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Toward Unconstrained Ear Recognition
From Two-Dimensional Images

John D. Bustard, Student Member, IEEE, and Mark S. Nixon, Associate Member, IEEE

Abstract—Ear recognition, as a biometric, has several advan-
tages. In particular, ears can be measured remotely and are also
relatively static in size and structure for each individual. Un-
fortunately, at present, good recognition rates require controlled
conditions. For commercial use, these systems need to be much
more robust. In particular, ears have to be recognized from differ-
ent angles (poses), under different lighting conditions, and with
different cameras. It must also be possible to distinguish ears
from background clutter and identify them when partly occluded
by hair, hats, or other objects. The purpose of this paper is to
suggest how progress toward such robustness might be achieved
through a technique that improves ear registration. The approach
focuses on 2-D images, treating the ear as a planar surface that is
registered to a gallery using a homography transform calculated
from scale-invariant feature-transform feature matches. The fea-
ture matches reduce the gallery size and enable a precise ranking
using a simple 2-D distance algorithm. Analysis on a range of
data sets demonstrates the technique to be robust to background
clutter, viewing angles up to ±13◦, and up to 18% occlusion. In
addition, recognition remains accurate with masked ear images as
small as 20 × 35 pixels.

Index Terms—Biometrics, computer vision, ear recognition.

I. INTRODUCTION

EACH biological feature has different strengths and weak-
nesses as a biometric. Fingerprints and irises, for example,

are largely unique and, by using controlled sensors, can be
measured accurately [1], [2]. Such features, however, require
subjects to interact cooperatively with a device. Other features,
such as face [3], gait [4], and ears [5], can be measured from a
distance. This makes measurement more convenient and allows
remote recognition, with the potential for more frequent and
covert use, thereby reducing the opportunity for evasion.

Ears are a particularly appealing approach to noncontact
biometrics because they are relatively constant over a person’s
life and are unaffected by expressions, unlike faces. Also,
reported levels of recognition are promising [5]. Unfortunately,
however, such results are typically achieved in conditions that
are significantly more favorable than those found in many
recognition-at-a-distance scenarios. The purpose of this paper
is to consider how such limitations might be reduced to make
progress toward unconstrained ear recognition.
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The following are the five main factors that affect accurate
ear recognition:

1) background: the difficulty of finding the ear in a specific
context that may be cluttered by other objects;

2) occlusion: the difficulty of finding the ear when partly
obscured, for example, by hair, a hat, or earrings;

3) lighting: the amount of light on an ear and the direction
and color of that light;

4) pose: the angle at which the ear is viewed (out-of-plane
rotations);

5) camera: the particular attributes of the camera, including
its field of view, sensing resolution, color sensitivity, and
any noise in the image produced.

An overview of existing ear recognition techniques by
Hurley and Arbab-Zavar [5] shows that some of the best results
use 3-D object matching [6]–[9]. With this approach, ears can
be recognized under varying lighting conditions and poses. One
limitation of these techniques, however, is that a specialized
camera is required to capture the 3-D data. Also, these cameras
need controlled lighting to produce accurate results [10]. For
use in noncontact scenarios, ear recognition needs to work with
much more restrictive data sources, such as surveillance pho-
tographs or security cameras. In practice, this means that ears
must be recognized from 2-D data sources. This paper therefore
focuses on possible approaches to 2-D ear recognition.

The main technical contribution of this paper is to propose
an improved ear registration technique based on the object
recognition algorithm of Brown and Lowe [12]. Their tech-
nique attempts to create a homography transform between a
gallery object and a probe image using scale-invariant feature-
transform (SIFT) point matches. The probe is considered to
include an image of the gallery object if a homography can
be created. In addition, the homography defines the registration
between the gallery and the probe. This creates a very accurate
registration. Brown and Lowe demonstrated good results for
various objects, but their approach is insufficiently discrimi-
nating to rank ear images. The work described in this paper
extends their technique with an image-distance algorithm to
obtain a precise ranking. To calculate the image distance ac-
curately, gallery ears are segmented using a mask. These masks
are semiautomatically created as a preprocessing step on the
gallery.

Collectively, these developments create an automated accu-
rate ear recognition technique that is robust to location, scale,
pose, lighting, background clutter, and occlusion. Effectively,
the technique is a step toward achieving the accuracy of 3-D
ear recognition with unconstrained 2-D data.
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This paper describes the proposed technique and its evalua-
tion, with eight data sets being used to assess its robustness and
accuracy. Section II gives an overview of ear recognition and
discusses existing automated registration algorithms, reviewing
their strengths and weaknesses. Section III then describes the
stages of the technique, including the semiautomatic creation
of gallery masks. The registration calculation and its theoretical
justification are also presented, along with an overview of the
distance measure for accurate ranking. The proposed technique
is evaluated in Section IV. This includes both a traditional
controlled-environment recognition test and more challenging
data sets that evaluate the technique’s robustness to occlusion,
background clutter, resolution, and pose variation. This paper
concludes with suggestions for future work.

II. RELATED WORK

Ears were first suggested as a means for identification by
Bertillon as early as 1890 [13], but it was not until 1955 that
Iannarelli developed a practical process for their measurement
[14]. This involved gathering and analyzing over 10 000 ear
photographs to demonstrate ear uniqueness and viability as
a biometric. His technique was first applied to ear prints in
1967, where they were used as a key piece of evidence in
a criminal case [15]. Ear-print forensics has continued to be
used in prosecutions as recently as 2008. However, at least one
conviction has been overturned on appeal due to insufficient
ear-print quality [16].

In 1998, Burge and Burger proposed one of the first com-
puterized ear recognition systems [17]. Their technique used
an adjacency graph built from Voroni regions of ear-curve
segments. Although their paper had no recognition results, it
prompted a range of further studies into the effectiveness of
ears as a biometric. Force fields [18], neural networks [19],
genetic algorithms [20], and a variety of geometric features [21]
have all been used to produce rank-1 recognition rates between
90% and 100%. However, in 2002, the relative value of ears
was challenged by Victor et al. [22]. They analyzed face and
ears using principal-component analysis (PCA) and concluded
that face produced a consistently higher recognition rate. In a
similar study, however, Chang et al. [23] achieved different re-
sults indicating that there was no significant difference between
the features and suggested that an increase in the presence of
earrings, occluding hair, and lighting variation may have caused
the discrepancy. The work of Chang et al. also showed the
effect of pose and lighting variation on recognition rate, with
pose variation leading to a rank-1 recognition rate below 30%
for both face and ears. This result highlights the importance of
a careful examination of the constraints imposed on the data
sources in any measurement of biometric performance.

The difficulty of addressing variations in pose and lighting
has led to studies of the use of range cameras to extract and
match 3-D surface shape. This includes a variety of 3-D ear
recognition algorithms [6], [7], as well as studies of 2-D, 3-D,
face, and ear fusion strategies [8]. All demonstrated improved
results with fusion, with their best recognition rates, again,
being between 90% and 100%, although, this time, on much
more challenging images.

Range cameras, however, do not provide complete lighting
and pose invariance because they require controlled conditions
to produce accurate results. This has led to a work using “shape-
from-motion” and “shape-from-shading” techniques [24] that
extract the 3-D information prior to processing with a 3-D
recognition algorithm.

Other recent ear publications have explored new 2-D ap-
proaches, such as the use of active contours [25], generic
Fourier descriptors [26], and active shape models [27]. These
techniques have generally been complete recognition systems
with an automated ear enrolment procedure. In addition, three
techniques have been developed to improve robustness to occlu-
sion: one using SIFT feature-point models [28], another using
modular PCA [11], and the third using nonnegative matrix
factorization [29]. However, these systems do not address the
more challenging variations such as pose or lighting.

Essentially, 2-D ear recognition has three stages: detection,
registration, and classification. Here, detection is referred to as
the finding of an ear in a probe image, registration as the align-
ing of a potential gallery ear with the probe, and classification
as the ranking of gallery ears to identify the most likely person
in the probe. Most existing research has concentrated on the
classification stage, with ears being identified and registered
manually. Good recognition has been obtained with manual
registration, even in the presence of occlusion [11]. However,
there is currently no well-established scheme for automatic
2-D detection and registration. Several techniques have been
proposed, but many rely on controlled imaging conditions, such
as assuming that the image is a single head profile in front of a
flat background.

In terms of registration, a number of techniques have been
suggested. Broadly, they can be categorized as edge-shape-
matching and area-matching approaches.

For edge shape matching (usually based on finding the outer
ear curve), Ansari and Gupta [30] propose a method based on
completing convex curved-edge regions to find the outer ear.
Despite producing precise registrations, this approach can gen-
erate many false positives by matching nonear convex regions.
Also, occlusion is likely to invalidate the convex assumption.

Arbab-Zavar and Nixon [31] have proposed an enrolment
technique exploiting the elliptical shape of the outer ear. This
has produced good results with occlusion, but the accuracy
of registration is much less than the one that can be achieved
manually. Also, it makes the assumption that the ear is the
principal elliptical shape in the image. This restricts its use to
controlled settings, as the presence of background objects can
produce false positives.

The remaining approaches involve area matching. These
techniques can have very fast implementations but often have
lower registration accuracy, particularly when the objects are
occluded. One approach, originally developed for face recog-
nition, is the use of a Haar-like feature object detector, as
proposed by Viola and Jones [32]. This is a fast and robust tech-
nique but suffers from inaccuracy in localization. A refinement,
for ear detection, by Abate et al. [26] uses the edge center of
mass for localization, but this is sensitive to occlusion.

Abdel-Mottaleb and Zhou [33] use Hausdorff edge tem-
plate matching between an example ear helix edge and edges
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identified on skin-colored regions of an image. This relies on
relatively constrained lighting conditions (to detect the skin
region accurately) and is sensitive to outer ear edge occlusion
by hair.

Finally, a real-time technique has been developed by Jeges
and Máté [34]. This uses edge-orientation pattern matching, fol-
lowed by an active contour. By combining the speed of template
matching with the accuracy of active contours, registration can
be achieved successfully. This process is robust to significant
pose variation, but the pattern-matching localization is sensitive
to occlusion, leading to poor active-contour fitting.

The technique described in this paper uses a combination
of approaches to achieve robustness. The initial registration
process uses SIFT feature-point matching. These features have
been shown to be robust under many variations in real-world
environments [35]. By using feature points, the registration is
inherently robust to occlusion, as any four point matches are
sufficient to register the ear. Also, by modeling the ear as a
planar surface and registering using a homography transform,
the ear can be recognized across variations in pose and camera
properties. To rank registered ears, a distance measure is used,
which performs both normalization and outlier detection. This
makes the ranking step robust to both lighting and occlusion.
Finally, the combination of feature matches, homography reg-
istration, and image distance is sufficiently discriminating to
successfully detect and recognize ears within cluttered environ-
ments. This technique is now described.

III. TECHNIQUE

Before any probe images can be tested, the gallery images
are processed to segment the ears. Each gallery image is then
analyzed to determine its SIFT feature points. Once this is
complete, a probe image can be recognized.

The first step is to identify feature points in the probe. For
each of these points, the gallery is searched to find correspon-
dences. If four points can be matched between the probe and the
gallery, they are used to calculate a perspective transformation
that registers the probe. Once the two images are aligned, the
distance between the images is calculated. The nearest gallery
image identifies the person.

Each stage of this process is described in detail in the
following sections.

A. Building the Gallery Database

Images of the same ear taken at different times can vary
significantly due to changes in hair length and color. This
variation can create many false point matches and significantly
reduces the accuracy of image-distance measurements. For this
reason, gallery ears are masked to segment the ear from the
surrounding skin and hair, as shown in Fig. 1.

Ideally, these masks would be created automatically, thus
enabling the efficient enrolment of subjects from large existing
data sources such as criminal mug shots. Unfortunately, without
a model of all possible appearances, new ears cannot be auto-
matically detected. However, the number of manually created
masks can be greatly reduced by using a bootstrapping process.

Fig. 1. Gallery-ear image and its associated mask.

Fig. 2. Set of gallery ears that partially match the seed ear.

Fig. 3. Masks automatically created from the homography registration of seed
to the gallery.

This approach exploits the fact that while different people’s ears
vary significantly, they often have regions of local similarity
(see Fig. 2).

One explanation for this similarity is that ear variations can
be modeled as a set of independent smooth local deformations.
Some evidence for this hypothesis has been provided by the
model-based ear recognition algorithm of Arbab-Zavar et al.
[28], which describes six growth factors that define an ear’s
shape. When different ears have local similarity, matches can
be made between their SIFT points. If four SIFT matches are
detected, the ears can be registered with one another. These
registrations can then be used to transfer the masks (see Fig. 3).

These newly masked ears can then be matched against the
rest of the unmasked gallery. These ears may have other local
regions that are similar, and so, more masks can be transferred.
This process is repeated until no further matches can be made.
At this point, one of the unmasked ears must be selected and
manually processed. This seed can then be used to bootstrap
the remaining gallery. This process repeats until all ears have
masks. In this way, only a subset of the gallery requires manual
masks to be created. In addition, as the gallery size increases,
it becomes more likely that ears will form matches and that a
smaller percentage of manual masks will be required.

B. Feature Detection

SIFT [36] was used for the detection of features. It is robust
to scale, in-plane rotation, and lighting and has some robustness
to pose (out-of-plane rotation). The main parameters to the
original SIFT algorithm are of the resolution of the Gaussian
image pyramid. Where possible, default values were used, with
the number of octaves based on the image size, with the lowest
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octave being of size 8 × 8. Each octave had three intermediate
Gaussian blurred versions. To ensure robustness to lighting
contrast and brightness, the features were normalized.

To make the matching of features against a large gallery more
efficient, the approximate nearest neighbor (ANN) algorithm
[37] was used. This enables efficient 128-D point matches in
O(log(n)), where n is the number of feature points in the
gallery. SIFT points were considered a potential match if their
squared Euclidean distance was less than 0.45, with a maximum
of 1024 matches being returned (closest first).

C. Registration Calculation

By making the simplification that an ear is a planar structure,
ears can be registered accurately. If ears are enrolled with
the ear plane facing the camera, the image produced can be
used to approximate the ear appearance with varying poses.
By finding four point matches between an enrolled gallery
image and a probe, a homography can be calculated [38]. This
homography can be used to transform the gallery image to
match the position, rotation, scale, and pose of the probe ear.
This transformed image can then be used to accurately compare
the two images.

The homography is calculated as follows.
Letting x be a homogeneous point in the probe image and x′

be a homogeneous point in the gallery image, homography H
is defined by

x′ = Hx

where

x =

⎡
⎣x

y
1

⎤
⎦ x′ =

⎡
⎣ x′

y′

1

⎤
⎦ H =

⎡
⎣h1 h2 h3

h4 h5 h6

h7 h8 h9

⎤
⎦ .

This can be expressed as

x′ × Hx = 0.

By considering H as a matrix of row vectors hjT

H =

⎡
⎣h1T

h2T

h3T

⎤
⎦

the cross product can be expanded to give

x′ × Hx =

⎛
⎝ y′h3Tx − h2Tx
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⎞
⎠ .

Because hjTx = xThj, this can be rewritten as⎡
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⎞
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This is a linear equation in h of the form Ah = 0, where A
is a 3 × 9 matrix and h is a 9-vector.A has only two linearly
independent equations, as the third row is the sum of −x′ times

the first row and −y′ times the second row. By omitting this
equation, the remaining set becomes

[
0T −xT y′xT

xT 0T −x′xT

]⎛
⎝h1

h2

h3

⎞
⎠ = 0.

This shows that each point correspondence adds two inde-
pendent equations in the entries of H. By combining these
equations into a single matrix, four point correspondences
create a matrix with size 8 × 9 and rank 8. This matrix has
a 1-D null space, which can be solved to produce a solution to
H up to a nonzero scale. As these points are homogeneous, if
the transformed points are normalized by dividing through by
their third component, this scale factor will be removed.

The SIFT-matching distance is quite generous to enable large
variations in pose and lighting. However, this will result in a
significant number of false positives in the point correspon-
dences. To reduce such errors, an affine consistency constraint
was applied. This constraint groups the SIFT matches into sets
of points that have an approximately equal in-plane affine trans-
form. This constraint is reasonable under small pose variations
where the homography will be close to affine.

As part of the SIFT detection process, there is a search for
interest points across locations and scales. When an interest
point is detected, the region surrounding it is used to calculate
a canonical orientation. By comparing these values between
the probe and the gallery, each point can be used to calculate
an approximate affine transform between the two images. By
grouping points into bins based on their affine transform, many
false positives can be excluded.

The potential space of affine transforms was subdivided into
four dimensions: two for position, one for logarithm of the
scale, and one for rotation. Each of these dimensions was then
partitioned into bins: eight for scale and rotation and one for
every 128 pixels in width and height. A low resolution of bins
was used to ensure that the matching is robust to pose variation.
Each point match is placed in the appropriate bin and its closest
neighbor (16 bin entries per point). If any bin contains four or
more point matches, its points are passed to the next stage.

This process greatly reduces false positives, but some invalid
point matches remain. To address this problem, a RANdom
SAmple Consensus (RANSAC) algorithm was used. Random
sets of four points were selected from the list of point cor-
respondences and a homography calculated. The homography
that matches the most points within some threshold, i.e., in this
case, 1% of the ear mask size, was selected as the best match.

Gallery images that have four affine matching feature points
are then passed to the distance measure. The combination of
SIFT-matching and affine constraints greatly reduces the set of
potential gallery matches. This process is sufficiently accurate
to prevent false matches, both with the majority of incorrect
ears and with background clutter.

D. Distance Measure

Once the gallery images have a good registration, they are
matched against the probe. The distance is calculated as the
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robust sum of the squared pixel errors after normalization. The
distance measure is made robust to occlusion by thresholding
the error. Pixels that differ by more than half the maximum
brightness variation are considered to be occluded and, thus,
excluded.

Normalization involved adjusting the scale and offset of the
intensity values to achieve a defined mean and standard devia-
tion before comparison. This removed variation in brightness
and contrast due to different lighting conditions and camera
properties

G(I, x, y)

= (r (I(x, y)) + g (I(x, y)) + b (I(x, y))) /3

∀x ∈ [1, . . . , w]

mean(G, I)

=

(
h∑

y=1

w∑
x=1

G(I, x, y)

)/
(wh)

scale(G, I)

=

√√√√ h∑
y=1

w∑
x=1

(G(I, x, y))2 − mean(G, I)2
/

(wh)

N(I, x, y)

= (G(I, x, y) − mean(G, I)/scale(G, I))

∀x ∈ [1, . . . , w] ∀y ∈ [1, . . . , h]

notoutlier(I1, I2, x, y)

=
{

0 ‖G(I1, x, y) − G(I2, x, y)‖ >= 0.5
1 ‖G(I1, x, y) − G(I2, x, y)‖ < 0.5

}

ndistance(I1, I2)

=
h∑

y=1

w∑
x=1

notoutlier(x, y). (N(I1, x, y) − N(I2, x, y))2

where G is a function that returns the grayscale values of an
image, N is a function that returns the normalized values of an
image, and w and h are the width and height of those images,
respectively. In addition, r(), g(), and b() are functions that
return the magnitude of the red, green, and blue components,
respectively.

IV. EVALUATION

Eight data sets were used for evaluation. The first provided a
straight test of recognition accuracy on a relatively constrained
data set. For this, a subset of the XM2VTS [39] face-profile
database was chosen. It consists of 63 subjects with relatively
unoccluded ears. This is the same data set used by Hurley et al.
[18] and Arbab-Zavar et al. [28].

The second data set was created by recording those ears
of 20 subjects from a range of angles to test the technique’s
robustness to pose variation. The remaining data sets were
synthesized from these XM2VTS images to test the effects of

TABLE I
RECOGNITION RATES FOR DIFFERENT REGISTRATION TECHNIQUES

TABLE II
NUMBER OF FEATURES AT EACH STAGE XM2VTS DATA SET

occlusion, background clutter, resolution, noise, contrast, and
brightness.

A. Recognition Evaluation

Comparison Implementations: For the constrained gallery
set, two comparison implementations were created. The first
used manually registered ear images, applying the technique
described by Yan and Bowyer [6]. This involved defining the
triangular fossa and incisura intertragica of each ear manually.
These landmarks were then used to standardize the scale and ro-
tation of all gallery and pose images. The resulting normalized
images were segmented with a rectangular mask in the center
of the image capturing the inner ear features.

The second technique applied the algorithm described by
Arbab-Zavar and Nixon [31] to register the ear automatically,
using the outer ear ellipse. In both cases, the intensity values
had their mean and standard deviation normalized. These reg-
istered images were ranked by using the PCA technique giving
the results shown in Table I.

Each technique used the “leave-one-out” strategy, with each
image being removed from the gallery and being tested against
the rest of the data set in turn.

Mask Creation: The bootstrapping process, using the first
ear, matches over 75% of the gallery. In total, 22 masks were
created manually to cover 252 gallery images.

Generally, the masks are not a precise fit for the ears, but the
accuracy is sufficient to obtain enough feature points for the
registration and distance measures.

Registration Calculation: It can be seen from Table II that
the homography registration is the primary point at which the
ears are recognized, going from almost the entire gallery down
to four candidate images. The registration calculation is also
the cause of 4% of the probe images remaining unclassified.
All of these ears failed to produce a valid homography because
of insufficient SIFT point matches.

B. Robustness Evaluation

Gallery: The clutter data set was created by randomly
placing XM2VTS masked ear images on a set of complex
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Fig. 4. Examples of more challenging probe images. (From left to
right) Background clutter, occlusion, and pose variation.

TABLE III
AVERAGE RECOGNITION RATES FOR CONTROLLED

AND CLUTTERED ENVIRONMENTS

background images. These images more closely represent the
type of unconstrained environment that was present with covert
biometrics. The occlusion data set was built by adding varying-
sized solid black rectangles over the top or side of the original
gallery images. This reflects the areas of the ear that are most
frequently occluded by hair. To determine the percentage of
occlusion that each rectangle represents, the occlusion of each
mask was calculated and then averaged across the gallery. The
resolution data set was created by linearly downsampling and
then bicubically upsampling the probe images. The contrast
data set was constructed by subtracting the mean pixel color,
scaling the result, and then adding back the mean. Similarly,
the brightness data set added an offset to each pixel’s channel.
Finally, to generate the pose data set, 20 subjects were recorded
by letting them turn in front of a camera. Both sides of the
head were recorded to obtain 40 unique ears. For the purposes
of evaluation, each ear was treated as an independent subject.
Each person had a camera calibration grid affixed to a hat that
was worn as they were photographed. This grid enabled the
camera intrinsics and pose angles to be calculated accurately.
These calculations were performed using the standard camera
calibration algorithms provided with the OpenCV [40] libraries.
Fig. 4 shows examples from some of these data sets.

Results: Tables III and IV summarize the results of these
recognition tests.

Background clutter, as well as up to 30% occlusion from
above and 18% occlusion from the side, was found to have little
effect on the recognition rate. However, any greater occlusion
significantly reduced the technique’s accuracy. Once again, this
was due to failing to find sufficient SIFT matches to calculate
the homography. With resolution changes, images remained
recognizable at 50% of their original size (i.e., when reduced
from 40 × 70 to 20 × 35 pixels, depending on the mask size).
The contrast results show that the approach maintains 90%
recognition accuracy with 80% of the contrast. The approach
is sensitive to brightness, however, with a 20% increase almost

TABLE IV
AVERAGE RECOGNITION RATES FOR POSE, OCCLUSION, RESOLUTION,

NOISE, CONTRAST, AND BRIGHTNESS
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TABLE IV
(Continued.) AVERAGE RECOGNITION RATES FOR POSE, OCCLUSION,

RESOLUTION, NOISE, CONTRAST, AND BRIGHTNESS

Fig. 5. Recognition rate with varying pose, with and without synthesized ear
images.

halving the recognition rate. In both cases, recognition failures
are primarily due to failing to find SIFT matches.

Fig. 5 shows the average recognition rate for 40 ears with
varying pose. The technique maintains 100% recognition rate

TABLE V
COMPARISON OF RANK-1 RECOGNITION RATES WITH

THOSE OF OTHER PUBLISHED APPROACHES

up to ±13◦. However, this performance is dependent on en-
rolled gallery ears being recorded with the ear plane facing the
camera. If gallery ears are protruding, e.g., if they are recorded
with the ear plane tilted by 30◦ from the camera, the pose
invariance is reduced to ±10◦. It should also be noted that the
pose robustness is approximately equal for both forward and
backward yaw rotations of the head.

As an experiment to improve this technique’s robustness to
pose variation, additional gallery images were synthesized at
novel poses. This was achieved by treating the ear image as a
plane photographed at an estimated distance with an approxi-
mated field of view. The plane was then rotated in the image
plane x- and y-axes and rerendered to simulate different poses.
This increased not only the number of SIFT matches but also
the number of false positives. As the ears are not completely
planar, the image distance increases with the angle, resulting
in incorrect ears having a shorter image distance, and so, no
significant increase in robustness was observed.

Table V compares the rank-1 recognition rates of the SIFT-
based approach described in this paper with that of other
published approaches. Direct comparison is not possible in any
of the cases described because of the use of different data
sets and variations in the way that evaluation is performed. In
particular, occlusion is calculated differently in a SIFT-based
approach from that used in nonnegative matrix factorization
work. Thus, for each study in the table, the closest correspond-
ing occlusion measure has been estimated. The recognition
rates are calculated using the largest occlusion factors for which
the homography approach remains accurate, namely, 30% from
above and 18% from the side.

Generally, the existing work has concentrated on demonstrat-
ing high accuracy on controlled data sets; therefore, many of the
comparison techniques do not evaluate the robustness to quality
factors, such as noise and resolution. In addition, all of the
approaches constrain the probe image to a single head profile,
removing the challenging problem of background clutter.
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The first comparison technique in Table V, developed by
Theoharis et al. [9], uses range data and achieves accurate
results on a large data set. By using 3-D data, the technique
is likely to have some pose and lighting invariance, but this
analysis is not presented. The main disadvantages are the need
for manual ear detection and the dependence on a specialized
range camera. Other techniques based on 3-D data achieve
similar recognition rates and have similar restrictions [6], [7].

The small study by Cadavid and Abdel-Mottaleb [24] has a
relatively low recognition rate. This may be due to the inherent
sensitivity of the technique, particularly when applied to low
resolution data, or it may reflect the more challenging nature of
their data set.

The approach developed by Hurley et al. [18] uses the force-
field transform and has one of the highest published recognition
rates. It uses the same 63-subject data set as that in this paper.
However, as the transform effectively performs a large blur
operation on the image, it is likely to be sensitive to clutter and
occlusion.

The work of Arbab-Zavar et al. [28] uses a SIFT-based
model and is evaluated using the same data set as that in this
paper. The recognition rates in the table are based on manual
registration. When automatic registration is used, recognition
rates fall from 92% to 87%. Their approach also has some
occlusion robustness, but it is less than that achieved by the
homography technique described in this paper.

The work of Yuan et al. [29] has an 85% rank-1 recognition
rate with 30% occlusion, which is less than that of the homog-
raphy approach. However, this may be due to the less pose-
constrained nature of their data set.

The study by Chang et al. [23] uses PCA to compare ear
images using the eigenear approach. The published results of
this technique are much lower than those of other approaches.
However, this may be affected by the precision of their manual
registration.

In contrast, the shape model produced by Lu et al. [27]
achieves high recognition rates with a 5◦ pose variation. How-
ever, like many of these initial approaches, the technique is
likely to be sensitive to occlusion.

In summary, the existing work demonstrates many viable
alternative approaches to ear recognition. However, they cur-
rently lack the robustness and automated detection that are
necessary to be used as passive recognition systems. This paper
describes a complete and accurate technique that is a step
toward achieving such a system. As demonstrated in Tables III
and IV, this approach is more robust to a much wider range of
variations than any existing approach.

V. FURTHER WORK

The approach described is relatively successful in identifying
ears under different conditions, but as is evident from Table III,
it would be desirable to increase the degree of pose variation
over which recognition can be achieved. One strategy would be
to record subjects at multiple angles, either at gallery creation or
as probes. Alternatively, if this were not possible, the synthesis
algorithm could be improved through the use of a morphable
model [41].

Another area for improvement is the computation time of the
algorithm. Despite the use of the ANN library, the processing
of each 720 × 576 probe image takes over 4 min on a 2.4-GHz
PC. The majority of this time is spent in calculating and
measuring the image distance and the RANSAC homogra-
phies. Each image requires over 10 000 of these calculations
on average. In total, this takes over 3.5 min. The next most
expensive stage is the SIFT-matching process, which takes
around 1 min. The remaining calculations, such as the detection
of SIFT points in the probe, take seconds and have a relatively
small impact on performance. Further work will explore the
improvement of these times through a generic ear model, such
as the Viola–Jones classifier [32] trained on ear images. The
model would identify regions where an ear is likely to be found,
thereby reducing the number of SIFT points that need to be
matched. Further improvement might be achieved through a
histogram-pyramid-matching technique. Typically, this enables
efficient comparisons between sets of high-dimensional fea-
tures and can be scaled to very large data sets.

In addition, the current system uses image pixel difference as
a distance measure. Further work will investigate the benefits of
more invariant measures such as Hausdorff edge distances [42].

To fully automate the enrolment process, there is a need
to construct a model of ear variation so that novel ears can
be detected. The current system requires precise matches be-
tween feature points and is therefore limited in its capacity
for generalization. An alternative approach would be to train a
classifier for a set of ear feature points that are common across
all ears. This is similar to the approach used in face recognition
to detect features such as the corners of eyes and lips. The
difference measure could also be generalized by constructing
an active appearance model for the ear. By matching against a
single model rather than every ear in the gallery, the recognition
system would not suffer from the same performance issues for
large data sets. Also, by adding a final validation step using
SIFT points and the robust distance measure, there is a potential
to achieve the same accuracy and robustness of recognition with
improved performance and fully automatic enrolment.

VI. CONCLUSION

This paper has described a new technique for ear recognition
in 2-D images using homographies calculated from SIFT point
matches. When applied to the XM2VTS database, the technique
has given results that are comparable to that of PCA with
manual registration. In addition, when used on more challeng-
ing data sets, it shows robustness to background clutter, 18%
occlusion, and over ±13◦ of pose variation. Further work will
focus on performance improvement and increased robustness.

Overall, this paper has demonstrated that automatic uncon-
strained 2-D ear recognition can be achieved effectively with
the proposed homography approach.
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