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Abstract

We evaluate the power of 3D affine invariants in an object recognition
scheme. These invariants are actively calculated by the real-time tracking of
2D image features (corners) over an image sequence. This is done optimally
by using a Kalman filter. Object information is located in a hash table where
it is stored and retrieved using the invariants as stable indices. Recognition
takes place when significant evidence for a particular shape has been found
from the table. Preliminary results with real data are presented, and some
of the noise problems arising due to the weak perspective approximation and
corner localisation errors are discussed.

1 Introduction
Three dimensional object recognition is a rapidly expanding field within computer
vision. Central to object recognition systems are questions of model acquisition
and representation, feature extraction and matching. All of these issues are closely
related, as the type of feature extraction performed will depend directly on the
model adopted, and will also affect the matching technique selected. Extensive
surveys describing methods of object representation and matching have been made
by Chin and Dyer [1], Besl and Jain [2].

A number of working recognition schemes have been proposed for simple 3D
objects. Lowe [3] presents a 3D object recognition system which uses a single
image, perceptual groupings and viewpoint consistency constraints to detect 3D
objects from 2D data. Thompson and Mundy [4] use vertex-pairs to derive the
affine transformation between a 3D polyhedral object model and its projection
into the image viewplane.

A more common approach is the use of 3D data extracted from range data or
multiple views. The approach by Crimson and Perez [5] operates by examining
all hypotheses between segmented range data and model surfaces, and efficiently
discarding inconsistent ones by using local constraints. This is achieved by a depth
first search of their interpi~etat.ion tree, which at each level attempts to match an
image feature to all model features. The pruning of subtrees after a failed match
and the use of a search cutoff keeps search time to acceptable levels.

An alternative approach is geometric invariants [6]. Several successful 2D
object recognition systems have been implemented using invariants [7]. In this
paper we evaluate the power of 3D affine invariants in an object recognition scheme.
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2 Theoretical Framework
The image of a 3D object will appear different depending on viewpoint because its
2D projection suffers from distortions, self-occlusion and a loss of depth. Solid ob-
ject descriptors such as edge length, surface area and angles between lines which
are invariant in 3D space, are no longer so in the 2D image. However a closer
examination of the effects of projective transformations reveals that it is possible
to find properties of combinations of features which remain invariant in different
views. For example the cross-ratio of four points on a line remain invariant to gen-
eral projection, and simpler invariants can be found for simpler transformations.
A more detailed overview of this field of research and its applications can be found
in [6].

2.1 Weak Perspective
The full perspective transformation of world points to image points (u,v) can be
represented by (1). It combines the effects of aligning a camera-centered frame with
a general world frame, and then projecting the points using the pinhole camera
model.
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A simplification of this transformation is possible under weak perspective [8]
(orthographic projection plus a scale factor). Weak perspective is a good approx-
imation of full perspective when the distance from object to camera, Z, is much
greater than the extent of the object AZ. Under these conditions scaling factor
s = tsiXw + <32Vu> + HzZw +<34, becomes approximately constant s — t34 in effect
linearising the transformation.
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There are just eight degrees of freedom for this weak perspective transformation
so only four points are required to evaluate the transformation, and no camera
calibration is required.

2.2 Affine Invariants from Multiple Views
The linearity of weak perspective allows us to recover invariant 3D object structure
from two or more images [6, 9, 10]. Given five 3D points Xj,i e {0,..,4} it is
possible to calculate 3 invariants [6]. This can be shown by considering a basis
Ej = Xj — XQ, if {1,2,3} in 3D space. Any 5th point in this basis can be expressed
as a linear combination of Ej's (3) (see Figure 1).

X 4 = Xo 0E2 + 7E3 (3)

The (a, /?, 7) are the coordinates of the point X4 in this basis, which are related
to the 3-dimensional shape of the object under 3D affine transformations, and are
invariant in 3D space. Due to the linear nature of weak perspective (a,/?,7) will
remain viewpoint invariant under this transformation. We will refer them as 3D
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Figure 1: Affine Basis. Each point is surrounded by an error ellipse to show
uncertainty in location due to noise and poor localisation

affine invariants of our shape. We rewrite (3) in matrix form, and combine it with
(2).
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Which we can rewrite more simply as:

w4 — «o
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(5)

where UQ,U4, are the projected basis origin and point respectively^^ .. .63 are
the projections of our basis vectors, all of which are obtainable from image mea-
surements. This provides us with two equations and three unknowns, the problem
has become underdetermined, so a single 2D image does not allow the recovery of
the invariants. A second view with known point correspondences to the first view
will however give an overdetermined set of equations solvable by standard least
square minimisation methods.

Solving Overdetermined Equations

Our previous equation (5) can now be written in slightly different matrix form to
include the effects of noisy measurements:

V4 — V0

U4 -U'o

V, - V,lo J

a

(6)

e' is the projection of the basis in our second view and e is the noise in the
measured points. Integrating more views into this equation is done trivially by
each time adding two more rows to the matrix and can be used to give better
conditioned equations. The least squares solution a can then be found using
standard methods.
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3 Object Model Acquisition and Recognition
The object recognition scheme is based on representing an object using these 3D
affine invariants. This imposes a slight limitation on the method in that we only
consider image data viewed under weak perspective.

Feature extraction as with most recognition schemes forms the first step, in this
case we wish to reliably detect corners in the image which relate to the projections
of vertices on an object. Multiple views of the object with known point corre-
spondences are then used to calculate the object invariants. In order to avoid the
point correspondence and calibration problems of multiple views the vertices are
tracked through a sequence of images. A Kalman Filter is then used to optimally
estimate the invariants from the stream of data.

The next task is to find invariants from the image data which match those
from a model, by having identical values and being associated with the same
basis. Instead of calculating the invariants associated with a model at recognition
time, they are precompiled and data linked to them is stored off-line, speeding
up the final recognition process at the cost of extra storage space.

The geometric hashing method proposed by Wolfson et al [11, 7], with an ex-
panded index to reflect the 3D (as opposed to 2D) object database, is used to
implement this data storage. The invariants form a fixed hash table index which
points at a bin in the table, where we store information about the features and
object used to compute those invariants. When attempting to match our image
data with a model we extract the contents of the indexed bin, thereby discov-
ering all possible object and pose correspondences. By using several invariants,
and hence the contents of several bins, we are able to prune the possible object
matches down by finding multiple evidence for particular bases. These can then
be examined more closely by trying to match projected model edges with those
present in the image.

3.1 Feature detection
In order to simplify object recognition it is often useful to preprocess images,
extracting features within the object, which help to give a simplified but distinctive
description of it. Corners are useful for describing artificial objects and are of
special interest due to their accurate localisation. Sensitivity to noise, speed and
selectivity are all issues which need to be considered when attempting to implement
a corner detector. A number of methods for detecting corners within shapes include
template matching, second-order derivative schemes [12], autocorrelation [13], and
median based methods [14].

The corner detector implemented in the following experiments is particularly
suited to detecting corners which are projections of vertices. It locates corners by
first finding regions where several lines are present and then pinpointing where
those lines intersect. Since vertices are the features used in our object description
it is helpful to the overall recognition speed, if the corner detector doesn't pinpoint
too many other types of corner. The procedure is tolerant to noise and reasonably
fast (Figure 2). (For more details see [15].)

3.2 Feature Tracking
A way of avoiding the correspondence problem in multiple images is to exploit
temporal continuity in a monocular sequence of frames. We track all the corner
points initially detected in the image as the object moves in the scene. Since the
corners will only shift slightly between consecutive frames, the approach taken
is to perform local corner detection centered on the old corner point locations,
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Figure 2: An image of a block with detected corner points superimposed. The
image is in reverse video to highlight the corners. There are a couple of noisy
points due to dents on the block and other effects such as shadows. Also other
points are not detected because our edge threshold was set too high. There is a
compromise here in trying to keep background noise to a minimum and detecting
all points.

finding new corner locations in the neighbourhood. A further improvement is to
perform cross-correlation between a template of the old corner and new corner in
cases where we need to disambiguate between several possible maxima in a local
region. However it was found that the extra robustness gained by doing this was
outweighed by the extra computational cost. Figure 3 shows an example of a test
object where corners have been detected and then tracked.

3.3 Optimal Estimation of a, /?, 7 and their Uncertainty
The most important stage in the recognition scheme is the accurate estimation of
the 3D affine invariants. However there is some uncertainty in any estimate of a, (3
and 7 due to errors introduced by the weak perspective approximation and errors
in corner localisation. By using the redundancy in a stream of data from multiple
views, and ensuring adequate object rotation between the first and final images it
is possible to improve the robustness of the resulting estimate over one calculated
from a single stereo image pair. A Kalman filter is used to integrate data from
multiple views, and optimally estimate a,/?, 7 [15].

The Kalman filter is a recursive linear estimator which successively calculates
a minimum variance estimate for a variable, on the basis of observations that
are linearly related to this variable. The basic algorithm consists of a continuous
"prediction - observation - update" cycle, where the error between prediction and
observation is used to revise the old estimate. The initialisation of the filter can
either be done either by setting states to zero or by using a batch calculation to
work out an initial estimate of the invariants. A covariance matrix representing
the initial confidence in the variable estimate is also set.

Our Kalman filter is in fact very simple since the output a,/?,7 is invariant.
The Kalman filter will also return the uncertainty of the a,/?, 7 estimates in terms
of estimate variances. When this uncertainty falls to within acceptable limits we
can stop tracking the corners and proceed with the actual object recognition.
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Figure 3: Several points were tracked on our object as it rotated. This is shown
as black arcs on our image.

Invariant
ptl a

13
7

pt3 a
13
7

Real data
0.28
0.29
0.01
0.01
0.23
1.01

Perfect Result
0.28
0.29
0.00
0.00
0.27
1.00

Invariant
pt2 a

(3

7

pt4 a
0
7

Real data
0.29
0.41
0.57
0.98
0.30
0.98

Perf. Res.
0.28
0.43
0.57

1.00
0.27
1.00

Table 1: Invariants output by the Kalman filter

Results
Figure 4 shows the results of calculating four sets of invariants using a Kalman
Filter (using the track data seen in figure 3). All the graphs have an initial
transient stage due to the initialisation of the filter with zeros, however this soon
settles down as more track data is incorporated, improving the estimate of the
invariants. Points 1 and 4 have the noisier tracks, and this is reflected in the
graphs, where the invariant estimate has a greater uncertainty taking longer to
settle. The final output is compared with what we expected from perfect data in
table 1.

The 3D basis geometry will also affect the sensitivity of a, /?, 7 to noise. If the
basis is formed from points which are nearly coplanar the resulting equations (6)
which are to be solved will become ill-conditioned. It may be necessary to try
several different bases in order to find one which gives well-conditioned equations.
This could also be implemented by running several Kalman filters on the track
data in parallel, each using a different set of points as the basis and selecting the
invariants from the one with least uncertainty.

3.4 Geometric Hashing for data storage
The geometric hashing approach to model-based object recognition was proposed
by Lamdan, Schwartz and Wolfson [11, 7]. It relies on computing object related
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Figure 4: Invariants output by the Kalman filter

invariants from our features, which are then used as a simple and stable index
H(a,(3,-y) into a hash table. Each indexed location in the hash table will store
information about the object used to create the invariant, the points used to form
the basis and the point referenced in that basis (7).

H(a,0,f) = (Object, Basis, Point) (7)

At the recognition phase we then index into the hash table, and retrieve all possible
objects and their bases, using a voting scheme to decide on their likelihood and a
final matching process to select the best fitting object.

Initially a large amount of pre-computation is required on the model library to
create the hash table, but since this can be done off-line it will not affect recognition
speed. Invariants are calculated for all permutations of basis and points and data
stored in the hash table. Since 3D data is available in our model we can calculate
our invariants directly using (8) [cf (3)].
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An obvious problem when creating the hash table is the large quantity of data
present. If we have an object with Nv vertices, there are Nt> = NV\/(NV — 4)!
possible bases and Ninvs = Nb(Nv — 4) associated invariant sets. This exponen-
tially growing problem needs to be addressed, by pruning away invariant sets. A
number of choices are available:

• Four coplanar points cannot be used to form an adequate basis.
• Ill-conditioned bases will be susceptible to noise and should not be included.
• Use characteristic views of an object [16] to decide which points will be available

from a common view, hence removing points never present simultaneously.
• Eliminate any points the corner detector is poor at localising in the real images

if this is known.
• An important decrease in data can also be achieved by noting that we do not

need to store object information for all invariants calculated from permutations
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Figure 5: Recognition Tree: For each entry in a bin we register a vote in our tree.

of the same basis. The effect is simply to permutate our invariants, so by
arranging (a, (3, 7) in order of size we just need to store information at one
location in the hash table. This gives a six-fold reduction in data.

Taking this a step further we note that for a set of four points there are 4!
ways of forming a basis. However any invariants calculated in one of these bases
is related to all the others [15], so it is possible to find a global invariant for all
of these. The drawback with this is we increase the amount of computation that
needs to be done at recognition time.

One issue not addressed so far is the effect of poor corner localisation on our
invariants (a,/3,7). A study performed by Grimson et al. [17] on 2D affine data
shows that if we assume our corner points lie within some error disc, radius e
(see figurel), the region of uncertainty associated with our affine coordinates is
an ellipse whose area, centre and principle axes depend on e and the invariants.
This would become an ellipsoid in our 3D case. The area of this ellipse increases
<x (1 + \a\ -f |/?|)2, so larger affine coordinates will have larger errors. This matches
well with the worst case study done in [7] which state results from numerical
analysis.

{A + SA). (a + 6 a) = (x + 6x) (9)

Given we can estimate 6A and <fo then 6a < (1 + x)ck€ (where x = |a| + |/?| + |7|
is the sum of the absolute values of our invariants, and Cj, — \ck\\ + |c>t21 + |cfc3|> is

the sum of the absolute values of the k'th row in the matrix C = A~
x
).

As indicated in the error analysis the error increases proportionally with a, /?, 7,
so we therefore linearly increase the size of the bins in our hash table for larger
invariants. Bases in our images which are reasonably short are also more affected
by poor corner localisation.

3.5 The Recognition Process
The actual recognition process is now outlined, and some results are given.
1. Extract corner points from the initial image, these points are then tracked as

the object moves.
2. Select four of these points to form the basis, and calculate invariants for all the

other points. A good selection of basis will provide a better estimate of the
invariants. If the recognition process is a failure a different basis can be tried.
Kalman filtering ensures optimal estimation of the 3D invariants.

3. For each invariant set index into the hash table. For every (Object , Basis)
grouping which appears in the associated bin register a vote in a recognition
tree (figure 5). The recognition tree is shown as a quick way of registering
votes for a particular (object, basis) match, which is faster than keeping and
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Figure 6: Recognised model is projected onto various shapes.

updating a list of possible matches. Use the object number, origin point and
then consecutive basis points to select which branch to follow. At the final leaf
register a vote for this grouping by incrementing a counter. The point match
for this invariant set is also stored here. In order to account for uncertainty
in the 3D invariant estimate, examine not just the indexed bin but also local
surrounding ones.

4. If a grouping (Object , Basis) scores a large number of votes, then this object
is possibly present in the scene.

5. Compute the transformation (2) between matched model and real data points.
A minimum of four points are required to calculate this transformation. At
least five point matches (usually more) are available, so least squares minimi-
sation is used to find a solution. Verify that the least squares solution to the
transformation projects all model points satisfactorily to their matched image
points.

6. Transform the edges of the model according to this transformation. Verify how
close the projected edges lie to scene edges, if there is good correlation then the
object has been recognised. Models that have been successfully projected onto
the image are shown in figures 3 and 6. Failure to match the edges requires
the process to be restarted with a different basis.

4 Summary and Conclusions
An object recognition scheme has been proposed and implemented which is suc-
cessful at identifying simple 3D objects. Central to the system is an object rep-
resentation that is viewpoint invariant under the weak perspective assumption,
allowing fast matching with a model database. The representation is inherently
robust to partial occlusion, since the invariants are obtained from groups of just
five corner points. By tracking more features we provide enough information to
determine a small number of possible object matches, which can then be evalu-
ated by matching image edges with projected model edges. Certain issues remain
which include increasing the speed and reliability of the tracking system to ensure
our 3D invariants are as accurate as possible. We also wish to further examine
the problem of exponential growth of data in the hash table, which occurs with
increasing numbers of features on an object.

The aim of our future work is test the performance of this system with more
complex objects and in cluttered scenes. We will be evaluating the discriminating
power and computational efficiency of the method under such conditions.
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