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Scheduling Solution for Data Traffic Management
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Abstract—Dominated by delay-sensitive and massive data appli-
cations, radio resource management in 5G access networks
is expected to satisfy very stringent delay and packet loss
requirements. In this context, the packet scheduler plays a
central role by allocating user data packets in the frequency
domain at each predefined time interval. Standard scheduling
rules are known limited in satisfying higher Quality of Service
(QoS) demands when facing unpredictable network conditions
and dynamic traffic circumstances. This paper proposes an inno-
vative scheduling framework able to select different scheduling
rules according to instantaneous scheduler states in order to
minimize the packet delays and packet drop rates for strict QoS
requirements applications. To deal with real-time scheduling, the
Reinforcement Learning (RL) principles are used to map the
scheduling rules to each state and to learn when to apply each.
Additionally, neural networks are used as function approximation
to cope with the RL complexity and very large representations
of the scheduler state space. Simulation results demonstrate that
the proposed framework outperforms the conventional scheduling
strategies in terms of delay and packet drop rate requirements.

Index Terms—5G, Packet Scheduling, Optimization, Radio Re-
source Management, Reinforcement Learning, Neural Networks.

I. INTRODUCTION

The envisioned applications in the Fifth Generation (5G)

of Mobile Technologies (e.g. traffic safety, control of critical

infrastructure and industry processes, 50+ Mbps everywhere

[1]) impose more stringent QoS requirements like very low

end-to-end latency, ultra high data rates, and consequently,

very low packet loss rates [2]. To cope with these challenges,

access networks should be able to support advanced waveform

technologies, mass-scale antennas and flexible Radio Resource

Management (RRM) [3]. Alongside standard RRM functions

(i.e. power control, interference management, mobility con-

trol, resource allocation, packet scheduling [4]), a flexible

RRM involves more dynamic functionalities able to adapt to

unpredictable network conditions. Some studies have shown

an increased interest of integrating Machine Learning (ML)

methodologies to learn the optimal RRM strategies based on

some centralized user-centric (i.e. channel conditions, QoS

parameters) and network-centric (traffic routing) data [5].

In the context of RRM, the packet scheduler is responsible

for sharing the disposable spectrum of radio resources at

each Transmission Time Interval (TTI) between active users

I.-S. Coms,a is with Brunel University London, U.K. (e-mail: Ioan-
Sorin.Comsa@brunel.ac.uk). S. Zhang is with University of Bedfordshire,
U.K. (e-mail: Sijing.Zhang@beds.ac.uk). M. E. Aydin is with University
of the West of England, Bristol, U.K. (e-mail: Mehmet.Aydin@uwe.ac.uk).
P. Kuonen is with University of Applied Sciences of Western Switzerland,
Fribourg (e-mail: Pierre.Kuonen@hefr.ch). Y. Lu is with University of Fri-
bourg, Switzerland (e-mail: yao.lu@unifr.ch). R. Trestian is with Middlesex
University, London, U.K. (e-mail: r.trestian@mdx.ac.uk). G. Ghinea is with
Brunel University London, U.K. (e-mail: George.Ghinea@brunel.ac.uk).

with heterogeneous applications and QoS requirements [6].

The prioritized set of active users to be served at each TTI

depends on the type of scheduling rule that is implemented.

Different rules may perform differently in terms of packet

delay and Packet Drop Rate (PDR) requirements according

to various scheduling conditions. For example, the scheduling

strategy in [7] minimizes the drop rates at the cost of system

throughput degradation. The scheduling rules proposed in [8]

improve the packet delays with no guarantees on the PDR

performance. Another rule in [9] minimizes packet drops at

the expense of higher packet delays when compared with other

scheduling strategies. However, most of the proposed rules

provide unsatisfactory performance when both delay and PDR

objectives are considered concomitantly.

Being motivated by this fundamental drawback of conven-

tional scheduling strategies and considering the requirements

of 5G networks that need to cater for applications with strict

QoS constraints, we propose a flexible RRM packet scheduler

able to adapt based on dynamic scheduling conditions. Instead

of using a single scheduling rule across the entire transmission,

the proposed framework combines multiple scheduling rules

TTI-by-TTI in order to improve the satisfaction of stringent

QoS requirements in terms of both packet delay and PDR

objectives. To make this solution tractable in real time sche-

duling, our approach must decide the strategy to be applied at

each TTI based on momentary conditions, such as: dynamic

traffic load, QoS parameters, and application requirements.

One solution is to use the Reinforcement Learning principle

as part of the ML domain to learn the scheduling rule selection

in each instantaneous scheduler state in order to improve the

users′ performance measure for delay and PDR objectives

when compared to other state-of-the-art scheduling strategies.

The RL framework aims to learn the best action to be applied

at each state of an unknown environment by keeping track

of some state-action values that are updated accordingly at

every state-to-state iteration [10]. If these state-action values

cannot be enumerated exhaustively, then the optimality of such

decisions is not guaranteed [11]. In this paper, we aim to select

at each state a scheduling rule from the finite and discrete

space of actions. Even so, the selection of the best rule is

not guaranteed since the scheduler state space (i.e., channel

conditions, QoS parameters) is infinite, continuous, multidi-

mensional and stochastic, and the scheduling problems cannot

be enumerated exhaustively. Thus, we can only approximate

the most convenient rule to be applied at each scheduler state.

RL decisions can be approximated by using parameterized

functions [12]. In our approach, each scheduling rule is

represented by an individual function and the RL algorithm
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is used to update these functions TTI-by-TTI until learning

criteria are fulfilled. Parameterized functions are used to rank

the scheduling rule to be applied in each instantaneous state.

The scheduler state space needs to be pre-processed in order

to reduce the complexity of the proposed RL framework.

A. Paper Contributions

The 5G networks bring the promise of very high data rates

and extremely low latencies to enable the support for advanced

applications with stringent QoS requirements. However, this is

not possible to achieve through the classical methods of RRM,

and the integration of ML is seen as a promising solution. In

this context, we propose a RL-based optimization mechanism

for RRM to enable efficient resource allocation and strict QoS

provisioning, bringing us a step closer to 5G. The approach

makes use of dynamic scheduling rule selection at each TTI

for OFDMA-based downlink access systems. The choice of

OFDMA is due to its simplicity and efficiency as well as

its wide deployment placing it among the candidate multiple

access schemes to be considered in 5G networks [13].

The contributions of this paper are divided in four parts:

1) Flexible RRM Packet Scheduler: We propose a dynamic

RRM scheduler able to select, at each TTI, appropriate sche-

duling rules according to the momentary network conditions

and QoS requirements. The obtained results show significant

gains in terms of both delay and PDR satisfaction.

2) RL-based Framework: Here, a RL algorithm is used to

learn non-linear functions that approximate the scheduling rule

decision at each TTI based on the instantaneous scheduler

state. To evaluate the performance of different RL algorithms,

five RL algorithms were selected and implemented. Their

performance was tested in terms of variable window size,

traffic type, objective and dynamic network conditions.

3) Neural Networks (NNs) based Rule Selection: NNs are non-

linear functions that take as input the instantaneous scheduler

state and output the preference values of selecting each sche-

duling rule on that state. Neural networks are used to deal with

the continuous and multidimensional scheduler state space.

4) Scheduler State Space Compression Technique: This techni-

que aims to reduce the scheduler state space and speed-up the

learning procedure when refining the NNs′ weights. In this

paper, the focus of the compression procedure is on packet

delay and PDR as Key Performance Indicators (KPIs).

The objective of the proposed RL framework is to improve

the satisfaction of heterogeneous delay and PDR requirements

when scheduling Constant Bit Rate (CBR) and Variable Bit

Rate (VBR) traffic types. The CBR and VBR traffic cha-

racteristics were chosen in such a way as to cover a wide

range of applications (e.g., video, VoIP, FTP, web browsing)

and create a more realistic environment with dynamic channel

conditions and traffic loads. By building this dynamic and

realistic environment, we can evaluate the stability of the

learned policies with different RL algorithms.

B. Paper Organization

The remainder of this paper is organized as follows: Section

II introduces the system model. Section III highlights the

preliminaries for the RL framework. Section IV details the im-

plemented RL algorithms and the NN function representation.

Fig. 1 Proposed System Model

The performance of the obtained RL framework is evaluated

in Section V, and Section VI presents the related work. Finally,

Section VII concludes the paper.

II. SYSTEM MODEL

In the proposed system model presented in Fig. 1, an inte-

lligent controller decides the rule to be applied by the packet

scheduler at each TTI. We consider an OFDMA downlink

transmission, where the available bandwidth is divided in

Resource Blocks (RBs). Let us consider the set of RBs for

a given bandwidth as B = {1, 2, ..., B}, where B is the total

number of RBs. Additionally, we consider an User Equipment

(UE) being characterized by VBR and CBR traffic types with

heterogeneous delay and PDR requirements. Also, at each

predefined number of TTIs, an UE is able to change its status

(idle/active), data rates and QoS requirements. Let us decide

that Ut = {1, 2, ..., Ut} is the set of active users at TTI t,
where Ut is the number of active users.

The packet scheduler (Fig. 1) aims to allocate a set of

RBs b ∈ B to user u ∈ Ut in such a way that delay

and PDR satisfaction is maximized. We consider the set of

objectives O = {o1, o2} to be satisfied at each TTI t, where

o1 = DELAY and o2 = PDR. For each user u ∈ Ut, we

define the on-line KPI ko,u[t] corresponding to objective o ∈ O
and its corresponding requirement as k̄o,u[t]. For user u ∈ Ut

the objective o ∈ O is satisfied at TTI t if and only if the KPI

ko,u[t] respects its requirement k̄o,u[t]. Both, delay and PDR

objectives are satisfied when ku[t] = [ko1,u, ko2,u] respects

the requirement vector k̄u[t] = [k̄o1,u, k̄o2,u]. Globally, the

proposed solution aims to increase the percentages of TTIs for

all active users when the KPI vector k[t] = [k1,k2, ...,kUt
]

respects the requirement vector k̄[t] = [k̄1, k̄2, ..., k̄Ut
], and

consequently, both network objectives are satisfied.

Let us consider the discrete set of scheduling rules as D =
{1, 2, ..., D}, where each rule d ∈ D has a particular impact

in satisfying objectives {o1, o2} ∈ O for certain network and

traffic conditions. We define for each rule d ∈ D its associated

concave and monotone utility function Γd,u(ku) : R2 → R

[14]. The selected utility function Γd,u takes as input the KPI

vector ku for user u ∈ Ut and claims its priority to be served

at TTI t. Globally, if the same utility Γd is used for all active

users at each TTI t, the KPI vector k satisfies its requirements
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k̄ in a certain measure. The proposed flexible RRM scheduler

is able to properly choose the utility function Γd at each state

in order to increase the number of TTIs when k satisfies k̄.

At the packet scheduler level, B ∗ Ut ranking values are

calculated at each TTI in the metrics calculation block, as in-

dicated in Fig. 1. The allocation of RBs involves the selection

for each RB b ∈ B, the user with the highest priority calculated

according to the selected utility function Γd,u. Then, a proper

Modulation and Coding Scheme (MCS) is assigned for the set

of allocated RBs of each selected user at each TTI.

A. Problem Formulation

The aim of the proposed solution is to apply at each TTI,

the best scheduling rule d ∈ D so that as many as possible KPI

parameters k[t] will respect their requirements k̄[t]. Alongside

the simple resource allocation problem, the proposed optimi-

zation problem to be solved is more challenging since the rule

assignment is required at each TTI, such as:

max
x,y

∑

d∈D

∑

u∈Ut

∑

b∈B

xd,u[t] · yu,b[t] · Γd,u(ku[t]) · γu,b[t],

s.t.

(1)

∑

u
yu,b[t] ≤ 1, b = 1, ..., B, (1.a)

∑

d
xd,u[t] = 1, u = 1, ..., Ut, (1.b)

∑

u
xd∗,u[t] = 1, d∗ ∈ D, (1.c)

∑

u
xd⊗,u[t] = 0, ∀d⊗ ∈ D\d∗, (1.d)

xd,u[t] ∈ {0, 1}, ∀d ∈ D, ∀u ∈ Ut, (1.e)

yu,b[t] ∈ {0, 1}, ∀u ∈ Ut, ∀b ∈ B, (1.f)

where, γu,b[t] is the achievable rate of user u ∈ Ut for RB

b ∈ B at TTI t, being calculated as: γu,b[t] = N bits
u,b [t]/0.001

[15], where, N bits
u,b [t] is the maximum number of bits that could

be sent if RB b ∈ B would be allocated to user u ∈ Ut.

According to [15], N bits
u,b [t] is determined as follows: a) at

each TTI, the Channel Quality Indicator (CQI) is received for

each RB b ∈ B and user u ∈ Ut; b) a MCS scheme for each

RB b ∈ B and UE u ∈ Ut is associated based on CQI; c)

using a mapping table N bits
u,b [t] is determined based on MCS.

In the maximization problem, xd,u[t] is the scheduling rule

assignation variable (i.e. xd,u[t] = 1 when the scheduling

rule d ∈ D is assigned to user u ∈ Ut, and xd,u[t] = 0,

otherwise). The RB allocation variable is yu,b[t] = 1 when

the RB b ∈ B is allocated to user u ∈ B, and yu,b[t] = 0,

otherwise. When yu,b[t] = 1, user u ∈ Ut is selected such

that u = argmax[Γd,i(ki[t]) · γi,b[t]], where i ∈ Ut. The

same procedure is repeated for all RBs from B, until the RBs

allocation is finished at TTI t. The constraints in (1.a) indicate

that at most one user is allocated to resource RB b ∈ B (if the

data queue is empty and the scheduling rule does not consider

this aspect). One RB cannot be allocated to more than one user,

but one user can get more than one allocated RB. Constraints

in (1.b) associate for each user a single scheduling rule, and

the constraints in (1.c) and (1.d) indicate that the same rule

d∗ ∈ D is selected for the entire set of active users at TTI t.
The solution to the optimization problem in (1) aims to

find at each TTI the best scheduling decision xd,u[t] and

resource variable yu,b[t] for all users u ∈ Ut and RBs b ∈ B
such that the utilization of resources B is fully exploited and

the satisfaction of objectives O is maximized. Although the

PDR objective is correlated with the packet delay, we propose

a novel strategy in such a way that: (a) Delay-based Non-

congested Case: the delay requirements can be satisfied for

most of the active users if proper rules are applied at each TTI;

thus, delay minimization represents the primary objective; (b)

Delay-based Congested Case: may appear when the KPI vec-

tor ko1 [t] = {ko1,1[t], ko1,2[t], ..., ko1,Ut
[t]} is not able to reach

the delay requirements anymore and then, we aim to minimize

the PDR KPI vector ko2 [t] = {ko2,1[t], ko2,2[t], ..., ko2,Ut
[t]};

in this case, PDR minimization is the primary objective.

The proposed solution is able to detect both cases by

considering the multi-objective performance measure or the

reward value which is reported at each TTI by the RRM entity.

B. Problem Solution

The constraints in (1.e) and (1.f) make the optimization pro-

blem combinatorial. The rule assignment and RBs allocation

must be jointly performed in order to keep the linearity of the

problem. Moreover, the scheduler has to disseminate which

objective to follow according to the delay-based congested

and non-congested cases. To solve such a complex aggregate

problem, we propose the use of RL framework that is able

to interact with the RRM scheduler as indicated in Fig. 1.

The RL controller learns to take proper scheduling decisions

based on momentary network conditions. This stage is entitled

learning . Then, the exploitation stage evaluates what the

controller has learned. Both learning and exploitation stages

are managed by a central controller. In order to deal with

the optimization problem complexity and large input state, the

RL controller engine requires the use of neural networks. In

the learning stage, the neural networks are adapted to output

better scheduling decisions. The RL algorithms indicate here

different ways of updating the NN weights. In Section III,

the preliminary elements of RL framework are presented and

Section IV elaborates the insights of the RL controller.

III. PRELIMINARIES ON RL FRAMEWORK

The RL framework is used to solve the stochastic and multi-

objective optimization problem by learning the approximation

of policy of rules that can be applied in real time scheduling

to improve the multi-objective satisfaction measure. At TTI

t, the RL controller observes the current state and takes an

action. At TTI t+1, a new scheduler state is observed and the

reward value is calculated to evaluate the performance of the

action performed in the previous state. The reward function

together with the scheduler state enhance the decision of the

RL controller on the delay-based congestion or non-congestion

phases. The previous state, previous action, reward, current

state, current action are stored in the Markov Decision Process

(MDP) module at the level of RL controller, as shown in Fig.

1. The RL controller explores many state-to-state iterations to

optimize the approximation of the best scheduling decisions.

We use neural networks to approximate the scheduling rule

selection at every momentary state. With each scheduling rule,

we associate a neural network for its approximation. Instead of
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using a single neural network to represent all scheduling rules

at once, we propose a distributed architecture of NNs in order

to reduce the framework complexity. At each state, the set of

NNs provides D output values. In the learning stage, the action

selection block may choose to improve or to evaluate the NNs

outputs according to some probabilities. If the evaluation step

is chosen, then the scheduling rule with the highest NN output

is selected. Otherwise, the improvement step selects a random

rule. The NN weights are updated at each TTI based on the

tuple stored in MDP and the type of RL algorithm. During the

exploitation, only the evaluation steps are applied.

A. Scheduler State Space

Let us define the finite and measurable set for the scheduler

state space as S = SU ∪ SC , where SU and SC are the

uncontrollable and controllable sub-spaces, respectively. The

uncontrollable sub-space SU cannot be predicted whereas SC

evolves according to the selected rules at every TTI. Let us

further define the instantaneous scheduler state at TTI t as

a vector: s[t] = [c[t], z[t]], where s[t] ∈ S , c[t] ∈ SC and

z[t] ∈ SU . The uncontrollable elements at TTI t, z ∈ SU

are: CQI reports, number of active users at TTI t, the arrival

rates in data queues and the vector of KPI requirements k̄[t].
The controllable sub-state at TTI t, c ∈ SC is denoted by

c = [k, λ,k,q], where λ[t] = [λ1, λ2, ..., λUt
] is the vector

of user data rates being scheduled, k[t] = [k1,k2, ...,kUt
]

comprises the differences between the momentary KPI values

ko,u and their requirements k̄o,u, and q[t] = [q1, q2, ..., qUt
]

is the vector of queue lengths. For each user u ∈ Ut, the

controllable elements ku[t] = [ko,u − k̄o,u], enable the RL

controller to notify when objectives {o1, o2} ∈ O are satisfied.

B. Action Space

We define the finite action set as A = {a1, a2, ..., aD},

where D is the number of scheduling rules. When the RL

controller selects action a[t] = d at TTI t, the RBs allocation

is performed and the system moves into the next state s′ =
s[t+ 1] ∈ S according to the following transition function:

c′(d) = f(s, d), (2)

where c′(d) = [k′
(d), λ

′
(d),k

′
(d),q

′
(d)] ∈ SC is the expected

controllable set at TTI t+1 when applying the scheduling rule

a[t] = d in state s[t] ∈ S . The new state s′ ∈ S is obtained

based on the uncontrollable elements z′ = z[t+ 1] ∈ SU .

C. Reward Function

As per the original definition [10], the reward represents the

expected goodness of applying action a[t] = d in state s ∈ S:

r(s, d)
(def)
= E

[

Rt+1|s[t] = s, a[t] = d
]

, (3)

where Rt+1 is the reward value calculated at TTI t+ 1.

Theorem 1: For any action a[t] = d applied in state s[t] = s,

the reward function will depend on controllable elements from

the current and next states, such as: r(s, d) = r(c′(d), c, d).
Proof 1: The proof is provided in Appendix A. �

The role of Theorem 1 within the RL framework aims

to simplify the reward function calculation and to eliminate

the dependency on uncontrollable CQIs. In the absence of

Theorem 1, additional pre-processing steps are necessary to

compress the CQI sub-space, which in fact, increases the

complexity of the entire RL framework.

The reward function can be further simplified if we consider

that, at TTI t+1, the future controllable elements are already

known, and consequently, we can say that, c′ = c′(d). Then,

the proposed reward function is calculated as follows:

r(c′, c) =
∑2

n=1
δon · ron(c

′
on
, con), (4)

where δon ∈ R[0,1] represents the reward weights, where δo1+
δo2 = 1, con = [kon , λ,kon

,q] and kon
= [kon,u − k̄on,u].

The weights δon must stay constant during the entire learning

stage to ensure the convergence of the learned policies [10].

Each sub-reward function in (4) is calculated based on:

ron(c
′
on
, con) =

{

1, {r+on(c
′
on
), r+on(con)} = 1

r+on(c
′
on
)− r+on(con), otherwise.

(5)

The reward expressed above shows the temporal difference in

performance for delay and PDR objectives. The proposed sub-

reward functions r+on : R4·Ut → R are determined according

to: r+on(con) = 1/Ut ·
∑Ut

u=1 r
−
on
(con,u), where the controllable

vector for user u ∈ Ut is con,u = [kon,u, λu, kon,u, qu] and,

r−on(con,u) =

{

1−
kon,u

kon,u
, kon,u ≥ 0, {qu, λu} 6= 0,

1, otherwise.
(6)

Basically, when both QoS requirements of all users are

satisfied, the reward is 1. Otherwise, the rewards are moderate

(r ≥ 0) or punishments (r < 0). We set the delay requirements

k̄o1 at lower values than initially proposed by 3GPP [16]. In

this way, the scheduler is able to provide much lower packet

delays than the conventional scheduling approaches.

D. Value and Action-Value Functions

Let us define π : S × A → [0, 1] the policy function that

maps states to distributions over the action space [17]. In the

context of our scheduling problem, we denote the stochastic

policy π(d | s) as the probability of action a[t] = d being

selected by π in state s[t] = s [17], that is defined as follows:

π(d | s) = P[a[t] = d|s[t] = s]. (7)

Additionally, we define the value function V π : S → R that

measures the value of state s underlying π and defined as [17]:

V π(s)
(def)
= Eπ

[

∑∞

t=0
γtRt+1|s[0] = s

]

, (8)

where, (1) the process (γtRt+1; t ≥ 0) is the accumulated

reward value being averaged from state to state by the discount

factor γ ∈ [0, 1]; (2) s[0] is considered as random such that

P(s[0] = s) > 0 holds for every s ∈ S . The second condition

makes the expectation in (8) defined for all states in S . If we

also assume that the first action a[0] of the whole process is

randomly chosen such that P(a[0] = d) > 0 holds for all rules

d ∈ D while the following action decisions follow π, then the

action-value function Qπ : S ×A → R is defined as [17]:

Qπ(s, d)
(def)
= Eπ

[

∑∞

t=0
γtRt+1|s[0] = s, a[0] = d

]

. (9)

Both value and action-value functions defined in (8) and (9),

respectively, consider as argument the general state represen-

tation as defined in Sub-Section III.A. These functions need
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to be redefined and adapted to our scope since the reward in

(4) takes as input the consecutive controllable sub-states.

Theorem 2: For any policy π that optimizes (1), we have

the new value function Kπ : SC × SC → R determined as:

Kπ(c′, c) = Eπ

[

∑∞

t=1
γt−1Rt|c[1] = c′, c[0] = c

]

, (10)

and Jπ : SC ×SC ×A → R is the new action-value function:

Jπ(c′, c, d) = Eπ

[

∑∞

t=1
γt−1Rt|c[1] = c′, c[0] = c,

a[1] = d
]

, (11)

where the new policy π[d | (c′, c)] states the probability of

selecting rule d ∈ D when the current state is (c′, c).
Proof 2: The proof can be found in Appendix B. �

According to Theorem 2, the proposed RL framework learns

based on the consecutive controllable states, while eliminating

the dependency on other un-controllable elements. This is in

fully congruence with Theorem 1 with no need for additional

steps to compress the CQI uncontrollable states.

By considering the relations in (8), (10) and (9), (11),

respectively, the value and action-value functions can be

decomposed according to the temporal difference principle:

Kπ(c′, c) = r(c′, c, d) + γ ·Kπ(c′′, c′), (12.a)

Jπ(c′, c, d) = r(c′, c, d) + γ ·Kπ(c′′, c′), (12.b)

where c′′ = c[t+2] and the reasonings behind above equations

are given in Appendix C.

The optimal value K∗(c′, c) of state (c′, c) ∈ SC × SC

is the highest expectable return when the entire scheduling

process is started from state (c′, c). Then, function K∗ :
SC × SC → R is the optimal value function determined

as: K∗(c′, c) = maxπK
π(c′, c) [17]. Similarly, the optimal

action-value J∗(c′, c, d) of pair (c′, c, d) represents the highest

expected return when the scheduling process starts from state

(c′, c) and the first selected action is a[1] = d. Consequently,

J∗(c′, c, d) : SC × SC × A → R is the optimal action-

value function. If we consider that the RL controller acts as

optimal at each state, the selection of the best scheduling rule

is achieved according to the following equation:

d∗ = argmax
d′∈D

[π(d′ | (c′, c)]. (13)

In this case, both value and action-value functions are optimal,

and relations (12.a) and (12.b), respectively, become:

K∗(c′, c) = r(c′, c, d) + γ ·K∗(c′′, c′), (14)

J∗(c′, c, d) = r(c′, c, d) + γ ·K∗(c′′, c′). (15)

From Appendix B, it can be easily seen that K∗(c′′, c′) =
maxd′∈DJ

∗(c′′, c′, d′). Then, both optimal value and action-

value functions can be derived as follows:

K∗(c′, c) = r(c′, c, d) + γ ·max
d′∈D

J∗(c′′, c′, d′), (16)

J∗(c′, c, d) = r(c′, c, d) + γ ·max
d′∈D

J∗(c′′, c′, d′). (17)

According to the target values calculated based on (14)-(17)

that we would like to achieve at each TTI, the RL framework

parameterizes the non-linear functions. Each of these functions

defines the type of RL algorithm. We consider the evaluation

of each RL algorithm in order to find the best policy for each

parameterization schemes used to compute the on-line PDRs.

For our stochastic optimization problem, the optimality of

value and action-value functions is not guaranteed. Then, we

aim to find the approximations of these functions, such that:

K̄∗(c′, c) ≈ K∗(c′, c) and J̄∗(c′, c, d) ≈ J∗(c′, c, d) for all

d ∈ D. Also, the instantaneous state (c′, c) ∈ SC ×SC needs

to be pre-processed to reduce the RL framework complexity.

IV. PROPOSED RL FRAMEWORK

A. State Compression

We aim to solve the dimensionality and variability problems

of controllable states by eliminating the dependence on the

number of active users Ut. This is fundamental for our RL

framework, since the input state needs to have a fixed dimen-

sion in order to update the same set of non-linear functions.

Theorem 3: At each TTI, the controllable states c ∈ SC can

be modeled as normally distributed variables.

Proof 3: We group the controllable elements as follows: c =
{ko1 ,ko2 , λ,ko1

,ko2
,q}, where c = {cn}, n = {1, ..., 6}.

Each component depends on the number of users, such as:

cn = {cn,u}, where u = {1, 2, ..., Ut}. When n is fixed, each

element cn,u can be normalized at each TTI t as follows:

ĉn,u = cn,u/(1/Ut ·
∑Ut

u′
cn,u′). (18)

By expanding (18) and fractioning between the pairs, we get

the following recurrence relation:

ĉn,u = (cn,u · cn,u+1/ĉn,u+1). (19)

The normalized set ĉn = {ĉn,1, ĉn,2, ..., ĉn,Ut
}, ∀n is normally

distributed, if and only if, each element ĉn,u is a product of

random variables. Equation (19) proves the theorem. �

We use the means and standard deviations to represent

the distributions of the normalized controllable and semi-

controllable elements based on maximum likelihood estima-

tors [18]. Let us define the mean function µ(ĉn) : R
Ut →

[−1, 1] and the standard deviation function σ(ĉn) : RUt →
[−1, 1]. Based on maximum likelihood estimators [18], these

functions are defined as follows:

µ(ĉn) = 1/Ut ·
∑Ut

u=1
ln(ĉn,u), (20.a)

σ(ĉn) =

√

1/Ut ·
∑Ut

u=1
[ln(ĉn,u)− µ(ĉn)]

2
. (20.b)

The same principle for calculating the normalized values and

the mean and standard deviations is used for next-state contro-

llable elements ĉ′ = {ĉ′n}. To simplify the controllable state

representation, we define the 24-dimensional vector as v ∈ Ŝ ,

where v = [µ(ĉ′n), σ(ĉ
′
n), µ(ĉn), σ(ĉn)], and n = {1, .., 6}.

B. Approximations of Value and Action-Value Functions

Figure 2 shows the insights of the proposed RL framework.

Alongside a number of D neural networks used to approxi-

mate the action-value functions, we need an additional neural

network to represent the value function. We approximate

the optimal action-value functions by defining the function

J̄∗ : Ŝ × A → R. Also, we define K̄∗ : Ŝ → R as a function
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Fig. 2 Proposed RL Framework

approximator for the optimal value function. Then, the non-

linear representations of these functions are defined as follows:

K̄∗(v) = h(θt, ψ(v)),

J̄∗(v, d) = hd(θdt , ψ(v)),
(21)

where, {h, h1, h2, ..., hD} are the neural networks used to

approximate the value and action-value functions, respectively;

ψ(v) is the feature vector, and {θ, θ1, θ2, ..., θD} is the set of

weights that has to be tuned.

The NN structure is based on two off-line parameterizations:

the number of layers and the number of nodes for each layer.

Let us define L the number of NN layers and Nl the number

of nodes for each layer l ∈ {1, 2, ..., L}. If the number of

nodes for the input and output layers are known in advance

(i.e. N1 = 24, and NL = 1), the number of hidden layers

L− 2 and the number of nodes for each hidden layer must be

determined in advance based on a priori testing.

The weights {θ, θ1, θ2, ..., θD} are used to interconnect the

nodes from layer to layer. Let us consider Wl = {wb,m, b =
1, ..., Nl,m = 1, ..., Nl+1} the matrix of weights between

layers l and l+1. The total number of weights that has to

be tuned in the learning stage between layers l and l+1 is

(Nl + 1) × Nl+1. The compressed controllable states v are

passed from layer to layer and they go through a set of non-

linear transformations. The output of layer l, becomes [19]:

v(l+1) = ψl+1(W
T
l × v

(l)
+ ), (22)

where, v
(l)
+ is the biased input state and ψl+1 is the activation

function of layer l + 1. On the largest scale, the compressed

state is propagated through the entire NN according to [19]:

K̄∗(v) = ψL(W
T
L−1 · ... ·ψl+1(W

T
l · ... ·ψ2(W

T
1 ·v))). (23)

Similarly, the controllable state v ∈ Ŝ is forwarded through

all state-action NNs {h1, h2, ..., hD}. The activation function

ψl = (ψl,1, ψl,2, ..., ψl,Nl
) is element-wise and the same

function is considered for all nodes. The main idea is to learn

D+1 vectors of weights, but at each TTI t, only two NNs are

updated (θt, θ
d∗
t ), and a[t] = d∗ is the rule applied in state v.

For NN learning purposes, we consider the current state

as v′ = [µ(ĉ′′n), σ(ĉ
′′
n), µ(ĉ

′
n), σ(ĉ

′
n)] ∈ Ŝ and v ∈ Ŝ as a

previous state. We aim to update the set of weights {θt, θ
d∗
t }

by reinforcing the error values that are able to evaluate the

performance of selecting the output of NN d∗ ∈ D in state

v ∈ Ŝ when the current state is v′ ∈ Ŝ . Let us define the value

error function e : R[−1,1] → R[−1,1] and the action-value error

function of NN d ∈ D as ed : R[−1,1] → R[−1,1]. These errors

are calculated at each TTI based on the following equations:

et(θt−1,v
′,v) = KT (v′,v)− K̄∗(v), (24.a)

edt (θ
d
t−1,v

′,v) = JT (v′,v, d)− J̄∗(v, d), (24.b)

where, KT : Ŝ × Ŝ → R is the target value function defined

based on (14) or (16) and JT : Ŝ × Ŝ × A → R is the target

action-value function calculated according to (15) or (17).

Both errors {et, e
d
t } are back-propagated through the neural

networks from layer to layer. Let us define the vector of

value errors E(l) = [e
(l)
1 , e

(l)
2 , ..., e

(l)
Nl
] being back-propagated

to the output of layer l ∈ {1, 2, ..., L}. These errors are back-

propagated based on the following equation [19]:

E(l) = WT
l ×△T (Ψ′

l+1,E
(l+1)), (25)

where, Ψ′
l+1 = [ψ′

l+1,1, ψ
′
l+1,2, ..., ψ

′
l+1,Nl+1

] is the deri-

vative set and △[Ψ′
l+1,E

(l+1)] = [ψ′
l+1,1 · e

(l+1)
1 , ψ′

l+1,2 ·

e
(l+1)
2 , ..., ψ′

l+1,Nl+1
· e

(l+1)
Nl+1

]. By using (25), the errors are

back-propagated from layer to layer and the weights are

updated each time based on the gradient descent principle.

Then, the weight wt
b,m that interconnects node b = 1, ..., Nl

of layer l to node m = 1, ..., Nl+1 of layer l + 1 at TTI t is

updated according to the following formula [19]:

wt
b,m = wt−1

b,m + ηt · v
(l)
b · ψ′

l+1,m · e(l+1)
m , (26)

where ηt is the learning rate, v
(l)
b is the state element and

ψ′
l+1,m is the derivative function on m ∈ {1, 2, ..., Nl+1}.

C. RL Algorithms

A set of RL algorithms is used to update the approximations

of optimal value and action-value functions. Among all RL

algorithms, only five are investigated and used to reinforce the

corresponding errors and optimize the NNs {h, h1, h2, ..., hD}
based on dynamic network and traffic conditions.

QV-learning [20] combines the value and action-value func-

tions to build its policy by considering a two-step updating

process based on (14) and (15), respectively:

KT (v′,v) = r(v, d∗) + γ · K̄∗(v′), (27.a)

JT (v′,v, d∗) = r(v, d∗) + γ · K̄∗(v′), (27.b)

where, a[t] = d∗ is the action applied in the previous state

v ∈ Ŝ and r(v, d∗) is the reward function calculated based on

(4). The errors are calculated according to (24.a) and (24.b).

QV2-learning [21] keeps the same form of target functions

as exposed in (27) with the only difference that, the value

function error is back-propagated as follows:

et(θt−1,v
′,v) = KT (v′,v)− J̄∗(v, d∗). (28)

QVMAX-learning [21] sets the error calculations and the

target function JT (v′,v, d∗) similar to the QV-learning. The

only difference is the target value function, such as:

KT (v′,v) = r(v, d∗) + γ ·max
d′∈D

J̄∗(v′, d′). (29)
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QVMAX2-learning [21] is a combination of QV, QV2

and QVMAX algorithms. The target action-value function

JT (v′,v, d∗) is defined similar to QV-learning as in (27.b),

the target value function KT (v′,v) is determined according

to the QVMAX rule as in (29), the value error et(θt,v
′,v)

is similar to QV2 and the action-value error ed
∗

t (θd
∗

t ,v′,v) is

determined similar to QV-learning.

For the Actor Critic Learning Automata (ACLA) [22], at

each TTI, the value function K̄∗ is updated according to (27.a)

and its error is determined based on (24.a). If the value error

et(θt,v
′,v) is positive, the action d∗ ∈ D in state v ∈ Ŝ was

a good choice and the probability of selecting that action in the

future for the same approximated state should be increased.

Otherwise, the probability of selecting that action is decreased.

The target action-value function is determined as follows:

JT (v′,v, d∗) =

{

1, if e(θt−1,v
′,v) ≥ 0,

−1, if e(θt−1,v
′,v) < 0.

(30)

The action selection function from Fig. 2 plays a central role

in the learning stage. The trade-off for improvement/evaluation

steps is decided by ǫ−greedy or Boltzmann distributions. If

the ǫ−greedy is decided to be used, the action a[t+1] in state

v′ is selected based on the following policy [19]:

π(d | v′) =

{

ǫ
(d)
t ǫ ≥ ǫt,

hd(θdt , ψ(v
′)] ǫ < ǫt,

(31)

where ǫ
(d)
t is a random variable and ǫt is time-based parameter

that decides when the improvement or the evaluation step is

applied. If ǫt is very low, then we have more improvements

steps. When ǫt gets higher values, the RL controller aims to

exploit the output of NNs more. However, the ǫ− exploration

is not able to differentiate between the potentially good and

worthless actions for given momentary states. The Boltzmann

exploration takes into account the values of NNs at each

TTI, in which, the actions with higher NNs values should

have higher probabilities to be selected and the others will

be neglected. The potentially good actions for the momentary

state v′ ∈ Ŝ are detected by using the following formula [19]:

π(d | v′) =
exp[hd(θdt , ψ(v

′))/τ ]
∑D

d′=1 exp[h
d′(θd

′

t , ψ(v
′))/τ ]

, (32)

where τ is the temperature factor that sets how greedy the

policy is. For instance, when τ → 0, the exploration is

more greedy, and thus, the NNs with the highest outputs are

selected. When τ → ∞, the action selection becomes more

random, and thus, all actions have nearly the same selection

probabilities. Regardless of the type of exploration that is used,

the action is selected at each TTI according to (13). Algorithm

1 summarizes the introduced concepts and reasonings.

V. SIMULATION RESULTS

The proposed framework was implemented in a RRM-

Scheduler C/C++ object oriented tool that inherits the LTE-

Sim simulator [15]. For the performance evaluation, an infras-

tructure of 10 Intel(R) 4-Core(TM) machines with i7-2600

CPU at 3.40GHz, 64 bits, 8GB RAM and 120 GB HDD

Western Digital storage was used. The entire framework was

simulated using the same network conditions for both learning

Algorithm 1: RRM Scheduler based on RL Algorithms

1: for each TTI t
2: observe state (c′′, c′) ∈ SC × SC , apply the compression

3: functions based on (18), (19), (20.a), and (20.b), get v′ ∈ Ŝ.
4: recall the previous state and action (v, d), d ∈ D and store

5: the actual state v
′ ∈ Ŝ at the controller MDP level

6: calculate reward r(v, d∗) based on (4), (5) and (6).
7: forward propagate states (v′,v) on K̄∗(·) = h(θt−1, ψ(·))
8: according to (22) and (23)
9: forward propagate state v on J̄∗(v, d) = hd(θdt−1, ψ(v)),

10: d ∈ D based on (22) and (23)
11: if QV algorithm
12: calculate value error et(θt−1,v

′,v) - (27.a) and (24.a)

13: calculate error ed
t (θ

d
t−1,v

′,v) - (27.b) and (24.b)
14: if QV2 algorithm
15: calculate value error et(θt−1,v

′,v) - (27.a) and (28)

16: calculate error ed
t (θ

d
t−1,v

′,v) - (27.b) and (24.b)
17: if QVMAX algorithm
18: calculate value error et(θt−1,v

′,v) - (29) and (24.a)

19: calculate error ed
t (θ

d
t−1,v

′,v) - (27.b) and (24.b)
20: if QVMAX2 algorithm
21: calculate value error et(θt−1,v

′,v) - (29) and (28)

22: calculate error ed
t (θ

d
t−1,v

′,v) - (27.b) and (24.b)
23: if ACLA algorithm
24: calculate value error et(θt−1,v

′,v) - (27.a) and (24.a)

25: calculate error ed
t (θ

d
t−1,v

′,v) - (30) and (24.b)
26: back propagate error et(θt−1,v

′,v) based on (25)
27: update weights θt−1 based on (26)
28: back propagate error ed

t (θ
d
t−1,v

′,v) based on (25)

29: update weights θdt−1 based on (26)
30: // act based on the learned policy
31: apply d∗ = argmaxd′∈D[π(d′ | v′)] based on (31) or (32).
32: end for

and exploitation stages. The obtained results are averaged over

10 simulation runs and the STandard Deviations (STDs) are

analyzed in order to prove the veracity of proposed policies.

In order to study the impact of the online PDR in the learned

policies, different averaging settings are considered.

The aim of the simulations is two-fold: (a) to study the

learning performance of five different RL algorithms (QV,

QV2, QVMAX, QVMAX2, ACLA) under different traffic

types, varying window size, objectives, and dynamic traffic

conditions; (b) to study the performance of the proposed RL-

based framework and learned policies vs. classical scheduling

rules under different objectives, traffic types and network

conditions. For the purpose of the performance evaluation, the

proposed RL-based framework considers the set of state-of-

the-art scheduling rules consisting of EXPonential 1 (EXP1)

rule [7], EXPonential 2 (EXP2) and LOGarthmic (LOG)

strategies [8] and Earliest Deadline First (EDF) rule [9].

A. Parameter Settings

For the purpose of the simulations, our system model

considers the bandwidth of 20 MHz (100 RBs) and the ARQ

scheme with maximum 5 retransmissions. Packets failing to

be transmitted within this interval are declared lost. Since the

packet loss rate is related more to the network conditions,

we focus only on the ratio of dropped packets which is

related more to scheduler performance. The online PDR KPI

ko2,u[t] for each user u ∈ Ut is calculated as follows:

ko2,u[t] = (
∑T

z=t N̄u[z − t])/(
∑T

z=tNu[z − t]), where Nu is



8

Table II Packet Scheduler Parameters
Parameter Value

System Bandwidth/Cell Radius 20 MHz (100 RBs)/1000m
User Speed/Mobility Model 120 Kmph/Random Direction

Channel Model Jakes Model
Path Loss/Penetration Loss Macro Cell Model/10dB

Interfered Cells/Shadowing STD 6/8dB
Carrier Frequency/DL Power 2GHz/43dBm

Frame Structure FDD
CQI Reporting Mode Full-band, periodic at each TTI

PUCCH Model Errorless
Scheduler Type EXP1 [7], EXP2 [8], LOG [8],

EDF [9], RL Policies
Traffic Type CBR, VBR

No. of schedulable users Nm
s 10 each TTI

RLC ARQ Acknowledged Mode
(5 retransmissions)

AMC Levels QPSK, 16-QAM, 64-QAM
Target BLER 10%

Number of Users (|Ut|) Variable: 15-120
RL Algorithms QV [20], QV2 [21], QVMAX [21],

QVMAX2 [21], ACLA [22]
Exploration/Exploitation Duration 500s/95s

Windowing Factor (ρ) {5.5, 100, 200, 400}

the number of total transmitted packets and N̄u is the number

of dropped packets being caused by higher packet delays than

those ones imposed by 3GPP. Parameter T is the time window

that is calculated as the ratio between the total number of

active users Ut and the maximum number of users Nm
s that

can be scheduled within one TTI. Then, T = ρ · [Ut/N
m
s ],

where [·] is the integer part and ρ is the windowing factor.

The role of ρ is to ensure the PDR satisfaction when Ut is

variable. For instance, we have noticed that, when Ut > Nm
s ,

low windowing factors ρ = [5.5, 200] provides satisfactory

performance for the PDR objective. When Ut <= Nm
s , the

windowing factor can be increased such as ρ = [200, 400]
in order to have larger horizons of time when dropping the

packets, while the PDR objective is still satisfied. When ρ >
400, the PDR performance is seriously degraded. However,

based on more general traffic settings (Ut is variable during

learning and exploitation stages), we would like to find the

most convenient range of ρ such that both packet delay and

PDR objectives can be maximized. In this sense, we vary the

windowing factor in ρ = {5.5, 100, 200, 400} in order to cover

a wider range for both aforementioned cases.

In the learning stage, the packet delay and PDR con-

straints are updated at each 1000 TTIs in the range of

k̄o1,u[t] = {50, 100, 150, 200, 250, 300}ms and k̄o2,u[t] =
{10−3, 10−4, 10−5, 10−6}, respectively. When the delay ex-

ceeds any of these requirements from k̄o1,u[t], the packets

are dropped and declared lost. To obtain better results for the

satisfaction of delay, we aim to impose stricter requirements,

such that: ¯̄ko1,u[t] = υ · k̄o1,u[t] and υ = 0.9. Packets

exceeding these limits are not discarded, and the proposed

policies are able to apply the best rule so that the PDR can

be much improved. In order to increase the probability of

reaching the terminal states (r(c′, c) = 1) for very high traffic

load and low latency requirements, the delay sub-rewards

{r+o1(c
′
o1
), r+o1(co1)} in (5) are modified as follows:

r+o1(co1) =

{

1,
[

1/Ut ·
∑Ut

u=1 r
−
on
(con,u)

]

≥ κ,

1/Ut ·
∑Ut

u=1 r
−
on
(con,u), otherwise,

(33)

where, κ ∈ [0, 1] indicates the acceptable limit such that, for

Table III.Controller Parameters
RL Learning Learning Discount Exploration

Algs. Rate (ηQ) Rate(ηV ) Factor(γ) (ǫ, τ)
QV 10−3 10−5 0.99 τ = 10

QV2 10−3 10−5 0.95 τ = 10
QVMAX 10−3 10−5 0.99 τ = 10

QVMAX2 10−3 10−5 0.95 τ = 10
ACLA 10−4 10−4 0.99 ǫ = 5 · 10−5

(1 − κ)% of users that are in outage of delay requirements,

the delay reward is still maximized. For our simulations, we

impose κ = 0.9. When the global reward value is calculated,

the same level of importance is given for both delay and PDR

objectives, and consequently: δo1 = δo2 = 0.5.

In both learning and exploitation stages, the number of

active users is changed every 1000 TTIs in the domain of

Ut = [15, 120] in order to better illustrate the superiority of

the proposed policies. The user speed is 30 kmph and the

mobility model is considered to be random direction for both

learning and exploitation stages. For the interference model,

we consider a cluster with 7 cells, and the simulation model

runs only on the central cell, with others being used to provide

the interference levels. The training stage runs for 500s by

using the same user-network-application conditions for all five

RL algorithms. The exploitation stages are launched in 10

different simulations of 95s each, and the results are averaged.

CBR and VBR traffic types are considered to model a wide

range of applications (e.g., video, VoIP, FTP, web browsing)

with different traffic characteristics. Thus, the CBR traffic is

generated based on the following set of arrival rates λi[t] =
{32, 64, 128, 256, 512, 1024} randomly generated at each 1000

TTIs (for all active users). The VBR traffic is generated

following a Pareto distribution for packet size and geometric

distributions for the arrival rates [18]. The obtained policies

can provide very high degrees of generalizations, and thus they

can be applied to realistic environments. The remaining set of

parameters for the RRM packet scheduler is listed in Table II.

B. Optimization of RL Controller

When optimizing the controller, our aim is to find the best

parameterization scheme (learning rates, discount factors and

exploration parameters) that minimizes the NNs output errors

(et, e
1
t , e

2
t , ..., e

D
t ) for a given duration of the learning stage.

Different configurations are simulated and Table III illustrates

the most suited parameters for each considered RL algorithm.

The parameterization of neural networks (L,Nl), l ∈
{1, 2, .., L} constitutes another important aspect that has to be

considered before launching the learning stage. When the ne-

ural network is too flexible (high number of layers and hidden

nodes), the complexity is higher, the learning speed slower, and

there is a risk to overfit the input state in the sense that, the

function approximator will represent not only the interest data,

but also the noise in the scheduler state [19]. When the neural

network is inflexible (insufficient number of layers and hidden

nodes), the system complexity is lower, the RL framework can

learn faster, and parts of the scheduler state space may not be

represented by the approximator. As a consequence, we get

poor generalizations and the function approximator is said to

underfit the input state [19]. In both under-fitting and over-

fitting cases, the state error starts to increase inexplicably at a

certain point in the learning stage. We carefully tested different
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Fig. 3 Learning Performance: Punishment and Moderate Rewards

NN configurations, such as L = {3, 5, 7}, where the number

of neurons for each hidden layer was varied in the interval

of {50,100,150,200}. Considering under-fitting, over-fitting

and system complexity trade-off, and based on preliminary

simulations we found out that L = 3 and N2 = 100 are enough

to represent the state space for delay and PDR objectives. For

each simulation setting, we considered the same topology of

neural networks (i.e. the same numbers of layers, nodes and

activation functions). The activation functions for the input and

output layers are linear, whilst for hidden nodes, the activation

function is tangent hyperbolic [18].

C. Learning Performance

This subsection presents the learning performance of the five

considered RL algorithms in terms of the mean percentage of

TTIs under punishments and moderate rewards and for varying

windowing factor, different objectives (e.g., delay only, PDR

only, and both delay and PDR) and different traffic classes

(e.g., CBR and VBR). By punishment we understand that the

reward is negative at TTI t, such that −1 < r < 0 while in case

of moderate reward we have 0 ≤ r < 1. Thus, for this case, we

consider the mean percentage of TTIs under punishments and

moderate rewards, such as p(−1 < r < 0; 0 ≤ r < 1). Then,

p1(−1 < ro1 < 0; 0 ≤ ro1 < 1) is the mean percentage of

TTIs under punishments and moderate rewards for the delay

objective; similarly p2(−1 < ro2 < 0; 0 ≤ ro2 < 1) is the

mean percentage of TTIs corresponding to PDR objective;

and, p12(−1 < r < 0; 0 ≤ r < 1) is the mean percentage

of TTIs for both delay and PDR objectives. Figures 3 (a)-

(f) illustrate the performance of considered RL algorithms in

the exploitation stage when considering the mean percentage

of TTIs under moderate rewards and punishments for each

traffic class, objective and varying windowing factor.

Figures 3 (a)-(c) show the performance of the RL algorithms

in terms of mean percentage of TTIs under punishments and

moderate rewards for varying windowing factor and objectives,

for the CBR traffic only. We notice that in the case of delay

objective, the percentages p1(−1 < ro1 < 0; 0 ≤ ro1 < 1)
remain relatively constant for each of the RL algorithms

when varying the windowing factor. However, it can be

observed that ACLA performs better than other choices for

ρ = {5.5, 100} while QVMAX and QVMAX2 perform better

for ρ = {200, 400}. When considering the PDR objective only

(Fig. 3 (b)), the QV policy accumulates the least amount of

punishments and moderate rewards for ρ = {5.5} and the QV-

MAX2 algorithm learns the best when ρ ∈ {100, 200, 400}.

However, when both delay and PDR objectives are considered

(Fig. 3 (c)), ACLA and QVMAX2 achieve the lowest mean

percentage p12(−1 < r < 0; 0 ≤ r < 1) when ρ ∈
{5.5, 100, 200} and QVMAX2 is the best choice for ρ = 400.

We observe that the STD of p2(−1 < ro2 < 0; 0 ≤ ro2 < 1)
becomes higher as ρ increases. This shows that if very large

windows are used in the PDR computations, the policies show

their limitations in applying appropriate scheduling rules that

can maximize the satisfaction of PDR requirements.

The learning performance when scheduling VBR traffic

is highlighted in Figs. 3 (d)-(f). QV, QVMAX2 and ACLA

perform best for the delay objective (Fig. 3 (d)) for ρ = 5.5.

For ρ = {100, 200}, QVMAX, QVMAX2 and ACLA provide

a good performance, while QVMAX minimizes p1(−1 <
ro1 < 0; 0 ≤ ro1 < 1) when ρ = 400. The PDR objective

(Fig. 3 (e)) satisfaction is achieved for larger periods of time

when ρ = 5.5 by the QV policy. However, when increasing

the windowing factor, ρ = {200, 400}, the best candidates are

ACLA, QVMAX2 and QV2. When combining both delay and

PDR objectives (Fig. 3 (f)), the following policies perform the

best: QV, QVMAX2, ACLA for ρ = 5.5, ACLA, QVMAX,

QVMAX2 for ρ = 100, and QVMAX for ρ = {200, 400}.

Looking at the impact of different traffic classes, by com-

paring Figs. 3(c) and 3(f), we notice that the RL policies can
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Table IV Policies Performance for CBR and VBR Traffic Types
CBR Traffic VBR Traffic

Mean Percentage of Feasible TTIs [%] Mean Percentage of Feasible TTIs [%]
Objectives Met. ρ = 5.5 ρ = 100 ρ = 200 ρ = 400 ρ = 5.5 ρ = 100 ρ = 200 ρ = 400

QV 9.367 15.108 27.812 20.808 38.906 38.532 32.942 18.515
QV2 51.19 60.336 43.71 46.599 1.138 35.296 32.417 36.347

Delay QVMAX 40.684 58.943 26.662 64.502 0.703 18.528 39.82 41.216
QVMAX2 66.13 52.252 59.146 65.713 15.545 37.817 18.837 14.03

ACLA 65.195 62.937 58.538 50.711 32.951 42.338 18.944 31.718

QV 86.786 60.483 46.576 30.338 76.793 44.996 29.657 12.037
QV2 86.117 62.438 43.788 29.126 69.149 48.176 33.549 13.045

PDR QVMAX 84.427 65.768 45.25 28.977 67.237 45.577 31.054 12.845
QVMAX2 85.997 67.166 48.862 30.54 71.194 52.169 33.528 11.402

ACLA 83.56 66.233 44.048 26.516 67.337 52.569 29.198 12.416

QV 9.051 8.379 15.902 10.071 38.322 32.296 21.859 0.323
QV2 50.474 48.815 39.205 25.784 0.971 33.967 18.03 11.771

Delay + PDR QVMAX 39.894 51.355 15.229 25.761 0.54 12.208 26.919 11.7
QVMAX2 65.455 49.121 36.304 27.642 15.169 31.298 18.837 10.394

ACLA 64.369 55.376 39.19 17.501 32.395 36.269 11.791 11.556

learn better under VBR traffic, since the STDs are considerably

reduced when compared with the CBR traffic. Moreover, as

indicated by (33), we aim to maximize the reward when 90%

of active users achieve their delay requirements. In this sense,

the RL policy that shows the best performance in terms of

learning performance, may not be the best option when we

measure the network performance for 100% satisfied users.

D. Policies’Performance

The objective of this subsection is to analyze if the con-

sidered RL policies are able to ensure the best performance

when measuring the objective satisfaction for all active users.

In this sense, we measure the mean percentage of TTIs when

100% of active users satisfy: a) the delay requirements only

(p1(100%)); b) the PDR requirements only (p2(100%)); and

c) both, delay and PDR requirements (p12(100%)).
The results are listed in Table IV for each considered RL

algorithm under a varying windowing factor, different objec-

tives and traffic classes. The top scheduling policies under

each objective and for each windowing factor are highlighted.

When the results obtained in Table IV are compared with Fig.

3, a discrepancy between {p1(100%), p2(100%), p12(100%)}
and 1 − {p1(−1 < ro1 < 0; 0 ≤ ro1 < 1), p2(−1 < ro2 <
0; 0 ≤ ro2 < 1), p12(−1 < r < 0; 0 ≤ r < 1)} can

be observed in the sense that even if some RL approaches

are able to provide good performance when minimizing the

percentage of TTIs with punishment and moderate rewards, the

mean percentage of TTIs when all active users are satisfied is

seriously degraded. For example, in Fig. 3(d), for ρ = 5.5,

ACLA aims to minimize the number of punishments and

implicitly to maximize the number of maximum rewards when

90% of users are satisfied, whereas, in Table IV, QV policy is

the best option when measuring p1(100%). Similarly, in Fig.

3(f), for ρ = 5.5, ACLA and QVMAX2 policies are the best

options to minimize the amount of punishment and moderate

rewards. However, in Table IV, the QV policy is the one

that maximizes p12(100%). Moreover, in Fig. 3(f), QVMAX

achieves similar performance as ACLA and QVMAX2 when

ρ = 100. In Table IV, its performance is seriously degraded

since p12(100%) = 12.2, which is three times less than ACLA.

These discrepancies are obtained since some policies prefer

to select those scheduling rules that aim to keep some users

in outage in terms of packet delay for longer periods. In Table

IV, the results show that more than 10% of feasible TTIs for

the entire set of RL algorithms and windowing factors are lost

when scheduling VBR traffic.

Other discrepancies refer to the performance differences

between windowing factors and traffic types. For example,

for CBR traffic in the case of the PDR objective when the

value of the windowing factor is increased (e.g., 200, 400),

QVMAX2 achieves the best performance. Whereas, in the

case of VBR traffic, QV2 performs the best under the same

settings. Even if the same network and traffic conditions are

used when training the NNs under different RL algorithms,

the sequence of these conditions differs from one setting

of ρ to another. This explains the performance variability

of the obtained RL policies under ρ ∈ {5.5, 100, 200, 400}
when scheduling CBR and VBR traffic. However, it can be

concluded that ACLA is a better option for shorter time

windows in PDR computations, whereas the QVMAX and

QVMAX2 algorithms can learn better for much longer time

windows used in PDR computations.

E. Comparison with State-of-the-Art Strategies

The aim of this subsection is to analyze the performance

of the proposed RL-based framework and compare it against

the conventional scheduling rules, such as EDF, LOG, EXP1,

and EXP2. Through this performance evaluation we want

to show that by using only one scheduling rule it cannot

fully satisfy the objectives under dynamic network conditions

and traffic types. Thus, the proposed RL-based framework

will select the most suitable scheduling rule to be applied

at each TTI based on the current network conditions. The

performance of the proposed RL-based framework and the

best policies from Table IV are compared against other state-

of-the-art scheduling solutions in terms of mean percentage

of TTIs when the active users are satisfied in percentage of

q% = {90, 92, 94, 96, 98, 100} for different objective targets,

such as p1(q), p2(q), p12(q). The results are collected for

CBR and VBR traffic under the three objectives and varying

windowing factor and listed in Fig. 4.

Looking at the delay objective only, it can be easily ob-

served that the proposed framework is able to outperform the

classic scheduling rules in terms of p1(100%) for both cases of
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Fig. 4 Exploitation Performance: Percentages of TTIs when Delay, PDR, and both Delay and PDR Objectives are Satisfied

CBR (Fig. 4(a)) and VBR traffic (Fig. 4(d)). When scheduling

the CBR traffic, more than 10% of feasible TTIs are gained by

the proposed framework under all windowing factor settings.

Calling the appropriate scheduling rule at each TTI enables all

active users to respect the lower delay bound. A degradation

of p1(q) can be observed when scheduling the VBR traffic

with ρ = 5.5 for q[%] = {90, 92, 94}. This is because the

main purpose of the obtained policy is to minimize the mean

delay for all users with the minimum STD delay values. Some

scheduling rules aim to keep some users in outage for longer

periods by increasing the STD of packet delays.

The PDR objective for both traffic types under an increasing

windowing factor ρ, p2(q) decreases and the results′ variation

becomes larger (Figs. 4(b) and 4(e)). However, the proposed

framework works best when q[%] = {90, 92, 94, 96, 98, 100}.

When maximizing the percentages of feasible TTIs when

all active users are satisfied in terms of both packet delay and

PDR requirements, the proposed framework performs the best

as seen in Figs 4(c) and 4(f). By selecting appropriate sche-

duling rules for different traffic loads, network conditions and

QoS requirements, the proposed framework gains more than

15% of p12(100%) when compared with classical scheduling

rules for the CBR traffic type and the windowing factor of

ρ = {5.5, 100, 200, 400}. For the VBR traffic, the proposed

framework indicates a gain of about 10%. This is because

some packets have larger sizes when compared with CBR.

F. General Remarks

The performance of the RL controller depends on the

following factors: the type of RL algorithm, the input data

set being used in the training stage, data processing, controller

parameterization and the learning termination condition. If the

sequence of provided input data is not similar, the performance

of the RL algorithms can differ as we observed in Table

IV. The training data has to be carefully chosen in order to

permit the controller to explore as many states as possible and

to avoid the local minima problems. The input observations

must be pre-processed before applying to the RL controller

in order to avoid the dependency for some parameters that

may change over time, such as the number of active users.

The controller setting has to be determined a priori by using

extensive simulation results. The NN configuration for our

scheduling model makes use of L = 3 layers, where: N1 = 24,

N2 = 100, N3 = 1. Finally, the learning termination condition

indicates when the training stage should be stopped. For our

simulations, the termination condition is performed after 500s,

the moment of time when the errors for all five RL algorithms

are nearly the same and the weights of NNs are saved.

VI. RELATED WORK

One key aspect in obtaining optimal performance within

the radio access network is the dynamically scheduling of

the limited radio resources. Different radio resource allocation

strategies and scheduling rules have been proposed in the

literature to optimize the distribution of radio resources among

different users by considering the dynamic channel conditions

as well as QoS requirements. For example, the EXP1 rule

proposed in [7] is able to enhance the PDR at the cost

of throughput degradation when scheduling video streaming

services. Two rules EXP2 and LOG proposed in [8] are able

to minimize the overflow of data queues when compared to

Modified Largest Weighted Delay First (MLWDF). However,

the MLWDF rule provides poor PDR performance when CBR

traffic is scheduled [23]. The EDF strategy in [9] outperforms

MLWDF, LOG, EXP1, and EXP2 in terms of PDR with delay

degradation when higher real-time traffic load is scheduled.

RL has been widely used in RRM decision-making pro-

blems, such as: inter-cell interference coordination [24], self-

organizing networks [25], energy savings [26], Adaptive Mo-

dulation and Coding selection [27], radio resource allocation
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and packet scheduling [28]–[30]. In many RRM optimization

problems, the states (network conditions) and actions (RRM

decisions) are continuous and multidimensional variables that

increase the complexity of RL algorithms. Different approa-

ches are proposed to avoid these drawbacks.

Clustering methods are used in [31] to convert the conti-

nuous state space into its discrete representation. In [26], the

discrete state space is achieved through fuzzy logic mechanism

by using linguistic variables. Another solution is to integrate

RL algorithms with artificial Neural Networks, which are able

to approximate non-linear functions that map the continuous

state into desired scheduling decisions for the proportional-

fair rule parameterization [29], [30]. However, some pre-

processing tools are needed to compress the NN input state

dimension, and consequently, to speed-up the learning process.

A form of compression is considered in [28], where the

modulation and coding scheme is adapted based on average

CQI reports received from all users. This method can be

used only in wide-band CQI reporting scenarios, becoming

automatically unfeasible when the sub-band reporting is requ-

ired. For the self-organizing mechanism proposed in [25], the

state compression considers only the conflicting parameters

with neighboring cells. Some approaches consider the division

of the multidimensional state into smaller sub-states to be

approximated as indicated in [32].

VII. CONCLUSIONS

This paper proposes a flexible RRM packet scheduler which

is able to adapt based on dynamic scheduling conditions

and to enable QoS provisioning. The proposed approach

makes use of Reinforcement Learning to determine, for each

instantaneous scheduler state, a better scheduling rule to be

applied. Additionally, an innovative technique that compresses

the controllable momentary state such that the dependency

on the number of users is eliminated is also introduced.

Through extensive simulation results we have demonstrated

that different RL approaches behave differently under varying

network conditions and system settings. However, we show

that by using the proposed framework together with the best

RL policies in the exploitation stage, the proposed RRM

scheduler outperforms the classical scheduling rules in terms

of both packet delay and PDR objectives.

As part of future work, we plan to investigate the proposed

RL framework as a possible solution for the optimization pro-

blems that consider non-orthogonal multiple access schemes

as well as heterogeneous traffic conditions with strict QoS.
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APPENDIX A: PROOF OF THEOREM 1

The reward function is decomposed as indicated in (34)

when starting with the definition in (3), where, the (∗) property

indicates that, the uncontrollable state z[t] = z ∈ SU can

r(s, d)
(3)
= E

[

Rt+1|s[t] = s, a[t] = d
]

(2)
= E

[

Rt+1|c[t+ 1] = f(s, d), s[t] = s, a[t] = d
]

= E

[

Rt+1|c[t+ 1] = c′(d), c[t] = c, z[t] = z, a[t] = d
]

(∗)
= E

[

Rt+1|c[t+ 1] = c′(d), c[t] = c, a[t] = d
]

= r(c′(d), c, d). (34)

be reproduced if the controllable elements {c, c′(d)} ∈ SC

from the actual and future scheduler states are known. For

instance, by having the tuple {λ, λ′(d)}, the effective SINR

can be reproduced, and consequently, the CQI reports for each

user can be approximated. The KPI requirements at TTI t k̄
are determined based on the controllable elements {c, c′(d)}.

The arrival bit rates in data queues at TTI t are obtained based

on the differences between consecutive sizes of queues q′ and

q. The queue sizes denote here the number of bits from each

users, queue being impacted only by the scheduling decision.

The arriving bits in data queues depend on the traffic type

and are included in the uncontrollable state space. Also, the

number of active users Ut at TTI t can be easily determined

by simply setting λu = 0 for those users in the IDLE state.

APPENDIX B: PROOF OF THEOREM 2

We develop the initial value function as shown in (35). By

starting with the definition from (8), the sum of expectations

keeps the same value when considering the transition function

of controllable elements from (2). The (∗) property has the

same meaning as in Equation (34). At TTI t+1 when c′(d) = c′,

we obtain the value function representation as shown in (10).

The action-value function is decomposed as shown below:

Qπ(s, d)
(9)
= Eπ

[

∑∞

t=0
γtRt+1|s[0] = s, a[0] = d

]

(2)
= Eπ

[

∞
∑

t=0

γtRt+1|c[1] = f(s, d), s[0] = s, a[0] = d
]

= Eπ

[

∞
∑

t=0

γtRt+1|c[1] = c′(d), c[0] = c, z[0] = z, a[0] = d
]

(∗)
= Eπ

[

∑∞

t=0
γtRt+1|c[1] = c′(d), c[0] = c, a[0] = d

]

= Jπ(c′(d), c, d). (36)

The action-value is developed in (36). At TTI t+1 when c′(d) =
c′, the new action-value function is defined as follows:

Jπ(c′, c, d′) = Eπ

[

∑∞

t=1
γt−1Rt|c[1] = c′, c[0] = c,

a[1] = d′, a[0] = d
]

(37)

(∗∗)
= Eπ

[

∑∞

t=1
γt−1Rt|c[1] = c′, c[0] = c, a[1] = d′

]

,

where, (∗∗) stands with the MDP property.

APPENDIX C: FUNCTION TRANSITIONS

We want to find a relationship for value and action-value

functions in between two consecutive controller states such as

(c′, c) and (c′′, c′). The state function in (35) is reloaded and

developed in reverse way as shown in (38). The property (∗, 2)
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V π(s)
(8)
=

∑

d∈D

{

Eπ

[

∞
∑

t=0

γtRt+1|s[0] = s, a[0] = d
]

· π(d | s)
}

(2)
=

∑

d∈D

{

Eπ

[

∞
∑

t=0

γtRt+1|c[1] = f(s, d), s[0] = s, a[0] = d
]

π
}

=
∑

d∈D

{

Eπ

[

∞
∑

t=0

γtRt+1|c[1] = f(s, d), c[0] = c, z[0] = z, a[0] = d
]

· π(d | s)
}

(∗)
=

∑

d∈D

{

Eπ

[

∞
∑

t=0

γtRt+1|c[1] = c′(d),

c[0] = c, a[0] = d
]

· π[d | (c′(d), c)]
}

= Eπ

[

∑∞

t=0
γtRt+1|c[1] = c′(d), c[0] = c

]

= Kπ(c′(d), c). (35)

Kπ(c′, c) =
∑

d′∈D
Jπ(c′, c, d′) · π[d′ | (c′, c)] =

∑

d′∈D
Eπ

[

∑∞

t=1
γt−1Rt|c[1] = c′, c[0] = c, a[1] = d′

]

· π[d′ | (c′, c)]

= r(c′, c, d′) + γ ·
∑

b′

∑

d′′

Eπ

[

∞
∑

t=2

γt−2Rt−1|c[1] = c′, c[0] = c, z[2] = b′, z[1] = z′, a[2] = d′′, a[1] = d′
]

· π[d′′ | (c′′, c′)]

(∗,2)
= r(c′, c, d′) + γ ·

∑

b′

∑

d′′

Eπ

[

∞
∑

t=2

γt−2Rt−1|c[2] = f [(c′,b′), d′], c[1] = c′, z[2] = b′, a[2] = d′′
]

· π[d′′ | (c′′(d′′), c
′)]

(∗∗)
= r(c′, c, d′) + γ ·

∑

d′′
Eπ

[

∑∞

t=2
γt−2Rt−1|c[2] = c′′(d′′), c[1] = c′, z[2] = z′′, a[2] = d′′

]

· π[d′′ | (c′′(d′′), c
′)

(34∗)
= r(c′, c, d′) + γ ·

∑

d′′
Eπ

[

∑∞

t=2
γt−2Rt−1|c[2] = c′′(d′′), c[1] = c′, a[2] = d′′

]

· π[d′ | (c′′(d′′), c
′)]

= r(c′, c, d′) + γ ·
∑

d′′∈D
Jπ(c′′(d′), c

′, d′′) · π[d′′ | (c′′(d′′), c
′)] =

(37)
= r(c′, c, d′) + γ ·Kπ(c′′, c′). (38)

indicates the MDP property in which the current state depends

only on the previous one but not on all the previous versions.

Also, the transition of controllable elements at TTI t = 2
is determined according to (2). The property (∗∗) indicates

in fact that we are in state (c′′, c′) and we would like to

update Jπ(c′, c, d) and Kπ(c′, c), so the uncontrollable state

z[2] ∈ SU is known. The relation (34∗) reveals the property

elaborated in Appendix A and the uncontrollable elements

z[2] = z′′ ∈ SU can be reconstituted if the set of elements

c[2] = c′′ ∈ SC and c[1] = c′ ∈ SC are known by the

RL controller. The transition for action-value function can be

developed similarly to the value function Kπ(c′, c) with the

only difference being that, when updating function Jπ(c′, c, d)
at TTI t = 2, a different function Jπ(c′′, c′, d′′) may be used

in this computation since d′′ = argmaxq∈D[J
π(c′′, c′, q)].

This is revealed in fact by the dynamic programming property

that permits the action-value function to be updated at each

TTI according to the best scheduling rule in that state.
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