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Abstract— Understanding crowd mobility behaviors would be
a key enabler for crowd management in smart cities, benefiting
various sectors such as public safety, tourism and transportation.
This article discusses the existing challenges and the recent
advances to overcome them and allow sharing information
across stakeholders of crowd management through Internet of
Things (IoT) technologies. The article proposes the usage of the
new federated interoperable semantic IoT platform (FIESTA-IoT),
which is considered as “a system of systems”. The platform
can support various IoT applications for crowd management in
smart cities. In particular, the article discusses two integrated IoT
systems for crowd mobility: 1) Crowd Mobility Analytics System, 2)
Crowd Counting and Location System (from the SmartSantander
testbed). Pilot studies are conducted in Gold Coast, Australia and
Santander, Spain to fulfill various requirements such as providing
online and offline crowd mobility analyses with various sensors
in different regions. The analyses provided by these systems
are shared across applications in order to provide insights and
support crowd management in smart city environments.

I. INTRODUCTION

Sustainable development of cities is a major global chal-

lenge as more than half of the world population is living in

urban areas. The smart city concept allows optimizing services

for urban areas because or as a result of the advancement

of the new technologies ranging from very small devices to

big data centers. These technologies can be considered in the

context of IoT, where many objects, devices, machines, and

data centers are connected. The usage of IoT technologies for

crowd management in urban environments is promising for the

future of smart cities.

IoT technologies can enable many improvements for crowd

management, which spans sectors such as transportation ser-

vices (e.g., operating public transport or directing pedestrian

traffic), public safety (e.g., detection of fighting incidents),

and tourism (e.g., event management for enhanced visitor

experience). For instance, movement behaviors of crowds

may indicate situations such as traffic congestion, emergency

incidents, and panic situations during certain events such as

large gatherings in city squares.

While cities aim to achieve smart urban services, new

challenges arise due to the limitations and deficiencies of

the current systems and technologies in terms of scalability

of the connected systems, information transparency between
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Fig. 1. Federated and interoperable IoT platform supporting crowd manage-
ment stakeholders of smart cities.

different systems (i.e., semantic interoperability) or stakehold-

ers, data federation, and information privacy. When mobil-

ity information must be shared across multiple stakeholders,

a proprietary infrastructure cannot fulfill all the different

requirements that they impose. For example, some of the

stakeholders expect real-time mobility monitoring service for

event detection while others require historical mobility data

analytics to analyze efficiency of services in different urban

environments (e.g., train station, stadium, city square). It is

very difficult to re-design a one-size-fit-all IoT system when

new requirements arise for various environments or different

time periods. A better solution is to provide “a system of

systems” in which a new service can be easily developed or

setup to handle any new requirement by leveraging existing

technologies and infrastructure. To make such a system of sys-

tems useful, semantic models based on an appropriate ontology

are needed for transparently exchanging data, analytics results,

and allowing to share new insights from different crowd

management applications. The federation of data, results, and
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learned insights is the key technical enabler to understand

the crowd mobility behaviors in a smart city. Finally, privacy

preservation is a problem of utmost importance for smart

cities. While various data from vast deployment of sensors

travel through the IoT systems, preserving privacy at a level

closer to the data contributors (providers) is an important

challenge.

This article describes the recent advances in IoT for un-

derstanding crowd mobility in smart cities. The federated

and interoperable semantic IoT (FIESTA-IoT) platform for

smart cities is introduced for the specific perspective of crowd

management applications. Fig. 1 illustrates the outlook of the

smart city applications leveraging the smart city platform for

sharing information across various stakeholders. While the

platform is currently in use for several smart city testbeds,

the article focuses on two IoT systems for crowd mobility,

namely Crowd Mobility Analytics System (CMAS) and Crowd

Counting and Location System (CCLS) and discusses the

aspects related to the aforementioned limitations.

Two pilot studies are conducted in Gold Coast, Australia

and Santander, Spain, where various sensors are deployed in

urban areas. The first pilot study uses CMAS in Gold Coast

for a medium-scale smart city deployment. The requirements

of the pilot include analyzing heavy or light pedestrian traffic

at streets with or without vehicles. The second pilot study uses

CCLS in an indoor market in Santander. The requirements in-

clude detecting people (crowd size) and locating their positions

at public buildings of a city and other critical infrastructures. In

both pilots, data anonymisation limits tracking devices for long

time periods. On the other hand, online and offline analytics

information needs to be shared across various stakeholders

such as city councils and visualized in several interfaces using

IoT technologies and infrastructure to provide insights for

crowd management in smart cities.

II. CROWD MOBILITY ANALYTICS USING THE SMART

CITY PLATFORM

A. Federated and Interoperable IoT Platform

Smart city data is often gathered by solutions where dedi-

cated networks of sensors or data sources produce observations

to be consumed by specific applications. The systems usually

differ from each other, serving for distinct purposes, and they

are mostly not interoperable [1], [2]. In this regard, creating

crowd management services that harness the abundant data

from a smart city (e.g., environmental data, road traffic infor-

mation) would require either ad-hoc integration or creation of

new systems. This situation raises a new requirement of an

integrated “system of systems” or “container of systems”.

To overcome this challenge, we propose a crowd mobility-

based instantiation of the FIESTA-IoT platform [3] and pro-

vide semantic interoperability from IoT deployments to the

services (shown in Figure 2). The heterogeneous IoT deploy-

ments on the IoT Devices and Systems (bottom layer) are in-

tegrated to the Cloud and data is anonymised with salting and

hashing. In this layer, in addition to the two crowd mobility

systems (CMAS and CCLS), IoT Cloud Data from external

platforms can be connected. Furthermore, there exist other IoT
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Fig. 2. Crowd mobility-based instantiation of the federated and interoperable
IoT platform.

FIESTA-IoT systems that can be leveraged. Currently more

than 5000 sensors (from 11 integrated testbeds [4]) report

environmental data (e.g., temperature, humidity, illuminance,

noise level), road traffic information (e.g., vehicle speed,

traffic intensity), car and bike parking spots, estimated arrival

times of buses, and smart building information (e.g., human

occupancy, power consumption).

At the Federated Cloud Infrastructure (middle layer), the

data from the bottom layer is modelled using the FIESTA-

IoT Semantic Model and stored in the Linked-Data Storage.

In particular, the semantic model for crowd mobility data is

described in Section II-B. The data in the Cloud infrastructure

is accessible through the Federated Context Management

which exposes NGSI and SPARQL interfaces. Our open source

IoT Broker (Aeron Broker) component provides scalable fed-

eration for the context management, whereas IoT Discovery

(NEConfMan) enables easy registration and discovery of re-

sources with features such as geo-discovery.

The crowd management-related IoT data is harnessed by

Crowd Management Applications (top layer) which contain

IoT services provided by the platform and crowd mobility

applications. These services enhance the crowd mobility data

through reasoning by aggregating the semantic data and as-

sessing the situations related to physical objects (i.e., Contex-

tualization Service) at different levels of abstraction such as

buildings level or street level. Assessment of the situations can

be performed through; a) pre-defined thresholds, b) anomaly

detection, c) time-series analysis, d) artificial intelligence. The

obtained situations are displayed on the dashboard in Figure

1, named Smart City Magnifier, which reports alerts regarding

traffic status, crowd flows, critical events (e.g., fire bursting),

and so on. Moreover, crowd mobility applications such as Gold

Coast Operation Center and SmartSantander Maps receive the
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results (generated by CMAS, CCLS or other IoT services)

from the Cloud and provide visualizations.

B. Crowd Mobility Semantic Model

In order to provide seamless interoperability and informa-

tion transparency from IoT systems to the crowd management

applications, the crowd mobility outcomes are semantically

annotated following the FIESTA-IoT ontology [5] as shown

in Fig. 3 (with a stress on the specific taxonomy of M3-lite

for crowd mobility).

Rich and complex knowledge is represented with an ontol-

ogy as things are connected to each other through relation-

ships. Things are not identified as individuals, but as classes

of individuals. Moreover, a class might have sub-classes. For

example, peopleCounterX is an instance of PeopleCountSensor

class which is a subclass of Counter (see Fig. 3). The classes

can be defined and described in taxonomies and an ontology

may use classes from different ontologies or taxonomies.

Relationships between classes are known as properties and it

is possible to define properties’ cardinality. Each class and

property used in an ontology is uniquely identified by a

namespace prefix and the class or property specific name. For

example, m3-lite:PeopleCountSensor is a class defined in the

M3-lite ontology. For the sake of readability, in this paragraph

we are omitting the namespace prefix while they are shown

with prefix in Fig. 3.

The core concept is the SensingDevice, representing a sensor

that produces Observation, which is a measurement (or com-

putation) of a phenomenon related to an object happened at a

specific Instant. For example, a crowd mobility detector can be

seen as a Device composed of multiple SensingDevices. In this

sense, such a detector can have one PeopleFlowCountSensor

and one StayingPeopleCountSensor, which are subclasses of

PeopleCountSensor. The Observation(s) is expressed with a

QuantityKind having a Unit. Following our example, the

QuantityKind associated to the data generated by the People-

FlowCountSensor is CountPeopleMoving (subclass of Quanti-

tyKind) with Item as its Unit and with the Direction property

expressed either in geodetic DirectionAzimuth or as a generic

DirectionHeading. The directions start from the Point that is

the location of the physical Platform. Platform is meant as the

supporting dock to which the Device is attached. The Staying-

PeopleCountSensor generates CountPeopleStaying values ex-

pressed in Item. The system also consists of PeopleStayDura-

tionSensor that generates PeopleStayDurationAverage values

measured in SecondTime. Each SensingDevice might have a

Coverage, specified either as Polygon/Rectangle/Circle or as

a simple Point. This indicates the geographic extent of the

Observation.

C. Integrated IoT Systems

1) Crowd Mobility Analytics System: The CMAS (extended

from our system in [6]) is integrated with the platform via

semantic annotation of the outcome. The developed system

consists of Wi-Fi sniffers, stereoscopic cameras, IoT gateways,

and data analytics modules. The Wi-Fi sniffers are capable

of capturing wireless probes broadcasted by mobile devices.

Based on the captured Wi-Fi probes, the system can count the

mobile devices in these sensing areas. The cameras are co-

located with specific Wi-Fi sniffers deployed at the dedicated

calibration choke points. A built-in people counting software

runs in the cameras. Both Wi-Fi device detection and people

counting results are reported to to the Cloud, where data

analytics modules reside, through the IoT gateways. Three

analytics modules are developed: crowd estimation, people

flows, and stay duration. The crowd estimation module outputs

number of people by correlating the stereoscopic camera

counts and the number of Wi-Fi enabled devices at the

calibration points. Based on the correlation between the two

data modalities, the calibration of the data analytical results are

applied in other sensing areas without cameras. The module

monitoring people flows infers crowd movement in these areas.

Finally, the stay duration module estimates the waiting times

and the number of waiting people. All analytics results are

exported to the Federated Cloud Infrastructure so the crowd

analytics results are discoverable and available for applications

in the smart city platform.

2) Crowd Counting and Location System: Different from

CMAS, CCLS aims at analysing crowd behaviour in public

buildings of a city, as well as critical infrastructures. The

system relies in the analyses of IEEE802.11 frames to discover

devices in the surroundings of the deployment, normally

within the monitored areas. Similar to CMAS, the deployed

nodes capture “Probe Request” frames sent by smartphones,

which include a Wi-Fi interface in “active search” mode,

incorporated in most of them. However, CCLS does not only

aim at detecting people, but also aims at locating them. For

this, the system stores the RSSI and sequence number from the

captured frames. It is possible to locate people by processing

this information using RSSI-based algorithms. All the post-

processing is performed in an edge server, where all the

measurements are sent after the corresponding anonymisation

techniques are applied. Once the anonymised raw measure-

ments are analyzed and the counting and location analytics

applied over them (i.e., the estimated crowd size and positions

are obtained), these observations are semantically annotated

and pushed to the Federated Cloud Infrastructure. For the

semantic modelling, each crowd estimator is modelled as an

PeopleCountSensor, with a specific Coverage (representing the

area to which the estimations apply), that generates CountPeo-

ple observations expressed in Item.

D. Privacy Considerations

One of the essential requirements is dealing with tracked

devices’ privacy. Nowadays, privacy is one of the major

public concerns. In this sense, data protection laws have to

be observed when handling data that could be personal. Quite

restrictive rules apply in most countries of the world, being

the countries from the European Union (EU) some of the most

restrictive ones. These rules are recently updated through the

General Data Protection Regulation (GDPR) [7] enforcement.

The Wi-Fi sensors in CMAS and CCLS deal with MAC

addresses, which are considered personal data under the new

EU regulation. As it is stated in the GDPR [7], “The principles
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Fig. 3. Modeling crowd mobility information based on FIESTA-IoT ontology.

of data protection should apply to any information concerning

an identified or identifiable natural person”. Therefore, Wi-

Fi-based tracking services in public or private spaces can

be performed only if the service obtains the user’s opted-in

permission, or data is anonymised in such manner that the

user is no longer identifiable, as mentioned in the 26th article

from the aforementioned regulation. The Article 29 Working

Party, recently replaced by the European Data Protection

Board (EDPB), is in charge of analysing the compliance

of the privacy rules. In a document released to analyze the

ePrivacy regulation compliance with GDPR [8], the Data

Protection Working Party states that Wi-Fi tracking can only

be performed either if there is consent or the personal data is

anonymised. Within the same document, four conditions are

mentioned for the latter case to be compliant with the GDPR:

• The purpose of the data collection from terminal equip-

ment is restricted to mere statistical counting.

• The tracking is limited in time and space to the extent

strictly necessary for this purpose.

• The data will be deleted or anonymised immediately

afterwards.

• There exist effective opt-out possibilities.

Considering that user’s permission request is impossible

to obtain in normal conditions within the subject of the

experimentation, the only option is to anonymise data re-

garding to MAC addresses. Thus, experimentation security

measures must be undertaken to address both, data integrity

and anonymisation. Therefore, any type of experimentation or

service provision must take into account this concern, which

is usually underestimated by system developers.

CCLS in Santander is based on the Spanish Personal Data

Protection Laws and the Spanish Law Protection Office recom-

mendations for data anonymisation [9]. The recommendation

consists on the use of a cryptographic hash function with

randomly generated hash keys. More precisely, the HMAC

protocol, which provides such mechanisms, is recommended.

In the SmartSantander deployment, we implement the HMAC

algorithm along with the SHA256 hashing function, with a

12-bytes randomly generated key. Finally, in order to ensure a

non-reversible process, this implementation also comprises a

procedure to destroy and renew the key during specific session

periods. For CMAS in Gold Coast, the hashed and salted Wi-

Fi probe data is sent to the Cloud. The stereoscopic cameras

do not record video or perform face detection. The cameras

simply count the passage of people through predefined lines at

the choke points. The outputs of the camera are people count-

in and -out values. The main drawback of this procedure is

the limitation of tracking devices throughout long periods (as



5

Fig. 4. Heatmap from Mercado del Este in Santander.

in [10]) or longer travels within the city, but it is the price that

must be paid to meet the privacy requirements.

III. PILOT STUDIES IN AUSTRALIA AND SPAIN

A. Pilot Deployment in Gold Coast

1) Pilot Setup: The deployments in Gold Coast include

17 Wi-Fi sensors and 2 stereoscopic cameras. The Wi-Fi

sensors are custom-built devices for outdoor deployments. Two

cameras are used at the calibration choke points, where there is

a camera and a Wi-Fi sensor deployed together. The cameras

are the Hella Advanced People Sensor APS-90E deployed at a

height about 3.6 meters. Each camera is configured to capture

the entire choke point for accurate counting.

The deployments target two regions. These sensors deployed

in these areas are considered as Cluster 1 for (expected)

heavy pedestrian traffic and Cluster 2 for light traffic places.

Each cluster has a stereoscopic camera for the calibration.

The collected data is sent to the Cloud where two virtual

machines are created for the clusters. Clustering the areas

allows applying CMAS to city-scale by sharing the raw data

load.

2) Pilot Operation: The pilot study activities started in

September 2017 and CMAS has been in use starting from

November 2017. Various types of pilot tests are conducted on

the field during the operation of the pilot. Manual counting is

performed using video footages taken from different deploy-

ment areas. In comparison to manual counting, the cameras

provide an accuracy between 88% and 98%, which mainly

depends on the weather and lightning conditions. Furthermore,

field tests for heavy and light traffic areas resulted in 93% and

89% crowd size accuracy compared to manual counting. The

results obtained from outside the choke points give further

confidence to treat stereoscopic camera results as near ground

truth as proposed in [6].

Gold Coast pilot successfully tests the crowd mobility

analytics services by leveraging federation of clusters and

interoperability using the semantic model to share the results

with stakeholders. This shows that similar systems can be

developed and leveraged by future crowd management appli-

cations using the smart city platform.

B. Pilot Deployment in Santander

1) Pilot Setup: CCLS is deployed in the “Mercado del

Este” market, a restored symmetric building that contains

shops, restaurants, a regional tourist office, and a museum.

This building is particularly interesting as it usually receives

significant numbers of visitors due to its central location, with

exceptionally crowded periods.

The system is composed of 8 devices installed within the

market building. These devices include a Wi-Fi interface

aimed at detecting surrounding Wi-Fi enabled visitors’ de-

vices. Internet connectivity is provided through the Municipal-

ity Network, and the devices are powered using Power over

Ethernet connected to the market’s electrical grid. In addition

to the wireless interfaces, half of the devices also include

environmental sensors measuring temperature and humidity.

Device deployment is carried out with the collaboration and

supervision of the municipality and the market managers.

Considering the main goal of monitoring people within the

market, two parameters are considered in order to get market

status snapshots over the time. First, the number of visitors

within the market in different time frames and second, the

location of the visitors in the different areas of the market.

2) Pilot Operation: Firstly, in order to monitor the visitors

within the market, we follow a deterministic approach, in

which we consider that a device is inside the building if a

minimum of 6 sensor nodes detect it with a certain level of

RSSI. In our deployment, this solution is feasible considering

the particular symmetric distribution of the building and the

location of the sensor nodes, covering the external wall of

the building. Secondly, device locations are estimated using

the Weighted Centroid Algorithm [11], which provides a

reasonable approximation of 5 meters to the ground-truth

measurements without any ad-hoc calibration. For the cases

that require more precision, these positioning methods are

able to introduce less than 2 meters error if the system is

calibrated in advance. Synthesized information including real-

time visitor location and detected number of visitors per unit of

time is provided through a web portal to the market managers

and municipality responsibles. Fig. 4 shows the heat map of

the market in a specific moment. Other parameters, such as

the visitors’ dwell time in different long-term periods, are

not analysed due to the privacy safeguards that have to be

addressed.

IV. CITY-SCALE EXPERIMENTS

This section discusses some of the experimental observa-

tions from the Gold Coast pilot with CMAS. Specifically, it

includes the variance in the crowd estimation for the Wi-Fi

sensors and cameras. Our focus in the experimental study is

to observe the dynamic changes in the number of unique Wi-

Fi devices detected and the correlation coefficient (or simply

camera/Wi-Fi ratio), which is a dynamic parameter that is

computed by the Adaptive Linear Calibration Algorithm [6].

The coefficient basically indicates the proportion of the num-

ber of people (count-in and count-out events) detected by the

camera to the number of devices detected by the Wi-Fi sensors

every time interval. We analyze the hourly results for the two
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Fig. 5. Weekly measurements from Gold Coast. Cluster 1: Pedestrian ways with heavy pedestrian traffic, Cluster 2: Roads including vehicles and light
pedestrian traffic.

clusters, where 5 minute time intervals are aggregated and

averaged for 1 hour.

Figure 5-a shows the average number of Wi-Fi devices

detected for one-week period. There exists an increased activ-

ity in Cluster 1 region especially during Friday (23/03/2018)

and the following weekend. This can be due to crowdedness

in the shopping street and the beach area contained in this

region. Moreover, there is a peak in Saturday that can be

due to an event or gathering. Figure 5-b shows the change

of the coefficients (ratios). The ratios are computed at the

calibration choke points (providing near-ground truth for the

measurements). The hourly ratio is computed such that num-

ber of people count-in and count-out events are divided to

the number of Wi-Fi probes. First, for Cluster 2 with light

traffic, correlation coefficient is mostly (almost all days) higher

compared to Cluster 1. Second, correlation coefficient values

lie mostly in the range of (0.2, 2), whereas the peak value is

about 2.8. This indicates that the results based on Wi-Fi-only

measurements are likely to have less accuracy most of the

times of the days and the correlation changes throughout the

days. Lastly, there exists certain regularity in the correlation

from one day to another, which can be learned through a

time period and then applied to other time periods where

camera is temporarily inactive or removed. On the other

hand, as seen in the peak hours of Cluster 2, the ratios do

not lie within a narrow range. One reason can be events

affecting the volume of pedestrians. Lastly, Fig. 5-b shows

relatively higher variance of the coefficient for areas with light

pedestrian traffic. Calibration could be necessary for shorter

time intervals.

Overall, it is observed that effective use of Wi-Fi sensing

and combining them with sensing by stereoscopic cameras

produce accurate sensing in large scale for both the heavy and

light pedestrian traffic areas. Moreover, the variance between

heavy and light traffic shows the usefulness of the clustering

approach which treats these regions separately.

V. RELATED WORK

There are recent studies that focus on understanding of

human mobility through IoT devices such as wireless sensors.

Jara et al. [12] observed the relation between traffic behavior

and temperature conditions as a smart city application through

deployment of IoT devices in Santander. Tong et al. [13]

propose usage of Wi-Fi sensors to understand passenger flows.

Evaluation through simulation results shows high accuracy.

Zhao et al. [14] survey the recent advances in understanding

human mobility in urban environments. The study lists some

of the existing urban human mobility datasets collected such

as GPS, GSM, Wi-Fi, and Bluetooth traces. Similarly, Zhou

et al. [15] discuss the topic of human mobility in urban

environments and present a taxonomy of crowdsensed input

data types and application outcomes such as crowd density

and flows within building, and people transportation mode

identification (cycling, running, bus riding). Lastly, Montjoye

et al. [10] focus on the privacy aspect by analyzing long period

Wi-Fi traces and show that 95% of the individuals can be

uniquely identified using spatiotemporal datasets.

VI. FUTURE WORK AND CHALLENGES

The current work focuses on finding insights behind crowd

mobility such as detecting crowdedness. However, under-

standing more complex crowd mobility behaviour in a large-

scale city area such as movements of groups (e.g., family)

could be helpful for crowd management and enhancing smart

mobility in the cities. The collected mobility information can

serve as input of human mobility simulations to further study

how city dynamics are affected by crowd mobility patterns.

With the combination of real mobility dataset in a simulated

environment, learning new mobility insights opens up new

opportunities for new crowd management strategies (e.g., con-

gestion avoidance, evacuation planning, demand management)

that can further improve the public service and safety in smart

cities.
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In our future developments, the semantic interoperability

through ontologies can be leveraged more extensively for

cross-infrastructure communication and knowledge sharing.

The new advancements of the NGSI protocol by the ETSI

Industry Specification Group (ISG) on Context Information

Management (CIM) are centered around the concepts of linked

data. This opens a new horizon where knowledge graphs are

shared among various infrastructures and, while their adminis-

trators own the produced data, it is still accessible seamlessly

and transparently by all actors in the multi-infrastructure

federation.

VII. CONCLUSIONS

This article discusses the new advancements towards under-

standing crowd mobility in smart cities using IoT. While there

exist certain limitations, the CMAS and CCLS systems using

the smart city platform offer improvements for more efficient

crowd management. The pilot studies in Gold Coast and

Santander show the capability to fulfill various requirements

and share information across stakeholders by leveraging the

IoT technologies and infrastructure.
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