828 atoms, respectively. The size of the inner region
is 22×25×54 Å3, which is described by a set of grids with dimensions of 139×161×175 in the
PB calculations for the various GSBP components; a coarse grid spacing of 1.6 Å and a finer
spacing of 0.4 Å were used in focusing Poisson-Boltzmann (PB) calculations. The coordinate
origin and midpoint of the membrane was set to a water molecule in the center of the channel,
which corresponds to W522 in the x-ray structure [98]. The membrane, which was entirely
treated with a dielectric model, was set to have a thickness of 35 Å the dielectric coefficients
of membrane and bulk solvent were chosen to be 2.0 and 80.0, respectively, and the salt
concentration was chosen as 150 mM. Similar to the model channel simulations discussed
above, Legendre polynomials up to order 10 were used as basis functions for the GSBP inner
region electrostatics. The protein-solvent boundary was set up using the atomic Born radii of
Nina et al. [109]. The atoms outside the inner cavity were constrained to their initial position.
Protein atoms at the boundary of inner and outer cavity were constrained according to the
previously described protocol [51]. For the Coulombic interactions, extended electrostatics
model [110] was used where interactions beyond 12 Å were treated using a multipolar
expansions including dipole and quadrupole terms.

The model contains a total of 154 water molecules, 27 of which were treated using SCC-DFTB.
Treating these water molecules with a QM model provides a consistent and natural description
for the PT process; the co-operativity among the water molecules, which is missing in previous
classical treatments [36,98,99,101,107], is also taken into account. Current research in the
group investigates the proton exclusion mechanism in aquaporins (Hoffmann et al. , work in
progress) based on the model introduced here, which will provide a further inside in the impact
of co-operativity in the water chain and polarization, which has been proposed to be potentially
important [111]. All of these QM waters were in the interior of aqua-porin in the starting
configuration. To prevent lateral diffusion of QM and MM waters, planar restraints were
introduced at the interface between QM and MM water molecules. The QM/MM frontier and
respective restraints were chosen such that additional QM water molecules can diffuse into
and out of the pore. The reservoirs of QM water (red) can be seen on each side of the monofilar
water chain in Fig. 7. This is in contrast to the setup in a previous study [36], which reproduced
the location of the water molecules in the channel but was limited in its predictivity by
restricting water from entering or exiting the pore.

Eight trajectories were calculated, each with a time period of 20 ps for equilibration and 100
ps of data collection. For the determination of relative water densities, the pore radius of the
lumen was determined at each point along the channel axis using the Hole2 program [112].

In addition, a set of calculations in which the environment of the inner region was simply
replaced by vacuum was also carried out for comparison with the GSBP results. The length of
the MD simulations was the same as in the GSBP based simulations.

3.3.2 Results and discussions—As shown in Fig. 8, the distribution of water molecules
has distinct features inside the aquaporin. The peaks in the relative water density coincide well
with the position of specific protein polar groups. These including the well-conserved NPA
motif in the center of the channel and two half membrane spanning, short peptide sequences
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(65–68, 199–203) whose carbonyl groups line the channel; Arg 206 in the selectivity filter
region also helps to position water molecules. The role of Trp48 and Phe200 is mainly attributed
to narrowing the pore size. This might improve the interaction of the water molecules with
Arg206 [99]. These observations are in good agreement with previously published data [98,
99] using models that are substantially larger in size. Moreover, the bifurcating orientation of
the water wire centered around Asn 203 as observed in previous studies is also reproduced by
the current simulation.

In the vacuum simulations, the distribution of water agreed well with GSBP only in the central
region of the channel. The agreement is visibly worse in regions beyond 5 Å from the center.
In particular, the peak positions of the water molecules are shifted in the region of negative z
value; these shifts can not be attributed to the shifts in the position of polar groups in the lumen,
which are displaced by less than 0.1 Å in the vacuum simulations in comparison to the GSBP
simulation. Moreover, disruptions of the water chain were observed between z= 5–10 Å, which
is clearly visible in the average density profile. Previous periodic boundary based simulations
[101] did notice disruption of the water wire inside aquaporin, although these events were very
rare. Therefore, the observed breakdown of the well-ordered water structure in the vacuum
simulation is unexpected for a channel with many polar interactions despite its narrow radius.
In previous work, such pulsatory behavior was observed only in narrow and purely

hydrophobic channels, such as a hydrophobic model of the aquaporin channel [101], carbon
nanotube [113] and smooth hydrophobic pore [114] and cylinders [115]. In fact, since the
pulsatory transport of water in narrow pores depends on collective oscillation of the bulk water
[114], the lack of large body of bulk solvent in the current set-up is not expected to produce
channel depletion.

In short, the QM/MM/GSBP simulation presented here agrees well with previous periodic
boundary simulations with explicit lipid membrane in terms of water structures inside
aquaporin. This is quite remarkable considering the much smaller number of atoms explicitly
included in the present protocol and the fact that the membrane was replaced by a simple
dielectric model. The comparison with vacuum simulation clearly demonstrated the importance
of proper long-range electrostatic treatment for intrinsically heterogeneous systems such as
membrane-bound proteins.

4 Concluding Remarks

Although localized proton transfer (PT) reactions have been generally considered as well-
characterized, reaction mechanisms for long-range PTs in biological systems are often poorly
understood. The large number of protein residues and water molecules involved in the PT
process makes determination of the kinetic bottleneck a challenging task for both experimental
and theoretical investigations. For example, the rate-limiting step of PT in the enzyme carbonic
anhydrase remains controversial despite both experimental and theoretical studies over the past
several decades.

In this paper we presented recent developments in our groups motivated by the long-term goal
of theoretically characterizing kinetics of long-range PT in biomolecular pumps such as
cytochrome c oxidase, which, as discussed in recent studies [40,116] might exhibit interesting
kinetic properties as required by their biological function. Specifically, we introduced a new
set of collective coordinates for characterizing the progress of long-range PT. In contrast to
earlier suggestions, which were also analyzed here, the new set of coordinates based on the
modified center of excess charge (mCEC) works for PT along not only linear but also complex
three-dimensional transfer pathways. These coordinates were verified by comparing the
corresponding adiabatic mapping results (energetics and key geometrical parameters) to
minimum energy path calculations. Excellent agreements were observed for PT through rather
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complex water wires with realistic model of carbonic anhydrase using a SCC-DFTB/
CHARMM potential. These results suggest that the new coordinates can be used as the reaction
coordinate for computing meaningful potential of mean force for long-range PT. We note in
particular that the collective nature of the new coordinates makes it straightforward to consider
the equilibration of different water-wire configurations in the PMF calculations, which is often
found rapid compared to the time-scale of the PT process.

In addition, we extended the implementation of the generalized solvent boundary potential
(GSBP) [51] in the QM/MM framework [83] to rectangular geometries, which is useful for the
simulation of reactions in membrane systems. As discussed in previous studies [51,83,103],
GSBP is a computationally effective approach for treating long-range electrostatics in
heterogeneous macromolecules; it allows one to explicitly sample the phase space for only a
small number of protein, solvent and possibly lipid atoms, while approximating the effect due
to the rest of the system using continuum electrostatics. For example, the QM/MM-GSBP set-
up here used a fairly small model for aquaporin (22×25×54 Å3, which contained ~2500 atoms)
and treated both bulk solvent and the lipid membrane using continuum models; the simulation
reproduced the water structure in the aquaporin channel compared to previous MD simulations
using much larger number of explicit solvent and lipid molecules. Simulations of the same
reduced system with the inner region surrounded by vacuum, by contrast, produced rather
different water distributions, which further illustrated the importance of long-range
electrostatics and effectiveness of the GSBP approach. The influence of electrostatics in long-
range PT was also briefly investigated with PT in a model channel embedded in different
dielectric continuum environments. Similar to previous work of Burykin et al. [37], the results
indicate that PT through a purely hydrophobic channel embedded in membrane encounters a
significant barrier, unless polar interactions present in the channel to stabilize the hydronium
ion.

With the encouraging results obtained here, we anticipate that a set of robust QM/MM
simulation protocols will soon be available for theoretical analysis of long-range PT kinetics
in complex biomolecular pumps. Two important issues remain to be resolved. First, effective
QM methods that produce reliable energetics for PT involving not only water molecules but
also protein sidechains and possibly metal-bound ligands need to be developed; extension of
the SCC-DFTB approach [59] is likely to be productive along this line. Second, although a
continuum model for lipid membrane and bulk solvent was found satisfactory in the current
model studies, whether this is generally applicable to membrane protein systems remains to
be clarified. In this regard, quantitative studies such as pKa [85] or binding free energy
simulations of membrane systems are particularly useful. Once these technical issues are
resolved, theoretical analysis will play a major role in uncovering the secrets of biomolecular
pumps.
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Figure 1.
Water wire models for illustrating different reaction coordinates that describe long-range
proton transfers. a) a water wire without any excess proton; b) a water wire with a H3O+-ion
located at WAT4; c) a water wire with a Zundel -ion between WAT3 and WAT4; d) same
as c) but with one water molecule (WAT8) displaced to mimic a close collision of water
molecules. e) same as c) but with on water molecule (WAT10) rotated by a small angle to
illustrate the contamination of µz/e. The values of different reaction coordinates discussed here
are shown in Table 1. The distance cutoff for the bonds drawn was chosen to be 1.3 Å.
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Figure 2.
Energy profiles along different reaction paths ) for the proton transfer in carbonic anhydrase
starting from a configuration with (a) two (b) four bridging water molecules. The horizontal
axis is defined as the path length (in Å) measured relative to the highest energy structure along
the path. The longer path lengths and broad features in the MEP results are due to the small
cumulative variations in the MM degrees of freedom, which is a limitation in the conjugate
peak refinement algorithm used here.

König et al. Page 23

J Phys Chem A. Author manuscript; available in PMC 2009 August 18.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.
Critical geometrical parameters along the minimum energy path for the proton transfer in
carbonic anhydrase starting from a configuration with two bridging water molecules. The
horizontal axis is defined as the path length (in Å) measured relative to the highest energy
structure along the path. (a) The distances between transferring protons and the original oxygen
donor atoms; (b) The distances between proton donor and acceptor atoms. For the atom labels,
see Scheme I.
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Figure 4.
Overlay of transition state structures from adiabatic mapping and minimum energy path
calculations for proton transfer through (a) two (b) four bridging water molecules in carbonic
anhydrase. For precise values for critical geometrical parameters, see Table 3 and 4.
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Figure 5.
Geometric and dielectric parameters for the model channel. See Table 5 for specific numerical
values for the dielectric constants (∈C, ∈M, ∈S) and the membrane thickness hM.
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Figure 6.
(a) Potential of mean force for proton transfer through a purely non-polar model channel
embedded in different dielectric environments. (b) Potential of mean force for proton transfer
through the model channel with dipoles arranged in the channel. The solid (dashed) line refers
to a setup where the positive (negative) charges of the dipoles point to the center of the channel.
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Figure 7.
Partitioning of the aquaporin system for QM/MM-GSBP simulations. The inner rectangular
box shows the atoms located in the inner cavity in the GSBP set-up. The atoms treated using
SCC-DFTB are highlighted. Atoms in the outer region were fixed during the simulation and
their effect were taken into account through continuum electrostatics (see text).

König et al. Page 28

J Phys Chem A. Author manuscript; available in PMC 2009 August 18.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 8.
Computed relative water densities in the GLPF-G channel along the membrane norm (z axis)
for the vacuum- and the GSBP-based simulations, which were obtained through the frequency
of observing the water oxygen atoms at a the respective position. The average positions for
selected atoms from the GSBP simulations are also shown to illustrate the correlation between
water density and position of polar groups along the channel, which include both protein
sidechains (e.g., Arg 206, Asn 68, Asn 203) and main chains (e.g., a series of carbonyl groups).
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Scheme 1.
Proton transfer through a protonated carboxylic acid as an example of a coupled donor-acceptor
pair (Ok,Ol). Two mechanisms are shown: (a)–(c) sequence of steps, with Ok and Ol acting as
proton acceptor and donor respectively. (d) Ol acts both as donor and acceptor; the arrows
indicate the movement of the protons during the reaction.

König et al. Page 30

J Phys Chem A. Author manuscript; available in PMC 2009 August 18.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Scheme 2.
Atom labels and weights (in parentheses) associated with the definition of the modified center
of excess charge coordinate (Eq. 7).
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TABLE 1

Values for different reaction coordinates (in Å) for the water wires displayed in Fig. 1.

µz/e v ξz

eq. 2 eq. 3 eq. 6

a 11.4 n/a 0.2

b −0.5 −3.5 −3.8

c −0.9 −4.5 −4.2

d −0.9 −2.9 −4.2

e −0.3 −2.9 −4.2
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TABLE 2

Comparison of barrier heights E‡ and exothermicities ΔE (in kcal/mol) for the proton transfers in carbonic anhydrase
obtained using different protocolsa

E
‡ ΔE

2-water bridge

MEP 8.7 3.0

ζ 9.7 3.2

ζR 9.3 3.0

Step-wise (seq. 1)b 22.7 5.9

Step-wise (seq. 2)b 37.1 5.9

Step-wise (seq. 3)b 29.5 7.3

4-water bridge

MEP 19.6 7.4

ζ 19.0 7.4

ζR 19.9 7.4

a
The MEP results are from minimum energy path calculations using the conjugate peak refinement algorithm. Other results were obtained using adiabatic

mapping calculations using specific reaction coordinates (ζ (Eq.10), ζR (Eq.11) or δ (Eq. 1)). The SCC-DFTB/CHARMM-GSBP protocol was used for

the potential function (see text).

b
In the ”Step-wise” calculations, different sequences of PTs were followed in a strict step-wise manner using consecutive adiabatic mapping calculations

with δ as the reaction coordinate. Following the notation in Scheme I, the PT sequences are: H1-H2-H3(seq. 1); H1-H3-H2 (seq. 2); H3-H2-H1 (seq. 3).

The difference between the exothermicity in step-wise PTs and MEP/ζ,ζR results is due to the relaxation in the MM environment after a larger number

of minimizations; the small value relative to the difference in barrier heights, however, does not complicate the comparison between different PT pathways.
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TABLE 3

Comparison of critical distances (in Å) in the transition state for the proton transfer through two bridging water
molecules in carbonic anhydrase obtained using different protocolsa

MEP ζ ζR

rOZnO1 2.43 2.44 2.48

rO1O2 2.44 2.44 2.44

rO2NH64 2.50 2.51 2.58

rOZnH1 1.26 1.28 1.34

rH1O1 1.17 1.16 1.14

rO1H2 1.14 1.16 1.23

rH2O2 1.30 1.28 1.20

rO2H3 1.27 1.29 1.43

rH3NH64 1.24 1.23 1.16

a
The transition state for MEP is the saddle point along the minimum energy path obtained using the conjugate peak refinement algorithm. For ζ (Eq.10)

and ζR (Eq.11), the structure corresponding to the highest potential energy in the adiabatic mapping results were used. For atom labels, see Scheme I.
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TABLE 4

Comparison of critical distances (in Å) in the transition state for the proton transfer through four bridging water
molecules in carbonic anhydrase obtained using different protocolsa

4-water bridge MEP ζ ζR

rOZnO1 2.42 2.45 2.42

rO1O2 2.44 2.52 2.49

rO2O3 2.43 2.65 2.43

rO3O4 2.42 2.57 2.43

rO2NH64 2.49 2.45 2.42

rOZnH1 1.16 1.15 1.15

rH1O1 1.26 1.30 1.27

rO1H2 1.20 1.15 1.20

rH2O2 1.23 1.31 1.22

rO2H3 1.17 1.04 1.18

rH3O3 1.26 1.53 1.25

rO3H4 1.14 1.03 1.14

rH4O4 1.30 1.62 1.30

rO4H5 1.22 1.15 1.22

rH5NH64 1.27 1.37 1.16

a
See footnote of Table 3. For atom labels, see Scheme I.
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TABLE 5

Geometric and dielectric parameters for the model channel shown in Fig.5: dielectric coefficients for cavity ∈C,
membrane ∈M and solvent ∈S and membrane thickness hM.

∈C ∈M ∈S hM [Å]

vacuum 1 1 1 n/a

water 1 80 80 n/a

membrane 20 1 2 80 20

membrane 30 1 2 80 30
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