
Towards a Big Data Curated Benchmark of
Inter-Project Code Clones

Jeffrey Svajlenko∗, Judith F. Islam∗, Iman Keivanloo†, Chanchal K. Roy∗, Mohammad Mamun Mia∗
∗Department of Computer Science, University of Saskatchewan, Canada

{jeff.svajlenko, judith.islam, chanchal.roy}@usask.ca, md.mamunmia@gmail.com
†Department of Electrical and Computer Engineering, Queen’s University, Canada

iman.keivanloo@queensu.ca

Abstract—Recently, new applications of code clone detection
and search have emerged that rely upon clones detected across
thousands of software systems. Big data clone detection and
search algorithms have been proposed as an embedded part
of these new applications. However, there exists no previous
benchmark data for evaluating the recall and precision of these
emerging techniques. In this paper, we present a big data clone
detection benchmark that consists of known true and false
positive clones in a big data inter-project Java repository. The
benchmark was built by mining and then manually checking
clones of ten common functionalities. The benchmark contains
six million true positive clones of different clone types: Type-1,
Type-2, Type-3 and Type-4, including various strengths of Type-
3 similarity (strong, moderate, weak). These clones were found
by three judges over 216 hours of manual validation efforts. We
show how the benchmark can be used to measure the recall and
precision of clone detection techniques.

I. INTRODUCTION

Historically, clone detection has focused on finding dupli-
cate code within a software system in order to cancel out
the effects of ad-hoc code reuse (e.g., copy and paste) [1].
Recently, new applications for clone detection and search have
emerged relying on detected clones among a large number of
software systems. Since classical clone detection tools do not
support the needs of such emerging applications, new large-
scale clone detection algorithms are being proposed as an
embedded part of the emerging applications. For example, big
data clone detection and clone search is used to find similar
mobile applications [2], intelligently tag code snippets [3],
find code examples [4], and so on. A big data code clone
benchmark is needed to evaluate and compare the effectiveness
of the underlying clone detection or clone search process of
such emerging applications and also general-purpose big data
clone detection algorithms (e.g., [5], [6], [7]).

Benchmarks exist for classical clone detection tools, which
scale to a single system or a small repository. The most notable
benchmark was created by Bellon et al. [8] by validating 2%
of the union of six clone detectors for eight subject systems,
a task that required 77 hours of manual efforts. Krutz and
Le [9] followed a similar approach with modern tools and
used a more rigorous validation process, including the use
of several judges. While their data has high confidence, their
benchmark is small, only 66 method clone pairs. In summary,
the common approach to existing benchmarks is to mine clones
using clone detectors. The problem with this approach is the
benchmark only includes the clones the participating tools are
able to detect. This gives the tools used to build the benchmark

an unfair advantage over tools that did not contribute to the
benchmark. The clones the participating tools failed to detect
create a gap in the benchmark, resulting in the over-estimation
of recall. Studies by Baker [10], and Svajlenko and Roy [11]
have found several problems in Bellon’s benchmark and the
union method in general. Furthermore, existing benchmarks
contain few clones of any particular code snippet, which makes
it difficult to evaluate clone search algorithms. Alternatively,
the Mutation Framework [12] could be adapted to big data,
but a benchmark of real clones is still needed for thorough
evaluation of big data clone detection algorithms.

In this paper, we introduce a benchmark of known true and
false clones mined from the big data inter-project repository
IJaDataset 2.0 [13] (25,000 subject systems, 365MLOC). We
call this benchmark BigCloneBench and we built it, without the
use of clone detectors, by mining IJaDataset for clones of fre-
quently implemented functionalities. We used search heuristics
to automatically identify code snippets in IJaDataset that might
implement a target functionality. These candidate snippets are
manually tagged as true or false positives of the target function-
ality by judges. The benchmark is populated with the true and
false clones discovered by the tagging process. We typify each
of these clones and measure their syntactical similarity. The
current version of BigCloneBench covers ten functionalities
(a.k.a. cases) including 6 million true clone pairs and 260
thousand false clone pairs. The benchmark can be found at
the following URL: github.com/clonebench/BigCloneBench.

Our contribution is a big data benchmark that can be used
to measure the recall and precision of big data clone detection
and clone search techniques. This evaluation is needed to
support the development and improvement of emerging big
data clone detection and search algorithms. Since we mined
clones of particular functionalities, our benchmark is also ideal
for evaluating semantic clone detectors. To the best of our
knowledge, there exists no benchmark for semantic clone de-
tection. The benchmark can be used to evaluate classical clone
detectors by evaluating them for subsets of the benchmark
within their scalability constraints. Our benchmark consists of
a larger variety of clones than can be found in a benchmark
spanning only a handful of subject systems. Our data may
also be useful for studying semantic and syntactic duplication
across the open-source Java development community.

II. BACKGROUND

(Code) Snippet: A continuous segment of source code.
Specified by the triple (l, s, e), including the source file l, the

Sample

Select
Functionality

Identify Possible
Implementations

Create
Specification

Create Sample
Snippets

Create Search
Heuristic

Search
Heuristic

Build
Candidate Set

IJaDataset

Tag

Judges

True +

False +

A. Mine Snippets Implementing a Target Functionality

Specification

Candi-
date

True +

Sample

Benchmark
Typify Clone

PairsClone
Class

B. Add True Clones to Benchmark

Sample False +

Clone Pairs False Clone Pairs

f1 f2 t sample False+

C. Add False Clones to Benchmark

Fig. 1. Methodology

line the snippet starts on, s, and the line it ends on, e.
Clone (Pair): A pair of code snippets that are similar.

Specified by tuple (f1, f2, φ), the similar code snippets f1 and
f2, and the criterion of their similarity φ.

Clone Class: A set of code snippets that are similar.
Specified by tuple (f1, f2, ..., fn, φ). Each pair of distinct
snippets is a clone pair: (fi, fj , φ), i, j ∈ 1..n, i 6= j.

Researchers agree upon four primary clone types [1], [8].
The clone types are mutually exclusive, and are defined by the
clone detection capabilities needed to identify them.

Type-1: Syntactically identical code snippets, except for
differences in white space, layout and comments.

Type-2: Syntactically identical code snippets, except for
differences in identifier names, literal values, white space,
layout and comments.

Type-3: Syntactically similar code snippets that differ at
the statement level. Snippets have statements added, modified
and/or removed with respect to each other.

Type-4: Syntactically dissimilar code snippets that imple-
ment the same functionality.

Clone detection techniques are commonly evaluated using
the information retrieval metrics recall and precision. Recall is
the ratio of the clones within a source repository that a detector
is able to detect. Precision is the ratio of the candidate clones
reported by a detector which are true clones not false clones.

III. METHODOLOGY

Our benchmark consists of clones of common function-
alities in IJaDataset. We built this benchmark by mining for
code snippets that implement candidate functionalities. This
process enables us to identify true and false clones of the four
primary clone types. We begin by selecting a functionality that
is commonly needed in open source Java software systems,
and identify how it may be implemented in Java. Using
these implementations, we design a search heuristic to locate
snippets in IJaDataset that might implement the functionality.
These candidate snippets are manually tagged by judges as
true or false positives of the target functionality. Using the
tagging data, we identify true and false clone pairs, which
we add to the benchmark after identifying their clone types.
This process is repeated for additional target functionalities,
creating a live benchmark that improves over time. A single

iteration of this process is shown in Figure 1. Iterations of this
process can be performed in parallel. This methodology can be
executed for any snippet granularity (method, block, etc). We
target the method granularity as it is the granularity supported
by the most tools, and because methods nicely encapsulate
functionalities.

A. Snippet Tagging

In this stage we tag code snippets of IJaDataset as true
or false positives of a target functionality (e.g., bubble sort).
IJaDataset contains 24 million (method granularity) snippets,
which is too many to inspect manually. So we construct a
search heuristic to identify the snippets that might implement
a given functionality. The tagging process occurs over seven
distinct steps as follows. In the following, we use the bubble
sort case (one of our ten cases) as a running example.

(1) Select Target Functionality. We begin by selecting a
commonly needed functionality in open-source Java projects as
our target functionality. It is likely that IJaDataset will contain
a number of snippets that implement this functionality. For
example, we chose the functionality bubble sort. While not the
best sorting algorithm, it is well known and easy to understand
and implement, and is therefore likely to appear in IJaDataset.

(2) Identify Possible Implementations. To create a search
heuristic, we identify how the target functionality can be im-
plemented in Java. We review Internet discussion (e.g., Stack
Overflow) and API documentation (e.g., JavaDoc) to identify
the common implementations of the target functionality. These
resources are frequently used by open source developers, so
we expect similar implementations to appear in IJaDataset. Im-
plementations may use different support methods and classes
(APIs), or they may express the algorithms using different
syntax (e.g., different control flow statements). We perform this
process incrementally, beginning with the most popular imple-
mentations. For example, bubble sort is typically implemented
for array data structures in Java. The implementations vary
in data comparison logic, which depends on the type of data
being stored, and alternate ways of expressing the algorithm
in syntax, particularly control flow statements.

(3) Create specification. We create a specification of the
functionality, including the minimum steps or features a snip-
pet must realize to be a true positive of the target functionality.

public static void bubbleSort(int[] arr) {
int last_exchange;
int right_border = arr.length - 1;
do {

last_exchange = 0;
for (int j = 0; j < arr.length - 1; j++) {

if (arr[j] > arr[j + 1]){
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
last_exchange = j;

}
}
right_border = last_exchange;

} while (right_border > 0);
}

Fig. 2. Sample Snippet: Bubble Sort

For the bubble sort case, we decided our specification would
be “implement bubble sort for a linear data structure”. Any
snippet meeting this specification is a true positive.

(4) Create Sample Snippet. For each identified implemen-
tation, we collect a sample snippet that uses the implementa-
tion to achieve the functionality. The sample snippet is sample
code found during our research of the implementation (Step
2). The sample implementation is a minimum working code
example, and includes only the steps and features that are part
of our specification of the target functionality (Step 3). The
sample snippets are added to IJaDataset as additional crawled
open-source code. For example, we added to IJaDataset six
sample snippets that implement bubble sort (e.g., Figure 2)
using variations in data comparison and control flow logic.
These are open-source implementations found in Internet dis-
cussions.

(5) Create Search Heuristic. We create a search heuristic
to locate snippets in IJaDataset that might implement the target
functionality. Drawing from the identified possible implemen-
tations, the specification, and the sample snippets, we identify
the keywords and source code patterns that are intrinsic to
the identified implementations of the functionality. We expect
snippets that implement the functionality to contain some
combination of these keywords and source patterns. These
keywords and source patterns are implemented as regular
expression matches and are combined into a logical expression.
Keywords and patterns that are expected to appear together in
an implementation are ‘AND’ed, while groups of keywords and
patterns that are from different implementations are ‘OR’ed.
We design the heuristic to locate a large sample of the func-
tions implementing the target functionality without identifying
too many false positives that the judges are overburdened.

For example, the implementations of bubble sort do not
rely upon any particular class or method from the Java standard
library which could be used as a keyword. Also, implementa-
tions may not be conveniently named ”BubbleSort”, while the
keyword ”Sort” is too generic and returns many false positives.
Data comparison and control flow logic may vary between
implementations, so they are not good source patterns to base
the heuristic on. Common to all implementations is the need
to swap adjacent elements in the data array. We experimented
with various source patterns related to this step of the algorithm
and found that source patterns such as ‘arr[j] = arr[j+1]’ found

many bubble sort implementations without over-burdening the
judge with too many false positives. We used it as our search
heuristic with the regular expression allowing any alternate
identifier names.

(6) Build Candidate Set. The search heuristic is executed
for every snippet in IJaDataset to identify possible candidate
snippets that might implement the target functionality. For
example, the search heuristic revealed 551 candidate snippets
for bubble sort.

(7) Manual Tagging. Judges manually tag all of the
candidate snippets as true or false positives of the target
functionality. The judges are provided the specification and the
sample snippets. They are instructed to tag any snippets that
meets the specification as a true positive. If multiple judges
are used, then disagreement is settled by the judgement of the
majority. Therefore an odd number of judges is required, even
if the final judge only tags the snippets under contention. For
example, manual tagging found 163 of the candidates imple-
mented bubble sort. The remaining 388 were false positives.

The final result of the snippet tagging stage is a set of true
positives (snippets that implement the target functionality) and
a set of false positives (snippets that do not implement the
target functionality).

B. True Clone Pairs

From the tagging process, we know that the true positive
snippets (validated in Step 7) and sample snippets (specified
in Step 4) of a target functionality form an oracled true clone
class of snippets that implement the same functionality. If we
have p true positive snippets and s sample snippets for a target
functionality, a true clone class of size s+p, then this results in
(s+p)(s+p−1)/2 oracled true clone pairs of that functionality
in IJaDataset. Each of these clone pairs implement the target
functionality, and are one of the four primary clone types.
For the bubble sort case, tagging found 163 snippets that
implement bubble sort, and we added 6 sample snippets that
implement bubble sort. This is a clone class of 169 snippets
implementing bubble sort, or a total of 15,576 clone pairs. All
of these snippets are semantically similar, while some are also
syntactically similar.

To enrich the benchmark with meta-data, we typify the
clones and measure their syntactical similarity. A clone pair
can be typified as Type-1 or Type-2 if the snippets become
textually identical after the appropriate source normalization.
Type-1 normalization includes removing comments and a strict
pretty-printing. Type-2 normalization expands this to include
the systematic renaming of identifiers, and the replacing of
literals with default values (e.g., numerics to 0, strings to
“default”, etc). If the snippets are not identical after these
normalizations then, because they implement the same func-
tionality, they are either Type-3 or Type-4. For such cases we
examine and report their syntactical similarity.

We measure the syntactical similarity of the clones using
a line-based metric after full normalization. This includes the
removal of comments, a strict pretty printing, the renaming of
all identifiers to a common value (e.g., ‘X’) and the change
of all literal values to a common value (e.g., ‘0’). This blind
normalization of identifiers and literals is needed as their

values will not align due to changes at the statement level.
The similarity metric measures the minimum ratio of the lines
one snippet shares with another after normalization.

These clone pairs implement the same functionality, so
they are Type-3 if they are also syntactically similar, or Type-
4 if they are syntactically dissimilar. However, there is no
consensus on the minimum similarity of a Type-3 clone,
so it is difficult to separate the Type-3 and Type-4 clones
in our case. We accept this ambiguity and instead divide
the Type-3 and Type-4 into three categories based on their
syntactical similarity values: Strongly Type-3, similarity in
range [0.7, 1.0), Moderately Type-3, [0.5, 0.7), and Weakly
Type-3+4, [0.0, 0.5). This division by similarity is useful for
measuring a tool’s recall for different contexts.

We define strongly Type-3 clones as those that are at least
70% similar at the statement level. This is the region we expect
most syntactical detectors to operate in. These clones are
very similar, but contain some statement-level differences. The
moderately Type-3 clones share at least half of their syntax,
but contain a significant amount of statement-level differences.
Syntactical clone detectors typically do not operate in this
range because there is a higher chance that code snippets with
only 50-70% shared syntax are only coincidentally similar.
Detectors may need some level of semantic awareness to
operate in this similarity region without diminished precision.
We define the clones that share less than 50% of their syntax
as weakly Type-3 or Type-4 clones.

C. False Clone Pairs

From manual inspection (Step 7) we know that the snippets
tagged as false positives of a target functionality do not
implement the target functionality, while the sample snippets
(Step 4) implement only the target functionality. So each pair
of sample snippet and false positive tagged snippet for a target
functionality is an oracled false clone pair in our benchmark.
If we have s sample snippets for a target functionality, and
found f false positives snippets of this functionality, then this
results in sf false clone pairs. Tagging revealed 398 false
positive snippets that do not implement bubble sort. We added
six sample snippets that only implement bubble sort. This is
5432 false clone pairs. While the false clones might share some
syntactical similarity, our manual tagging process has validated
that this similarity is coincidental.

IV. DATA SUMMARY

For the creation of our benchmark, 60 thousand snippets
were tagged across 10 distinct functionalities, an effort that
required 216 hours of manual tagging by three judges. From
the tagging data, we were able to identify 6 million true
clone pairs (Section III-B) and 260 thousand false clone pairs
(Section III-C) in IJaDataset. Our tagging data and benchmark
contents are summarized per functionality in Table I.

The left side of the table summarizes our tagging data
and efforts per functionality. Including, the number of sample
snippets added to IJaDataset per functionality, s, the number of
IJaDataset snippets tagged as as true , p, or false positives, f , of
the functionality, and the number of hours invested in tagging
the snippets. Tagging hours includes only those spent by the
judges actively tagging the final data. It does not include time

spent researching the functionality and designing its search
heuristic, rest periods taken by the judges, or time the judges
spent tagging training data to prepare for the final data.

The right side of the table summarizes the number of true
and false clone pairs discovered by the snippet tagging efforts.
Each of the true clone pairs listed is a clone of the listed func-
tionality. The tagging efforts locate 1

2 (s+p)(s+p−1) oracled
clone pairs per functionality, as described in Section III-B.
The Type-3 and Type-4 clones are divided by their syntactical
similarity as described in Section III-B. Each of the false
clone pairs listed is a pair of code snippets that do not share
functionality. The tagging efforts locate sf oracled false clone
pairs as described in Section III-C.

V. EVALUATING CLONE DETECTORS

Our benchmark can be used to measure the recall and
precision of big data clone detection techniques (e.g., [5]).
Recall can be measured as in (1), where Btc is the set of
all true clone pairs in our benchmark, and D is the set of
clone pairs reported by the detector. Perhaps more interesting is
measuring the detectors’ recall of subsets of Btc. For example,
all clones of a particular functionality, all clone of a particular
type, all Type-3 clones within a particular range of syntactical
similarity, etc. Or even all clones of a specific sample function
for evaluating clone search tools.

recall =
D ∩Btc

Btc
(1)

The benchmark can be used to measure an upper and lower
bound on a detector’s precision, as shown in (2), where Bfc

is the false clone pairs in the benchmark. The lower bound
calculation assumes every detected clone pair unknown to the
benchmark is a false clone, while the upper bound assumes the
unknown clone pairs are true clones. This measured range in
precision can be quite wide. We therefore provide a estimate of
precision as in (3). This estimates precision as the ratio of the
known clones pairs (true and false) found by the detector that
are true clones. It ignores detected clones that are unknown to
the benchmark.

bprecisionc = |D ∩Btc|
D

dprecisione = 1− |D ∩Bfc|
|D|

(2)

precision =
|D ∩Btc|

|D ∩ (Btc ∪Bfc)|
(3)

VI. APPLICATIONS OF BIGCLONEBENCH

While the primary use case of our benchmark is to evaluate
big data clone detectors, it may also be used to evaluate other
classifications of clone detectors. The benchmark is ideal for
evaluating clone search algorithms as the benchmark contains
many clones of a target snippet (the sample snippets). While
classical detectors cannot be executed for IJaDataset in its
entirety, they could be evaluated for subsets of the benchmark.
The subsets would need to be small enough such that the
tool could be executed for the relevant files without scalability
issues. The subsets could be randomly chosen, could be all the
true and false clones found for a functionality, or could even be
the clones found in one of the 25,000 original subject systems
crawled for IJaDataset. High confidence could be achieved by
evaluating the classical tool for a large number of subsets.
The primary advantage of using our big data benchmark to

TABLE I. SNIPPET TAGGING AND BENCHMARK DATA SUMMARY

Functionality
Tagging Data Oracled Clone Pairs from Tagging

Sample Tagged Snippets Tagging True Clone Pairs, (s + p)(s + p − 1)/2 False Clone
Snippets, s True+, p False+, f Hours T1 T2 Strongly T3 Moderately T3 Weakly T3 & T4 Pairs, sf

Web Download 3 910 12,946 50 1,554 9 1,439 2,715 410,611 38,838
Secure Hash (MD5) 1 1,342 4,564 21 632 587 3,294 24,923 871,717 4,564

Copy a File 6 3,084 34,018 134 13,805 3,116 5,947 24,199 4,725,438 204,108
Decompress Zip 2 7 28 0.2 0 0 1 1 34 56

FTP Authenticated
Login 11 304 382 2.5 9 0 94 191 49,161 4,202

Bubble Sort 14 163 388 2 43 4 239 1,752 13,538 5,432
Init. SGV With

Model 1 23 78 0.4 3 7 5 2 259 78

SGV Selection Event
Handler 1 10 1,272 4.6 0 0 0 0 55 1,272

Create Java Project
(Eclipse) 1 22 0 0.25 0 0 8 0 245 0

SQL Update and
Rollback 2 135 12 0.6 122 10 259 97 8,828 24

Total 42 6,000 53,688 216 16,168 3,733 11,286 53,880 6,079,886 258,57459,688 6,164,953
T3 Categories by Syntax Similarity Ranges - Strongly: [0.70,1.0) Moderately: [0.50,0.70), Weakly: [0.0,0.50) SGV = ScrollingGraphicalViewer (Eclipse GEF API)

evaluate classical tools is clone variety. Classical benchmarks
only consider 1-10 subject systems, which provide a limited
variety of clones, especially Type-1 and Type-2. In contrast,
our benchmark considers 25,000 subject systems.

Since our benchmark consists of clones of particular func-
tionalities, it is very useful for evaluating semantic clone
detectors. To our knowledge, there is also no benchmark for
semantic clone detectors. While semantic clone detectors may
not be scalable to big data, they could be executed for subsets
of the benchmark. Good subsets would be the individual
functionalities, or a random selection of true and false positive
clones from each of the functionalities.

VII. THREATS TO VALIDITY

Our methodology requires multiple judges to reduce sub-
jectivity and human error during snippet tagging. At present
we have used only one judge per tagged functionality. We
minimized subjectivity by creating a clear specification of
the requirements of a true positive snippet for each target
functionality. We are currently revisiting these functionalities
with two additional judges to reduce bias.

When building the search heuristics we targeted only the
most popular implementations of a functionality. We have
likely missed some snippets in IJaDataset that implement the
functionality. We are currently prioritizing the expansion of
the benchmark to additional functionalities to improve its
variety. As future work we can return to the previously tagged
functionalities and expand their search hueristic to include less
popular approaches, and tag the missed snippets.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a curated benchmark of inter-
project clones in IJaDataset, a big data source code repository.
This benchmark was created using a novel functionality-based
clone mining approach. Unique to our benchmark is the
identification of both semantically and syntactically similar
clones. Unlike previous clone mining efforts (e.g., [8], [9]), our
benchmark was built independently of clone detection tools,
which is the recommended approach for evaluating modern
clone detection tools [11]. This means it is not biased or

limited to the clones that detectors are able to locate. This
makes the benchmark ideal for identifying weaknesses in the
current detection techniques.

For the next release of BigCloneBench, we plan to expand
the benchmark with additional functionalities, and to increase
the confidence of the data with additional judges. To achieve a
live benchmark, we plan to open our process and tools to the
community so that tagging can be achieved in a collaborative
way. As future work, we plan to work towards better separation
of the Type-3 and Type-4 clones. We also plan to expand the
benchmark to additional languages and clone granularities.

REFERENCES

[1] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, 2009.

[2] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
ICSE, 2014, pp. 175–186.

[3] J.-w. Park, M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim, “Surfacing
code in the dark: an instant clone search approach,” Knowl. and Inf.
Syst., pp. 1–33, 2013.

[4] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code examples,”
in ICSE, 2014.

[5] J. Svajlenko, I. Keivanloo, and C. K. Roy, “Big data clone detection
using the classical detectors: An exploratory study,” Journal of Soft.
Evol. and Process, 2014, 35 pp., DOI: 10.1002/smr.1662 (in press).

[6] H. Sajnani and C. Lopes, “A parallel and efficient approach to large
scale clone detection,” in IWSC, 2013, pp. 46–52.

[7] R. Koschke, “Large-scale inter-system clone detection using suffix
trees,” in CSMR, 2012, pp. 309–318.

[8] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and evaluation of clone detection tools,” Softw. Eng., IEEE Trans.
on, vol. 33, no. 9, pp. 577–591, 2007.

[9] D. E. Krutz and W. Le, “A code clone oracle,” in MSR, 2014, pp.
388–391.

[10] B. Baker, “Finding clones with dup: Analysis of an experiment,” Softw.
Eng., IEEE Trans. on, vol. 33, no. 9, pp. 608–621, 2007.

[11] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,”
in ICSME, 2014, 10 pp.

[12] J. Svajlenko, C. Roy, and J. Cordy, “A mutation analysis based bench-
marking framework for clone detectors,” in IWSC, 2013, pp. 8–9.

[13] Ambient Software Evoluton Group, “IJaDataset 2.0,” http://secold.org/
projects/seclone, January 2013.

