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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model is a soluble quantum many body system that exhibits

maximal chaotic behavior [1–7].1 It describes the quantum mechanics of N Majorana

fermions ψi with anti-commutation relations {ψi, ψj} = δij interacting via a homogeneous

non-linear potential with random couplings. The model is specified by the 1D action

SSYK =

∫
dt


∑

i

i

2
ψi∂tψi − i

q
2

∑

i1,...,iq

Ji1...iq ψi1 . . . ψiq


 . (1.1)

Here Ji1...jq denotes a set of gaussian random couplings. We can split (1.1) as S = SUV+SIR.

Note that both terms exhibit reparametrization invariance, but that ψ transforms as a

scalar in the UV, but has scale dimension ∆ = 1/q in the IR. The SYK model exhibits

1Similar models have been originally introduced in [8–12] to model strongly interacting matter systems

without quasiparticle excitations that realize non-Fermi liquid states.
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approximate conformal symmetry in the IR, and has been proposed to give a holographic

description of a 2D black hole space-time. The link with the gravity dual finds support

in the fact that both sides give rise to an effective 1D Goldstone mode whose action is

described by the Schwarzian derivative [1–4, 7, 13–18].

In this note we propose a 2D QFT generalization2 of the SYK model (1.1), which

we argue preserves most of the desired features. In particular, via the same reasoning

that applies to 1D case, we will argue that the 2D model appears to exhibit conformal

symmetry in the IR and gives rise to an emergent Goldstone mode associated with broken

2D reparametrization invariance. We find that the same effective action of the Goldstone

mode can also be derived from the 3D AdS gravity action, viewed as a functional of the

boundary metric. These results indicate that our 2D model flows in the IR to a holographic

2D CFT, and may thus provide new insight into the dynamical mechanism that underlies

AdS3/CFT2 duality.

Recently, Witten found an adaptation of a class of so-called tensor models that give

rise to the same large N diagrammatical rules as the SYK model [22, 23]. It would be

worthwhile to investigate whether our proposal can be adapted to this case.

This paper is organized as follows. In section 2, we specify our 2D model. We give

both a Lagrangian and Hamiltonian formulation. We give special attention to the UV

limit, which is described by a topological Ising CFT. In section 3 we study the Schwinger-

Dyson equations that capture the large N dynamics of the model. We describe the solution

of the SD equations in the conformal IR regime, and study the four point function. We

find that the chiral spectrum of our 2D model coincides with that of the 1D SYK model.

In section 4, we analyze the dynamics of the pseudo-Goldstone mode, and show that its

action is given by the product of two Schwarzian derivatives and exhibit a connection with

2+1-D gravity. In section 5 we list some open questions. In appendix A we summarize

the properties of topological RCFTs, and discuss the 2-point function of the UV model in

appendix B.

2 The 2D model

In this section, we will give two characterizations of our 2D model. First we introduce the

model via its Lagrangian, and then we present a Hamiltonian formulation. We give some

special attention to the UV limit of our model.

2.1 Lagrangian formulation

A näıve attempt to generalize the SYK model to 2D is to promote the ψ variables to

2D Majorana fermions with a standard kinetic term i
2ψ/∂ψ. This choice assigns canonical

scale dimension [ψ] = 1/2. The interaction term then has dimension q/2, which is at best

marginal. In the 1D action (1.1), on the other hand, the UV term assigns ψ scale dimension

[ψ] = 0, so the interaction term is relevant and the model is strongly coupled in the IR.

To write the 2D generalization of (1.1) we introduce fermionic variables ψi+ and ψi−
with i = 1, . . . , N . One can think of ψ+ and ψ− as the two chiral components of a 2D

2Proposals for 2D generalizations of SYK with a discretized spatial dimension are given in [19–21].
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Majorana fermion. However, to preserve the essential features of the SYK dynamics, we

replace the usual fermion kinetic term by the UV term in the following 2D action

S = SUV + SIR

SUV =
∑

i

∫
d2x εµν ψi+∂µψ

i
+ ψ

i
−∂νψ

i
− (2.1)

SIR =
∑

i1,...,jq

∫
d2x Ji1...jq ψ

i1
− . . . ψ

iq
− ψ

j1
+ . . . ψ

jq
+

where Ji1...jq denote a set of gaussian random couplings with

〈
(Ji1...jq)

2
〉

=
J2 (q − 1)! q!

N2q−1
(no sum). (2.2)

The unconventional kinetic term3 in SUV is chosen such that ψ has canonical scale dimen-

sion [ψ]UV = 0. The couplings in SIR thus have dimension [J ] = 2. The interaction term is

therefore relevant and dominates the IR dynamics.

The total action defines a proper relativistic QFT, but does not come with a fixed

light cone. Both terms in (2.1) do not depend on a choice of metric: the UV term is

topological, whereas the IR term only requires a choice of integration measure. SUV is

reparametrization invariant if ψ± transform as scalars, while SIR has reparametrization

symmetry provided the fermions transform as ψia(x) →
∣∣det ∂x̃µ

∂xν

∣∣1/2q ψ′ ia (x̃(x)). The fact

that the UV and IR transformation laws are different is a first hint that the model may give

rise to an effective Goldstone mode associated with broken reparametrization symmetry.

The UV and IR action still share area preserving diffeomorphisms as a common symmetry

group.

Note that the quartic kinetic term involves a diagonal pairing between the chiral part-

ners ψi+ and ψi−, but the IR interaction term does not. The action (2.1) is invariant

under local Lorentz transformations ψi± → λ±1ψi±. For the UV action, these can act in-

dependently on each sector. We will treat the overall local Lorentz invariance as a gauge

symmetry.

The quartic kinetic term is a central new ingredient of our proposal. So it is important

to understand its physical role and consequences. We have seen some of its desirable prop-

erties. Some apparent draw backs are that it obscures the form of the anti-commutation

relations and does not produce a standard fermion propagator. To gain some further

insight, let us take a closer look at the theory defined by SUV just by itself.

2.2 UV limit: topological Ising CFT

The UV theory splits up into N decoupled topological theories with a single pair of chiral

Majorana fermions each. Let us focus on one of these UV sectors. A non-linear fermionic

action similar to SUV with N = 1 was recently considered in [25] in the context of a

proposed topological theory of Majorana edge modes of a px + ipy superconductor.4

3The quartic kinetic term in (2.1) can be viewed as a fermionic cousin of the Nambu-Goto action. It is

also similar to the fermionic Wess-Zumino term that appears in the Green-Schwarz superstring action [24].
4A similar topological fermionic model has also been considered by D. Haldane (private communication).
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By introducing Hubbard-Stratonovich variables e±µ we can rewrite the UV action as

S =
1

2

∫
d2x εµν

(
eaµ ψa ∂νψa − εab eaµ ebν

)
, (2.3)

with a = ±. This action is manifestly reparametrization and local Lorentz invariant. We

can think of the eaµ variable as a Cartan zweibein, that parametrizes a dynamical 2D metric

and local Lorentz frame. For fixed eaµ, the action (2.3) has a conventional fermion kinetic

term. Integrating out eaµ gives back the quartic action.

Let us take a brief look at the classical theory. The equations of motion of (2.3) imply

εµνe+
µ ψ+∂νψ+ = 0, e+

µ = ψ−∂µψ−,

εµνe−µψ−∂νψ− = 0, e−µ = ψ+∂µψ+.
(2.4)

Locally we can introduce two scalar fields X± such that

e+
µ = eϕ+∂µX

+, e−µ = eϕ−∂µX
−. (2.5)

We can then solve the equation of motion (2.4) by setting ψ−(X−) and ψ+(X+). So for

a moment it looks like ψ− and ψ+ behave like a pair of chiral fermions that propagate

along two independent light-cone directions specified by X− and X+. However, from (2.4)

and (2.5) we also deduce that

εµν∂µX
+∂νX

− = 0 (2.6)

which can only be solved if the two light-cone directions in fact coincide. So the UV

model (2.3) does not have true propagating modes. As we will argue below, it describes a

topological field theory.

Introducing a dynamical 2D metric via gµν = ηab e
a
µe
b
ν , assembling ψ+ and ψ− into a

two component fermion, and performing a simple field rescaling ψ̃ = g1/8ψ, we may further

rewrite (2.3) as a standard action of a 2D Majorana fermion coupled to 2D gravity

S =

∫ √
g

(
i

2
ψ̃ /∇ψ̃ − 1

)
. (2.7)

This rewriting of SUV is closely analogous to the procedure that recasts the Nambu-Goto

action into that of a free boson coupled to 2D gravity. Minimal models coupled to 2D

gravity have been studied extensively, starting with KPZ [26]. Our treatment will need

to be somewhat different. In the end, we want to be able to add the IR action in (2.1)

as an interaction term. Since the interaction term is invariant only under area preserving

diffeomorphisms, we are not allowed to treat the full diffeomorphism group as a gauge

symmetry of the UV theory. So instead of viewing the model as a gravitational theory, we

will treat it as a topological CFT with local gauge invariant observables [27–31].

Equations (2.3) and (2.7) describe a 2D Ising CFT with gauged Virasoro symmetry.

The gauging projects out all Virasoro descendent and leaves only three local observables

given by the dressed primary operators: the unit operator 1, the spin field σ and

ε(x) = ψ+(x)ψ−(x). (2.8)
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We will call this theory the topological Ising CFT. It is the simplest example of a topological

RCFT. Some relevant properties of topological RCFTs are summarized in the appendix.

For the purpose of our main discussion here, it is sufficient to note that:

• In Euclidean signature, the correlation functions of local observables are independent

of positions of the operators. They equal an integer, given by the number of inde-

pendent chiral conformal blocks associated with the corresponding CFT correlation

function [31].

• The three gauge invariant local observables ε, σ and 1 all have scale dimension zero.

The operator algebra forms a commutative, associative ring isomorphic to the Ising

fusion rules

1× 1 = 1, 1× σ = σ, 1× ε = ε, ε× ε = 1, ε× σ = σ, σ × σ = 1 + ε.

• In Minkowski space, TCFT correlation functions acquire non-trivial position depen-

dence due to operator ordering. This dependence reflects the monodromy of the

chiral conformal blocks, or equivalently, the topological braid properties of the chiral

CFT operators.

Let us elaborate this last point. Just like in an ordinary RCFT, local observables in

a topological RCFT can be factorized into a sum of chiral components. The properties

of these chiral components is made most manifest by formulating the TCFT as a gauged

WZW model [31]. In this formulation, the chiral operators are attached to a Wilson line of

a flat gauge field that stretches out to the corresponding (past or future) null infinity. The

Wilson lines encode the topological braid properties of the chiral operators of the CFT.

Hence local operators in a TCFT look as indicated in figure 1. The space-time position

of a local operator is labeled by the locations x+
i and x−i where the Wilson lines attach to

past null infinity. Since null infinity of 2D Minkowski space-time is one-dimensional, time

ordering again becomes topological. The 2D light-cone thus also becomes a topological

notion, that divides 2D space-time into four regions. Correspondingly, for each pair of

operators we can distinguish four types of relative separations: past, future, left and right.

Thanks to the presence of the Wilson lines, these four are all topologically distinct.

Specializing to the simplest example: for the 2-point function of two ε operators in the

topological Ising model, the prescription outlined above and in the appendix reduces to

〈T ε(1) ε(2)〉
TCFT

=





〈ψ+ (1)ψ+ (2)〉〈ψ− (1)ψ− (2)〉 = 1 F

〈ψ+ (2)ψ+(1)〉〈ψ− (1)ψ− (2)〉 = −1 R

〈ψ+ (1)ψ+ (2)〉〈ψ− (2)ψ− (1)〉 = −1 L

〈ψ+ (2)ψ+ (1)〉〈ψ− (2)ψ− (1)〉 = 1 P

2

that f± = e�±dX± and, after a simple field rescaling,
write the fermion kinetic term as  �

+@� 
i
+ +  �@+ �.

The HS variables fa
µ thus specify a dynamical light-cone

direction. Finally, we note that the action (2) has a gauge
symmetry under local rescalings  i

± ! �±1 i
±.

Schwinger-Dyson equations

F(x1, x2) =
1

N2

X

i,j

h i
+(x1) 

j
�(x1) 

i
+(x2) 

j
�(x2)i

(5)
= G+(x1, x2)G�(x1, x2)

Ga(x1, x2) =
1

N

X

i

h i
a(x1) 

i
a(x2)i, (6)

S

N
=

X

a=±
log Pf(fa^ d� ⌃a) +

Z
f+^ f�

(7)

� 1

2

Z Z �
⌃aGa �

J2

q
(G+)

q(G�)
q
�

⌃+(x) = J2G+(x)
q�1G�(x)

q (8)

⌃�(x) = J2G�(x)
q�1G+(x)

q (9)

�
✏µ⌫f+

µ @⌫G+ � ⌃+⇤G+

�
(x) = �2(x)

(10)�
✏µ⌫f�

µ @⌫G� � ⌃�⇤G�
�
(x) = �2(x)

fa
µ(x) =

@Ga(x, y)

@yµ
��
y!x

, (11)

Conformal limit

At this point the picture is very similar to the SYK
model in terms of diagrams. We can sum these water-
melon diagrams by writing a self-consistency equation for
the propagators and the self energy

G+(k)⌃+(k) = �1 (12)

G�(k)⌃�(k) = �1. (13)

The corrections are higher order in N or in 1/µ. This is
the analogue of the large J limit of the SYK model.

Two-point function

G+(x) = b
sgn(x+)

|x+|�+s|x�|��s
, (14)

G�(x) = b
sgn(x�)

|x+|��s|x�|�+s
, (15)

⌃+(x) = J b2q�1 sgn(x+)

|x+|2���s|x�|2��+s
, (16)

⌃�(x) = J b2q�1 sgn(x�)
|x+|2��+s|x�|2���s

, (17)

We find that � = 1/q.

J2b2q =
((1��)2 � s2)

4⇡2 cot
�
⇡
2 (�+ s)

�
tan

�
⇡
2 (�� s)

� . (18)

Four-point function

For the four-point function we have four di↵erent
choices now, which are

Fab(x1 .. x4) =
1

N2

X

i,j

h i
a(x1) 

i
a(x2) 

j
b(x3) 

j
b(x4)i

F (0)
ab =

�
�Ga(x13)Ga(x24) +Ga(x14)Ga(x23)

�
�ab. (19)

The iterative procedure gives the following expression

F (n+1) = K ⇤ F (n) (20)

F =
1

1�K⇤ F (0). (21)

where the kernel is given by

Kab(x1 .. x4) = �J2(q � �ab)Ga(x13)Ga(x24)Lab(x34)

(22)
Lab(x) =

G+(x)
q G�(x)q

Ga(x)Gb(x)

Kab = � 1

↵ab
K+

ab(x
+
i )K

�
ab(x

�
i ) (23)

K�
++ =

1

|x�
13|�� |x�

24|�� |x�
34|2�2�� (24)

K�
+� =

sgn(x�
34)

|x�
13|�� |x�

24|�� |x�
34|2�2�

(25)

K+
++ =

sgn(x+
13) sgn(x

+
24)

|x+
13|�+ |x+

24|�+ |x+
34|2�2�+

(26)

K+
+� =

sgn(x+
13) sgn(x

+
24) sgn(x

+
34)

|x+
13|�+ |x+

24|�+ |x+
34|2�2�

(27)

F

R

P

L

The four outcomes correspond to four different operator orderings. Here we introduced the

double time ordering symbol T = P+P−, where P± denotes the time ordering symbol that
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Figure 1. In a topological CFT, local operators are attached to two Wilson lines that connect to

past null infinity. Whether two operators are space-like or time-like separated is a topological dis-

tinction, encoded via the relative ordering of the asymptotic end-points x±1 and x±2 of the respective

Wilson lines. The lines are shown with zigzags to indicate that the bulk has no fixed metric.

orders the operators according to increasing light-cone time ±x±. We can abbreviate the

above table as

〈T ε(x1) ε(x2)〉
TCFT

= sgn(x+
12) sgn(x−12) . (2.9)

Here the 2D location x = (x+, x−) of each operator is defined via the position of the

end-points of the Wilson lines, as indicated in figure 1. The formula (2.9) should be

compared with the formula 〈Tψ(τ1)ψ(τ2)〉 = sgn(τ12) for the 2-point function of a single

free Majorana fermion.5 It forms the basis for the rest of our story. In appendix B we

sketch how the above result (2.9) for the two-point function can be derived from the UV

Lagrangian via a functional integral.

More generally, applying the TCFT rules to the n-point function gives that

〈T ε(1) ε(2) . . . ε(n)〉
TCFT

=

{
(−1)#(1,2,...,n) n even

0 n odd
(2.10)

where #(1, 2, . . . , n) counts the number of times a pair of operators needs to cross each

other’s light cone in order to rearrange all operators to be space-like separated. Note

that, since ε and 1 have a unique OPE channel, at most one single chiral conformal block

contributes for each n-point function. So the value of the Euclidean n point function is

simply equal to 1.

The expression (2.10) can be rewritten in somewhat more familiar form as follows

〈T ε(x1) . . . ε(xn)〉
TCFT

= Pf
(

sgn(x+
ij)
)

Pf
(

sgn(x−ij)
)
. (2.11)

A proof of the equality between (2.10) and (2.11) is given in appendix A. We see that the

non-chiral n-point functions factorize into a product of two chiral factors. This factorization

5The vacuum two-point function of free 1D Majorana fermions remains unchanged at finite tempera-

ture [1–4, 7]. The same property holds true for the vacuum two-point function in our topological UV theory.

This statement would not be true for 2D Majorana fermions with the usual kinetic term.

– 6 –
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property allows us to define the n-point functions of the chiral Majorana fermions as

〈Tψ±(x1) . . . ψ±(xn)〉
TCFT

= Pf
(

sgn(x±ij)
)
. (2.12)

It is natural to refer to the chiral fields ψ+(x+) and ψ−(x−) as ‘topological 2D Majorana-

Weyl fermions’. They arise from the topological Ising model after performing a chiral pro-

jection.

Our 2D model (2.1) in fact makes essential use of a chiral projection of this kind. Each

term in the interaction Lagrangian in (2.1) contains an equal number of left- and right

chiral fermions, but the pairing can be off diagonal. In other words, the interaction term

is built up from general fermion bi-linears ψi+ψ
j
−. To allow for such operators with i 6= j,

while preserving locality, we need to perform an analog of the GSO projection familiar

from superstring theory. The complete UV theory is defined by taking a tensor product

of N topological Ising models, and then performing a chiral projection that allows us to

act with general fermion bi-linears ψi+ψ
j
−. Similar to the GSO projection, this eliminates

the non-chiral spin operators σi of each individual topological Ising model from the UV

spectrum. The resulting theory then remains local.

2.3 Hamiltonian formulation

We would like to verify that the 2D action (2.1) defines a unitary QFT. The Hamiltonian

formulation is usually most well adapted for this purpose. So let us write x = (x, t) and

identify the Hilbert space H of states defined on a constant time-slice. We should then

check that there are no negative norm states and that the Hamiltonian generates a unitary

time evolution. The formalism of matrix product states [32, 33] will turn out to be helpful.

In many interesting quantum many body systems, the wave function |Ψ〉 depends in

a non-trivial way on the spatial ordering of the quasi-particles. A matrix product state

(MPS) representation of a quantum state encodes this spatial dependence by means of an

auxiliary quantum system [32, 33]. To define this auxiliary quantum system for our setting,

we introduce two collections of N Majorana fermions with anti-commutation relations

{ψi±(x), ψj±(y)} = δij , {ψi+(x), ψj−(y)} = 0, (2.13)

with i, j = 1, . . . , N . Note that the anti-commutator does not depend on the locations

x and y. So we can simply set ψi±(x) = ψi± with {ψi±, ψj±} = δij acting on a 2 × 2N/2

dimensional auxiliary Hilbert space. The role of the position x is to keep track of spatial

operator ordering within the matrix product state, in the same way that time t can be

used to keep track of time ordering for a free 1D Majorana fermion.

States in the Hilbert space H = H+ ⊗ H− are given by a sum of factorized states

|ΨI
+〉|ΨJ

−〉 where I and J represent a multi-index, e.g. I = {i1, . . . , ip} labeling the internal

quantum numbers of the chiral Majorana particles. Each factor |ΨI
±〉 is represented by a

many body wave function in the form of a matrix product state

Ψ
i1...ip
± (x±i1 , . . . , x

±
ip

) = 〈n±|P± ψip± (x±ip) . . . ψ
i1
± (x±i1) |0〉 (2.14)

where |n±〉 is short-hand for the unique fermion number eigen state that gives a non-zero

overlap. Here P± denotes the path ordering symbol that places the operators in spatial

– 7 –
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order with position x±k increasing from left to right for Ψ− and from right to left for Ψ+.

Alternatively, we can write the MPS wave function as a 1D path integral

Ψ
i1...ip
± (x±i1 , . . . , x

±
ip

) =

∫
[dψi±] e±

∑
i

∫
dx± i

2
ψi±∂±ψ

i
± ψ

ip
± (x±ip) . . . ψ

i1
± (x±i1) .

Note that this functional integral is reparametrization invariant in x±, and that ΨI
± is a

piece-wise constant function of the positions x±ik . In the case that all ψi’s have the same

index, it reduces to the Pfaffian expression (2.12).

This MPS representation provide a natural basis for the energy eigen states of the

UV theory described by the quartic Lagrangian (2.1) or its HS representation (2.3). Due

to the reparametrization symmetry, the states only depend on the spatial ordering of the

fermionic fields. Moreover, since the Hamiltonian of the UV theory identically vanishes,

all MPS states automatically have zero energy.

The Hamiltonian of the full interacting model is defined as a linear mapping on the MPS

wave functions. It is given by a pure interaction term H = Ĥint(t) = −
∫
dx L̂int(x, t) with

L̂int(x, t) =
∑

i1,...,jq

Ji1...jq ψ̂
i1
+ (x, t) . . . ψ̂

jq
− (x, t) (2.15)

the same interaction term as in (2.1), and where ψ̂i±(x±) with x± = x ± t now denote

operators that insert ψi±(x±) into the corresponding chiral MPS wave function. Here we

reintroduced the time dependence as prescribed by the interaction picture. Note, however,

that the free Hamiltonian H identically vanishes. The t dependence is therefore spurious,

except for its effect on operator ordering. The dependence on the two light cone coordinates

x± arises due to the intrinsic path-ordering of the matrix product states.

Integrating the Schrödinger equation produces a double lightcone-time ordering pre-

scription

T exp

(
−i

∫
dt Ĥint(t)

)
= T exp

(
i

∫
dx+

∫
dx−L̂int(x

+, x−)

)
(2.16)

where T ≡ P+P− puts all operators in order of increasing light cone time, both along the

x+ and −x− direction. In this way, through the use of the matrix product state formalism,

we have made contact with the TCFT prescription outlined in the previous subsection.

The last remaining task is to provide an inner product on H. It seems reasonable to

assume that it can be defined such that the states |ΨI
±〉 form an orthonormal basis of the

respective chiral Hilbert spaces H±. In principle one should be able to derive this inner

product from the path-integral formulation, starting from the action (2.1), or vice versa,

derive the path-integral and the action (2.1) from the Hamiltonian formalism outlined here.

We leave this problem for future study.

3 Schwinger-Dyson equations

Now that we have introduced the 2D model, we would like to analyze its large N dynamics.

The factors of N in (2.2) are chosen so that the model admits a regular large N limit. We
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would like to analyze the low point correlation functions of the 2D model, working to

leading order in 1/N . Throughout, we will assume that the standard SYK analysis applies

to our 2D model. In particular, we assume that we can use the replica method to take the

disorder average, and that the model does not undergo a spin glass transition.

3.1 SD equations at large N

The simplest non-trivial correlation function with a regular large N limit is

F(x1, x2) =
1

N2

∑

i,j

〈
ψi+(x1)ψj−(x1)ψi+(x2)ψj−(x2)

〉
.

At leading order in 1/N , it factorizes as

F(x1, x2) = G+(x1, x2)G−(x1, x2) . (3.1)

We can identify G±(x1, x2) with the dressed fermionic two point functions

G±(x1, x2) =
1

N

∑

i

〈
ψi±(x1)ψi±(x2)

〉
, (3.2)

with the understanding that each should always appear in the local combination (3.1).

To compute the two point functions, we can try to follow the standard SYK procedure

and sum all relevant leading order diagrams. We start by writing the UV action in the

Hubbard-Stratonovich form (2.3) by introducing a total of N Cartan frames e±i , one for

each of the N sectors. It is not difficult to see, however, that by restricting ourselves to

observables of the type (3.1) and (3.2), defined as equal weighted sums over all N sectors,

that only the collective field

e± =
1

N

∑

i

e±i (3.3)

participates in the large N dynamics. More precisely, if we split each frame variable

as e±i = e± + ẽ±i , the deviation ẽ± will decouple in correlation functions of averaged

observables. This property follows from the fact that the interaction term between frame

variables and ψi± is linear in e±i , and that the fermion propagator lines involve a uniform

sum over i. So the frame variables always couple via

=(""""""""""""")"1 +

=(""""""""""""") "1 +

2

that f± = e�±dX± and, after a simple field rescaling,
write the fermion kinetic term as  �

+@� 
i
+ +  �@+ �.

The HS variables fa
µ thus specify a dynamical light-cone

direction. Finally, we note that the action (2) has a gauge
symmetry under local rescalings  i

± ! �±1 i
±.

Schwinger-Dyson equations

F(x1, x2) =
1

N2

X

i,j

h i
+(x1) 

j
�(x1) 

i
+(x2) 

j
�(x2)i

(5)
= G+(x1, x2)G�(x1, x2)

Ga(x1, x2) =
1

N

X

i

h i
a(x1) 

i
a(x2)i, (6)

S

N
=

X

a=±
log Pf(fa^ d� ⌃a) +

Z
f+^ f�

(7)

� 1

2

Z Z �
⌃aGa �

J2

q
(G+)

q(G�)
q
�

⌃+(x) = J2G+(x)
q�1G�(x)

q (8)

⌃�(x) = J2G�(x)
q�1G+(x)

q (9)

�
✏µ⌫f+

µ @⌫G+ � ⌃+⇤G+

�
(x) = �2(x)

(10)�
✏µ⌫f�

µ @⌫G� � ⌃�⇤G�
�
(x) = �2(x)

fa
µ(x) =

@Ga(x, y)

@yµ
��
y!x

, (11)

Conformal limit

At this point the picture is very similar to the SYK
model in terms of diagrams. We can sum these water-
melon diagrams by writing a self-consistency equation for
the propagators and the self energy

G+(k)⌃+(k) = �1 (12)

G�(k)⌃�(k) = �1. (13)

The corrections are higher order in N or in 1/µ. This is
the analogue of the large J limit of the SYK model.

Two-point function

G+(x) = b
sgn(x+)

|x+|�+s|x�|��s
, (14)

G�(x) = b
sgn(x�)

|x+|��s|x�|�+s
, (15)

⌃+(x) = J b2q�1 sgn(x+)

|x+|2���s|x�|2��+s
, (16)

⌃�(x) = J b2q�1 sgn(x�)
|x+|2��+s|x�|2���s

, (17)

We find that � = 1/q.

J2b2q =
((1��)2 � s2)

4⇡2 cot
�
⇡
2 (�+ s)

�
tan

�
⇡
2 (�� s)

� . (18)

Four-point function

For the four-point function we have four di↵erent
choices now, which are

Fab(x1 .. x4) =
1

N2

X

i,j

h i
a(x1) 

i
a(x2) 

j
b(x3) 

j
b(x4)i

F (0)
ab =

�
�Ga(x13)Ga(x24) +Ga(x14)Ga(x23)

�
�ab. (19)

The iterative procedure gives the following expression

F (n+1) = K ⇤ F (n) (20)

F =
1

1�K⇤ F (0). (21)

where the kernel is given by

Kab(x1 .. x4) = �J2(q � �ab)Ga(x13)Ga(x24)Lab(x34)

(22)
Lab(x) =

G+(x)
q G�(x)q

Ga(x)Gb(x)

Kab = � 1

↵ab
K+

ab(x
+
i )K

�
ab(x

�
i ) (23)

K�
++ =

1

|x�
13|�� |x�

24|�� |x�
34|2�2�� (24)

K�
+� =

sgn(x�
34)

|x�
13|�� |x�

24|�� |x�
34|2�2�

(25)

K+
++ =

sgn(x+
13) sgn(x

+
24)

|x+
13|�+ |x+

24|�+ |x+
34|2�2�+

(26)

K+
+� =

sgn(x+
13) sgn(x

+
24) sgn(x

+
34)

|x+
13|�+ |x+

24|�+ |x+
34|2�2�

(27)

i i

ea

i i

eia

Σ
i

= Σ
i
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+
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i i

ea

i i

eia

Σ
i

= Σ
i

For the computation of large N correlation functions, we can thus replace the frame vari-

ables by their large N average (3.3) and use the following effective form of the UV action

SUV =
1

2

∫
d2x εµν


∑

i,a

eaµψ
i
a∂νψ

i
a −Ne+

µ e
−
ν


 . (3.4)

Notice that there is now an explicit factor of N in front of the last term.

– 9 –



J
H
E
P
1
0
(
2
0
1
7
)
1
6
7

We now proceed to apply the same large N logic as in 1D. We write the perturbation

series for fixed e as a sum of ‘iterated melon’ diagrams [1–4, 6, 7]. The fermions then

have a standard kinetic term and propagator. At the end, we integrate out e, which

diagrammatically amounts to connecting all ψ+ and ψ− lines by an e propagator

〈
e+
µ (x1) e−ν (x2)

〉
=

1

N
εµνδ(x12). (3.5)

Note that each Wick contraction e+ e− produces a factor of 1/N .

A slight problem with the procedure just outlined, however, is that the ψ propagators

are singular at e = 0, which is the point around which we wish to define the perturbation

series. So whenever the e-line connects to a ψ propagator, the ψ propagator in fact collapses

to a point. This is not surprising, since we are in fact trying to write a perturbative

expansion for an action (2.1) without any quadratic term.

A more practical approach is to recast the model in terms of bosonic bi-local dynamical

mean fields, given by the two-point function G±(x1, x2) and self-energies Σ±(x1, x2).6 After

performing the disorder average and integrating out the fermions, one obtains the following

effective action

S/N = −
∑

a=±
log Pf(εµνeaµ∂ν − Σa)−

∫
εµνe+

µ e
−
ν

+
1

2

∫ ∫ (
ΣaGa −

J2

q
(G+)q(G−)q

)
.

(3.6)

This effective action looks quite similar to the dynamical mean field action of the 1D SYK

model [1–5, 7]. The key new features are the doubling of the number of fields and the

presence of the frame variable ea.

Since the action has an overall factor of N , the Schwinger-Dyson equations for G± and

Σ± reduce in the large N limit to the following saddle point equations

Σ±(x12) = J2G±(x12)q−1G∓(x12)q, (3.7)
(
εµνe±µ ∂νG± − Σ± ∗ G±

)
(x12) = δ2(x12), (3.8)

e±µ (x1) =
∂G∓(x12)

∂xµ2

∣∣∣∣
x2→x1

. (3.9)

The ∗ in equation (3.8) denotes the convolution product. Assuming translation symmetry,

equation (3.9) yields a constant value for eaµ, which on dimensional grounds, is proportional

to the temperature β−1 times (β2J)−1/q.

We can represent the SD equations in diagrammatic notation as follows. Let us denote

the chiral factorization equation (3.1) as

F(x1, x2) =

2

that f± = e�±dX± and, after a simple field rescaling,
write the fermion kinetic term as  �

+@� 
i
+ +  �@+ �.
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±.
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Conformal limit

At this point the picture is very similar to the SYK
model in terms of diagrams. We can sum these water-
melon diagrams by writing a self-consistency equation for
the propagators and the self energy

G+(k)⌃+(k) = �1 (12)

G�(k)⌃�(k) = �1. (13)

The corrections are higher order in N or in 1/µ. This is
the analogue of the large J limit of the SYK model.

Two-point function

G+(x) = b
sgn(x+)

|x+|�+s|x�|��s
, (14)

G�(x) = b
sgn(x�)

|x+|��s|x�|�+s
, (15)

⌃+(x) = J b2q�1 sgn(x+)

|x+|2���s|x�|2��+s
, (16)

⌃�(x) = J b2q�1 sgn(x�)
|x+|2��+s|x�|2���s

, (17)

We find that � = 1/q.

J2b2q =
((1��)2 � s2)

4⇡2 cot
�
⇡
2 (�+ s)

�
tan

�
⇡
2 (�� s)

� . (18)

Four-point function

For the four-point function we have four di↵erent
choices now, which are

Fab(x1 .. x4) =
1

N2

X

i,j

h i
a(x1) 

i
a(x2) 

j
b(x3) 

j
b(x4)i

F (0)
ab =

�
�Ga(x13)Ga(x24) +Ga(x14)Ga(x23)

�
�ab. (19)

The iterative procedure gives the following expression

F (n+1) = K ⇤ F (n) (20)

F =
1

1�K⇤ F (0). (21)

where the kernel is given by

Kab(x1 .. x4) = �J2(q � �ab)Ga(x13)Ga(x24)Lab(x34)

(22)
Lab(x) =

G+(x)
q G�(x)q

Ga(x)Gb(x)

Kab = � 1

↵ab
K+

ab(x
+
i )K

�
ab(x

�
i ) (23)

K�
++ =

1

|x�
13|�� |x�

24|�� |x�
34|2�2�� (24)

K�
+� =

sgn(x�
34)

|x�
13|�� |x�

24|�� |x�
34|2�2�

(25)

K+
++ =

sgn(x+
13) sgn(x

+
24)

|x+
13|�+ |x+

24|�+ |x+
34|2�2�+

(26)

K+
+� =

sgn(x+
13) sgn(x

+
24) sgn(x

+
34)

|x+
13|�+ |x+

24|�+ |x+
34|2�2�

(27)

=

= + + +

(3.10)

6Here and in the following we use the same symbols for the dynamical fields as for the on-shell solutions.
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K�
+� =

sgn(x�
34)

|x�
13|�� |x�

24|�� |x�
34|2�2�

(25)

K+
++ =

sgn(x+
13) sgn(x

+
24)

|x+
13|�+ |x+

24|�+ |x+
34|2�2�+

(26)

K+
+� =

sgn(x+
13) sgn(x

+
24) sgn(x

+
34)

|x+
13|�+ |x+

24|�+ |x+
34|2�2�

(27)

Figure 2. Diagrammatic representation of the SD equations (3.7), (3.8) and (3.9) for q = 2.

where each line with a blob represents a dressed propagator G±(x12) of the chiral Majorana

fermion. The color of the blob represents whether it is a ψ+ (blue) or a ψ− (grey).

The SD equations for q = 2 are then depicted as in figure 2. The left-hand side denotes

each inverse propagator, while first term on the right-hand side denotes the self-energy. The

second term is the contribution from the dynamical kinetic term, which takes the form of

a tadpole diagram attached via an e propagator.

3.2 Conformal limit

Continuing the standard SYK logic, we first focus on the IR limit. The interaction term

then dominates and, working to leading order in β2J , we can drop the UV term. The SD

equation (3.8) then truncates to

(
G± ∗ Σ±

)
(x12) = −δ(x12). (3.11)

In momentum space (and assuming translation invariance) this further simplifies to

G±(k)Σ±(k) = −1. (3.12)

We will solve equations (3.7) and (3.11) via a scaling Ansatz momentarily.

Equations (3.7)–(3.11) are diffeomorphism invariant, and as in the 1D model, this

points to a zero mode of the linearized SD equations. In the following subsection, we will

exhibit this zero mode by studying the four point function. As a quick preparation, consider

a change in G± that corresponds to a reparametrization (x+, x−)→ (x+ + ε+, x−+ ε−). In

the IR limit this is still a solution of SD equations if we take the Green function and self

energy to transform accordingly. The variation of equation (3.11) gives the conditions

δG± ∗ Σ± +G± ∗ δΣ± = 0. (3.13)

We can take the product on the right by (Σ±)−1 = G± to isolate δG± and use the expression

for Σ± in terms of G± in the second term to eliminate the self energy from the equation.

– 11 –
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The above equation then takes the form, cf. [1–4, 7]

(δab −Kab) ∗ δεGb = 0. (3.14)

where Kab is the integration kernel

Kab (x1 . . . x4) = −J2(q − δab)Ga(x13)Ga(x24)Lab(x34)

Lab(x) =
G+(x)q G−(x)q

Ga(x)Gb(x)
.

(3.15)

This shows that the eigenvalues of the kernel are 1 when evaluated at reparametrizations

of the conformal answer. Below we will make this formal conclusion explicit.

3.2.1 Two-point function

We will now study the SD equations, following the approach of [11, 12]. In the IR regime,

we adopt the following scaling Ansatz for the dressed propagators and self energies

G±(x) = b
sgn(x±)

|x+|∆±s |x−|∆∓s

Σ±(x) = J2 b2q−1 sgn(x±)

|x+|2−∆∓s |x−|2−∆±s

(3.16)

with b some constant. Here ∆ and s denote the sum and difference of the left- and right

scale dimensions. In the following, we will sometimes use the notation ∆± = ∆ ± s. The

sign functions in (3.16) implement Fermi statistics, and match with 2-point function of the

UV theory. The IR Ansatz breaks the diffeomorphism invariance of the IR theory. A new

feature of the 2D model, relative to the 1D case, is that the sign and scaling functions

specify a choice of light-cone direction and a signal propagation speed.

The Ansatz (3.16) solves the SD equations (3.7) and (3.11) provided that ∆ = 1/q and

J2b2q =
((1−∆)2 − s2)

4π2 cot
(
π
2 (∆ + s)

)
tan

(
π
2 (∆− s)

) ≡ α2
sq. (3.17)

The value of the spin s is not determined by the SD equations.7 For generality, we will

treat s as a free parameter. The most reasonable and consistent choice is to set s = ∆. We

will call this the chiral limit, as it preserves the property that ψ+ and ψ− depend only on

one light cone coordinate. Note, however, that the s → ∆ limit has to be taken together

with a J →∞ limit, while keeping b fixed.

3.2.2 Four-point function

Next we study the following four types of four-point functions

Fab(x1 . . . x4) =
1

N2

∑

i,j

〈ψia(x1)ψia(x2)ψjb(x3)ψjb(x4)〉

7A similar issue appears in [34] for the supersymmetric SYK model.
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K++ = q−2q K+− = q−1 q−1

K−+ = q−2qK−− =q−1q−1

Figure 3. Diagrammatic definition of the kernel that gives the four-fermion correlation function.

Here each line represents multiple dressed propagators, with multiplicity as indicated.

with a, b = ±. Like the two-point functions, these have to be thought of a part of a locally

left-right symmetric correlation function. The 1/N corrections to these four point functions

can be computed with the help of the kernel Kab introduced in (3.15).

To leading order in 1/N , we have

F (0)
ab = (−Ga(x13)Ga(x24) +Ga(x14)Ga(x23)) δab. (3.18)

As explained in [1–4, 6, 7], the 1/N corrections to Fab are found by summing up the n-th

order contributions F (n)
ab defined via the recursive formula

F (n+1)
ab =

∑

c

Kac ∗ F (n)
cb (3.19)

where Kab denotes the kernel (3.15) and ∗ denotes the double convolution product defined

by identifying and integrating over the last two coordinates of Kab and the first two coor-

dinates in F (n)
cb . The diagrammatic form of the matrix elements of the kernel is depicted

in figure 3.

The iterative procedure gives the following expression

F =
1

1−K∗ F
(0). (3.20)

where we have absorbed the matrix product into the definition of ∗. Inserting the conformal

Ansatz (3.16) into (3.15) gives the factorized expression

Kab = − 1

αab
K+
ab(x

+
i )K−ab(x

−
i ) (3.21)

1

αab
= (q − δab)α2

sq (3.22)

with αsq defined in equation (3.17).

Two representative examples of the chiral kernels are

K−++ =
1

|x−13|∆− |x−24|∆− |x−34|2−2∆−
(3.23)

K+
++ =

sgn(x+
13) sgn(x+

24)

|x+
13|∆+ |x+

24|∆+ |x+
34|2−2∆+

(3.24)
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Figure 4. Plot of det(1 −K) as a function of the left scale dimension h with h̄ = 0. The dashed

magenta plot corresponds to ∆ = 1/4 and s = 1/2, and the blue plot to ∆ = s = 1/4.

with ∆± = ∆±s. The action of K±ab on the four point functions can be computed with the

standard SYK technique, by decomposing each Fab in terms of eigenfunctions of the confor-

mal Casimir [1–4, 6, 7]. These eigenfunctions are given by the three point functions of the

fermion with an operator of some given left and right conformal dimension (h, h̄). A novel

feature of our model is that the eigenvalues of the kernels are given by two different types of

integrals. One type of integral looks SYK-like
∫
dx1 dx2K

+
++(0, 1, x1, x2)sgn(x12)|x12|h−∆+ .

We denote the corresponding eigenvalue by k∆+(h). The other type of integral looks like∫
dx1dx2K

−
++(0, 1, x1, x2)|x12|h−∆− . We denote the corresponding eigenvalue by k̃∆−(h).

When acting on an eigenstate the kernel then takes the form

Kab =
1

αab

(
k∆+(h) k̃∆−(h̄) q

q−1 k̃∆−(h) k∆+(h̄)
q
q−1 k̃∆−(h) k∆+(h̄) k̃∆−(h) k∆+(h̄)

)
. (3.25)

The kernel Kab gives useful information about the spectrum. As a first consistency

check, let us act with K on an eigenmode with conformal dimension (h, h̄) = (2, 0). This

mode corresponds to the stress tensor, and is expected to describe the effective Goldstone

mode associated with broken reparametrization invariance. We find that

Kab
∣∣∣h=2

h̄=0

=

( (−1+∆)(∆+s)
∆(2−∆−s)

−∆−s
∆(2−∆−s)

−∆+s
∆(2−∆+s)

(−1+∆)(∆−s)
∆(2−∆+s)

)
(3.26)

which manifestly satisfies det(1 − K) = 0. Hence the intermediate states with scale di-

mension (2, 0) and (0, 2) appear as poles in the conformal strong coupling limit of the

expression (3.20).

In figure 4 we have plotted det(1 − K) for chiral intermediate states with left scale

dimension h with h̄ = 0. For illustration, we also included the case s = 1/2 given by the

dashed magenta graph. The blue graph corresponds to s = ∆ = 1/q, which is the chiral

limit with ∆− = 0. In both cases we have set q = 4. We see the expected symmetry
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between h and 1 − h. For s = 1/2, there are additional zeroes at h = 0 and 1, which

indicates the possible presence of a spin one current, cf. [34]. The spectrum of zeroes of

the s = ∆ = 1/4 case, on the other hand, looks identical to that of the SYK model. This

theory is a plausible candidate for a 2D QFT with maximal chaos. The explicit formula

for det(1−K) for h̄ = 0, s = ∆ = 1/q is

det(1−K) = 1 +
π2(q − 2)(q − 1) csc

(
2π
q

)

q Γ
(

2
q

)2 (
sin(πh) + sin

(
2π
q

))
Γ
(

2− 2
q − h

)
Γ
(

1− 2
q + h

)

which coincides with the expression for 1 −K in the SYK model [1–4, 6, 7]. We leave a

detailed calculation of the four-point function and the spectrum of states for future work.

4 Effective action of the Goldstone mode

We would like to exhibit the effective action of the reparametrization mode. In principle,

we could try to follow the procedure used in [1–4, 7], compute the correction to the kernel

Kab that follows from including the UV term of the action (2.1), and use this to find the

linearized action of the zero modes. We reserve this calculation for a future project. Here

we will instead make a short-cut, which appears justified in the case that q is small enough

so that an expansion in ε = 1− 2/q is valid [14]. Note that in our model, the q = 2 system

is still an interacting QFT.

4.1 Double Schwarzian action

We start from the dynamical mean field action (3.6), and perform the redefinition Σ±new =

Σ±old − εµνe±µ ∂ν . This redefinition moves all the e± dependence into a separate UV term

S/N = SUV + SIR

SIR = −
∑

a=±
log Pf(Σa) +

1

2

∫ ∫ (
ΣaGa −

1

q
J2 (G+)q(G−)q

)
(4.1)

SUV =
1

2

∫
d2x εµνεab

(
eaµG

b
ν − eaµebν

)
. (4.2)

Here we defined

Gaµ(x1) = εab
∂Gb(x12)

∂xµ2

∣∣∣∣
x2→x1

. (4.3)

The IR term is the same as before, and leads to the conformal and reparametrization

invariant equations of motion (3.7) and (3.11). However, because Σa is the shifted variable,

equation (3.11) is now exact, and equation (3.7) receives a subleading correction due to the

presence of the UV term (4.2). An exact treatment of the consequences of this correction

term could be accessible in the large q limit [7]. We will instead look at the regime

q = 2/(1− ε) with ε small, and restrict our attention to the chiral limit s = 1/q.
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The total bosonic action (4.1) has the same invariances as the original fermionic ac-

tion (2.1), namely (i) area preserving diffeomorphisms, and (ii) local Lorentz transforma-

tions. These symmetries are shared by the UV and IR terms in the action and we will

treat both as gauge symmetries. The IR action is also invariant under local conformal

transformations8

(u, v)→ (x+(u), x−(v)). (4.4)

This conformal symmetry is broken in two separate ways. Picking a particular conformal

IR solution of the SD equations spontaneously breaks the local conformal invariance to

the global conformal group. This leads to the presence of a Goldstone mode, parametrized

by the conformal transformation (x+(u), x−(v)). Moreover, the UV action is not invariant

under the same local conformal transformation rule as the IR action. So it induces a

non-trivial effective action for the Goldstone mode.

To get the leading order form of the effective action of the Goldstone mode, we perform

a local conformal transformation on the IR propagator. It transforms as

G±(u, v, ũ, ṽ) = [x′+x
′
+]∆+ [x′−x̃

′
−]∆− G± (x±, x̃±) (4.5)

with (x±, x̃±) = (x+(u), x−(v), x+(ũ), x−(ṽ)) and x′+ = ∂ux+(u), etc. In the chiral limit

∆− → 0 and ∆+ = ∆ = 1/q = 1
2(1− ε), the dressed propagator behaves in the conformal

regime as G±(x, x̃) = b1−ε
|x±−x̃±|1−ε . We can now use this expression, transform it via (4.5),

plug it into the UV action (4.2), and extract the dependence on x+(u) and x−(v).

The conformal propagator diverges in the coincident limit. This divergence is expected

to be removed by the UV modification. A more practical method is to take the coincident

limit while subtracting the singular contribution in the (u, v) coordinates. Working to

leading order in ε and using that

∂u

(√
x′(u)x′(ũ)

|x(u)− x(ũ)| −
1

|u− ũ|

)∣∣∣∣∣
ũ=u

=
1

12
{x, u} (4.6)

with {x, u} = x′′′
x′ − 3

2

(
x′′
x′

)2
the Schwarzian derivative, we find that the effective action of

the reparametrization modes takes the form

SUV

N
=

b

12

∫
du dv

(
e+
v {x+, u}+ e−u {x−, v}

)
−
∫
εµνe+

µ e
−
ν . (4.7)

After integrating out e±, we obtain

SUV

N
=
αS
J

∫
du dv {x+, u} {x−, v} . (4.8)

Applying the ε expansion method of [14] gives that

αS =
αsq
144

(
1− 2ε2

)
+O(ε4) (4.9)

8In the rest of this subsection, we temporarily move the upper ± index on x± to a lower index.
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with αsq defined in (3.17). The effective action (4.8) is a functional on the group of the 2D

conformal transformations. It generalizes the Schwarzian action for the reparametrization

mode of the SYK model. We expect that, by generalizing the analytic and numerical

analysis of [7] to the 2D model, it should be possible to compute the pre-coefficient αS for

general values of q.

4.2 Free energy and spectral density

By considering the transformation of the Schwarzian derivative under conformal mappings,

we can extract useful information about the behavior of the theory on a circle and at finite

temperature. At finite temperature, the effective action (4.8) receives additional terms

αS
J

∫
du dv

(
T−−{x+, u}+ T++{x−, v}+ T++T−−

)

T++ =
π2

β2
+

(x′+)2, T−− =
π2

β2
−

(x′−)2, (4.10)

with β± the left- and right-moving inverse temperature. This term is subdominant at low

temperature, but becomes important at distance scales of order the thermal wave length. If

we take, say, the left moving high temperature limit, we obtain a single Schwarzian action

for the right-movers. This suggests that the 2D model reduces to the 1D SYK model by

performing a DLCQ limit.

Equation (4.8) captures the explicit breaking of conformal invariance of the IR theory

due to UV term in (2.1). Its form as a product of two chiral Schwarzian derivatives, as well

as the finite temperature correction term (4.10), indicates that the leading order correction

to the IR conformal field theory takes the form of an irrelevant T T̄ deformation, given by

the product of the left- and right-moving stress tensors [35–38].

To test this interpretation, let us consider the model on a cylinder with circumference

L = 2π.9 The conformal mapping from the plane to the cylinder induces a negative

Casimir energy, which can be taken into account by setting {x+, u} = {x−, v} = −1/2

in equations (4.8)–(4.10). Now consider the contribution of the effective action of the

Goldstone mode to the free energy at finite temperature. Setting β± = β, we find that

−βF ⊃ −NαS
J

∫ 2π

0
dx

∫ β

0
dt

(
−1

2
+
π2

β2

)2

=
2πNαS

4J

(
−β +

4π2

β
− 4π4

β3

)
.

(4.11)

We wish to compare this result with the free energy of a CFT of central charge c with

a T T̄ deformation. The energy spectrum and thermodynamics of this class of theories was

studied in detail in [35–37], and a holographic interpretation10 has recently been proposed

9So all dimensionful quantities are measured in units of the cylinder radius.
10The holographic dual of the T T̄ deformation proposed in [38] is closely similar to the candidate AdS2

dual interpretation of the 1D SYK model developed in [15–17], built on the earlier work [39]. In both cases,

the boundary of the AdS space-time is moved into the bulk. On the CFT side, this represents an explicit

breaking on conformal invariance and gives rise to an associated dynamical pseudo-Goldstone mode. We

will make the AdS3 interpretation of the action (4.8) more explicit in the next subsection.
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in [38]. Using the results of [35, 38], one finds that the free energy of a deformed CFT with

action SCFT +
∫
µT T̄ has the following small temperature expansion

−βFCFT+µTT̄ = −c β
12

+
π2c

3β
− π3µc2

72β3
+ . . . (4.12)

The first two terms are the standard CFT expression for the Casimir energy and specific

heat. Comparing the expressions (4.11) and (4.12) suggests that the IR limit of our model

is a 2D CFT with central charge c, and that the leading deviation on conformal invariance

is given by a T T̄ interaction with coupling µ, with c and µ given by

c

24π
=
NαS
4J

, µ =
24π

c
=

4J

NαS
. (4.13)

This reciprocal relation between c and µ precisely agrees with the relationship derived from

the holographic dictionary proposed in [38].

By performing an inverse Laplace transform of the partition function Z(β) = e−βF

with respect to β, we can extract the spectral density as a function of the energy E:

ρ(E) ∝ exp

(
2π

√
cE

3

(
1− 3E

2c
+ . . .

))
. (4.14)

The leading term is the Cardy formula11 and the subleading term reflects the explicit

breaking of conformal symmetry. This formula precisely matches with the low energy

expansion of the exact equation of state EL − µ
4E

2 = 3
2πcS

2 relating the energy and the

entropy S = log ρ(E) of the T T̄ deformed CFT [38], provided we set L = 2π and µ as

in (4.13).

4.3 Relation with AdS3 gravity

The double Schwarzian action (4.8) can be related to the 3D AdS gravity action as follows.

In the above derivation we identified the effective Goldstone degree of freedom with the

group of ‘passive’ conformal reparametrizations (4.4). To match with the gravity side, it

is convenient to represent the Goldstone mode as an ‘active’ 2D conformal transformation

(x+, x−)→
(
U(x+), V (x−)

)
(4.15)

defined as the inverse mapping of (4.4). In terms of (U , V ), the effective action (4.8) reads

S[U , V ]

αSN/J
=

∫
d2xS+(U)S−(V ), (4.16)

where S+(U) and S−(V ) are defined via

S+(U) ∂+ U = {U , x+}, S−(V ) ∂− V = {V , x−}. (4.17)

We will now show that the effective action (4.16) is equal to the 3D gravity action

S[U , V ] = Sgrav[U , V ] (4.18)

11Here E is defined such that the CFT ground state has negative Casimir energy E/L = −c/12.
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evaluated on a suitable classical solution of 3D gravity defined on a AdS3 space-time with

finite radial cut-off, specified as follows. Let B denote the boundary of the cut-off AdS3

space-time. We define the Einstein action via

Sgrav =
1

16πGN

∫ √
g (R− 2Λ) +

1

8πGN

∫

B
(K + 1)

where, besides the usual extrinsic curvature term K, we included a boundary cosmological

constant identical to the standard counter term used in holographic renormalization. The

classical solution associated with (U , V ) is defined via the boundary condition that the pull

back of the 3D bulk metric to B is a flat 2D metric given by

ds2|B = dUdV = U ′(x+)V ′(x−)dx+dx−. (4.19)

The holographic identification (4.18) holds if we identify the bulk Newton constant as

1

16πGN
=
NαS
4J

. (4.20)

Equation (4.18) looks a little surprising at first. One might think that, since the gravity

action is reparametrization invariant, it should be independent of U(x+) and V (x−). Recall,

however, that the Lagrangian changes by a total derivative under an active diffeomorphism,

and that 2D conformal transformations necessarily extend all the way to null infinity. A

helpful way to visualize the asymptotic region is by mapping the 2D space-time onto a

Penrose diagram. The conformal transformations are then analogous to the BMS group.

Once we choose a preferred reference coordinate system, the dependence of the action on

U(x+) and V (x−) becomes finite and computable.

The holographic identification (4.18) can be derived in various ways. One is direct

computation. Another route is to show that the action (4.16) satisfies the Hamilton-Jacobi

equation that governs the radial evolution of a classical action in 3D gravity. An instructive

derivation goes via the following three basic steps.

First we reintroduce the frame variables e± and rewrite (4.16) as the minimum over

e± of
∫
d2x

(
e−− S+ (U) + e+

+ S− (V )− εµνe+
µ e
−
ν

)
. (4.21)

Next we introduce the background zweibein

E+
µ dx

µ = dU , E−µ dx
µ = dV (4.22)

and make use of the relationship between the Polyakov-Liouville action (viewed as a func-

tional of the zweibein)

SL[E] =
1

8π

∫
R�−1R, gµν = ηabE

a
µE

b
ν (4.23)

and the Schwarzian derivative to write

S[U , V ]

αSN/J
= min

e

(
SL (E + e)−

∫
εµνe+

µ e
−
ν

)
. (4.24)
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Here we used that, in the linearized approximation, SL[E + e] =
∫

(e−− S+(U) + e+
+ S−(V )).

Note that the Polyakov action vanishes for the flat metric (4.22) and that {U , x} =

−1
2(φ′)2 + φ′′ with φ = logU ′.

Since the Polyakov action arises by integrating out a 2D CFT, the identity (4.24)

is yet another indication that the IR theory describes a 2D CFT in a fluctuating metric

gµν = ηab(E
a
µ + eaµ)(Ebν + ebν). Integrating out the metric fluctuations first produces a CFT

with a T T̄ deformation.

The third and final step in the derivation of (4.18) uses an (underappreciated) result of

Freidel that establishes a direct transformation between the 3D Einstein action evaluated

on a classical background and the Polyakov action evaluated on the boundary metric [40]

Sgrav[E] = min
e

(
SL (E + e)−

∫
εµνe+

µ e
−
ν

)
. (4.25)

Here Sgrav(E) is the classical bulk gravity action with boundary conditions gµν = ηabE
a
µE

b
ν .

The formula (4.25) forms the basis of the holographic interpretation of the T T̄ deformed

theory proposed in [38]. In our context, it provides the link between 3D gravity and the

choice of kinetic term in our proposed 2D analog of the SYK model. A detailed derivation

of the relation (4.25) can be found in [40].

5 Conclusion

We have proposed a 2D QFT generalization of the SYK model, consisting of N Majo-

rana fermions with a random non-linear interaction. While the quartic kinetic term of our

action (2.1) looks somewhat unconventional, it can be rewritten as in (2.3) as a conven-

tional quadratic kinetic term coupled to a dynamical metric. The total action is invariant

under area preserving diffeomorphisms and local Lorentz transformations. We treat both

invariances as gauge symmetries.

We have presented evidence that the model exhibits conformal symmetry in the IR, and

that the low energy dynamics is dominated by an emergent Goldstone-like mode associated

with the breaking of conformal reparametrization symmetry. Just as in SYK, this symmetry

breaking is introduced by the fact that UV action assigns a lower scale dimension [ψ]UV = 0

to the Majorana fermions than the relevant interaction term, which prescribes that [ψ]IR =

1/q. Some questions that need further study are: is there a principle that fixes the IR value

of the spin s, or is it an adjustable parameter? What do the Hilbert space, energy spectrum,

partition function and correlation functions look like?

The motivation for our study is to find new examples of strongly coupled 2D QFTs

with potential gravity duals and to elucidate the role of the reparametrization mode in the

holographic dictionary. While our model still needs to be put on firmer footing, there are

encouraging signs that it is well defined and exhibits the hallmarks of a holographic dual

to AdS3 gravity. In particular, it seems plausible that the conformal symmetry is non-

linearly realized in terms of the reparametrization mode. In our previous paper [41] we

have shown that this uniquely dictates the commutation relations of the Goldstone modes

and implies maximal Lyapunov growth of out-of-time ordered correlation functions. In
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view of the results of [41, 42] and the discussion in section 4.3, we expect that the effective

theory of the reparametrization mode should be closely related to Liouville theory. A

natural route towards making this relationship concrete is to postpone the integral over

Hubbard-Stratonovich variable e± and to extract its effective action by making use of

equation (4.24).

Finally, it is natural to speculate whether a similar approach could lead to proposed

generalizations of the SYK model to higher dimensions. The UV action has an obvious

reparametrization invariant generalization

εab...f εµν...σ ψa∂µψa ψb∂νψb . . . ψf∂σψf .

Adding a ψqD interaction term would again be a relevant deformation, and the two terms

combined would be invariant under volume preserving diffeomorphisms. However, it seems

premature to pursue this generalization without first obtaining a better understanding of

the landscape of lower dimensional examples.
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A Topological RCFT

What is a topological RCFT? A rational CFT is a CFT with an infinite chiral algebra

ĝ ⊃ Vir and a finite set of primary fields Oi. For minimal models, ĝ equals the Virasoro

algebra. A topological RCFT is defined by gauging the chiral algebra ĝ. This projects the

operator content to the set of primary fields, and removes all position dependence of the

Euclidean correlation functions of local operators. All known RCFT can be represented as

coset WZW models, and all known topological RCFTs can be formulated as fully gauged

WZW models. The topological Ising model is a gauged su(2)k coset with k = 2.

In Euclidean space, the four-point correlation function of local operators Oi = Oi(xi)
in a TCFT are specified via the following simple rule [28–31]

〈O1O2O3O4〉TCFT
= dim (H1234) ,

where H1234 denotes the linear vector space spanned by the chiral conformal blocks

Fa(1234) = 1 4

2 3

1 4

3 2

b

a

associated with the corresponding CFT correlation function. This rule satisfies all axioms

of 2D TQFT [27]. For gauged WZW models, the above prescription naturally follows from
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the identification of H1234 with the Hilbert space of a 3D Chern-Simons theory in the

presence of four Wilson lines. Schematically

Fa(1234) = W1(1)W2(2)W3(3)W4(4)|0〉CS. (A.1)

The CS functional integral on R2×S1 reduces to the TCFT amplitude on R2 and takes the

form of a sum of inner products between the left and right chiral conformal blocks [28–31]

〈O1O2O3O4〉TCFT
=
∑

a

〈Fa|Fa〉 = trH1234 (1) .

Here we used the conventional RCFT normalization of conformal blocks, for which the

fusion and braid operations are represented as unitary matrices. In this unitary basis, the

OPE coefficients are all given by integer fusion coefficients Nijk. The local observables thus

form a commutative, associative ring isomorphic to the fusion algebra

Oi ×Oj =
∑

k

NijkOk. (A.2)

In Minkowski space-time, operator ordering plays a non-trivial role. Local operators

in an RCFT decompose as a sum of factorized terms O(x+, x−) =
∑

s V+
s (x+)V−s (x−).

The V±s are known as chiral vertex operators. Chiral vertex operators of the same chirality

satisfy non-trivial braiding relations, and can be thought of as end points of light-like Wilson

lines. Whenever a Vj passes through the light-cone of another Vk, the corresponding chiral

conformal block undergoes a non-trivial monodromy. E.g.

Fa(1234) =
∑

b

RεabFb(1324) or
1 4

2 3

1 4

3 2

b

a

=
∑

b

Rεab

1 4

2 3

1 4

3 2

b

a

.

Here Rab is known as the R-matrix and ε = ±1. This choice of sign indicates that the

braiding move depends on orientation. The ordering of chiral vertex operators is encoded

via the end-point of the corresponding Wilson lines, as indicated in figure 1.

In non-chiral correlation functions, the above monodromy produces a discontinuity

when operators pass through each others light-cone. The monodromy of the left- and

right-light cone have opposite orientation, so the total monodromy cancels out when two

operators pass through both of each other’s light-cones. Hence the Euclidean correlation

functions are single valued and the non-chiral CFT thus remains local.

The same chiral decomposition and dependence on operator ordering holds true in

a topological RCFT. The TCFT correlation functions thus acquire a non-trivial position

dependence

〈O1O2O3O4〉TCFT
=
∑

a,b

〈Fa|Rεab|Fb〉 = trH1234 (R)

where Rεab is the R-matrix that implements the braiding operation that re-arranges all

operators into space-like separated positions. The above discussion easily generalizes to

higher n-point functions.

Applying this general prescription to the special case of the n point functions of the

operators ε(x) = ψ+(x)ψ−(x) gives the result (2.10). The relevant R matrix in this case
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is simply equal to the (−1) factor that implements Fermi statistics. The equality be-

tween (2.10) and (2.11) then follows directly by applying the definition of the Pfaffian

Pf(M) =
1

2nn!
εi1j1i2j2...injnMi1j1Mi2j2 . . .Minjn (A.3)

for the case that Mij = sgn(xij) (with x = x±). One can make a permutation of the n

points such that they are in order of increasing x. This can be recast as a permutation of the

indices that gives an overall factor of (−1)P where P is the parity of the permutation. Then

the value is fixed by the Pfaffian when the points are ordered such that x1 < x2 < . . . < xn.

This gives a factor of (−1)n/2. Since n is even, the total factor is equal to 1 for the

product (2.11) of the left- and right-Pfaffian.

B Two point function from path integral

In this appendix we sketch a formal path integral derivation of the UV correlation function

given in equation (2.11) starting from the Lagrangian formulation of the theory (2.3). In

the main text we argued that the natural gauge invariant observables of this theory are

products of the form ε(x) = ψ+(x)ψ−(x). For simplicity we will focus on the two-point

function 〈 ε̄(x) ε(0)〉 of a slightly modified theory, in which the fermionic variables ψ± are

both replaced by complex fermions

S =
1

2

∫
d2x εµν

(
eaµ ψ̄a ∂νψa − εab eaµ ebν

)
,

=
1

2

∫
d2x

(
e+ ∧ ψ̄+dψ+ + e− ∧ ψ̄−dψ− − e+ ∧ e−

)
.

(B.1)

The generalization of the calculation outlined below to general n-point functions of the

theory with real fermions is more involved but straightforward.

We will compute the two-point function 〈 ε̄(x) ε(0)〉 by performing the path integral in

steps: we first do the path integral over the fermions with fixed e± and then we integrate

over the HS variable e±

〈 ε̄(x) ε(0)〉 = N−1

∫
[de±] e

i
2

∫
e+∧ e− 〈ψ̄+(x)ψ+(0)

〉
e+

〈
ψ−(x) ψ̄−(0)

〉
e− . (B.2)

Here N is a normalization factor. Next we make use of the reparametrization symmetry of

the action (B.1) to choose a gauge in which e± = e±± dx
±. We will call this the light-cone

gauge, as it fixes the dynamical light-cone to align with the x± coordinate axes. In this

gauge, the coordinate system x = (x+, x−) is linked to the frame variable e± and this in

particular means that the seemingly local operator ε(x) is in fact non-local when expressed

as covariant observable.

The fermion propagator in the light-cone gauge is given by

〈
ψ̄+(x)ψ+(0)

〉
e+

〈
ψ−(x) ψ̄−(0)

〉
e− =

δ(x+)

e+
+(x)

sgn(x−)× δ(x−)

e−−(0)
sgn(x+)

=
δ2(x)

e+
+(x) e−−(0)

× sgn(x+) sgn(x−). (B.3)
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This looks like an unpractical observable, since it involves the inverse of the frame

fields. We can put it in a more manageable form via a Schwinger parametrization
1
e++

=
∫∞

0 dλ+e−λ
+e++ . Inserting this and performing the gaussian path integral over the HS

fields gives

N−1

∫
[de±] e

i
2

∫
e+∧ e− δ2(x)

e+
+(x) e−−(0)

= N−1

∫ ∞

0
dλ+dλ−e

1
2
λ+λ−δ(2)(x)δ(2)(x),

=
2

N

∫ ∞

0

dλ+

λ+

∫ ∞

0
dλ−

∂

∂λ−
e

1
2
λ+λ−δ(2)(x),

=
2

N

∫ ∞

0

dλ+

λ+
= 1. (B.4)

In the first line we performed the integral over the HS field, using the fact that the prop-

agator gives a contact term 〈e+
+(x)e−−(0)〉 = −iδ(2)(x). In the second line we rewrote the

delta function as a derivative with respect to λ−, which allows us to integrate by parts and

evaluate at λ− = 0. This cancels all spacetime dependence of the correlation function (B.4),

yielding a divergent constant which we choose to cancel out by the overall normalization

constant N . We thus obtain

〈 ε̄(x) ε(0)〉 = sgn(x+) sgn(x−). (B.5)

This is the TCFT correlator quoted in the main text. It takes the form of the product of

two 1D propagators. Note that the cancellation of the delta-function factors is essentially

enforced by the fact that ε(x) has canonical scaling dimension equal to zero.

The above derivation of the two point function from the four-fermion UV action (2.1)

is admittedly somewhat formal and should be supplemented with the right iε’s to make

each step well-defined. The generalization to n-point function requires a bit more effort,

but a combination of fermi statistics, Wick’s theorem and dimensional analysis essentially

prescribes that the final result must take the form (2.11). We leave a more complete and

careful path-integral derivation of the result (2.11) to future work.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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