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ABSTRACT

This paper presents WiPose, the �rst 3D human pose construction

framework using commercial WiFi devices. From the pervasive

WiFi signals, WiPose can reconstruct 3D skeletons composed of the

joints on both limbs and torso of the human body. By overcoming

the technical challenges faced by traditional camera-based human

perception solutions, such as lighting and occlusion, the proposed

WiFi human sensing technique demonstrates the potential to en-

able a new generation of applications such as health care, assisted

living, gaming, and virtual reality. WiPose is based on a novel deep

learning model that addresses a series of technical challenges. First,

WiPose can encode the prior knowledge of human skeleton into

the posture construction process to ensure the estimated joints

satisfy the skeletal structure of the human body. Second, to achieve

cross environment generalization, WiPose takes as input a 3D ve-

locity pro�le which can capture the movements of the whole 3D

space, and thus separate posture-speci�c features from the static

objects in the ambient environment. Finally, WiPose employs a re-

current neural network (RNN) and a smooth loss to enforce smooth

movements of the generated skeletons. Our evaluation results on

a real-world WiFi sensing testbed with distributed antennas show

that WiPose can localize each joint on the human skeleton with an

average error of 2.83cm, achieving a 35% improvement in accuracy

over the state-of-the-art posture construction model designed for

dedicated radar sensors.
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1 INTRODUCTION

In recent years, signi�cant research e�orts have been spent towards

building intelligent wireless sensing systems, with the goal of lever-

aging pervasive wireless signals to perceive and understand the

activities of humans. Thus far, various wireless sensing systems

and algorithms have been proposed, mainly to track the position

of the monitored human subject and recognize his/her activities

through analyzing the signals re�ected o� the human body. With

the localization and recognition accuracy progressively increased,

a fundamental question rises: how much information related to hu-

man body and activity is carried in the wireless signals? and more

importantly, is it rich enough to image the human body like a camera?

A recent pioneer study [59, 60] o�ers a preliminary answer to

the above question. It is revealed that with the supervision of visual

information, radio frequency (RF) signals can be used to generate

2D and even 3D skeletal representations of the human body. By

overcoming the technical challenges faced by traditional camera-

based human perception solutions, such as occlusion, poor lighting,

clothing, as well as privacy issues, wireless human sensing tech-

nique demonstrates the potential to enable a new generation of

applications capable of supporting more sophisticated interactions

between humans and their physical surroundings. Despite the in-

spiring �ndings presented in [59, 60], the prohibitive requirements

in both hardware (i.e., a carefully assembled and synchronized 16+4

T-shaped antenna array) and RF signals (i.e., Frequency Modulated

Continuous Wave with a broad signal bandwidth of 1.78 GHz) se-

verely limit the application scope of their system.

To tackle this problem, we propose to make use of the pervasive

WiFi devices, and “image" 3D human postures from WiFi signals.

More speci�cally, we aim to reconstruct 3D skeletons composed of

the joints on both limbs (i.e., arms and legs) and torso (e.g., shoulders,

waist, hip) of the human body. With the ubiquity of WiFi devices,

such system could facilitate a wide spectrum of applications. Exam-

ples include health care and assisted living where the activities of

the elder and patients need to be monitored without jeopardizing

their privacy, gaming and virtual reality where human postures

need to be transferred into the virtual world from an environment

full of occlusions, and theft detection in groceries/shopping malls

where thieves tend to cover their hand movements with clothes,

bags, books, etc.

However, to unleash the power of WiFi-carried information, we

have to address a series of challenges. First, the generated postures

should be realistic-looking. It is undesired that the constructed

https://doi.org/10.1145/3372224.3380900
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skeleton has, for example, unrealistically long or short limbs. Sec-

ond, WiFi signals usually carry substantial information that is spe-

ci�c to the environment where the postures are recorded and the

human subject who performs the postures. As a result, a posture

construction model that is trained on a speci�c subject in a speci�c

environment will typically not work well when being applied to

generate another subject’s skeleton from the WiFi signals that are

recorded in a di�erent environment. Third, the synthesized move-

ment of skeletons should be continuous and smooth, in consistency

with the real human activities.

To address the above challenges, we propose to adopt deep learn-

ing techniques, which have been proved to be e�ective on extract-

ing useful knowledge from complicated data. In this paper, we

develop a deep learning framework, named WiPose, to extract hu-

man postures from WiFi signals. First, WiPose can encode the prior

knowledge of human skeleton into the posture construction process

to ensure the estimated joints satisfy the skeletal structure of the

human body. Second, to achieve cross environment generalization,

WiPose takes as input a 3D velocity pro�le which can capture the

movements of the whole 3D space, and thus separate posture-speci�c

features from the static objects in the ambient environment. Finally,

WiPose employs a recurrent neural network (RNN) and a smooth loss

to enforce smooth movements of the generated skeletons.

In order to evaluate the proposedWiPose framework, we develop

a WiFi sensing testbed with distributed antennas to collect WiFi

data, and use the VICON motion capture system [2] to generate

high precision 3D human skeletons as the ground truth to train our

proposed deep learning model. Our evaluation results show that

WiPose can localize each joint on the human skeleton with an aver-

age error of 2.83cm, achieving a 35% improvement in accuracy over

the state-of-the-art posture construction model proposed in [60].

To the best of our knowledge, this is the �rst investigation on 3D

human pose construction using commercial WiFi devices. With its

superior e�ectiveness and generalizability, the proposed WiPose

framework symbolizes a major step towards the practical deploy-

ment of wireless human sensing systems in real world.

2 SYSTEM OVERVIEW

In this paper, we consider a real-life scenario where the human

subject is monitored by multiple WiFi devices whose signals are

a�ected by the subject’s activities. Our goal in this paper is to recon-

struct the subject’s 3D skeletons using the WiFi signals collected

from these wireless devices. Figure 1 shows an overview of our

proposed system, which contains three major components: data

collection, data preprocessing and skeleton construction.

• Data Collection. The function of this component is to col-

lect the WiFi signals that can be used to reconstruct the

subject’s 3D skeleton. During the data collection process, we

use one transmitter and several distributed receiving anten-

nas to capture the posture of the human subject. In addition

to the collection of WiFi data, we also use a VICON motion

capture system [2] to generate high precision 3D skeleton

of the subject, which is used as the ground truth to train the

proposed deep learning model in our system.

• Data Preprocessing. This component extracts the Chan-

nel State Information (CSI) from the collected WiFi signals,

and then preprocess the CSI data so that they can be fed

Figure 1: System Overview.

into the proposed deep learning model. Speci�cally, we �rst

perform data denoising to remove the phase o�set of the

CSI signals. Then, we divide the denoised CSI data into non-

overlapping small segments and transform each segment

to a representation that can be fed into the deep learning

model.

• Skeleton Construction. This component is designed to

construct the subject’s 3D skeleton using the representation

generated from the CSI data. To achieve the goal, we propose

a deep learning model that can encode the skeletal structure

of human body in the training process to ensure the realistic-

ness of the generated postures. The details of the proposed

deep learning model are described in Section 3.

3 METHODOLOGY

3.1 Overview

Our goal is to reconstruct 3D human posture from CSI data, specif-

ically to generate the joints and body segments connecting the

joints. There are some challenges towards this end. For example,

the estimated positions of the joints should be close to the ground-

truth, the generated posture should be realistic-looking, and the

synthesized body movement should be smooth.

An intuitive solution is to directly and independently estimate

the position of each joint from CSI data. However, due to the low

spatial resolution and error-prone nature of WiFi signals, such

estimation cannot be accurate. As a result, the constructed skeleton

may not look real (e.g., unrealistically long or short limbs).

To address this challenge, we propose a deep learning framework,

named WiPose, which can encode the prior knowledge of human

skeleton into the posture construction process to ensure the estimated

joints satisfy the skeletal structure of the human body.

The intuition is that in 3D space, we can treat the segments of

human body as individual rigid bodies with �xed length. As shown

in Figure 2a, we model human skeleton as a tree with the nodes

being the joints and the edges being the body segments. On the

skeleton tree, with the length of body segments being �xed, to infer

the position of each joint (i.e., tree node), we only need to estimate

the rotation of its associated body segment (i.e., tree edge) with

regard to its parent joint.

In our model, the rotations of body segments are recursively

estimated from the root joint to the leaf joints. For example, as

shown in Figure 2b, if we only consider themovement of an arm, the

shoulder is the parent joint of the elbow, which is also the parent of

the hand. We can decompose the armmovement as �rst rotating the
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(a) Skeleton (b) Rotation

Figure 2: Human skeleton and joint rotation.

elbow with respect to the shoulder and then rotating the hand with

respect to the elbow. This process is called forward kinematics [3].

Through learning the rotation of the joints and applying them to a

given skeletal structure, we can make the estimated joints naturally

satisfy the constraints of the skeleton, and thus the reconstructed

human posture will look realistic.

Moreover, we carefully choose the neural network structure as

well as the loss functions to make our model adaptive to unseen

human subjects and enforce the synthesized body movement to be

smooth. The details will be presented in the next subsection.

3.2 Neural Network

The proposed WiPose deep learning framework is illustrated in

Figure 3. After preprocessing, we transformed the raw CSI data

extracted from M distributed antennas into a sequence of input

data. We denote the t-th input data as xt , and the whole sequence

of input data as x1:T .

After that, we employ convolutional neural networks (CNNs) to

extract spatial features from xt . In particular, we use stacked four-

layer CNNs, and in each CNN layer, the dimension of the kernels

(i.e., �lters) is determined by the dimension of xt , which can be 1D,

2D or 3D. After each convolutional layer, we add a batch norm layer

to normalize the mean and variance, followed by a leaky recti�ed

linear unit (Leaky ReLU) to add non-linearity to the model and a

dropout layer to avoid the over-�tting of the model.

After the four-layer CNNs, we get a sequence of feature vector

z1:T from the input x1:T . Since a body movement usually spans

multiple time slots, there are high temporal dependencies between

the consecutive data samples. To learn the relationship between

consecutive data samples, we further feed z1:T into a recurrent

neural network (RNN), which is an ideal model for this task due to

its ability of connecting the hidden states of temporally dependent

data. To capture relatively long movement, we adopt Long Short-

Term Memory (LSTM) [12], an e�ective and widely used RNN. In

our model, we put three-layer LSTMs on top of the CNNs.

The last and ultimate task of our neural network is to apply

the learned features to a given skeletal structure to construct the

posture of the subject through recursively estimating the rotation

of the body segments, a process called forward kinematics. Given

there are N joints on the skeleton tree, the forward kinematics

Figure 3: Model Overview.

process is mathematically de�ned as follows:

pi = pparent (i) + Ri (p̄i − p̄parent (i)), (1)

where pi ∈ R3 is the 3D coordinate of joint i, i = 2, 3, · · · ,N ,

pparent (i) ∈ R3 is the parent joint of pi on the skeleton tree, and

p̄i , p̄parent (i) are the initial position ofpi ,pparent (i) respectively.Ri

denotes the rotation of the joint pi with respect to its parent. It is an
orthogonal 3×3matrix de�ned in the 3D rotation group, denoted as

SO
3. The 3D rotation group can be represented by unit quaternions.

A quaternion is a hyper complex number with the form a+bi+cj+dk,
where a,b, c,d are real numbers and i, j, k are quaternion units. The
unit quaternion is a quaternion with norm one. It can be trans-
formed from θ radians about a unit axis e = (ex , ey , ez ), represented
as quaternion (cos(θ/2), ex sin(θ/2), ey sin(θ/2), ez sin(θ/2)). Given

a unit quaternion qi = (qia,q
i
b
,qic ,q

i
d
), the corresponding rotation

matrix can be derived through:

Ri =
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.

Compared with rotation matrices, unit quaternions are more

compact, more numerically stable, and more e�cient [1], which is

ideal for us to represent the movement of the human body. Since

directly calculating quaternions from the position of the joints

(called inverse kinematics) is an ill-posed problem because the

given joint positions can be ful�lled by multiple joint rotations, we

learn it through back-propagation using the forward kinematics

layer [40]. The inputs of the forward kinematics layer are the initial

skeletal structure of the human subject and the learned features

from LSTM. The forward kinematics layers will treat the features as

the rotation of the joints and then apply them to the given skeletal

structure to construct the actual joint positions. In this way, our

neural network will focus on learning the skeleton independent

movement features (i.e., the rotation of the joints) from the input

data. Note that although the skeletal structure of each subject is

necessary during the training process, it is optional during the

testing process, because as long as we get the rotation of each
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joint, the human motion will be the same no matter what skeletal

structure we apply them to.

3.3 Loss Functions

Training the neural network comes down to minimizing the error

between the predicted position of each joint i at each time slot t ,

denoted as p̂it , with the corresponding ground truth being pit . In

order to achieve this, given that there are N joints on the skeleton

tree and the input CSI sequence contains T data samples, we �rst

minimize the position loss Lp , which is de�ned as the L2 norm

between p̂it and p
i
t :

Lp =
1

T

T∑

t=1

1

N

N∑

i=1

∥p̂it − pit ∥2. (2)

The position loss treats the posture at each time point indepen-

dently. As a result, the movement of a joint over time may not be

smooth, which will cause the estimated posture jitter. In order to

solve this problem, we add a smooth loss to make the di�erence

between consecutive postures during estimation similar to that of

the ground truth:

Ls =
1

T − 1

T∑

t=2

1

N

N∑

i=1

∥(p̂it − p̂it−1) − (pit − pit−1)∥H . (3)

Here ∥·∥H is the Huber norm. For z = (z1, z2, · · · , zn ), the Huber

norm is de�ned as:

∥z∥H =
1

n

n∑

i=1

huber (zi ), (4)

where

huber (zi ) =

{
0.5z2i if|zi | < 1

|zi | − 0.5 otherwise.
(5)

Moreover, since the position of a joint is inferred through re-

cursively rotating the joints from the root joint to that joint, the

estimation error on the joint position may accumulate during this

process. The position estimation for a joint may be misled if the

learned position of its parent joint has already deviated from the

ground truth. So it is necessary to introduce a loss to penalize the

error in the relative position of a joint with respect to its parent, as

follows:

Lr =
1

T

T∑

t=1

1

N − 1

N∑

i=2

∥(p̂it − p̂
parent (i)
t )− (pit −p

parent (i)
t )∥H . (6)

Since the length of each body segment is �xed in our model,

the relative position of a joint with respect to its parent is only

determined by how much it rotated from an initial relative position.

Therefore, we call this loss the rotation loss.

With all these three losses, we can �nally give the overall objec-

tive function as follows:

J = Lp + βLs + γLr , (7)

where β,γ are the pre-de�ned hyper-parameters to balance the

three losses. We optimize the above objective function through

Adam [21].

3.4 Skeleton Construction

After our model is trained, we can apply it to construct the skeleton

of a subject from a CSI sequence of arbitrary length. If the skeletal

structure of the subject in terms of bone length is available, we can

incorporate it in the model as the initial skeleton and apply the

rotation of joints on it to improve the skeleton estimation. If such

prior knowledge is not available, we can either roughly estimate

the subject’s skeletal structure based on, for example, a photo of

the subject and/or his height information, or simply use a standard

skeletal structure. As we mentioned before, since our model can

precisely estimate the rotation of all the joints, even if the inputted

skeletal structure is not exactly the same as that of the monitored

subject, our model can still reconstruct the subject’s postures.

4 CROSS-DOMAIN INPUTS

When deploying the skeleton reconstruction system in real world,

one challenge we will face is how to make the system adapt to

new environments and human subjects. WiFi signals usually carry

substantial information that is speci�c to the environment where

the postures are recorded and the human subject who performs the

postures. On one hand, the WiFi signals, when being transmitted,

may be penetrating, re�ected, and di�racted by the media (e.g., air,

glass) and objects (e.g., wall, furniture) in the ambient environment.

On the other hand, di�erent human subjects with di�erent ages,

genders, heights, weights, and body shapes a�ect the signals in

di�erent ways, even if they are taking the same posture. As a result,

a posture construction model that is trained on a speci�c subject

in a speci�c environment will typically not work well when being

applied to generate another subject’s skeleton from theWiFi signals

that are recorded in a di�erent environment.

In this paper, we refer to a pair of environment and human

subject as domain. The domain where the model is trained is called

the source domain, and the domain where the model is applied is

called the target domain.

To achieve cross-domain generalization, one possible solution is

to add an adversarial neural network to the proposed deep learning

framework to extract domain independent features, as in existing

work on domain independent activity recognition [20]. However,

this solution will add signi�cant overhead in data collection and

model re-training. Instead, we look to move the domain general-

ization ability from the upper model level downward to the lower

signal level,

Following this idea, we adopt body-coordinate velocity pro�le

(BVP) [64] that describes power distribution over di�erent veloci-

ties, at which body parts involved in the posture movements. BVP

naturally can separate posture-speci�c features from the ambient

objects whose velocities are 0. It is extracted directly from the CSI

data through physical model, and can be fed as the input to our

deep learning framework in a seamless manner. Although the BVP

feature can capture the kinetic characteristics of human posture, it

only models the horizontal velocity and ignores the vertical velocity.

In order to construct 3D human skeleton, we extend the BVP to 3D

velocity pro�le which can capture the movements of the whole 3D

space. The details of this extension will be presented in the rest of

this section.

As discussed previously in Section 3.4, our proposed neural net-

work can achieve cross-subject generalization by incorporating
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the subject’s skeletal structure. We thus focus our discussion on

cross-environment issue in this section.

4.1 CSI Preprocessing

The movement of the subject between a pair of transmitter and

receiver will lead to Doppler e�ect, which shifts the frequency of

the signal collected by the receiver. The Doppler frequency shift

(DFS) fD (t) is de�ned as the change in the length of the signal

propagation path d(t) [33, 44]:

fD (t) = −
1

λ

d

dt
d(t), (8)

where λ is the wave-length. Moreover, transmitted signal arrives at

the receiver through multiple paths, so the CSI data collected by

each receiver can be modeled as:

H (f , t) = (Hs (f ) +

L∑

l=1

αl (f , t)e
j2π

∫ t
−∞

fDl (u)du )e jϵ (f ,t ), (9)

where Hs (f ) represents the CSI from static paths (corresponding

to the line-of-sight signal and the signals re�ected by ambient

objects), and we are interested in the CSI from L dynamic paths

(corresponding to the signals re�ected by the moving human body).

αl is the attenuation of the l-th path, and ϵ(f , t) is the phase o�set

caused by timing alignment o�set, sampling frequency o�set and

carrier frequency o�set. The power of Hs (f ) is much stronger than

the signals re�ected from the moving body parts because it contains

the signal from the line-of-sight path.
In order to remove the phase o�set, we �rst calculate the conju-

gate multiplication of CSI as [44]:

H (f , t )H (f , t ) = (Hs (f )Hs (f )+

L∑

k=1

L∑

l=1

αl (f , t )αk (f , t )e
j2π

∫ t
−∞ fDl (u)−fDk (u)du+

Hs (f )

L∑

l=1

αl (f , t )e
j2π

∫ t
−∞ fDl (u)du+

Hs (f )

L∑

l=1

αl (f , t )e
j2π

∫ t
−∞ −fDl (u)du ).

The �rst term on the right hand side represents static signals and has

the highest power. Since it does not contain the velocity information

we care about, we remove it through subtracting the mean value

from the conjugate multiplication. The second term has very small

value so we can ignore it. The remaining third and fourth terms

will be further used to extract 3D velocity pro�le.

4.2 3D Velocity Pro�le

After we deducted the static components from the conjugate multi-

plication H (f , t)H (f , t), we conduct short-time Fourier transform

on the remaining dynamic components to extract DFS pro�le. For

each time snapshot in the spectrograms, we treat it as a DFS pro-

�le D ∈ RF×M , where F is the length of frequency bins and M is

the number of transceiver links. Here the number of transceiver

links equals the number of receivers because we have only one

transmitter in our system. Our DFS pro�le is symmetric to the

zero frequency because it contains both fDl (t) and −fDl (t). The

DFS pro�les are still domain-dependent since they might be dif-

ferent for di�erent wireless links. Next, we will derive the domain

independent 3D velocity pro�le from DFS pro�les.

We establish a coordinate system with the origin set to be the

location of the subject with a �xed height, the x-axis to be the

orientation of the subject, and the z-axis to be the upward vertical

direction. We de�ne the 3D velocity pro�le to be a 3D tensor V of

size K × K × K , representing that there are K possible velocities

on each of the x-axis, y-axis, and z-axis. We denote the location

of the transmitter to be ®lt = (xt ,yt , zt ), and the location of the

m-th receiver to be ®l
(m)
r = (x

(m)
r ,y

(m)
r , z

(m)
r ). Given a velocity ®v =

(vx ,vy ,vz ), the power of some frequency components will increase

due to the contribution of this velocity component. Let the a�ected

frequency component on them-th link be f (m)(®v), it can be derived

as:

f (m)(®v) = a
(m)
x vx + a

(m)
y vy + a

(m)
z vz , (10)

where a
(m)
x , a

(m)
y and a

(m)
z are coe�cients which can be computed

from the locations of the transmitter and them-th receiver:

a
(m)
x =

1

λ
(
xt


®lt




2

+

x
(m)
r


®l (m)
r





2

),

a
(m)
y =

1

λ
(
yt


®lt




2

+

y
(m)
r


®l (m)
r





2

),

a
(m)
z =

1

λ
(
zt


®lt




2

+

z
(m)
r


®l (m)
r





2

), (11)

Similar to that in [64], we use an assignment matrix A(m) ∈

{0, 1}F×K
3

to represent the project of the 3D velocity pro�le V to

the DFS pro�le of them-th link D(m) as:

A
(m)
j ,k
=

{
1 fj = f (m)(®vk )

0 otherwise
, (12)

where fj is the j-th frequency sampling point on the DFS pro�le,

and ®vk is the k-th element on the vectorized V . Then the relation

between the D(m) and V can be modeled as:

D(m)
= c(m)A(m)V , (13)

with c(m) to be a scaling factor to model the di�erent propaga-

tion loss on di�erent links. This equation can be solved through

compressed sensing as in [64].

5 TESTBEDS

5.1 VICON System

In this paper, we use the VICON motion capture system [2] to gen-

erate 3D human skeletons and take them as the ground truth to

train our proposed deep learning model. As shown in Figure 4, our

VICON system consists of 21 VICON Vantage cameras which can

emit and receive infrared light. When collecting the motion data,

we place 17 high precision pearl markers on each subject repre-

senting the human skeleton, and the positions of them are shown

in Figure 2a. These markers are covered with highly re�ective ma-

terials, and thus are able to re�ect back far more infrared light

than the surface of the subject so that they can be easily captured
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Figure 4: Testbeds and the basic scenario of posture construction.

by the VICON Vantage cameras. Our VICON system can estimate

the position of the markers with errors less than 2mm [28]. The

sampling rate of our VICON system is set as 10 Hz.

5.2 WiFi Testbed

Most of the existing wireless systems employed till date, both using

dedicated hardware and COTS devices, to the best of knowledge,

are built upon the receivers having multiple antennas assembled

together, and sometimes even a perfectly designed antenna array.

Such design makes it easy to extract parameters such as Angle of

Arrival (AoA) and Time of Flight (ToF). However, in real world

scenarios, although there are quite a fewWiFi antennas available in

devices such as smartphone, smart watches, laptops, these antennas

are usually separate and not designed for sensing tasks. In order

to simulate this scenario, we develop a WiFi sensing testbed with

distributed antennas as shown in Figure 4.

Our WiFi testbed consists of one laptop and three desktops. Each

computer is equipped with Intel 5300 wireless NIC connected with

three antennas. We use the laptop as the transmitter and activate

one antenna of it. In order to build a distributed wireless sensing

system, we treat each antenna on the desktops as one receiver, and

place them at di�erent locations. Linux 802.11 CSI tools [13] are

used on our testbed to log CSI data. We set the CSI tools in the

monitor mode to enable the transmitter to broadcast UDP packets

to the receivers. Thus, all the receivers can simultaneously receive

packets from the transmitter. We set our testbed to transmit WiFi

signals on channel 165 (5.825 GHz) where there is little interference

from other devices. The packet rate is set at 1000 packets per second

and the bandwidth is set at 20 MHz.

Ubuntu 14.04 is installed on both the transmitter and the re-

ceivers. We use a VICON motion capturing system installed on

Windows 10 to collect the ground truth skeleton. We record the

local timestamps of the CSI data and the skeleton data, and use the

timestamps to align the data. To achieve this, it is important to syn-

chronize the local clock on all the receivers and the VICON system.

We use network time protocol (NTP) to ensure the synchronization

and achieves average synchronization error of 7 ms.

6 EXPERIMENTS

6.1 Experimental Setting

6.1.1 Data Collection and Preprocessing. In our experiment, 10

volunteers (including both men and women) are employed as the

subjects to collect the CSI data, and we consider 16 typical daily-

life activities including: lifting left/right hand for 45/90/180 degree,

lifting both hands for 90/180 degree, sweeping left/right hand for

45/90 degree, sweeping both hands for 90 degree, lifting leg, waving

hand, walking on the spot. Each subject is asked to conduct each

activity for one minute. While we are collecting the CSI data, we

also use the VICON system to simultaneously collect the skeleton

data for the purpose of model training and evaluation. The sampling

rate of the skeleton data is 10 Hz, and the sampling rate of the CSI

data is about 1000 Hz.

We �rst interpolate the CSI data to obtain uniform sampling

periods through nearest-neighbor interpolation. Then we transform

the raw CSI data into two di�erent types of inputs for the proposed

and baseline models. One is the denoised CSI data, from which we

remove the phase o�set through calculating the absolute value

of the raw CSI data. The other is the 3D velocity pro�le, which is

calculated from the raw CSI data as discussed in Section 4.

In order to align the CSI sequence with the skeleton sequence,

we use 100 CSI samples from 9 receiving antennas to estimate one

skeleton. Speci�cally for the denoised CSI data, we concatenate 100

CSI samples (each of which is the channel state measurement of 30

subcarriers) to form a 9×30×100 matrix as the input. While for the

3D velocity pro�le, we calculate each pro�le from 100 CSI samples.

In our experiment, the height of the 3D velocity pro�le origin is set

as 1.3 m, the range of the velocities on all the axes are set as [-2.0,

2.0] m/s, and the number of possible velocities K is set as 9, so the

3D velocity pro�le input is of size 9×9×9.

Finally, since themakers are attached to the clothes of the subject,

and thus may be shaking when the subject conducts activities. As

a result, the obtained skeleton cannot always keep the bone length

of the subject constant. In order to compensate such error, for

each activity and each subject, we �x the marker on the root joint,

and normalize the position of the other markers through adjusting

the length of each body segment to the average length of that

body segment. The normalized skeleton is used as ground truth for

training both the proposed and baseline models.

6.1.2 Model Se�ing. When implementing the stacked four-layer

CNNs in our model, we use 2D convolution operation for the CSI

data and 3D convolution operation for the 3D velocity pro�le. The

numbers of the convolutional �lters in these layers are set as 64, 128,

64 and 1, respectively, for both types of input data. Some techniques
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Table 1: Average joint localization errors (unit:mm) for the basic scenario.

Joint Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Overall

RFPose3D (CSI) 6 28 92 165 26 78 136 14 18 14 18 19 27 26 20 27 28 43.6

WiPose (CSI) 0 17 59 105 16 52 90 7 13 7 13 14 19 18 14 19 20 28.3

RFPose3D (3DVP) 37 59 134 222 61 129 210 44 45 45 45 40 46 46 42 50 51 76.7

WiPose (3DVP) 0 23 77 133 22 64 108 9 17 10 17 19 26 25 19 27 27 36.7

such as batch normalization [19] and dropout [37] (the dropout

rate is set as 0.2) are also incorporated in our implementation of

CNNs. The adopted activation function is Leaky ReLU [51] with

the parameter α set as 0.02. For the implementation of LSTM, we

set the hidden state number as 544 and the dropout rate as 0.1. The

hyper-parameters β and γ in the loss function are both set as 1.0.

6.1.3 Baseline. RFPose3D is the state-of-the-art deep learning

model for 3D human skeleton construction from FMCW-based

RF signals. In this paper, we implement the deep learning model of

RFPose3D [60] (except the input interface in order to �t WiFi data)

as our baseline. RFPose3D regards human skeleton reconstruction

problem as a joint classi�cation problem. This model builds a 18-

layer convolutional network with residual connections [15], and

classi�es each skeleton joint to a prede�ned voxel in 3D space. In

our implementation, we use the 2D convolution on the denoised

CSI inputs and the 3D convolution on the 3D velocity pro�le inputs.

6.2 Performance Evaluation for Basic Scenario

We �rst evaluate the performance of the proposed framework in the

basic scenario that is shown in Figure 4. In this scenario, we place

one transmitter and nine receiving antennas in an empty area of a

room. The receiving antennas are equally divided into three groups.

One group of the antennas are placed in front of the subject, and

the other two groups are placed on the left and right hand sides of

the subject, respectively. To generate the 3D velocity pro�le from

the CSI data, we place the receiving antennas in di�erent heights.

Posture Construction Using CSI Data. In this experiment, we

�rst collect CSI data to generate the postures of 10 subjects. For

each subject and each activity, the �rst 70% of the data samples are

used for training, and the rest 30% are used for testing. As for the

performance measure, we use the average joint localization error,

which is de�ned as the average Euclidean distance between the

predicted joint locations and the ground truths for all the subjects

and activities.

Table 1 reports the average joint localization error for each joint

that is indexed in Figure 2a. We also calculate the overall result by

averaging the errors for all the joints. The results show that our

proposed framework performs much better than the baseline. The

overall prediction error of our framework is only 28.3mm while

that of the baseline method is 43.6mm. For individual joints, the

estimation errors for the 3rd (right elbow), 4th (right hand), 6th

(left elbow), and 7th (left hand) joints are larger than those of other

joints. One of the reasons is that the re�ected signals from human

arms are weaker than that from other parts of the human body, due

to the small re�ection area. Additionally, in our activity design, the

arms of the subjects have a larger moving range, which makes it

much harder to track the above four joints than other parts of the

body. Next, we analyze the advantages of our proposed framework

through visualizing the constructed skeleton from CSI data.

Figure 5 shows some examples of the constructed 3D skeletons.

The results of RFPose3D and our proposed WiPose framework are

plotted in the third and fourth row, respectively. The �rst row of

this �gure pictures the corresponding human postures, and the

ground truth skeletons generated by our VICON system are shown

in the second row. Note that the skeletons generated by the VICON

system are not perfectly consistent with the postures shown in the

video frames. This is caused by the deviation of the positions of the

markers attached to the subject’s clothes from the true locations of

his skeleton joints. In practice, this problem can be �xed by adjust-

ing the coordinates of these markers in the 3D space. In Figure 5,

we color the skeleton joints with green and the body segments with

grey. Also, we highlight the incorrectly predicted and distorted

body segments with orange color. In this �gure, columns (a), (b)

and (c) correspond to three di�erent postures of three di�erent

subjects. Columns (d)-(f) are consecutive postures captured when

one subject perform the activity of walking on the spot.

The results in column (a) and (b) of Figure 5 show that the 3D

skeletons constructed by our proposed WiPose framework are al-

most the same as the ground truths while those of the baseline

have a distorted left arm in both column (a) and (b) and even a

completely wrong gesture in column (b). For the posture in column

(c), although both our framework and the baseline have an incorrect

construction on the subject’s right arm, the skeleton shape output

by our framework is more realistic than that of the baseline. The

results in columns (a)-(c) demonstrate that our WiPose framework

has clear advantages in constructing realistic 3D skeletons with

high accuracy compared with the baseline method. The reason is

that our WiPose framework can encode the prior knowledge of

human skeleton into the posture construction process to ensure

that the estimated joints satisfy the skeletal structure of the human

body. However, the baseline method independently estimates the

positions of individual joints without explicitly enforcing the phys-

ical relationship among them, and thus it may generate distorted

body segments due to the localization errors of individual joints.

In columns (d)-(h) of Figure 5, the subject is performing a con-

tinuous action of walking on the spot. We can see that some of

the skeletons constructed by the baseline model are not correct

and the baseline’s synthesized body movements are not smooth, ei-

ther. In contrast, our proposed framework reconstructs the activity

truthfully and smoothly. This is mainly because our framework is

capable of capturing the temporal relationship between consecutive

postures and making their di�erence during estimation consistent

with that of the ground truth.
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Figure 5: The examples of the constructed skeletons in the basic scenario.

Posture Construction Using 3D Velocity Pro�le. Besides the

CSI data, we also use the 3D velocity pro�le (denoted as 3DVP)

as the model input to evaluate the performance of our proposed

framework. The results are also shown in Table 1, from which we

can see that WiPose can still achieve high accuracy and perform

much better than the baseline on the estimation of every single joint.

These results demonstrate that our proposed deep learning model

is �exible to learn useful information from di�erent types of input

data. Additionally, the results in Table 1 show that the performance

of both our framework and the baseline on the velocity pro�le is

worse than that on the CSI data. This is mainly because when the

velocity pro�le is generated from the CSI data, though domain-

speci�c information is removed, some information related to the

body posture is also lost.

Bad Lighting Condition. We also evaluate the performance of our

proposed framework under bad lighting condition, where the vision-

based solutions usually have poor performance. Figure 6 shows an

illustrative example. Here the model input is the denoised CSI data.

The image on the left shows the posture of the subject, which is very

blurry due to the bad lighting. The middle and right images are the

ground truth and the skeleton constructed by WiPose, respectively.

As we can see, our constructed skeleton is almost the same as the

ground truth, which demonstrates the advantage of our proposed

framework over the vision-based solutions.

E�ect of the Training Rate. In the above experiments, we use the

�rst 70% of the data samples as the training data. Next, we evaluate

the performance of our WiPose framework on less training data.

Speci�cally, we use the denoised CSI data as input and gradually

Figure 6: The example of the constructed skeleton in the ba-

sic scenario with bad lighting.

decrease the data used for training from the �rst 70% to the �rst 40%

(the amount of training samples are decreased from 112 minutes to

64 minutes). We report the results in Table 2, from which we can see

the average joint localization errors of both WiPose and RFPose3D

increase when the training rate decreases. However, our proposed

WiPose framework still has better performance than RFPose3D in

all cases, and it can reconstruct the human skeleton with an error

of less than 40mm even when the training rate is only 40%.

Table 2: Average joint localization errors (unit:mm) for dif-

ferent training rates.

Training Rate 40% 50% 60% 70%

RFPose3D (CSI) 57.1 52.4 48.6 43.6

WiPose (CSI) 39.1 34.6 32.1 28.3

E�ect of the Packet Rate. In addition to the training rate, we

also evaluate the e�ect of the packet rate on the performance of
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(a) (b) (c)

Figure 7: Di�erent scenarios of posture construction. (a) The occluded scenario. (b) The furnished scenario. (c) The scenario

with randomly deployed antennas.

our model. In this experiment, we �rst collect CSI data with the

transmitter sending packets at 1000 Hz, then we consider another

two cases in which we down-sample the collected CSI data to 500

Hz and 250 Hz, respectively. For the two cases, the input size of our

model is decreased to 9 × 30 × 50 and 9 × 30 × 25, respectively. We

then adjust the kernel size of the CNN and feature size of the RNN

accordingly to estimate the skeleton. The results in Table 3 show

that our proposed WiPose framework performs much better than

RFPose3D when the packet rate varies. We can also observe that

the variation of the packet rate has little e�ect on the performance

of WiPose. For example, even when the packet rate is reduced to a

quarter (i.e., 250 Hz) of the full rate, the growth of the localization

error is less than 5% when using our WiPose framework.

Table 3: Average joint localization errors (unit:mm) for dif-

ferent packet rates.

Packet Rate (Hz) 250 500 1000

RFPose3D (CSI) 46.6 45.2 43.6

WiPose (CSI) 29.7 29.0 28.3

E�ect of the Number of Receiving Antennas. Finally, we eval-

uate the performance of our model when the number of receiving

antennas reduces. Here we vary the number of receiving antennas

from 6 to 9, and report the results in Table 4. As we can see, our

proposed WiPose framework still outperforms the baseline method

in all cases.

6.3 Performance Evaluation for Occluded
Scenario

To investigate the e�ect of occlusion on the performance of our

proposed WiPose framework, we place a wooden screen between

the subject and each group of the receiving antennas. The occluded

scenario is shown as Figure 7a. In this experiment, we collect the

CSI data for 6 of the employed 10 subjects. For each subject and

activity, we also use the �rst 70% of the data samples as the training

data and the rest 30% as testing data.

Table 5 reports the average joint localization errors for the oc-

cluded scenario. As we can see, for both the CSI data and the 3D

velocity pro�le, our proposed WiPose framework outperforms the

baseline method on the estimation of each joint. Additionally, the

results in Table 5 are close to those in Table 1, which means WiPose

is robust and it can still have good performance even there exist

occlusions when collecting the CSI data. This is mainly because the

Table 4: Average joint localization errors (unit:mm) for dif-

ferent number of receiving antennas.

Antenna Number 6 7 8 9

RFPose3D (CSI) 44.3 44.0 43.9 43.6

WiPose (CSI) 31.9 30.7 29.6 28.3

WiFi signal is capable of penetrating the wooden screen. Although

the screen attenuates the signal power, most of the posture related

information can still be retained in the signal. To further verify

this point, we also visualize the 3D subject skeletons constructed

by WiPose. Here we consider three di�erent “antenna" views (i.e.,

the front, right and left views with respect of the subject, each of

which aligns with the line-of-sight of a group of receiving antennas

towards the subject) from which the subject is not visible due to

the occlusion of the screen. Figure 8 shows two examples of the

constructed skeletons when the CSI data are taken as the model

input. The �rst row of this �gure pictures the corresponding human

postures. The second to the fourth rows show the ground truth

skeletons and our constructed skeletons from the front, right and

left views of the subject, respectively. We can see the constructed

3D skeletons based on WiPose are almost the same as the ground

truths. These results further demonstrate that our proposedWiPose

framework is able to construct 3D human skeletons with high pre-

cision in the occluded scenario, where the vision-based solutions

usually do not work.

6.4 Performance Evaluation for Cross-domain
Posture Construction

Di�erent Settings of the Room. We �rst quantitatively evaluate

our model on three unseen scenarios during the training process.

In this experiment, we only use the CSI data collected in the basic

scenario (as shown in Figure 4) to train our model. Since we have

only one room that is equipped with the VICON system, the three

unseen scenarios are simulated through changing the setting of

the room. Speci�cally, we �rst simulate a furnished scenario, as

shown in Figure 7b, in which we furnish the room with some

desks and chairs that can change the transmission of the wireless

signals. The second testing scenario is the occluded scenario that is

described in Section 6.3. In this scenario, the screen can attenuate

the power of the signals re�ected from the subject. Additionally,

we also consider a random antenna scenario where the receiving

antennas are randomly placed, which can be seen in Figure 7c. The
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Table 5: Average joint localization errors (unit:mm) for the occluded scenario.

Joint Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Overall

RFPose3D (CSI) 5 22 73 127 23 80 133 11 14 11 15 15 21 22 16 22 22 37.2

WiPose (CSI) 0 18 65 113 17 61 105 7 12 7 12 13 17 17 13 17 18 30.1

RFPose3D (3DVP) 28 56 142 237 53 138 226 35 37 35 37 36 41 42 37 48 46 74.9

WiPose (3DVP) 0 32 117 204 30 110 188 12 22 13 22 24 29 30 23 33 34 54.2

Figure 8: The examples of the constructed skeletons for the

occluded scenario.

random deployment in this scenario certainly makes change to the

signals collected by the receiving antennas. In all the above three

scenarios, we collect the CSI data for 6 of the employed 10 subjects.

Table 6 shows the average joint localization errors for the above

three scenarios. In this table, we only report the overall results

that are calculated by averaging the errors for all the joints. The

results show that our proposed WiPose framework performs much

better than the baseline method in all cases, which demonstrates

the advantage of WiPose over the baseline when testing the model

in di�erent settings of the room.

When comparing Table 6 with Table 1, we �nd that after the

testing domain is changed from the basic scenario (i.e., the same

domain) to other scenarios (i.e., di�erent domains), the performance

of our framework and the baseline on CSI data drops much more

than that on the 3D velocity pro�le. This is mainly because the

3D velocity pro�le is not only able to separate the subject’s move-

ments from surrounding static objects but also independent of the

deployment of antennas.

Moreover, the results in Table 6 show that our proposed WiPose

framework can make better use of the cross-domain input (i.e., the

3D velocity pro�le) than the baseline method. After the input data

Table 6: Average joint localization errors (unit:mm) for pos-

ture construction in di�erent settings of the room.

Scenarios Input Model Overall

Furnished

CSI
RFPose3D 135.3

WiPose 95.3

3DVP
RFPose3D 119.9

WiPose 61.2

Occluded

CSI
RFPose3D 147.3

WiPose 121.6

3DVP
RFPose3D 125.5

WiPose 79.1

Random Antenna

CSI
RFPose3D 133.9

WiPose 95.2

3DVP
RFPose3D 126.9

WiPose 87.7

is changed from CSI to 3D velocity pro�le, our framework can

achieve 25.6mm improvement, as opposed to the marginal 8.1mm

improvement made by the baseline. The reason is that not all the

body segments are moving at any given time. The 3D velocity pro-

�le, which is designed to remove the information speci�c to static

objects, would inevitably incur a loss in the information related

to the body posture. Such loss makes it di�cult for the baseline

method to achieve a truthful construction of the skeleton. In con-

trast, our proposed model explicitly incorporates prior knowledge

of skeletal structure, and thus is more tolerant of the loss of posture

information caused by the velocity pro�le.

Di�erent Subjects. In addition to changing the setting of the room,

we also evaluate the performance of our proposed WiPose frame-

work across di�erent subjects in the basic scenario. Speci�cally,

we pick up two subjects who are shorter than the others as the

testing subjects, and use the others’ data to train the models. This

makes the testing set quite biased. We report the overall average

joint localization errors in Table 7, from which we can see that the

baseline method performs much worse than our framework in this

biased setting. This is mainly because the baseline method needs to

simultaneously estimate the skeleton structures and the movements

of the testing subjects, and thus is more vulnerable to the errors

in either of these two aspects. However, our proposed framework

encodes the skeletal structures of the subjects in the model, so it still

has good performance even when the testing subjects are unseen

in the training data.

Strong Re�ectors and Di�erent Rooms. In order to demon-

strate the feasibility of our model working in real practice, we

further evaluate it in more challenging scenarios. We �rst study

the e�ect of strong re�ectors on the performance of the proposed

WiPose framework. Speci�cally, we train the model with CSI data

of 5 subjects and 9 activities (i.e., lifting left/right hand for 90/180
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(a) (b) (c)

Figure 9: Di�erent scenarios of posture construction. (a) The furnished scenario with strong re�ectors. (b) The conference

room. (c) The lobby.

Table 7: Average joint localization errors (unit:mm) for cross-

subject posture construction.

Input Model Overall Input Model Overall

CSI
RFPose3D 141.7

3DVP
RFPose3D 138.8

WiPose 103.6 WiPose 85.8

degree, lifting both hands for 90 degree, sweeping left/right hand

for 90 degree, sweeping both hands for 90 degree, walking on the

spot) collected from an environment similar to the basic scenario,

and then test the model in the room with two metal whiteboards

near the antennas. The setting of this scenario is shown in Figure 9a.

We report the results in Table 8, from which we can see the WiPose

with 3DVP can achieve the best performance.

Table 8: Average joint localization errors (unit:mm) for the

scenario with strong re�ectors.

Input Model Overall Input Model Overall

CSI
RFPose3D 130.2

3DVP
RFPose3D 114.8

WiPose 107.4 WiPose 58.6

We also directly apply the trained model on 3DVP to two new

scenarios in a di�erent building: a conference room and the lobby,

where we do not have any training data. The settings for the two

scenarios are shown in Figure 9b and Figure 9c, respectively. Since

it is di�cult to move the VICON system to these two scenarios

to provide the ground truth skeletons, here we only qualitatively

analyze the performance of our proposed model. In Figure 10 and

Figure 11, we show the generated skeletons of some postures and

the corresponding snapshots. Based on our observation, for most of

the subjects and most of the activities (e.g., Figure 10a, Figure 10b,

Figure 11a, and Figure 11b), our WiPose framework can correctly

reconstruct human postures from WiFi signals, even though the

model is trained in a di�erent building. This con�rms the cross-

environment generalization ability of our model.

There are still some cases where WiPose fail to reconstruct some

body segments. For example, as shown in Figure 10c, WiPose can

correctly capture the movement of the left arm but fails on the right

arm. In our experiments, we also observe that some postures are

more di�cult to be reconstructed than others. For example, the

activity of lifting left hand for 180 degree is apt to be mistaken as

lifting left hand for 90 degree (Figure 11c). We speculate that it is

because the transmitter and receiving antennas are placed at the

Figure 10: Posture construction in the conference room.

Figure 11: Posture construction in the lobby.

heights ranging from 0.74m to 1.28m, and thus the WiFi signals

from overhead may be weaker than the other parts of the body.

6.5 Running Time Analysis

Here we provide a quantitative analysis of the e�ciency of our pro-

posed WiPose framework. Speci�cally, we measure the inference

runtime of all 3 components of our model: CNN, RNN, and FK. The

results on a single NVIDIA Titan XP GPU for every 1 second WiFi

data is summarized in Table 9. From the table, we can see that it

takes our model only 0.016s to reconstruct 10 frames of human pos-

ture from 1 second WiFi data. As a comparison, RFPose3D spends

0.029s to do the same work because it uses a much deeper neural

network and many skip layers.
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Table 9: The inference time of the models on a single

NVIDIA Titan XP GPU for every 1 second of WiFi data.

Model CNN RNN FK Total RFPose3D

Time (s) 0.001 0.001 0.014 0.016 0.029

7 DISCUSSION

Although our proposed WiPose framework can reconstruct human

postures with high accuracy in many di�erent scenarios, it still has

some limitations.

For example, in our current design, we assume that the subject

is performing activities on the spot. However, many activities in

real-life involves the change of locations. To construct the postures

of moving subject, we can make use of the 3D velocity pro�le

derived from the CSI data. 3DVP captures the power distribution

over absolute velocities, and thus can be utilized to track the location

of the subject. After we estimate the location of the subject, we

can construct the subject’s skeleton at his current location. Since

3D velocity pro�le is robust with regard to the location change of

the subject, our proposed WiPose can still truthfully construct the

skeleton of the subject.

Moreover, our model currently can construct the postures of only

a single subject. Actually, it can be extended to the scenes with mul-

tiple subjects through jointly estimating 3D velocity pro�le for each

subject. Speci�cally, we can �rst estimate the number of subjects

and their locations. Assume that there are n subjects at di�erent

locations, the frequency shift at each antenna is contributed by the

movements of all these subjects. We use one vector of length K3

(K is the number of possible velocities on one axis) to parameterize

the vectorized 3D velocity pro�le of one subject, and concatenate

all the vectors to form a vector of length nK3. Using the method

proposed in Section 4.2, we can jointly estimate the 3D velocity

pro�le for each subject. A WiPose model can then be applied on

each subject’s velocity pro�le to construct his skeleton.

8 RELATEDWORK

WiFi Sensing: Recently, a considerable number of investigations

are conducted to make use ofWiFi devices to enable various sensing

tasks, including indoor localization and tracking [5, 22, 25, 33, 39, 42,

48–50, 52, 53, 65], walking speed estimation [17, 43], breathing and

heartbeats inference [6, 55, 58, 61], human identi�cation [16, 43, 54],

human or human movement detection [32, 34, 47, 66], and gesture

recognition [27, 31, 35, 56, 62, 63]. But all the above methods are

considered as coarse-grained person perception. In contrast, our

work aims to achieve a much �ner grained person perception, i.e.,

human pose estimation.

Human Pose Estimation: In computer vision area, human pose

estimation is a well-studied problem. With the development of deep

learning algorithms and the emergence of abundant annotated 2D

human poses datasets, lots of work [7–11, 14, 18, 29, 30, 38, 46] are

focused on 2D human pose estimation. In addition to using conven-

tional RGB cameras on the 2D pose estimation, some researchers

also make e�orts on estimating 3D human pose with VICON sys-

tem [36] and RGB-Depth cameras [57]. Despite the great success

achieved by vision-based approaches, the performance of these

methods can be severely impaired by bad illumination, occlusion

and blurry. Most importantly, privacy issues occur when cameras

are deployed to monitor the human subjects. Recent light-based

approaches [23, 24] protect user privacy through using photodiodes

instead of cameras, but they still cannot work in dark or occluded

scenarios. In contrast, our WiFi-based approach both avoids the pri-

vacy issue, and is immune to the lighting and occlusion conditions.

There are also LiDAR based solutions, which can achieve �ne-

grained person perception from 3D point clouds. For example, the

systems proposed in [26, 45] can be used to detect and recognize a

human subject. However, the LiDAR sensors are usually expensive

and power-consuming, therefore are di�cult to apply for daily and

household use.

To overcome the limitations of above solutions, recent e�orts are

made to explore RF signal based solutions. Among them, RFCap-

ture [4] demonstrates that by using RF signal, a coarse description

of human body can be generated even through a wall. Through

a teacher-student deep network, RFPose[59] is able to extract 2D

human skeletons from RF signals with the supervision of visual

information. The later version, RFPose3D [60], extends this frame-

work to achieve 3D skeleton construction. Despite their impressive

performance, the prohibitive requirements of these approaches in

both hardware (i.e., a carefully assembled and synchronized 16 + 4

T-shaped antenna array) and RF signals (i.e., Frequency Modulated

Continuous Wave with a broad signal bandwidth of 1.78 GHz) se-

verely limit the application scope of their system. Most recently,

Wang et.al. [41] propose a human pose estimation systemwhich can

construct 2D skeleton from WiFi data. However, the success of this

work is highly dependent on some features, e.g., Part A�nity Fields

(PAFs) [7] and Segmentation Masks(SM) [14], which are suitable for

only 2D scenes, making it hard to be extended to construct 3D skele-

tons. Compared with the aforementioned RF signal based solutions,

our work is the �rst one that can accurately construct �ne-grained

3D human skeletons from di�erent forms of WiFi signals.

9 CONCLUSIONS

In this paper, we investigate the possibility of using pervasive WiFi

signals to image the human body like a camera. Speci�cally, we

propose a deep learning framework, named WiPose, that can con-

struct 3D human pose using commercial WiFi devices. The pro-

posed framework is able to encode the prior knowledge of human

skeleton into the posture construction process to ensure the real-

isticness of the generated postures. It is also promising to achieve

cross environment generalization by taking as input a 3D velocity

pro�le which can capture the movements of the whole 3D space,

and thus separate posture-speci�c features from the static objects

in the ambient environment. Additionally, WiPose employs a recur-

rent neural network (RNN) and a smooth loss to enforce smooth

movements of the generated skeletons. The experimental results

based on a real-world WiFi sensing testbed demonstrate that our

proposed WiPose framework can construct 3D human pose with

high precision.
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