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Abstract

The extent of tumor heterogeneity is an emerging theme that researchers are only beginning to 

understand. How genetic and epigenetic heterogeneity affects tumor evolution and clinical 

progression is unknown. The precise nature of the environmental factors that influence this 

heterogeneity is also yet to be characterized. Nature Medicine, Nature Biotechnology and the 

Volkswagen Foundation organized a meeting focused on identifying the obstacles that need to be 

overcome to advance translational research in and tumor heterogeneity. Once these key questions 

were established, the attendees devised potential solutions. Their ideas are presented here.

In many malignancies, molecular and cellular heterogeneity within a single tumor, between 

different sites of neoplasia in a single patient and among tumors from different patients 
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confounds researchers’ understanding of tumor evolution and their ability to design and 

select effective therapies and curtail treatment resistance1–3.

Researchers are still, however, at the very beginning of understanding the full extent of 

tumor heterogeneity (including the contribution of the tumor microenvironment), which 

types and aspects of tumor heterogeneity are relevant in which tumor types and in which 

clinical scenarios, and how to counter and/or exploit tumor heterogeneity for therapeutic 

gain.

To begin to tackle these issues, Nature Medicine, Nature Biotechnology and the Volkswagen 

Foundation invited 20 scientists from around the globe for a two-day brainstorming session 

in the beautifully restored Herrenhausen Palace in Hannover, Germany (Fig. 1). Reflecting 

the variety of expertise needed to tackle the issues mentioned above, this group included 

computational biologists, technology developers, cancer biologists, clinicians, industry 

representatives and regulators. The aims were to identify the most important questions about 

tumor heterogeneity and map paths to answering them. We hope the new collaborations and 

networks forged at the meeting will help make some of these paths a reality.

All in attendance felt that sharing the group’s findings—especially the questions identified 

as most pivotal—with the broader community was key. This Perspective aims to do just that 

and is organized in the same manner as the meeting. Whereas the first day involved all 

attendees brainstorming as a single group about the most important questions, the second 

day saw four smaller discussion groups (‘cancer evolution’, ‘beyond the genome’, ‘clinical 

and regulatory’ and ‘technology’) brainstorming about the answers to four or five select 

questions. At the end of the second day, each group presented their conclusions to the larger 

group. The question-and-answer period that resulted proved to be a highlight of the meeting.

Cancer evolution

Many biological aspects of tumor heterogeneity are unknown, but the group focused on 

establishing the basic premises by which we can define and study the parameters of tumor 

evolution.

What is a clone?

The term ‘clone’ is used widely in the field, but discussion in this group revealed that, 

perhaps surprisingly, there is no consensus about what it indicates; in fact, this question 

sparked some of the most animated discussion at the meeting. In principle, under the 

assumption that tumors arise from a single cell, each tumor can be considered a clone. In 

this scheme, trunk mutations—also called founder mutations—that are present in every cell 

have a cancer cell fraction (CCF) of 1. All cells within a tumor with a CCF < 1 can be 

considered subclones, at least in terms of their relative population frequency within a given 

lesion. However, the group recognized that even this definition is misleading owing to an 

illusion of clonality within a single biopsy, where a particular mutation can appear clonal in 

one biopsy, with a CCF of 1, but subclonal or absent altogether in subsequent tumor 

sampling (Fig. 2).
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What is a driver?

The term ‘driver’ typically denotes a genetic event associated with tumor initiation or 

progression. Although it might traditionally be viewed as a tumor cell–autonomous 

alteration that promotes tumor proliferation, after discussion we felt it would be useful to 

extend the definition to encompass more of the complex biology of pro-tumorigenic events. 

In other words, a broader biological definition of ‘cancer driver’ would be a cell-

autonomous or non–cell-autonomous alteration that contributes to tumor evolution at any 

stage—including initiation, progression, metastasis and resistance to therapy—by promoting 

a variety of functions including proliferation, survival, invasion, or immune evasion. 

Notably, such an alteration could be the result of direct mutational events, including genetic 

and epigenetic events, or of aberrant signals and mutations in one or more of the driver’s 

regulators and cognate binding partners. Accordingly, candidate drivers can be identified 

through a variety of methodologies, including statistical analysis of genetic or epigenetic 

alterations, functional screens and analysis of regulatory networks4. As such, they must be 

confirmed by experimental evidence, including preclinical in vitro and in vivo data and 

clinical data. Complicating the matter further, as the role of a driver is constrained by spatial 

and temporal contexts, genetic events can act as drivers at one stage of tumorigenesis and as 

passengers at another stage, and vice versa.

What is the source of heterogeneity in cancer, and what is the contribution of 
heterogeneity to cancer evolution?

Heterogeneity in cancer is driven by two principle factors: the introduction of genetic (or 

epigenetic) alterations mediated, for example, by genomic instability, and the evolutionary 

selection thereof. Notably, although evolution is driven by selection of phenotypes 

according to their relative fitness, not all somatic genetic alterations have a recognizable 

phenotypic consequence, and even fewer provide a fitness advantage. Selection for 

phenotypic alterations can favor the outgrowth of cells with genetic alterations associated 

with that phenotype. Therefore, in the study of cancer evolution, it is likely that functional 

screening combined with multidimensional phenotyping—measuring signaling, epigenetic, 

transcriptional, metabolic and other alterations in addition to genetic alterations—will be 

most informative in revealing the sources of the phenotypes driving tumorigenesis. 

Generating and interpreting these data is not trivial, and the unanswered technological 

questions related to these issues are covered below. Regarding the contribution of 

heterogeneity, although heterogeneity can be broadly considered to be a trait that allows 

tumors to overcome evolutionary pressures, it can also reflect vulnerabilities that could be 

exploited therapeutically. This makes it even more important to develop tools to quantify 

and model tumor heterogeneity.

How can tumor heterogeneity be modeled in preclinical experiments?

One challenge in assessing the dynamic contribution of heterogeneity as a trait of tumor 

progression is the fact that current pre-clinical tumor models do not recapitulate the 

condition under which heterogeneous tumors arise and evolve in humans5. For example, 

although genetically engineered mouse models (GEMMs) have been instrumental in 

revealing crucial aspects of tumor biology, tumors in these animals need to be analyzed 
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when they are relatively small, for ethical reasons. The tumors are also homogeneous, driven 

by a small number of genetic alterations, and can be polyclonal in nature, in contrast to the 

monoclonal nature of the majority of human cancers. Tumor burden, metastatic potential 

and tumor longevity are also not recapitulated adequately in mouse models. New 

technologies need to be applied to these problems. For example, clustered regularly 

interspersed short palindromic repeat (CRISPR)–CRISPR-associated protein 9 (Cas9) 

genome editing, perhaps used in combination with existing GEMMs designed by transgenic 

or viral expression of tumor-driving alterations, can help recapitulate the genetic complexity 

accumulated during human tumor evolution. Patient-derived xenograft (PDX) models 

capture, at least initially, some of the heterogeneity of patient samples. However, subclones 

can be selected for increased fitness for growth in the mouse host, which lacks the proper 

micro-environmental and immune components that may otherwise influence subclonal 

selection. Ongoing efforts to humanize mouse models may help incorporate relevant 

features that shape tumor evolution in humans, but differences in the longevity and size of 

the mouse compared to the human, together with ethical considerations inherent in the 

conduct of mouse experiments, will probably limit application of these models to the human 

disease. Beyond animal models, in vitro approaches such as tumor slice cultures can be 

exploited to recapitulate a snapshot of the tumor in its native environment, and organoids 

can be used to model tumorigenesis in human cells. In silico models that use multiscale 

parameters can also create interesting hypotheses that are experimentally testable. However, 

because no model is perfect, many in the group felt that there was no substitute for studying 

tumor evolution in patients.

Beyond the genome

What is the contribution of the epigenome to tumor phenotype and clinical outcome?

Cell states are defined by the interplay of the genome, epigenome, transcriptome and 

proteome in each tumor cell (Fig. 3). Because cell states tend to be self-stabilizing, there are 

typically fewer distinct cell states in a tumor than the degree of genetic, epigenetic and 

transcriptional heterogeneity would suggest. Thus, even genetically distinct cells may be in a 

similar cell ‘state’ and hence may be susceptible to treatment with the same drugs. On the 

other hand, even genetically identical cells can exist in different cell states, owing to 

epigenetic differences and influence of the microenvironment. But it is time to stop thinking 

about the genetic and epigenetic contributions to cell state separately, because their 

contributions to cell state may be intertwined. Furthermore, epigenetic defects, such as 

promoter CpG island hypermethylation–associated silencing of DNA repair genes, are 

known to cause genetic changes, and translocations and mutations can cause epigenetic 

disruption, which creates mutual dependencies between epigenetic and genetic traits.

Researchers must strive to identify relevant cell states in cancer by integrating different data 

sets and, once these are identified, work toward therapeutic strategies based on inferred cell 

states. Epigenetic data form only a part of such integrative analysis, but epigenetic 

modifications are dynamic and responsive to environmental pressures, so they may exert a 

particularly strong role in the definition of the cell state and behavior at any given moment 

in response to therapy. In addition, although epigenetic marks are dynamic, they represent 
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the history of the cancer: once a cell has passed through a particular cell state, some of these 

epigenetic marks remain. Moreover, epigenetic marks can also reflect the potential of the 

tumor to respond to an environmental or therapeutic pressure. Epigenetic marks are 

therefore unique in their ability to provide information about the previous, present and 

potential future states of a cell. They can also provide a built-in ‘barcode’ that can measure a 

tumor’s epigenetic clonality6.

Because epigenetics provides a different and complementary paradigm to the analysis of 

genetic mutations, it may be possible, once these states have been defined, to use two or 

three important epigenetic markers to infer cell states. Furthermore, as the epigenetic state of 

cancers is more plastic than that of normal development, such contributions may be critical 

to understanding phenotypic changes of cancers, such as the epithelial-mesenchymal 

transition, the capacity to disseminate beyond the primary site and drug resistance.

What methods and samples are needed to describe and understand the heterogeneity and 
influence of the tumor microenvironment?

To understand the influence of the microenvironment on cell state, researchers need to 

coordinately characterize DNA sequence, epigenome, transcriptome, protein, metabolites 

and infiltrating immune cells in both the tumor and the stroma. Evaluation of data from 

single cells will provide additional insight into heterogeneity. Only through integration of 

such data, using either statistical and machine learning approaches or analysis of regulatory 

and signaling models, can we begin to develop a more robust understanding of cancer states. 

As a consequence, there will continue to be increasing need for computational biologists. 

Such technologies are discussed further below.

How can the immunogenicity of tumors be increased?

Immunogenicity depends, in part, on mutations that generate epitopes that are not 

recognized as self by tumor-infiltrating T lymphocytes. Therefore, chemotherapy and other 

genotoxic drugs may improve the outcome of immunotherapy interventions, including 

adoptive T cell transfer and immune checkpoint blockade, by generating mutations or 

modifying the immune microenvironment7. However, it is unclear whether subclonal 

changes in immunogenicity are enough to cause the whole tumor to be eradicated by the 

immune system. It is possible that applying radiation therapy before checkpoint blockade 

will result in increased efficacy. Isolated cases have suggested an abscopal effect of such 

treatment, but this has yet to be confirmed in a randomized clinical trial8. Recent data 

suggest that the sustained benefit of radiation combined with blockade of cytotoxic T 

lymphocyte–associated protein 4 (CTLA4) may also require blockade of programmed death-

ligand 1 (PD-L1) to reverse T cell exhaustion and that radiation increases the diversity of the 

T cell–receptor repertoire on intratumoral T cells9. Oncolytivc viruses may also be used to 

increase immunogenicity via the induction of an inflammatory response upon local injection 

of virus, leading to control of distant tumors by an increase in tumor-infiltrating cytotoxic 

populations10. For example, Talimogene laherparepvec (T-VEC) has shown promising data 

in phase III clinical trials11.
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Clinical and regulatory considerations

What aspects of tumor heterogeneity matter in the clinic, and how can they be 
transformed into diagnostic strategies and treatment guidelines including biomarkers of 
response?

There is a dearth of information on the degree to which heterogeneity affects the clinical 

management of patients. More work to document the phylogeny and generate atlases or road 

maps for each tumor subtype is needed. This will enable more confident identification of 

trunk mutations for each subtype and understanding of the branching properties. One could 

easily assume that between the Cancer Genome Atlas (TCGA), the International Cancer 

Genome Consortium (ICGC) and other consortia the tumor genomic data needed to generate 

road maps for each tumor subtype are readily available, but the discussion group felt that 

none of the existing tumor genome repositories are sufficient for this sort of analysis. This is 

because these programs were not designed to address the heterogeneity component of 

cancer, and they use platforms that characterize tumors in ‘bulk’, giving results that average 

across all tumor clones. Although bioinformatics tools have been developed to tease out the 

clonal data in these data sets, these inherent limitations still exist. What is needed for each 

subtype is a minimum number of primary tumors; the minimum number is likely to vary 

according to the tumor subtype and its inter-patient heterogeneity. Ideally, researchers would 

obtain multiple regions from each tumor to capture spatial heterogeneity. To differentiate 

trunk mutations from subclones, each region must be sequenced deeply. Epigenetic and 

other analyses should also be performed. Patients who donate tumors must then be followed 

longitudinally, and their tissue—where practical—and blood should be collected at regular 

time points and subjected to deep sequencing to track the molecular changes. Clinical 

annotation of samples and phenotypic correlation is essential at each step. This sort of 

analysis should reveal a finite number of trunk (clonal) and tree (subclonal) mutations, 

which can inform on the signaling pathways involved, for each tumor type. Excitingly, some 

new studies, such as TRACERx (Tracking Non-small Cell Lung Cancer Evolution through 

Therapy (Rx); NCT01888601), incorporate several of these design elements, albeit in a 

single tumor type.

How can we maximize the extraction of molecular and clinical data that are sharable and 
likely to lead to benefits for patients?

The research community needs new consortia composed of academic medical centers, 

industry partners and regulatory agencies. Prior to clinical sample collection or data 

generation, all stakeholders need to agree on a minimal set of metadata that need to be 

collected for each tumor in a format that enables sharing; characterization must be 

systematic and agnostic to the tumor subtype. Genomic, clinical and any other data—once 

collected—must be added to a suitable repository and within an agreed-upon time frame. To 

maximize the extent of effective data sharing and minimize limitations caused by 

differences in consent practices across institutes, municipalities and nations, new 

harmonized consent practices consisting of either universal consent forms or an option for 

patients to waive all restrictions on global sharing of data—even data, such as germline 

genetic variants, that have the potential to reveal the identities of patients and their relatives

— are needed up front. Patients should be empowered to drive data sharing—through 
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formation of new patient advocacy organizations, for example. Encouragingly, several of 

these considerations are being incorporated into new consortia such as Cancer Core 

Europe12.

How can tumor heterogeneity be ‘drugged’?

Although combination drug studies are challenging, adaptive trial designs to test 

combinations of targeted therapies with chemotherapies and/or immunotherapies based on 

molecular information extracted from individual tumors will be needed. Whether these 

combinations are given simultaneously, at the start of treatment, or sequentially, as new 

resistance or other subclonal mutations appear during longitudinal analysis of patient 

samples obtained through noninvasive methods, may vary depending on the road map of 

each tumor subtype and on the therapeutic window of each drug alone and in combination. 

Ideally, we could always target druggable trunk mutations and then add drugs to block 

emerging subclones. To simplify the development of combination therapies, drugs showing 

a high degree of tumor selectivity (for example, those targeting a mutant but not wild-type 

version of a tyrosine kinase) may be prioritized. To minimize legal and financial hurdles that 

prevent testing of combinations of different drugs from different companies, ‘honest broker’ 

approaches that negotiate these issues with companies (along the lines of the Cancer 

Research Institute Clinical Accelerator, Cancer Core Europe and the US National Cancer 

Institute Cancer Therapy Evaluation Program) should be proactively incorporated into the 

consortia mentioned above. It is likely that tumor heterogeneity in the form of increased 

somatic mutational diversity represents, in some cases, an Achilles’ heel for tumors owing to 

the increased likelihood of tumor neo- antigens being recognized as non-self by T cells.

In addition, we need to increase researchers’ ability to dissect the specific molecular 

mechanisms that contribute to drug synergy and complementarity in combination therapy. 

For instance, a recent project in the DREAM Challenge, an open science effort by a 

nonprofit community including researchers from academic institutions and companies, 

collected analyses from 31 labs around the world on the prediction of drug synergy in 

human lymphoma13. The study revealed that, despite a complete lack of prior literature on 

drug synergy prediction, several labs can now effectively predict synergistic combinations 

that are experimentally validated. Yet most of the approaches are still relatively naïve and 

will benefit from a more systematic and concerted effort to characterize drug mechanisms of 

action and activity at the molecular level through predictive and computational approaches.

Why do clinical trials fail, and what is the clinical trial of the future?

The ideal clinical trial will incorporate patients whose tumors have been selected as likely to 

respond on the basis of molecular markers that have been well validated in preclinical 

studies. However, trials in which a single agent is tested in a cohort with a matched 

biomarker do not provide information about the impact of heterogeneity or the longitudinal 

evolution of clonal or subclonal cells. The reason for lack of response, in a cohort or at the 

individual level, requires understanding of the spatial and longitudinal heterogeneity of the 

tumor. The ideal clinical trial will respond—in real time—to molecular changes, revealed by 

frequent characterization of tumor evolution, in response to therapy. This characterization 

will require material from the primary tumor or metastases (not always accessible) or could 
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be achieved by studying nucleic acids or cells in the blood, as emerging data suggest liquid 

biopsies are feasible14–17. Imaging approaches may not have sufficient resolution, 

information content or speed to reveal molecular changes indicative of emerging resistance 

to therapy, although new imaging modalities such as 13C-based magnetic resonance 

spectroscopy might provide metabolic readouts of response18. Broad changes in clinical 

practice and regulatory procedures may be needed. For example, are we ready to conduct 

trials in which treatment is adapted on the basis of changes in circulating tumor DNA as an 

indicator of progression? Similarly, if a resistance mutation is detected in a patient’s 

circulating tumor DNA but imaging analysis shows that the tumor is stable or shrinking, 

would a clinician be comfortable switching to a different targeted therapy? Although 

changes to include targeted therapies have been adopted in the treatment of some 

malignancies, including chronic myeloid leukemia, broader changes may be needed.

Technology

Which sources of heterogeneity can be measured, and which are difficult to assess with 
regard to DNA?

High-throughput DNA sequencing of bulk samples is the most common of all the 

technologies used for the molecular characterization of tumor heterogeneity. Single-

nucleotide and structural variations with a high allele frequency can be robustly detected at 

the sequencing depth routinely achieved in experimental and clinical settings. For 

comprehensive cataloging of mutations that occur with a frequency of less than 1–2%, the 

sequencing depth required for robust variant calling (400–500×) is still prohibitive for 

larger-scale studies, but with the continuing development in sequencing technology, this 

issue is likely to be solved in the near future. A major advantage of DNA sequencing is that 

it is relatively robust to sample treatment, and high-quality data can be obtained from most 

specimens, although accurate enumeration of subclonal tumor heterogeneity in formalin-

fixed and paraffin-embedded (FFPE) archival samples can be challenging.

In the context of heterogeneity, the more recent development of single-cell genome 

sequencing is very exciting, as it enables not only estimation of the frequency of individual 

mutant alleles in a cancer sample but also determination of co-occurring or mutually 

exclusive alterations. By sequencing and comparing multiple single cells, it is possible to 

reconstruct cell lineages and phylogenies using mutations as stable markers of evolution. 

Single-cell genome sequencing also enables study of intratumor heterogeneity in rare 

subpopulations such as circulating or disseminated tumor cells. Currently, the main 

limitations for single-cell genome sequencing are its relatively low throughput and its high 

cost, partial genome coverage and uniformity, in addition to technical problems, such as 

allelic-dropout errors and false positives introduced by whole-genome amplification 

methods. The throughput and cost issues can be addressed by performing genome 

sequencing on targeted regions such as the exome or cancer gene panels in single cells. 

Algorithms for calling single-nucleotide variants, insertions and deletions, copy-number 

profiles and structural variations have not yet been developed for single-cell data, but they 

are desperately needed owing to the inherent differences in the data.
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Regarding DNA

As with DNA, sequencing is now the method of choice for investigating the RNA 

composition of tumors. In contrast to DNA data, it is difficult to learn much about the 

heterogeneity of bulk samples from RNA sequencing (RNA-seq) data, beyond what can be 

gathered by sequencing samples from different regions of the tumor. The tumor 

microenvironment may represent as much as 90% of some tumor samples and contributes 

proportionally to the RNA pool, which affects measures of heterogeneity and the resulting 

transcriptional profile. Computational deconvolution of different expression components in 

a sample can distinguish between cells from different lineages but have limited applicability 

in samples with low transcriptional diversity19,20.

Single-cell RNA-seq is a robust technology21 that, with the emerging Drop-seq, in which 

individual cells are separated into nanoliter-sized aqueous droplets and sequenced, and 

microwell sequencing22–24 methods, can analyze tens of thousands of cells simultaneously 

in a cost-effective and efficient manner. That said, sensitivity for lowly expressed genes still 

needs to be increased for all RNA-seq protocols and better methods for controlling 

amplification biases and technical noise are needed. Optimized analytic tools for single-cell 

RNA-seq methods are also being developed, but a thorough comparative benchmarking of 

these tools is needed. For single-cell methods, obtaining full-length RNA sequences or 

information about RNA modifications remains challenging. Furthermore, the current 

throughput of next-generation sequencing platforms is insufficient to profile tens of 

thousands of single cells.

As the transcriptome is highly dynamic, sample handling is a critical hurdle in the 

acquisition of quality transcriptomes. Issues to consider include how quickly the sample is 

processed or frozen after its extraction from the patient and, even more importantly, the 

protocol by which the cells are disassociated from solid tumors. The availability of fresh or 

rapidly frozen samples is essential; FPPE samples can be processed for RNA-seq but are 

unlikely to provide a reasonable picture of cancer cell states, and their often fragmented 

nature will preclude discerning completely phased, or linked, genetic information.

Optimizing analysis pipelines for variant calling has been an intensive focus of research in 

recent years. A low false-positive or false-negative mutation detection rate has little effect in 

cohort studies, such as those by the TCGA or ICGC, but may lead to artifactual differences 

between related mutation profiles and cause critical misinterpretations of study results. What 

is needed is an independent systematic evaluation of the many pipelines currently used for 

mutation calling in cancer samples, as has been started for the baseline ‘normal’ genome 

with the Genomes in a Bottle Consortium. A valuable community resource would be the 

availability of benchmarking reference specimens with defined clonal composition as 

assessed by a gold standard. We expect that results from comparative evaluation, such as the 

ICGC-TCGA DREAM Genomic Mutation Calling Challenge, a consortium set up to 

improve mutation calling within cancer genome sequencing data, will provide a good 

estimate of the relative performance of methods for processing whole-genome data sets, but 

further investigations are likely to be needed to benchmark tools for calling of subclonal 

mutations and the estimation of allele frequencies. Conservative approaches, such as >60× 

coverage thresholds and mutation filtering using multiple normal (germline) samples, are 
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recommended when determining the degree of heterogeneity between tumor samples. A 

relatively uncharted area is the development of metrics that quantify similarity and 

difference between samples from the same clonal origin, such as multiple biopsies from the 

same tumor, pre- and post-treatment samples from the same patient or tumor samples and 

(xenotransplanted) model systems.

Regarding protein

Techniques for investigation of proteins lag behind those for nucleic acid analysis, 

especially in terms of sensitivity and comprehensiveness. It is possible to get a complete 

picture of the protein content of a sample using mass spectrometry–based proteomics, but at 

the moment the relatively large amount of material needed makes proteome-wide 

experiments on cancer samples unfeasible in most instances. Antibody-body based 

techniques are the method of choice when sample material is limited, but they are limited by 

throughput and the availability of high-quality antibodies. At the single-cell level, 

technologies such as fluorescence-activated cell sorting (FACS) or mass cytometry 

(CyTOF) allow the investigation of up to about 17 proteins per cell (FACS) or 45 proteins 

per cell (CyTOF) with very high throughput. Future development of CyTOF technology 

might increase the number of proteins that can be monitored, but no technology that can 

provide a truly comprehensive protein atlas for single cells is on the horizon.

Protein content is less dynamic than the transcriptome or the epigenome, which reduces the 

requirement for sample freshness. However, the phosphoproteome, which is critical for the 

understanding of cancer signaling, is even more sensitive and rapidly changing than the 

transcriptome. FFPE samples can be processed for proteomics experiments but not for 

CyTOF or FACS.

As discussed above in the section ‘Beyond the genome’, the epigenetic features of 

chromatin, including histone modification, DNA base modifications (such as methylation 

and hydroxymethylation) and DNA accessibility, provide information about both the cell 

state and the evolutionary history of a tumor. Robust technologies have been developed to 

provide genome-wide maps of most epigenetic marks. For histone marks, some methods of 

chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) can 

be reliably applied to very small samples (1,000 cells or fewer). Several techniques are 

routinely used to assess methylation levels. The most comprehensive picture can be obtained 

from whole-genome bisulfite sequencing (WGBS), but precipitation techniques (methylated-

DNA immunoprecipitation sequencing and methylated–DNA-binding domain sequencing) 

or reduced-representation bisulfite sequencing (RRBS) are also in use. WGBS can be 

applied to small samples, but the DNA-damaging effects of bisulfite treatment limit genome 

coverage. The development of alternative chemistries that are less harsh will help reduce 

experimental artifacts. Illumina’s Infinium HumanMethylation450 BeadChip platform 

provides an array-like alternative that has been found to provide acceptable DNA 

methylation profiles, even with FFPE samples. Assays for the various oxidized forms of 5-

methylcytosine have been developed but not thoroughly validated in terms of reproducibility 

and sensitivity. DNA accessibility and nucleosome positioning can also be readily measured, 

most commonly by DNAase I–based assays and, more recently, by transposase-accessible 
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chromatin using sequencing (ATAC-seq) for bulk and single-cell samples. As there are a 

large number of epigenetic modifications of interest in any given sample, a big need in the 

field is the development of multiplexing strategies that allow measurement of many marks at 

the same time in the same sample, although nascent methods to examine multiple chromatin 

marks within a single stretch of chromatin exist25.

Some estimation of cellular heterogeneity can be obtained from bulk experiments in the case 

of DNA methylation, but single-cell assays, although limited by throughput, would provide 

advantages in terms of capturing the amount of heterogeneity and determining the degree of 

co-occurrence and phased states of epialleles. Single-cell assays for histone marks have yet 

to be developed, but given the rapid development in the field, single-cell ChIP-seq assays 

can be expected in the near future.

The epigenome, like the transcriptome, is highly dynamic and sensitive to changes in the 

environment. As such, fresh or rapidly frozen samples are essential for its study. Finally, a 

wide range of RNA base modifications, collectively called the epitranscriptome, have been 

implicated in translation control, RNA splicing defects and many cancer types26. These 

dynamic marks are also likely to possess some degree of heterogeneity, although single-cell 

methods are needed to tease out such varied RNA states within and between cells from 

within a tumor.

A complete picture of a cell state will often require measurement of different parameters in 

the same cell. Although it is usually possible to perform multiple assays on a bulk sample, 

only in some cases is this possible with single-cell measurements25,27. Further development 

of multimodel measurement methods will aid understanding of the relationship between 

point mutations and gene expression and between methylation changes and changes in the 

expression of oncogenes, for example.

How can we assess spatial organization of tumors?

Traditionally, when a spatial resolution higher than what can be achieved by multiple 

biopsies is desired, assessment of spatial heterogeneity in tissue samples has been limited to 

microscopy-based methods. For example, immunofluorescence and fluorescence in situ 

hybridization can localize proteins, RNAs and DNA mutations in tissue slices with high 

sensitivity, potentially down to the single-molecule level. In practice, both methods suffer 

from difficulties in quantifying expression levels and in comparing results within and 

between samples, owing to variable background and target accessibility. These techniques 

are also very low throughput, and only a handful of mRNAs or proteins can be imaged 

simultaneously with standard technology. Imaging site-specific epigenetic modifications is 

currently not routinely done, although at least one method has been developed to visualize 

histone modifications in fixed tissues28,29.

Excitingly, recent years have seen the emergence of new technologies that promise to 

revolutionize our ability to assess the spatial heterogeneity of protein and RNA expression. 

For proteins, CyTOF has been developed into an imaging tool that can image the 

localization of up to 32 proteins at present (and potentially up to 100)30 with subcellular 

resolution31. For RNA, in situ sequencing methods32–34 can provide information about the 
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RNA content of individual cells in fixed tissue. The practical applications of these 

technologies are still in their infancy, and a thorough benchmarking of reproducibility and 

sensitivity has yet to be done. Throughput of these new technologies still seems to be 

severely limited at the moment.

With these new technologies on the rise, the critical bottleneck has become the development 

of computational methods to analyze data from each technology, integrate information from 

different technologies and connect these data to prognostic and actionable clinical 

information.

What noninvasive or minimally invasive technologies can be used to obtain information 
about tumor heterogeneity?

Currently, the blood is the best source of information about the molecular makeup of a 

cancer that can be obtained without biopsying the tumor itself. Cell-free DNA and 

circulating tumor cells are especially rich sources of information. Few high-quality studies 

have been done to assess how well data obtained from these blood-borne biomarkers reflects 

the tumor itself, although a number of recent studies have highlighted the power of this 

approach for the noninvasive characterization of tumor heterogeneity in carcinomas of the 

colon, breast and lung14–17. It is also unclear whether primary tumors or metastases 

contribute more to the pool of circulating cancer material. It seems clear, however, that even 

if circulating material is found to faithfully reflect the tumor itself, there is still a need for 

more efficient ways of isolating the cells and nucleic acids from the blood and for data 

analysis tools that can more faithfully reconstruct the parent tumor.

Although current in vivo imaging technologies are unable to provide many insights into 

intratumor heterogeneity in patients owing to resolution and labeling issues, some work 

indicates that heterogeneity of radiographic imaging, including positron emission 

tomography (PET) and magnetic resonance imaging (MRI), is clinically predictive of 

response35,36. Image-guided biopsies may also make an important contribution to the 

analysis of genome-based intratumoral heterogeneity by providing the spatial context to 

relate different regions.

How should methods for assessing heterogeneity be benchmarked and validated?

Validation of the accuracy and robustness of the assays discussed above will require the 

development of gold-standard samples that are readily available and can be recreated in 

reproducible manner by individual labs. For some data types, such as DNA mutations, 

simple mixtures of cell lines will be sufficient, but others, such as epigenomic or RNA 

expression data, are too sensitive to environmental changes and will require test samples 

with more intrinsic control of biological variation, such as ‘spike-in’ standards. For each 

assay, a set of quality-control metrics that can be used to assess the performance of 

improved methods and that investigators can apply to their own experiments will have to be 

agreed upon.

One should also keep in mind that the degrees of accuracy needed for understanding biology 

and for informing clinical decision-making may differ and should be investigated separately.
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How can we use these technologies to assess the clinical impact of heterogeneity?

Despite the wealth of experimental data and computational analyses performed, we still lack 

a clear understanding of the parameters that will ultimately need to be measured and 

integrated to assess the impact of tumor heterogeneity on clinical outcomes, but it seems that 

current knowledge can be applied to envision a more integrated experimental pipeline to 

systematically test different hypotheses. At the outset, it seems clear that a critical point will 

be to improve sample handling from collection, through processing and into proper 

allocation towards different assays.

Other questions need to be carefully considered in design of experiments that aim to study 

the clinical impact of tumor heterogeneity and evolution. First, which tumor type should be 

chosen? Tumors need to be relatively large (to provide enough material for the various 

assays) and should be readily resectable and progress quickly enough to make a reasonable 

timeline possible. Second, when and how many times should a tumor be sampled? Third, 

which parts of the tumor should be analyzed, and should analysis information about its 

metastatic sites?

Ideally, a coordinated effort to produce this type of sample would generate gold-standard 

data sets from a large number of patients with well-annotated clinical histories and 

comprehensive tumor imaging. Each patient’s tumor could then be analyzed with a wide 

array of experimental techniques that provide information about degrees of heterogeneity. 

The core group of methods should include multi-focal bulk and single-cell DNA sequencing, 

single-cell RNA-seq, multifocal bulk and single-cell mapping of epigenetic marks and 

single-cell CyTOF-based analysis of candidate marker proteins. Both tumor and 

microenvironment, including tumor-infiltrating leukocytes, would ideally be assayed. These 

data could be complemented with data from other assays to measure spatial heterogeneity or 

investigate cell-free DNA or circulating tumor cells. These assays would provide detailed 

protein, genome and RNA maps, but to reconstruct patient-specific regulatory networks, 

algorithms will need to be substantially improved.

This wealth of data should then be made available to the research community to develop 

methods that analyze and integrate the information provided by different assays to predict 

disease outcome and therapeutic success, so that researchers can continue to gain insight 

into the importance and impact of cellular heterogeneity.

Closing remarks

One take-home message from this meeting was that the phenomenon of tumor heterogeneity 

is likely to influence—for some time to come—all aspects of cancer research, including how 

tumor biology is perceived, how techniques to study tumors are developed and how patients 

are treated. This conference was unique in its goal of identifying questions rather than 

answers, and we hope that this description of ‘known unknowns’ identified by this small 

group of experts sparks research and collaboration in the community at large.
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Figure 1. 
Herrenhausen Palace. Image credit: Eberhard Franke for Volkswagen Foundation.
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Figure 2. 
The clonality of tumor evolution. In tumor evolution, driver alterations may result in the 

formation of the initial tumor clone. As further driver alterations occur, these clones then 

branch off to form subclones. Founder mutations that occur in the original tumor clone are 

hard to identify, however, as a mutation at point (1) may be considered to be a founder 

mutation, but further mutations at point (2) would have been considered to be in the initial 

clone had the sample at point 1 not been taken.
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Figure 3. 
Influences on cancer cell state. The cancer cell state is representative of the genetic and 

epigenetic components as well as the signaling environment, which collectively determine 

which genes are expressed by the cell. These properties may be altered by subclonal 

evolution and can influence the initiation, progression and drug response of the tumor, 

affecting both the bulk tumor and the single-cell state. The gray arrows show the timescales 

of these processes and the factors that might influence cell state on each timescale are 

indicated.
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