
Towards 3D Object Maps for Autonomous Household Robots

Radu Bogdan Rusu, Nico Blodow, Zoltan Marton, Alina Soos, Michael Beetz

Intelligent Autonomous Systems, Technische Universität München

{rusu, blodow, marton, soos, beetz}@cs.tum.edu

Abstract— This paper describes a mapping system that ac-
quires 3D object models of man-made indoor environments
such as kitchens. The system segments and geometrically recon-
structs cabinets with doors, tables, drawers, and shelves, objects
that are important for robots retrieving and manipulating
objects in these environments. The system also acquires models
of objects of daily use such glasses, plates, and ingredients. The
models enable the recognition of the objects in cluttered scenes
and the classification of newly encountered objects.

Key technical contributions include (1) a robust, accurate,
and efficient algorithm for constructing complete object mod-
els from 3D point clouds constituting partial object views,
(2) feature-based recognition procedures for cabinets, tables,
and other task-relevant furniture objects, and (3) automatic
inference of object instance and class signatures for objects of
daily use that enable robots to reliably recognize the objects in
cluttered and real task contexts. We present results from the
sensor-based mapping of a real kitchen.

I. INTRODUCTION

Maps (or environment models) are resources that enable

robots to better perform their tasks. Using maps robots can

better plan their own activities and recognize, interpret, and

support the activities of other agents in their environments

[1]. Most robot maps acquired and used so far primarily

enable robot localization and navigation [2]. With few ex-

ceptions, in particular in the area of cognitive mapping [2],

[3], but also including [4], [5], maps do not represent objects

relevant for other robot tasks. Objects are in most cases

geometric primitives such as lines and planes that make maps

more compact and abstract [6].

In contrast, robots that are to perform manipulation tasks

in human living and working environments need much more

comprehensive and informative object models. Consider, for

example a household robot that is to set tables. Such a robot

must know that cups and plates are stored in cabinets, that

cabinets can be opened to retrieve the objects inside, that the

visual system cannot see the objects inside a cabinet unless

the door is open. It must also know in which cabinets given

objects are stored to not have to search for them. In addition,

the map should also enable the robot to easily recognize the

objects of interest in its work space.

Our research agenda aims at investigating the represen-

tations, the acquisition, and the use of robot maps that

provide robots with these kind of knowledge about objects

and thereby enable autonomous service robots, such as

household robots, to perform their activities more reliably

and efficiently.

This paper presents substantial steps towards the realiza-

tion of such maps and the respective mapping mechanisms.

Conceptually, we perform a feasibility study that demon-

strates how robot maps containing (1) object representations

for objects such as cabinets, tables, drawers, etc and (2) ob-

ject libraries for objects of daily use can be represented and

acquired. The main technical contributions of this paper are

the following ones: (1) a novel robust, accurate, and efficient

algorithm for constructing complete object models from 3D

point clouds constituting partial object views, (2) feature-

based recognition procedures for cabinets, tables, and other

task-relevant furniture objects, and (3) automatic inference

of object instance and class signatures for objects of daily

use that enable robots to reliably recognize the objects in

cluttered and real task contexts.

The remainder of the paper is organized as follows. The

next section introduces our map representation and gives

an overview of the mapping process. Section III describes

the theoretical algorithms as well as their implementation.

Sections IV and V describe the computational mechanisms

for acquiring the environment maps and the object libraries

respectively, as well as the experimental results obtained.

We conclude with a short discussion of related work, our

conclusions, and a sketch of our future work.

II. ENVIRONMENT MAPS AND THEIR ACQUISITION

In this section we first conceptualize a kitchen from the

view of a household robot that is to perform tasks such as

setting the table, preparing meals, and cleaning up. We then

describe how we represent this conceptualization as a robot

map. We finally consider variants of computational problems

for acquiring such robot maps and give an overview of the

mapping program we implemented.

Fig. 1. Point clouds representing objects.

A. Kitchens through the Eyes of Household Robots

Looking through the eyes of household robot the kitchen is

a room that essentially consists of a set of cabinets, contain-

ers with front doors, shelves, which are open containers, and

tables — horizontal planes that can be used for performing

kitchen work, having meals, etc. Some of the cabinets have

specific roles: the fridge keeps food cold, the oven and

microwave is used to cook meals, the dishwasher to clean

the dishes after use. There might be more pieces of furniture

that have important roles for the robots’ tasks, but for now

we only consider these ones. All other types of furniture,

such as chairs are uniformly considered to be obstacles.

The kitchen also contains smaller objects with changing

locations, such as food, ingredients, cooking utensils, and

small appliances such as coffee machines. For these objects

the robot needs libraries of object representations that can

be used to find and recognize these objects, to keep track of

their status, etc (see Figure 1).

B. Object Maps of Indoor Environments

Our map representation is an extension of RG (Region-

Gateway) maps proposed by Schröter et al. [4]. RG maps

are tuples 〈R;G〉, where R denotes a set of regions and G

is a set of gateways that represent the possible transitions

between regions. A region has a class label (“office-like” or

“hallway-like”), a compact geometric description, a bounding

box, one or two main axes, a list of adjacent gateways, and

the associated objects O.

Fig. 2. Depiction of segmented cupboards in a kitchen.

In this paper we consider how the objects O are repre-

sented and how the models of these objects are acquired.

The objects O are a tuple 〈F ;OL〉, where F is the set of

“furniture-like” objects and OL is the object library. The

“furniture-like” objects F is a set of objects that include

geometric 3D models, position and orientation, and an object

class label. Object classes are cabinets, drawers, shelves,

tables, and obstacles, where obstacles are all the objects that

do not fall into the first four classes. Cabinets are cuboid

containers with a front door that might contain objects of

the object library OL. Some cabinets have specific purposes

such as the oven, the refrigerator, and the dishwasher.

The other cabinets are used to store objects. Tables are

another important subclass of furniture-like objects. They

are horizontal rectangular flat surfaces approximately at hip

height that satisfy some given minimal size and length

requirements. Similarly, we have drawers and shelves as

additional furniture-like object classes.

The object library contains the small appliances and the

objects of daily use, such as ingredients, cups, plates, pots,

etc. These objects are moved around and might change their

states: cups can be full, empty, used, to be used, clean,

etc. These objects are indexed spatially, functionally and as

affordances.

C. The Mapping Problem

In general the mapping problem is to infer the semantic

object map that best explains the data acquired during the

mapping process. The sensor data is a sequence 〈vi, posei〉
where vi is a point cloud where each point has an 〈x, y, z〉
coordinate and possibly additional perceptual features asso-

ciated with it, such as its color. The scans cover the envi-

ronment to be mapped and each point cloud has sufficiently

large overlap with previous scans such that it can be roughly

spatially aligned with previous scans. posei specifies the

position and orientation of the recording sensor and might

be unknown if the robot cannot estimate the position of its

sensor.

The output consists of a compact obstacle representation

of the environment. In addition, the system is to represent

the cabinets and drawers that it sensed in their closed as

well as opened state as objects with the respective furniture

category. The system also has to represent the tables and

shelves explicitly and label them respectively.

given: { 〈v1, pose1〉, ..., 〈vn, posen〉 }
estimate: a compact and accurate polygonal representation

of v1∪...∪vn biased towards planar rectangular surfaces

infer: object models for cabinets, drawers, shelves, and

tables.

D. Overview of the Mapping System

The operation of the mapping system described in this

paper is depicted in Figure 3.

Fig. 3. The architecture of our system.

The first module Acquiring Point Models constructs com-

prehensive and accurate point models of the individual views

provided by the sensor. The point models are then further

processed by the type specific mapping components: the

Object Modelling and the Environment Mapping module. The

object and furniture models returned by these models are

then combined into the Semantic Map. The Acquiring Point

Models module first classifies individual point measurements

with respect to whether or not they are outliers. Outliers

are removed. After outlier removal measurement points are

clustered and additional features are extracted to make the

consistent integration of different views more efficient and

more robust. The integration is done by an iterative optimiza-

tion algorithm that tries to minimize the distance of points

that are believed to correspond to the same 3D points. The

details of the algorithm are explained in Section III.

The steps Object and Environment Modelling are specific

to the aspect of the environment that is mapped. Object

Modelling acquires models of the objects of daily use (see

Figure 1). Object modelling smoothes object surfaces and

reconstructs occluded surfaces through point resampling. The

resulting point cloud is polygonally reconstructed and object

classifying and identifying features are inferred. Environ-

ment Modelling estimates polygonal representations but also

recognizes and analyzes large rectangular planes. Special

purpose “sensing“ routines look for voxel clouds occluded

by rectangular planes — the cabinets, for large horizontal

rectangular planes — the tables, shelves, and drawers.

The results of both modules are collected into the semantic

object map.

III. ROBUST ACQUISITION OF POINT MODELS

The main data structure used by our algorithms is repre-

sented by point clouds. The sensors produce several point

clouds, each corresponding to a view or snapshot taken by

the respective sensor. A point cloud is a set of points, each

specifying an 〈x, y, z〉 position in space, possibly associated

with additional information such as the brightness or the

color of the respective point.

The workhorse of our object mapping approach is the

robust registration-based object reconstruction method. It

solves the following model acquisition task: given multiple

views of the object to be mapped and possibly an estimation

of the sensor position (not mandatory), compute a trans-

formation that can align the views together. The algorithm

outputs a polygonal reconstructed model of the object where

sensor noise is largely removed based on statistical inferences

and missing pieces of surface information are added.

The computational problem is difficult for various reasons.

Due to the physical limitation of sensors and their limited

line of sight, several ”images” from multiple locations must

be taken in order to obtain a complete representation of the

object. The data is also noisy and often contains a substantial

number of outliers. Also many objects of daily use are so

complicated that self occlusions cannot be compensated by

taking additional recordings. Last but not least, the compu-

tations have to be performed on huge data clouds, which

prevents the use of straightforward computation techniques.

A. Overview of the Robust Acquisition

Our object mapping approach satisfies the requirements

stated in the last section in that it constitutes a novel

combination of computational ideas being largely indepen-

dently developed in the research areas of computer graphics,

robotics, and scientific computing. We combine methods for

building accurate geometrical representations of 3D objects,

developed by researchers in the computer graphics com-

munity [7], [8] as well as robotics [9], [10] with robust

estimation techniques widely used in robotics and computer

vision [11]. In order to make the computation processes

feasible we apply clustering techniques and techniques from

scientific computing to deal with the high volume of data.

The basic idea of the algorithm is to construct com-

plete point models by aligning the point clouds of the

corresponding object views. This is done by an iterative

improvement algorithm that repeatedly rotates and positions

a newly acquired point cloud P d, such that it optimally

complements another point cloud taken of the same object or

scene, which we call the point model Qd. A 50% overlap is

however required between the feature points (not the original

point sets) as defined by the robustness of the estimator. The

fitness function is defined as a distance metric between points

in the first scan and the corresponding points in the other

scan.

This is done by the following computational steps:

1) initialization.

• noise removal. The raw data coming from the sensors

and constituting the point cloud P d
raw is preprocessed

using statistical techniques[12] in order to eliminate

outliers and reduce noise.

P d = {pd
i ∈ P d

raw | dist(pd
i , p

d
j) > µ+dthresh·σ} (1)

Fig. 4. Mean distances in a noisy point cloud representing a cup.

• computing an initial positioning hypothesis of the

point cloud. The point cloud P d is positioned in the

neighborhood of the model cloud Qd, such that it

lies within the convergence area of the algorithm. For

this purpose, the position and orientation estimate of

the sensor is used. If the estimate is not available

or unreliable, the positioning of P d is done based

on normalizations and rotations resulting from its

principal components (PCA) using eigenanalysis.

p
′

i = pi −
1

n

n
∑

i=0

pi, q
′

i = qi −
1

m

m
∑

i=0

qi

Cp = PT · P
SVD

= Up · Sp · V T
p (2)

Cq = QT · Q
SVD

= Uq · Sq · V
T
q

Where Cp and Cq are the covariance matrices of the

de-meaned point sets. The resulting transformation is

defined by: T = Qd − (Uq · U
T
p) · P d

2) Determining features for optimizing the point cloud

alignment. Several geometrical (and visual - where color

or intensity data is present) features are extracted and

different level of detail views are generated for the point

cloud (see Figure 5).

Fig. 5. Normal point surface and curvature estimation features.

3) clustering is applied to the point cloud for dimensional-

ity reduction (a cluster is replaced by its center of mass)

and faster search operations

4) a robust registration technique is applied to merge

multiple views together in order to form a complete

model

B. Point cloud registration

As presented above, the multiple observations gathered

from the sensors need to be registered together in order to

form a model which characterizes the target object. Several

registration methods exist, ranging from those that compute

only rigid transformations, to those applicable to deformable

surfaces. In our work, we treat all objects of interest as being

rigid, thus we are interested in finding out the transformation

(rotation and translation) which minimizes the distance error

in a least-squares sense. Specifically, we are looking for the

transformation:

T(P,Q) = {R · P + t | R = [3 × 3], t = [1 × 3]}

which minimizes the error

e(R,t) =
1

N

N
∑

i=1

θ||qi − R · pi − t||2

where P and Q represent the observation (point clouds),

R is a 3x3 matrix representing the rotation, t a 1x3 column

vector representing the translation, and θ is a weight of the

current evaluated point correspondence.

One of the most widely used rigid registration algorithms

is the iterative closest point (ICP) [13], [12]. Two big

disadvantages of the classical ICP algorithm, besides its

speed, make it unappealing for robotics: the wideness of

the convergence basin (highly correlated with the needed

initial alignment) and the correspondence problem (ICP

assumes that each point from the source point cloud has a

correspondence in the target point cloud).

We propose the use of an ICP-like algorithm which

we developed: RnDICP (Robust-nD-ICP - see below). Our

approach is twofold: we first process both point clouds in

order to extract the most important features that could be

used in the registration process (see below). Then, in the

actual registration process, we try to include any additional

information that we have or can extract from the sensor

data, thus boosting the searching dimensionality. This means

that, in comparison to the classical ICP which attempts to

minimize a 3D mean distance metric between the two point

clouds, our algorithm attempts to minimize a nD distance

(eg. 6D for XYZ and RGB color information, 9D for XYZ,

RGB and nXnYnZ normal information, etc).

The algorithm is summarized as follows:

1) Statistically remove noise and outliers from the P d and

Qd point clouds (see Equation 1).

2) Provide an initial guess for the registration algorithm by

aligning the point cloud P d as close as possible to the

model Qd. If no position and orientation information are

available from the sensor, perform eigenanalysis/PCA

and use the principal components for rotation (see

Equation 2).

3) Estimate geometric primitives and compute features

such as surface point normals and curvature flatness

metrics, etc (see Figure 5).

4) Cluster the model point cloud Qd into k clusters Ck =
{c1, . . . , ck}.

5) Select the best feature points (minimal subset) from the

source point cloud P d
f = {pd

i ∈ P d | Fpi
> µ+dF ·σ}

6) Repeat the following steps until either the number of

iterations reaches a given maxIterations value or the

registration error drops below a given errValue threshold

• For every selected feature point in cloud P d
f , search

for a corresponding point in cloud Qd.

Qd
n = {qd

n1
, . . . , qd

ns
}

dist(Pf , Qn) = min

√

√

√

√

d
∑

i=1

θ(P i
f , Qi

n)2

• Statistically remove unlikely matches using the meth-

ods presented in [12].

• Compute the rigid transformation T = (R, t) using

the singular value decomposition (SVD) of the co-

variance matrix.

• Apply the transformation to P d
f , and adjust the rest

of the point attributes (eg. rotate normals).

P d
fj

= R · Pfd
j−1

+ t

• Compute the registration error metric ǫ.

ǫ = MSE(dist(P d
f , Qd

n)))

The result of the RnDICP process will be a registered

nD model, containing the X,Y,Z point coordinates together

with normal information (nX,nY,nZ) as well as extra features

(eg. curvature flatness [14]). Where available, R,G,B color

information will be included.

Among the computed features for registration, we use

the ideas presented in [14], where an edge and boundary

detection algorithm is performed in order to isolate the im-

portant characteristics of the cloud from the rest. The edges

of objects can be calculated from the curvature information,

as they are characterized by high changes in curvature. This

however won’t find the boundary points in the point cloud,

as there is no change in curvature for points residing on the

outer border of the cloud.

Boundary points can be easily identified in 2D, as the

maximal angle formed by the vectors towards the neighbor-

ing points will be larger for boundary points than for points

that are on the inside of an object. In 3D however, such

angle cannot be computed, still, the method can be applied

if one projects a neighborhood on a local reference plane,

and transforms the coordinate system to lie on that plane.

Mathematically this is the same problem as the detection of

peaks in distances when removing outliers.

C. Point cloud processing and resampling

Because of noise and measurement errors during the

scanning process, the model will contain outliers, or even

holes, which, if left alone, would disrupt the polygonal recon-

struction process. Besides the outliers, which can be detected

statistically (see Equation 1), point clouds obtained with laser

scanners contain small measurement errors, making a surface

look thick. Also, after the registration process, unprecisely

aligned surfaces can appear doubled.

These anomalies can be smoothed using our proposed

Robust Moving Least Squares (RMLS) algorithm. The algo-

rithm is summarized as follows: given a point cloud P d, we

want to reproduce the complete smooth surface it represents,

by resampling (either upsampling or downsampling) and

discarding unwanted data.

1) The coordinates are normalized using the diagonal of

the point cloud’s bounding box, ensuring a unity maxi-

mal distance between points. We use h = µ+k·σ as our

weight factor, where µ is the mean and σ the standard

deviation of the mean distances between points

2) An initial guess is computed by approximating the point

cloud with a set of points Q3 that are in the vicinity

of the original points and their coordinates are integer

multiples of a specified resampling step size s:

Q3 = {qk ∈ R
3 | qxyz

k = s ·
∣

∣

∣

p
xyz

i

s

∣

∣

∣ , pj ∈ P d}

The uniqueness of the obtained points must be ensured

and extra points must be added to areas where a hole

was detected. The algorithm is similar to the one for

boundary points detection, with the difference that here

we check if a point is inside of an object, so the

computed maximal angle must be sufficiently small to

ensure correct filling.

To ensure that the checked point is close to the surface,

its height above the reference plane should be limited

with the step size.

3) For each point qk ∈ Q3 to project, a local neighborhood

is selected, by using either a fixed number of nearest

neighbors, or all neighbors in a fixed radius. The first

method can result in neighbors that are relatively far

away form the currently fitted point, and their influence

must be minimized when fitting the point. Therefore,

the weights are assigned to every neighbor pj ∈ P d

based on the distance to the currently fitted point

(see the equation below). The second method has the

disadvantage that it may yield too few neighbors if

the search radius is too small, but it ensures that the

neighbors will surround the point to be fitted.

wqk

(pj)
= exp−

dist(pxyz

j
,qk)2

h2 , qk ∈ Q3, pj ∈ P d
k

4) A local reference plane is selected for coordinate trans-

formation. To fit a plane to the local neighborhood P d
k ,

the minimization of the weighted squares of the error

(defined as the sum of weighted distances of the points

from the plane) was suggested by an iterative projection

approach [15]. This method, although weighted, takes

into account the whole neighborhood of the projected

point, meaning that it will be influenced by a relatively

small patch of outliers, which we found to be com-

mon in point clouds obtained by laser scanners. These

groups of outliers cannot be eliminated statistically as in

Equation 1 because they have approximately the same

density as the points that are actually on the surface, so

a method with a larger breakdown point is needed. We

propose a weighted distance based version of the Ran-

dom Sample Consensus (RANSAC) algorithm, which

will yield good results for up to 50% noise in the

neighborhood.

To identify the inliers pl ∈ P d
in ⊂ P d

k , a random sample

is selected from the neighborhood and a plane D is fitted

to them. To measure the probability that the obtained

plane is correct, the weighted distances of the points

near the plane are summed and mapped on the (0, 1)
interval. Iterating through a statistically defined number

of steps, the inliers will be obtained as the points close

to the fitted plane. These inliers will be used as the

reduced neighborhood of the projected point. It must

be noted that the weighting ensures that the plane will

be fitted to points that are closest to qk. A comparison

between the Weighted Least Squares and our Weighted

RANSAC can be seen in Figure 6.

Fig. 6. WLS vs. WRANSAC (dark green) for a cloud with 10% outliers

The fitted plane’s equation and the curvature can be

obtained by performing eigenanalysis on the covariance

matrix of the selected inliers. The color of the obtained

point can be approximated with the weighted average

of the inliers’ colors.

Pg = 1 −

∑

pj∈P d
k

wqk

(pj)

−1

·
∑

pj∈P d
k

D(pj)<dT

wqk

(pj)
· D(pj)

5) The second step of the MLS procedure is the polynomial

fitting, when the xyz coordinate system is transformed

into uvn, which lies on the fitted plane and a high-

order bivariable polynomial is fitted to the heights of

the points above the plane and the height of the fitted

point is recalculated (see the equations below).

For qk ∈ Q3, pl ∈ P d
in, X(t,l) = uniq((pU

l)a · (pV
l)b

such that t = 1, (order + 1)2, a, b ∈ N and a + b < t

c(qk) = (X · Wdiag · XT)−1 · X · Wdiag · pN
l

where W qk

diag(l,l) = wqk

(pl)

Examples of reconstructed point clouds can be seen in

Figure 10.

IV. ENVIRONMENT MAPS

After an initial model is built using the algorithm presented

in Section III-A, the points lying on edges and on boundaries

are segmented again from the model. This constitutes the first

step towards the detection of a variety of regions of interest

in the data. The results of the above algorithm can be seen

in Figure 7.

We implemented the above described algorithms and

tested them on data acquired using two different laser

scanners. All data sets were partially overlapped, but no

information regarding their orientation and position in space

was used. The number of points in a data set ranged from a

few thousand points to a few millions.

Fig. 7. Environment features (edges and boundaries) extraction

Figure 8 shows various snapshots from the environment

mapping process of a kitchen. In the upper left corner, the

features extracted from the two point clouds in Figure 7 are

used in the robust registration process. The gray point cloud

represents the target model, the blue one the source data

and the red lines represent the distances between the cor-

responding points. The results after the registration process

are shown in the upper right corner as well as in the middle

picture. By subtracting both point clouds, one from the other,

we obtain the results shown in the bottom part of the figure.

In the above example, the two point clouds represent two

different states of the kitchen: in the first state, all cupboards

are closed, while in the second state, a cupboard has been

opened. This will later on be used in the segmentation

process.

A. Cupboards detection

Once the edges have been extracted, the model is clus-

tered and a search for line segments is performed, using a

WRANSAC approach. In a second step, the line segments are

grown into complete lines (exceeding the cluster boundaries),

and a clustering is performed in the line direction space.

Four lines will form a rectangle if they fulfill the following

assumptions: every two of them must belong to the same

class direction-wise, they must be coplanar, the angles close

to 90 degrees and the rectangle edges must have a length be-

tween a minimum and a maximum given value. If duplicate

rectangles that overlap are found, they will be re-segmented

into smaller rectangles.

In our experiments, we have chosen the length of the

rectangle edges to be between 30 and 150cm. An example

of our segmentation algorithm is shown in Figure 2. By

combining these results with the ones shown in Figure 8, we

can match the rectangles found with the actual cupboards in

the kitchen.

Fig. 8. The Robust-nD-ICP registration and segmentation process.

B. Tables detection

The detection of tables in a household environment has

a double role. First of all, tables are interesting because

they are places where objects are placed and manipulated.

Secondly, by detecting tables, we can also segment and then

classify the objects which sit on them.

In order to recognize what objects are placed on a table,

our algorithm first attempts to detect the table itself, and

then segment it out. The following assumption is taken under

consideration: tables are planar areas, consisting of at least

30% of the data set’s values, which are located at a height

between hmin and hmax. In our experiments, we have chosen

hmin = 60cm and hmax = 100cm. The ground plane should

be provided by the robot, using for example the kinematic

data. In case this is not possible, we make the assumption

that the planar area containing the largest number of points

is the ground plane. The segmentation process is performed

using a WRANSAC-based approach for plane detection. The

results are presented in Figure 9.

Fig. 9. Segmentation of tables and objects of interest located on them.

V. OBJECT MODELLING

Mapping the objects of daily use is different from mapping

the static parts of the environment. For mapping kitchen

furniture we could make simplifying assumptions, such as

the existence of big rectangular planes or that it suffices to

take views of the front side. This is different for the objects

of daily use. Here the shapes have much greater varieties,

objects might be composed of geometric primitives, and

we need models of all parts of the objects. Furthermore,

the models should be orientation invariant, and if possible

include features that would allow them to be recognized in a

large variety of possible positions, in particular occlusions.

A. Point Cloud Reconstruction

After acquiring a point cloud model, we resample it and

fill the missing holes using the RMLS algorithm described

in Section III-C. Once complete, we proceed towards the

polygonal reconstruction of the object, either by using con-

strained Delaunay triangulations or if the object is watertight,

a version of the PowerCrust algorithm[8].

Fig. 10. Processing point clouds. From left to right in the upper part: noisy
raw data acquired from the scanner, processed data with the noise removed,
resampled point cloud using RMLS. In the lower part their representative
polygonal reconstruction.

The resulted polygonal object will be used in the regis-

tration of a new observation taken from a sensor with the

RnDICP algorithm. By computing the Mahalanobis distance

between the polygonal surface and the source data set, we

can hint whether the data comes from the same object or

not.

Since the above method can only provide a rough estimate

whether a partial scan of an object belongs to a certain

model, we employ a machine learning scheme using kernel

regression techniques (SVM - Support Vector Machines) in

order to fully classify and differentiate between different

types of objects.

In order to learn a model, the nD point cloud has to be re-

duced to an array of 1D features for SVM. We implemented

the algorithm proposed by [9], in which four features are

computed as a generalization of curvatures, based on the

position and normal of each surflet and its relationship to

the other surflets. For every pair of points p1 and p2, we

define a coordinate system with the origin in the first point

as u = n1, v = (p2 − p1) × u, w = u × v, where n1 and

n2 are the normals of the two points.

The four features (combined into Fc) are segmented into

a specified number of bins (see Equation 3), and their

histogram is used to identify the class of the object. The

algorithm is orientation and position invariant.

f1 = ||p2 − p1||

f2 = v · n2

f3 = atan(w · n2, u · n2)

f4 = u · (p2 − p1)/a

⇒ Fc =

i≤4
∑

i=1

bin(fi) · nr4−i
bin (3)

The algorithm presented in [9] cannot however distinguish

between subclasses of the same shape but which represent

different objects (eg. a ketchup and a mustard bottle have

the same shape but different colors). In this sense, we

extended the algorithm by computing another histogram, this

time based on the curvature and color information. As we

are looking in very accentuated differences in the second

histogram a very small bin size suffices.

A straightforward comparison between objects can be

made directly from the histograms presented in Figure 11.

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045

 0 100 200 300 400 500 600
F

ea
tu

re
 v

al
ue

s

Bins

Bottles

Bottle 1
Bottle 2

Wine glass

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016
 0.018
 0.02

 0 100 200 300 400 500 600

F
ea

tu
re

 v
al

ue
s

Bins

Cups

Cup 1
Cup 2
Cup 3
Cup 4
Cup 5

Fig. 11. Comparing different objects based on their feature histograms.

B. Learning Models

An important aspect when learning models of objects, is

that for achieving a good classification accuracy, a large

number of training examples is needed. Unfortunately the

process of scanning objects as we discovered, is a very

tedious one, and results in many hours of manual labor.

To overcome this problem, we propose the conversion and

use of Google Sketchup models available online as additional

training data for our application. The process of converting

the models to point cloud data sets is done by the following

sequence of computational steps (see Figure 13):

1) The models are mined from the Google 3D Ware-

house semi-automatically using pre-defined keywords

describing the objects of interest, and saved to file in a

polygonal format

2) Each model is automatically processed by converting all

its faces from polygons to triangles (surface triangula-

tion split)

3) On each model, each resulted triangle is evenly fitted

with points using a constant given step

4) Zero-mean Gaussian noise with various standard devi-

ations is added to each resulted point cloud

The resulted point clouds are then processed in the same

manner as the data sets acquired using the laser sensors. This

assures that plenty of training examples will be available for

learning the model.

The table below describes the classification rate using

three different classifiers. Our model was learned from a

data set consisting of 44 training examples (eg. mugs, plates,

boxes, silverware, pots, etc) and was applied to 13 new

unseen objects. SVM achieved the highest classification rate.

C4.5 NaiveBayes SVM

Classification Rate 84.61% 69.23% 92.3%

Fig. 12. The errors of the classification process using various different
learning methods: Decision Trees, NaiveBayes and Support Vector Machines

Fig. 13. Using models from the Google 3D Warehouse to improve the
models: (a) polygonal data set taken saved from Google, (b) processed
model containing only triangle polygons, (c) resampled point cloud model,
(d) model with added zero-mean Gaussian noise

VI. RELATED WORK

Related work can be categorized on several dimensions,

but due to space constraints, we are unable to address all of

them.

The Iterative Closest Point algorithm has seen several

improvements over the years from its original proposed

form [13], [12]. Some of them addressed the problem of

computational complexity[16], selection of the best features

to be used for registration[17], or including extra information

in the registration process, such as colors[18] or normals[14].

An integration of all the above has not been performed yet,

to the best of our knowledge.

Our Robust Moving Least Squares algorithm differs from

the one described in [19], which uses LMedS, instead of

RANSAC. While a comparison of both algorithms cannot

be done due to the unavailability of the source codes as

well as the use of different data sets, we believe that their

performance should be similar. However, recent findings [20]

have shown that RANSAC-like estimators do in fact perform

better than LMedS ones when the data is highly contaminated

with noise.

VII. CONCLUSION AND FUTURE WORK

We have presented a mapping system for acquiring models

of task-relevant objects in man-made indoor environments.

The significance of this work lies in the development,

integration and improvements of several techniques from

different research fields such as computer graphics, robotics,

machine learning and scientific computing, as well as in the

results presented.

We are currently investigating ways of adding more se-

mantic information to our 3D object maps. This semantic

information is obtained in two ways. First, the mapping

process uses sensor data from sensor-equipped indoor envi-

ronments. Second, we couple the map acquisition process to

a activity recognition system. This way we obtain additional

information about the role of the map objects in activities.

Taken together we consider these steps to be critical for the

development of semantic object maps.

VIII. ACKNOWLEDGMENTS

This work is supported by the CoTeSys (Cognition for

Technical Systems) cluster of excellence. We would like to

thank our colleagues Suat Gedikli and Philipp Kemmeter for

their ideas and contributions to the project.

REFERENCES

[1] S. Engelson and D. McDermott, “Maps considered as adaptive plan-
ning resources,” in Fall Symposium on App. of Artificial Intelligence

to Real-World Autonomous Mobile Robots, 1992, pp. 36–44.
[2] S. Vasudevan, S. Gachter, V. Nguyen, and R. Siegwart, “Cognitive

maps for mobile robots - an object based approach,” 2007.
[3] J. Modayil and B. Kuipers, “Bootstrap learning for object discovery,”

in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS-04), 2004, pp. 742–747.
[4] D. Schröter and M. Beetz, “Acquiring Modells of Rectangular Objects

for Robot Maps,” in Proc. of IEEE International Conference on

Robotics and Automation (ICRA), New Orleans/USA, 2004.
[5] R. Triebel, Óscar Martı́nez Mozos, and W. Burgard, “Relational

Learning in Mobile Robotics: An Application to Semantic Labeling
of Objects in 2D and 3D Environment Maps,” in Annual Conference

of the German Classification Society on Data Analysis, Machine

Learning, and Applications (GfKl), Freiburg, Germany, 2007.
[6] S. Thrun, “Robotic mapping: A survey,” in Exploring Artificial In-

telligence in the New Millenium, G. Lakemeyer and B. Nebel, Eds.
Morgan Kaufmann, 2002, to appear.

[7] T. K. Dey and S. Goswami, “Tight cocone: a water-tight surface
reconstructor,” in SM ’03: Proceedings of the eighth ACM symposium

on Solid modeling and applications, 2003, pp. 127–134.
[8] N. Amenta, S. Choi, and R. K. Kolluri, “The power crust,” in SMA

’01: Proceedings of the sixth ACM symposium on Solid modeling and

applications. New York, NY, USA: ACM Press, 2001, pp. 249–266.
[9] T. Bodenmueller and G. Hirzinger, “Online Surface Reconstruction

from Unorganized 3D-Points for the DLR Hand-Guided Scanner
System,” in 3DPVT ’04: Proceedings of the 3D Data Processing,

Visualization, and Transmission (3DPVT’04), 2004.
[10] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun, “Using

EM to Learn 3D Models with Mobile Robots,” in Proceedings of the

International Conference on Machine Learning (ICML), 2001.
[11] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” in Comm. of the ACM, Vol 24, 1981.

[12] Z. Zhang, “Iterative Point Matching for Registration of Free-Form
Curves, Tech. Rep. RR-1658.

[13] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D
Shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, 1992.

[14] K.-H. Bae and D. D. Lichti, “Automated registration of unorganized
point clouds from terrestrial laser scanners,” in International Archives

of Photogrammetry and Remote Sensing (IAPRS), 2004, pp. 222–227.
[15] A. M. and A. A., “On normals and projection operators for surfaces

defined by point sets,” in Proceedings of Symposium on Point-Based

Graphics 04, 2004, pp. 149–155.
[16] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-

rithm,” 3-D Digital Imaging and Modeling, 2001. Proceedings. Third

International Conference on, pp. 145–152, 2001.
[17] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann, “Robust Global

Registration,” in Proc. Symp. Geom. Processing, 2005.
[18] A. E. Johnson and S. B. Kang, “Registration and integration of textured

3-D data,” in NRC ’97: Proceedings of the International Conference on

Recent Advances in 3-D Digital Imaging and Modeling. Washington,
DC, USA: IEEE Computer Society, 1997, p. 234.

[19] S. Fleishman, D. Cohen-Or, and C. T. Silva, “Robust moving least-
squares fitting with sharp features,” in SIGGRAPH ’05: ACM SIG-

GRAPH 2005 Papers, 2005, pp. 544–552.
[20] L. Hajder and D. Chetverikov, “Weak-perspective structure from

motion for strongly contaminated data,” Pattern Recogn. Lett., vol. 27,
no. 14, pp. 1581–1589, 2006.

