
Towards a Calculus of State-based Software Components

Lúıs S. Barbosa
(Dep. Informática, Universidade do Minho, Portugal

lsb@di.uminho.pt)

Abstract: This paper introduces a calculus of state-based software components mod-
elled as concrete coalgebras for some Set endofunctors, with specified initial conditions.
The calculus is parametrized by a notion of behaviour, introduced as a strong (usu-
ally commutative) monad. The proposed component model and calculus are illustrated
through the characterisation of a particular class of components, classified as separable,
which includes the ones arising in the so-called model oriented approach to systems’
design.

Key Words: software components, coalgebra, semantics

Category: D.3.1, F.3.2

1 Introduction

The emerging component-orientation paradigm [Wadler and Weihe, 1999] re-
tains from object-orientated programming the basic principle of encapsulation
of data and code, but shifts the emphasis from (class) inheritance to (object)
composition to avoid interference between the former and encapsulation and,
thus, paving the way to a development methodology based on third-party as-
sembly of components [Szyperski, 1998]. The paradigm is often illustrated by
the visual metaphor of a palette of computational units, treated as black boxes,
and a canvas into which they can be dropped. Connections are established by
drawing wires, corresponding to some sort of interfacing code. The expression
software component, however, is semantically overloaded, standing, in fact, for a
collection of technologies and a research concern common to different communi-
ties 1. Moreover, component-orientation has grown up to a popular technology
before consensual definitions and principles, let alone formal foundations, have
been put forward. In this paper we limit ourselves to regard components as spec-
ifications of state-based modules, encapsulating a number of services through a
public interface and providing limited access to an internal state space. Com-
ponents persist and evolve in time, being able to interact with the environment
during their overall computation.

Our starting point is the conjunction of two key ideas: first, the ‘black-box’
characterisation of software components favours an observational semantics; sec-
ondly, the proposed constructions should be generic in the sense that they should
1 As put by P. Wadler in a 1999 Seminar suggestively entitled ‘Component-based

Programming under different paradigms’, Just as Eskimos need fifty words for ice,
perhaps we need many words for components.

Journal of Universal Computer Science, vol. 9, no. 8 (2003), 891-909
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03 J.UCS

not depend on a particular notion of component behaviour. Observational se-
mantics is nicely captured by coalgebra theory [Rutten, 2000]. A coalgebra for
an (endo)functor T is a map p : U −→ T U which may be thought of as a
transition structure, of shape T, on a set U (the state space). The shape of T de-
scribes not only the way the state is (partially) accessed through the observers,
but also how it evolves through actions. The lack of constructors forces equality
to be replaced by bisimilarity and induction by coinduction as a proof princi-
ple2. The other key idea is the application of the so-called functorial approach
to datatypes, originated in the work of the Adj group in the early seventies
[Goguen et al., 1977], to the area of state-based systems modelling. This ap-
proach provides a basis for generic programming [Backhouse et al., 1998] which
raises the level of abstraction of the programming discourse in a way such that
seemingly disparate techniques and algorithms are unified into idealised, kernel
programming schemata.

In such a context this paper builds on previous work by the author (see e.g.,
[Barbosa and Oliveira, 2003, Barbosa and Oliveira, 2002]) on coalgebraic mod-
eling. Both the component model and the corresponding calculus discussed in the
sequel are parametrized by a notion of behaviour, introduced as a strong monad,
to express, for example, partiality or (different degrees of) non-determinism. The
paper is organised as follows: sections 2 and 3 introduce the basic component’s
combinators and their calculus. This is tunned to a particular, but common,
class of components — the separable ones — in section 4, which introduces the
relevant interaction combinators. A (toy) application is discussed in section 5.
Finally, section 6 points out some connections to related research and future
work.

2 Components As Coalgebras

Let I and O be sets acting as component interfaces. A component p with input
I and output O, represented as p : I −→ O, is modelled as a concrete, seeded
coalgebra for the following Set endofunctor:

TB = B(Id × O)I (1)

where B is a strong monad abstracting from each specific behaviour model3.
I.e., a pair 〈up ∈ Up, ap : Up −→ B(Up × O)I〉, where a specific value up of the
2 Recall that, given two coalgebras p and q, a comorphism from p to q is a function h

from the carrier of p to that of q which preserves the coalgebra dynamics, i.e., such
that Th · p = q · h holds. From any coalgebra there is one and only one comorphism
to the final coalgebra, if existent. Therefore, the final coalgebra collects all possible
behaviours up to bisimilarity, in the same sense that an initial algebra collects all
terms up to isomorphism. From a programming point of view, it is usually referred
to as a coinductive type.

3 Such a parametrization is a source of genericity in the approach; see appendix A for
a quick overview and [Barbosa and Oliveira, 2003] for a detailed discussion.

892 Barbosa L.S.: Towards a Calculus of State-based Software Components

state space Up is taken as the coalgebra ‘initial’ or ‘seed’ value and the dynamics
of the latter is captured by currying a state-transition function ap : Up × I −→
B (Up×O). In this way, the computation of an action will not simply produce an
output and a continuation state, but a B-structure of such pairs. The monadic
structure provides tools to handle such computations.

In such a framework, components ‘are arrows’ and so arrows between compo-
nents are ‘arrows between arrows’, which motivates the adoption of a bicategori-
cal [Benabou, 1967] framework to structure our reasoning universe. In particular,
a 2-cell h : p −→ q is a function relating the state spaces of p and q and satisfying
the following seed preservation and coalgebra conditions:

h up = uq and aq · h = TB h · ap (2)

2-cell composition is inherited from Set and the identity 1p : p −→ p, on compo-
nent p, is defined as the identity idUp on the carrier of p.
Let us denote by Cp such a bicategory. For each triple of objects 〈I, K, O〉, a
composition law is given by a functor ;I,K,O : Cp(I, K)×Cp(K, O) −→ Cp(I, O)
whose action on objects p and q is given by

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉

where ap;q : Up × Uq × I −→ B(Up × Uq × O) is detailed as follows

ap;q = Up × Uq × I
xr−−−−→ Up × I × Uq

ap×id−−−−→ B(Up × K) × Uq

τr−−−−→ B(Up × K × Uq)
B(a·xr)−−−−→ B(Up × (Uq × K))

B(id×aq)−−−−−−→ B(Up × B(Uq × O)) Bτl−−−−→ BB(Up × (Uq × O))
BBa◦−−−−→ BB(Up × Uq × O)

µ−−−−→ B(Up × Uq × O)

The action of ‘;’ on 2-cells is simply given by h ; k = h × k. Also notice that
the definition above relies solely on properties of the monad morphisms η, µ,
strengths τr and τl, and the distributive law δl

4. Finally, for each object K, an
identity law is given by a functor

copyK : 1 −→ Cp(K, K)

whose action on objects is the constant component 〈∗ ∈ 1, acopyK
〉, where acopyK

=
η1×K . Similarly, the action on morphisms is the constant comorphism id1.

The fact that, for each strong monad B, components form a bicategory 5

amounts not only to a standard definition of the two basic combinators (‘;’ and
copyK) of the component calculus, but also to setting up its basic laws (equations
4 Such monad morphisms as well as common ‘housekeeping’ functions are recalled in

appendix A.
5 The reader is referred to [Barbosa, 2001] for all omitted proofs.

893Barbosa L.S.: Towards a Calculus of State-based Software Components

(9) and (10) in appendix B). Such laws are stated as TB-bisimilarity equations,
i.e., up to observation through the ‘shape’ encoded in functor TB.

Any function f : A −→ B can be regarded as a (particular case of a) com-
ponent, being lifted to Cp as

�f� = 〈∗ ∈ 1, a�f�〉
i.e., as a coalgebra over 1 whose action is given by the currying of

a�f� = 1× A
id×f �� 1× B

η(1×B) �� B(1× B)

Clearly, function lifting is functorial (laws (11) and (12) in appendix B). More-
over, isomorphisms, split monos and split epis lift to Cp as, respectively, isomor-
phisms, split monos and split epis [Barbosa, 2001].

The coalgebraic specification of a component describes immediate reactions
to possible state/input configurations. It is its extension in time which gives the
component’s behaviour (abstracted as an element of the final coalgebra). For-
mally, the behaviour [(p)] of a component p is computed by coinductive extension
[Rutten, 2000], i.e., [(p)] = [(ap)]up, where [(p)] is the unique function from p to
the final coalgebra.

Behaviours organise themselves in a category Bh whose objects are sets and
each arrow b : I −→ O is an element of νI,O, the carrier of the final coalgebra
ωI,O for functor B(Id × O)I . Note that the structure of Bh mirrors whatever
structure Cp possesses. In fact, the former is isomorphic to a sub-(bi)category
of the latter whose arrows are components defined over the corresponding final
coalgebra. Alternatively, we may think of Bh as constructed by quotienting Cp by
the greatest TB-bisimulation. However, as final coalgebras are fully abstract with
respect to bisimulation, the bicategorical structure collapses: the hom-categories
become simply hom-sets. Of course, properties holding in Cp up to bisimulation,
do hold ‘on the nose’ in the behaviour category.

3 Component Combinators

Components can be aggregated in a number of different ways, besides ‘pipeline’
composition discussed above. This section explores the structure of CpB by in-
troducing a ‘wrapping’ combinator, which may be thought of as an extension
of the renaming connective found in process calculi (e.g., [Milner, 1989]), and
three tensors. Generalized interaction, through a sort of ‘feedback’ mechanism is
addressed in the next section. Note the definition of all combinators is paramet-
ric on the behaviour model, relying on generic properties of the strong monad
B. Component combinators are shown to be either lax endofunctors in CpB or
simply functors between families of hom-categories. Their definitions carry natu-
rally to BhB, where they show up as behaviour connectives, defining a particular
(typed) ‘process’ algebra.

894 Barbosa L.S.: Towards a Calculus of State-based Software Components

Wrapping

The pre- and post-composition of a component with Cp-lifted functions can be
encapsulated in an unique wrapping combinator. Let p : I −→ O be a component
and consider functions f : I ′ −→ I and g : O −→ O′. By p[f, g] we will denote
‘component p wrapped by f and g’. This has type I ′ −→ O′ and is defined by
input pre-composition with f and output post-composition with g. Formally, the
wrapping combinator is a functor (between the corresponding hom-categories)
−[f, g] : Cp(I, O) −→ Cp(I ′, O′) which is the identity on morphisms and maps
a component 〈up, ap〉 into 〈up, ap[f,g]〉, where

ap[f,g] = Up × I ′ id×f−−−−→ Up × I
ap−−−−→ B(Up × O)

B(id×g)−−−−−→ B(Up × O′)

Equations (14) and (15) in appendix B capture wrapping basic properties.
Some simple components arise by lifting elementary functions to Cp. We have

already remarked that the lifting of the canonical arrow associated to the initial
Set object plays the role of an inert component, unable to react to the outside
world. Let us give this component a name:

inertA = �?A� (3)

In particular, we define the nil component

nil = inert∅ = �?∅� = �id∅� (4)

typed as nil : ∅ −→ ∅. Note that any component p : I −→ O can be made inert
by wrapping. For example, p[?I , !O] ∼ inert1.

A somewhat dual role is played by component idle = �id1�. Note that
idle : 1 −→ 1 is always willing to propagate an unstructured stimulus (e.g., the
push of a button) leading to a (similarly) unstructured reaction (e.g., exciting a
led).

Tensors

Three tensor products are introduced to capture three different composition
patterns: external choice (p � q), parallel (p � q) and concurrent composition
(p � q).

Let p : I −→ O and q : J −→ R be two components defined by 〈up, ap〉
and 〈uq, aq〉, respectively. When interacting with p � q : I + J −→ O + R,
the environment will be allowed to choose either to input a value of type I or
one of type J , which will trigger the corresponding component (p or q, respec-
tively), producing the relevant output. On its turn, parallel composition yields
p � q : I × J −→ O × R, corresponding to a synchronous product: both compo-
nents are executed simultaneously when triggered by a pair of legal input values.

895Barbosa L.S.: Towards a Calculus of State-based Software Components

Note, however, that the behaviour effect, captured by monad B, propagates. For
example, if B can express component failure and one of the arguments fails, the
product will fail as well. Finally, concurrent composition combines choice and
parallel, in the sense that p and q can be executed independently or jointly,
depending on the input supplied.

The three combinators are defined as lax functors from Cp×Cp to Cp. Choice,
for example, consists of an action on objects given by I � J = I + J and a
family of functors �I,O,J,R : Cp(I, O) × Cp(J, R) −→ Cp(I + J, O + R) yielding

�I,O,J,R : Cp(I, O) × Cp(J, R) −→ Cp(I + J, O + R)

yielding
p � q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉

where

ap�q = Up × Uq × (I + J) dr �� Up × Uq × I + Up × Uq × J

xr+a �� Up × I × Uq + Up × (Uq × J)
ap×id+id×aq �� B (Up × O) × Uq + Up × B (Uq × R)

τr+τl �� B (Up × O × Uq) + B (Up × (Uq × R))
Bxr+Ba◦ �� B (Up × Uq × O) + B (Up × Uq × R)

[B (id×ι1),B (id×ι2)] �� B (Up × Uq × (O + R))

which maps pairs of arrows 〈h1, h2〉 into h1×h2. Parallel composition is similarly
defined: just take I � J as I × J and

ap�q = Up × Uq × (I × J) m �� Up × I × (Uq × J)
ap×aq �� B (Up × O) × B (Uq × R)

δl �� B (Up × O × (Uq × R))
B m �� B (Up × Uq × (O × R))

Finally, regarding � also as a lax functor, define I � J = I + J + I × J , and
ap�q =

Up × Uq × (I � J) dr �� Up × Uq × (I + J) + Up × Uq × (I × J)
ap�q+ap�q �� B (Up × Uq × (O + R)) + B (Up × Uq × (O × R))

[B(id×ι1),B(id×ι2)] �� B (Up × Uq × (O � R))

Properties of these combinators are established in detail in [Barbosa, 2001].
Besides the verification of their definition as lax functors, it is shown that all

896 Barbosa L.S.: Towards a Calculus of State-based Software Components

of them are symmetric tensor products (commutativity of � and � depending
on monad B being Abelian). In particular, nil defined as �id∅�, is the unit of
both � and � and a zero element for �. The unit for parallel composition
is idle = �id1�. Laws (18) and (32) relate � and � with the usual Set sum
and product, respectively, whereas laws (50) and (51) show them as suitable
specialisations of �.

Seeking for Universals

A fundamental question arising in the development of a components’ calculus is
whether typical universal constructions used in (data-oriented) program calculi
(see e.g., [Bird and Moor, 1997]) have a counterpart. Clearly, for any set I , the
lifting of ?I : ∅ −→ I to Cp keeps naturality, i.e., �?I� ; p ∼ �?O�. As any
bisimulation equation lifts to an equality in the behaviours category, ∅ is initial
in Bh. For no trivial B, however, functions to 1 loose their naturality once lifted
and, therefore, Bh has no final object.

Consider now combinators � and �. Is it possible to define counterparts in
Cp to the either and split constructions in Set, by making6

[p, q] = (p � q) ; ��� and 〈p, q〉 = ��� ; (p � q) ?

The answer is only partially positive. In fact, codiagonal � does not keep natural-
ity once lifted to Cp, even for B = Id. Hence, uniqueness of component [p, q] (see
diagram on appendix B) is lost. However, cancellation, reflection and absorption
laws still hold in Cp (equations (23), (24) and (25) in appendix B, respectively)
and, therefore, � becomes a weak coproduct in Bh. Also note that Set coproduct
embeddings — once lifted to Cp, — keep their naturality (equations (27) and
(28) in appendix B), paving the way to the derivation of an ‘idempotency’ result
(equation (29) in appendix B).

The dual situation, involving � and split, is a bit different. The problem here
is that a cancellation result — 〈p, q〉 ; �π1� ∼ p — is only valid for a monad B

which excludes the possibility of failure (e.g., the non-empty powerset). On the
other hand, diagonal � keeps its naturality when lifted to Cp, for B expressing
deterministic behaviour (e.g., the identity or the maybe monad), entailing a
fusion law:

r ; 〈p, q〉 ∼ 〈r ; p, r ; q〉
Combining these two results, one concludes that � is a product in Bh, but only
for behaviour models excluding failure and no determinism, which narrows the
applicability scope of this fact to the category of total deterministic components.
However, reflection and absorption laws (equations (37) and (38) in appendix
B) do hold for any B.
6 where �= 〈id, id〉 : I −→ I × I and � = [id, id] : I + I −→ I are, respectively, the

diagonal and codiagonal functions.

897Barbosa L.S.: Towards a Calculus of State-based Software Components

4 Separable Components and Interaction

So far component interaction has been centred upon sequential composition,
which is the Cp counterpart to functional composition in Set. This basic inter-
action scheme can be generalised by introducing partial connections, i.e., by
connecting some input to some output wires and, consequently, forcing part of
the output of a component to be fed back as input. Some general feedback mech-
anisms have been studied in [Barbosa, 2001]. In this paper, however, we shall
restrict ourselves to a particular one which, being quite powerful, can only be
defined over a sub-category of Cp — that of separable components.

A separable component is specified as a collection of actions over a shared
state space, each of which exhibits its own input and output types. Packing them
into a TB-coalgebra, results into a component with an additive interface such that
each type of input stimulus produces a result whose type is known and unique
(among the possible results). Such components arise typically in the practical
use of model oriented specification methods, such as Vdm [Jones, 1986] or Z

[Spivey, 1992]. In the sequel a restriction combinator and an interaction scheme,
called hook, will be defined and some of their properties investigated.

To be precise, let us call separable a component p : I + J −→ O + R whose
dynamics ap can be split into two independent coalgebras

a1.p : Up −→ B(Up × O)I and a2.p : Up −→ B(Up × R)J

This notation suggests that 1.p and 2.p can also be regarded as independent
components, with different interfaces, but defined over the same state space Up

and seed value up. Therefore the dynamics of p arises as the currying of

ap = [B(id × ι1) · a1.p, B(id × ι2) · a2.p] · dr

Clearly, for each behaviour monad B and objects I , J , O and R, separable com-
ponents form a subcategory Cp(I + J, O + R)Sp of Cp(I + J, O + R). Moreover,
Cp-arrows connecting separable components are characterised by the following
property: given p, q : I + J −→ O + R separable, h is a morphism from p to q iff
the same h, seen as an arrow in the underlying category, is also a comorphism
from 1.p to 1.q and 2.p to 2.q (with a slight abuse of notation we shall write
h : 1.p −→ 1.q and h : 2.p −→ 2.q). The proof follows:

Proof. To prove the right to left implication assume h : 1.p −→ 1.q and h :

898 Barbosa L.S.: Towards a Calculus of State-based Software Components

2.p −→ 2.q. Then

B(h × id) · ap

= { p separable }
B(h × id) · [B(id × ι1) · a1.p, B(id × ι2) · a2.p] · dr

= { + fusion, identity and + absorption }
[B(id × ι1), B(id × ι2)] · (B(h × id) · a1.p + B(h × id) · a2.p) · dr

= { assumption: h : 1.p −→ 1.q and h : 2.p −→ 2.q }
[B(id × ι1), B(id × ι2)] · (a1.q · (h × id) + a2.q · (h × id)) · dr

= { dr natural }
[B(id × ι1), B(id × ι2)] · (a1.q + a2.q) · dr · (h × id)

= { q separable }
aq · (h × id)

For the reverse implication, assume h : p −→ q. Then,

h : p −→ q

≡ { comorphism condition and p, q separable }
B(h × id) · [B(id × ι1), B(id × ι2)] · (a1.p + a2.p) · dr

= [B(id × ι1), B(id × ι2)] · (a1.q + a2.q) · dr · (h × id)

≡ { + fusion, + absorption and dr natural }
[B(id × ι1) · B(h × id) · a1.p, B(id × ι2) · B(h × id) · a2.p] · dr

= [B(id × ι1) · a1.q · (h × id), B(id × ι2) · a2.q · (h × id)] · dr

≡ { equality }
B(id × ι1) · B(h × id) · a1.p = B(id × ι1) · a1.q · (h × id)

and

B(id × ι2) · B(h × id) · a2.p = B(id × ι2) · a2.q · (h × id)

= { � }
B(h × id) · a1.p = a1.q · (h × id)

and

B(h × id) · a2.p = a2.q · (h × id)

= { comorphism condition}
h : 1.p −→ 1.q and h : 2.p −→ 2.q

where the � step is justified as follows. If I �= ∅, ι1 is a split mono and so is
B(id× ι1), because any functor preserves split monos, and we are done. If I = ∅,
the result holds trivially as both B(h × id) · a1.p and a1.q · (h × id) have source

899Barbosa L.S.: Towards a Calculus of State-based Software Components

Up×∅ and any function from such a domain to an arbitrary set X can be written
as ?X · zrUp .

�

Separable components support a number of specific combinators — we shall
concentrate here in feedback schemes. First of all, consider p : I + Z −→ Z + O

separable. Then, the feed back of a Z output will always produce a O one. Thus,
a feedback combinator, which actually restricts the component interface, may
be defined as

(
p
)
Z

: I −→ O = 〈up ∈ Up, a(
p
)

Z

〉

a(
p
)

Z

= Up × I
a2.p•a1.p �� B(Up × O)

where • denotes the Kleisli composition for monad B. A particular case of a
separable component is q � r : I + Z −→ Z + O, where q : I −→ Z and
r : Z −→ O. Clearly,

(
q � r

)
Z

∼ q ; r.
A more general situation arises whenever p has type p : I + J + Z −→

Z +O+R. and is separable into three ‘threads’ 1.p, 2.p and 3.p, with 1.p and 3.p
composable. Then, for each I , Z, J , R and O, the hook combinator is defined as a
family of functors

(
p
)
Z

: Cp(I+J+Z, Z+O+R)Sp −→ Cp(I+J, O+R)Sp which,
being the identity on arrows, map each component p : I + J + Z −→ Z + O + R

to (
p
)
Z

: I + J −→ O + R = 〈up ∈ Up, a(
p
)

Z

〉

where

a(
p
)

Z

= Up × (I + J) dr �� Up × I + Up × J
(a3.p•a1.p)+a2.p �� B(Up × R) + B(Up × O)
[B(id×ι2),B(id×ι1)] �� B(Up × (O + R))

Clearly, for each I , Z, J , R and O, the hook combinator is a functor from
Cp(I + J + Z, Z + O + R)Sp to Cp(I + J, O + R)Sp

7.
We shall conclude our digression around separable components by stating

some properties of the interaction between hook and other component combina-
tors. Proof arguments rely on the separability of the composites.

The first law relates hook with wrapping: hook is well behaved with respect to
a ‘structural’ wrapping function, if its component in the feed back parameter is
7 Note that this definition subsumes the previous one: by isomorphic wiring the inter-

face of p : I + Z −→ Z + O can be re-written as I + ∅ + O −→ Z + ∅ + O which is
separable, with the original p threads in the first and third positions and ?B(Up×∅)
in the second.

900 Barbosa L.S.: Towards a Calculus of State-based Software Components

an isomorphism. Thus, let p : I +J +Z −→ Z +O+R be a separable component
and i : W −→ Z an isomorphism. Then,

(
p[f + g + i, i◦ + h + k]

)
W

∼ (
p
)
Z
[f + g, h + k] (5)

The hook combinator can be thought of as a partial sequential composition, in
the sense that joined ‘pins’ vanish from the outermost interface. This gives rise
to a number of bisimilar aggregation schemes, based on either ; or �, that allow
the specifier to play around with the components involved. For example, it can
be shown that

(
(p � r) [xr+, id]

)
Z

∼ (
p
)
Z

� r (6)

for p : I + Z −→ Z + O and r : J −→ R. On the other hand, a number of laws
make it possible to swap a partial composition from the input to the output of
the feed back ‘pin’. The law below is prototypical of this class of situations. Let
p : I + J + Z −→ W + O + R be separable and s : W −→ Z. Then,

(
(copyI � copyJ � s) ; p

)
W

∼ (
p ; (s � copyO � copyR)

)
Z

(7)

Similarly, for p : I + Z −→ O + R, r : J −→ W and s : W −→ Z,
(
((r ; s) � p) [a+, a+]

)
Z

∼ (
(r � ((copyI � s) ; p)) [a+, a+]

)
W

(8)

The proof idea for (7) is that, because p is separable, component s is activated in
both expressions only once and always triggered by a p response to an I typed
input. A lengthy, but trivial, expression manipulation establishes s · (s × id) :
1×1×Us ×Up −→ Up × (Us ×1×1) as a comorphism from the left to the right
hand side of the equation.

5 Applying the Calculus

To illustrate the component calculus in action consider a voting system in which
stimuli sent by independent voting pads are counted in a central unit (the ‘con-
centrator’) until a certain level is reached. A common use of such a system can
be found in processing units for electronic opinion polls, as in some television
shows. A similar system, however, can be used to count inputs from a number
of sensors in, e.g., an industrial plant. Typically, such sensors emit a number
of stimuli before terminating. In any case, the maybe monad is an adequate
choice for the behaviour model. The voting system is built around two basic
components: the voting pad VP and the concentrator C as detailed below. The
voting pad maintains, as state information, the number of stimuli remaining to
be emitted. Its interface is elementary: trivial input and the output means that

901Barbosa L.S.: Towards a Calculus of State-based Software Components

no special data is exchanged by this component: simply, a button is pushed (on
input) and a led excited (on output). Thus, VP : 1 −→ 1 = 〈n ∈ N, aVP〉
where8

aVP 〈n, ∗〉 = (n �= 0 → ι1 〈n − 1, ∗〉, ι2 ∗)

On the other hand, the concentrator is modelled by component C : N + 1 −→
1 + 2 = 〈0 ∈ N, aC〉 whose dynamics aC is based on two actions: reset, to
set the minimum number of votes needed to report success, and vote to count
an individual vote. Formally,

reset 〈u, m〉 = ι1 〈m, ∗〉 and vote 〈u, ∗〉 = ι1 〈u − 1, u′ = 1〉

Each incoming vote decreases the concentrator state value. The output of action
vote is a boolean flag indicating whether all votes needed to terminate the voting
process have been received. A n-voting system is assembled by aggregating n

voting pads and connecting their output to the concentrator. A n-codiagonal
wire is needed to concentrate the voting pads’ outputs. As C is separable, the
hook combinator can be used for interaction. Thus, we begin with

Sn = (�nVP ; ��n�) � C

which is typed as �n1+(N+1) −→ 1+(1+2). To apply hook, however, Sn has
to be wired to exhibit the hooked type in the correct position. Clearly, Sn[a+, a+]
has the right type: �n(1 + N) + 1 −→ (1 + 1) + 2. The voting system is, then,
defined as

VSn =
(
((�nVP ; ��n�) � C) [a+, a+]

)
1

: �n1 + N −→ 1 + 2

Notice that the only actions that are externally available model, respectively,
the act of voting (in the voting pad) and system’s reset (in the concentrator).

In VSn each vote is dealt separately. Replacing � by � as the ‘gluing’ com-
binator of the voting pads, allows for the simultaneously counting of arbitrary
chunks of votes. Eventually this suits reality better, as several voting pads may
be activated at the same time. Two extra modifications are required in the sys-
tem to cope with this new specification. First, the vote button of the concentrator
has to be re-designed to accept, instead of a single stimulus, a natural number
encoding the number of incoming votes, i.e.,

vote 〈u, n〉 = ι1 〈u − n, u′ ≤ 0〉

Together with the reset button, this defines a new concentrator NC : N + N −→
1 + 2. Second, the codiagonal wiring has to be replaced by a function countn :
8 Recall construction (p → f, g) is a conditional: if p then f else g.

902 Barbosa L.S.: Towards a Calculus of State-based Software Components

�n1 −→ N which actually counts the number of inputs received. For n = 2,
count2 : (1+1)+1×1 −→ N would simply be [1·!, 2·!]. The new system is, then,
assembled as in the VSn case:

CVSn =
(
((�nVP ; �countn�) � NC) [a+, a+]

)
N

: �n1 + N −→ 1 + 2

Clearly, CVSn exhibits a ‘richer’ behavioural pattern than VSn, in a very precise
sense: if input to CVSn is restricted to a sum of stimuli, the resulting component
becomes bisimilar to VSn. Let us prove this for n = 2 (for n > 2 the proof is
similar but for some extra wiring manipulation).

Proof.

�ι1 + id� ; CVS2

∼ { CVS2 definition and law (14) }
(
((VP � VP ; �countn�) � NC) [a+, a+]

)
N

[ι1 + id, id]

∼ { law (5) }
(
(((VP � VP) ; �countn�) � NC) [a+, a+][ι1 + id + id, id]

)
N

∼ { a+ natural and law (14) }
(
(�ι1 + id� ; ((VP � VP) ; �count2�) � NC) [a+, a+]

)
N

∼ { law (18) and copyX definition }
(
((�ι1� � copyN) ; ((VP � VP) ; �count2�) � NC) [a+, a+]

)
N

∼ { law (16) }
(
((�ι1� ; ((VP � VP) ; �count2�)) � (copyN ; NC)) [a+, a+]

)
N

∼ { laws (9) and (10)}
(
((�ι1� ; (VP � VP) ; �count2�) � NC) [a+, a+]

)
N

∼ { law (50) }
(
(((VP � VP) ; �ι1� ; �count2�) � NC) [a+, a+]

)
N

∼ { law (10) }
(
(((VP � VP) ; (�ι1� ; �count2�)) � NC) [a+, a+]

)
N

∼ { count2 · ι1 = 1·!1+1 = 1 · � }
(
(((VP � VP) ; (��� ; �1�)) � NC) [a+, a+]

)
N

∼ { law (8) }
(
(((VP � VP) ; ���) � ((copy

N
� �1�) ; NC)) [a+, a+]

)
1

∼ { (copy
N

� �1�) ; NC ∼ C }

903Barbosa L.S.: Towards a Calculus of State-based Software Components

(
(((VP � VP) ; ���) � C) [a+, a+]

)
1

∼ { VS2 definition }
VS2

�

6 Conclusions and Future Work

This paper introduces a component calculus, intended to help in reasoning (and
transforming) component-based designs.

Our notion of a component — stemming from the context of model ori-
ented specification methods — is characterised by the presence of internal state
and by an interaction model which reflects the asymmetric nature of input and
output. The bicategorical setting adopted is in debt to previous work by R.
Walters and his collaborators on models for deterministic input-driven systems
[Katis et al., 2000]. However, whereas R. Walters’ work deals essentially with de-
terministic systems, our monadic parametrization allows to focus on the relevant
structure of components, factoring out details about the specific behavioural ef-
fects that may be produced. The interaction combinators and tensors are also
new.

Our approach also enforces a classification of component models by the set
of laws they satisfy. In fact, although the basic calculus is ‘blind’ with re-
spect to component’s internal structure, being aware of some details of such
a structure — for example, some properties of the state space or the speci-
fication format of the coalgebra dynamics — enables a finer ‘tunning’ of the
calculus, as illustrated here with the discussion on separable components. An-
other interesting case, currently under investigation, is the class of restartable
components, i.e., components which may ‘die’ and be re-activated at a later
stage. Further work includes the study of simulation preorders for components
as well as of corresponding refinement principles. On the practical side, the
prospect of building an animating tool for the calculus is currently under con-
sideration. In such a tool, of which an experimental version has been developed
in Charity [Cockett and Fukushima, 1992], components can be defined and
brought to life in order to assess alternative decisions in software architecture
[Garlan and Shaw, 1993] design.

References

[Backhouse et al., 1998] Backhouse, R. C., Jansson, P., Jeuring, J., and Meertens, L.
(1998). Generic programming: An introduction. In Swierstra, S. D., Henriques, P. R.,

904 Barbosa L.S.: Towards a Calculus of State-based Software Components

and Oliveira, J. N., editors, Third International Summer School on Advanced Func-
tional Programming, Braga, pages 28–115. Springer Lect. Notes Comp. Sci. (1608).

[Barbosa, 2001] Barbosa, L. S. (2001). Components as Coalgebras. PhD thesis, DI,
Universidade do Minho.

[Barbosa and Oliveira, 2002] Barbosa, L. S. and Oliveira, J. N. (2002). Coinductive
interpreters for process calculi. In Proc. of FLOPS’02, pages 183–197, Aizu, Japan.
Springer Lect. Notes Comp. Sci. (2441).

[Barbosa and Oliveira, 2003] Barbosa, L. S. and Oliveira, J. N. (2003). State-based
components made generic. In Gumm, H. P., editor, Elect. Notes in Theor. Comp.
Sci. (CMCS’03 - Workshop on Coalgebraic Methods in Computer Science), volume
82.1, Warsaw.

[Benabou, 1967] Benabou, J. (1967). Introduction to bicategories. Springer Lect.
Notes Maths. (47), pages 1–77.

[Bird and Moor, 1997] Bird, R. and Moor, O. (1997). The Algebra of Programming.
Series in Computer Science. Prentice-Hall International.

[Cockett and Fukushima, 1992] Cockett, R. and Fukushima, T. (1992). About Char-
ity. Yellow Series Report No. 92/480/18, Dep. Computer Science, University of Cal-
gary.

[Garlan and Shaw, 1993] Garlan, D. and Shaw, M. (1993). An introduction to soft-
ware architecture. In Ambriola, V. and Tortora, G., editors, Advances in Software
Engineering and Knowledge Engineering (volume I). World Scientific Publishing Co.

[Goguen et al., 1977] Goguen, J., Thatcher, J., Wagner, E., and Wright, J. (1977).
Initial algebra semantics and continuous algebras. Jour. of the ACM, 24(1):68–95.

[Jones, 1986] Jones, C. B. (1986). Systematic Software Development Using Vdm. Se-
ries in Computer Science. Prentice-Hall International.

[Katis et al., 2000] Katis, P., Sabadini, N., and Walters, R. F. C. (2000). On the al-
gebra of systems with feedback and boundary. Rendiconti del Circolo Matematico di
Palermo, II(63):123–156.

[Milner, 1989] Milner, R. (1989). Communication and Concurrency. Series in Com-
puter Science. Prentice-Hall International.

[Rutten, 2000] Rutten, J. (2000). Universal coalgebra: A theory of systems. Theor.
Comp. Sci., 249(1):3–80. (Revised version of CWI Techn. Rep. CS-R9652, 1996).

[Spivey, 1992] Spivey, J. M. (1992). The Z Notation: A Reference Manual (2nd ed).
Series in Computer Science. Prentice-Hall International.

[Szyperski, 1998] Szyperski, C. (1998). Component Software, Beyond Object-Oriented
Programming. Addison-Wesley.

[Wadler and Weihe, 1999] Wadler, P. and Weihe, K. (1999). Component-based pro-
gramming under different paradigms. Technical report, Report on the Dagstuhl
Seminar 99081.

A Behaviour Monads

A strong monad is a monad 〈B, η, µ〉 where B is a strong functor and both η and
µ are strong natural transformations. B being strong means there exist natural
transformations τT

r : T×− =⇒ T(Id×−) and τT
l : −×T =⇒ T(−×Id), called the

right and left strength, respectively, subject to certain conditions. Their effect is
to distribute the free variable values in the context “−” along functor B. Strength
τr, followed by τl maps BI × BJ to BB(I × J), which can, then, be flattened to
B(I × J) via µ. In most cases, however, the order of application is relevant for

905Barbosa L.S.: Towards a Calculus of State-based Software Components

the outcome. The Kleisli composition9 of the right with the left strength, gives
rise to a natural transformation whose component on objects I and J is given
by δr = τrI,J •τlBI,J

Dually, δl = τlI,J •τrI,BJ
. Such transformations specify how

the monad distributes over product and, therefore, represent a sort of sequential
composition of B-computations. Whenever δr and δl coincide, the monad is said
to be commutative.

In the approach discussed in this paper, behaviour models for software com-
ponents are specified by strong monads. Some useful possibilities are:

– Identity, B = Id, yielding total and deterministic components.

– Partiality, i.e., the possibility of deadlock or failure, captured by the maybe
monad.

– Non determinism, introduced by the (finite) powerset monad, B = P .

– Ordered non determinism, based on the (finite) sequence monad, B = Id∗.

– Monoidal ‘labelling’, with B = Id×M . Note that, for B to form a monad, pa-
rameter M should support a monoidal structure to be used in the definition
of η and µ.

– ‘Metric’ non determinism, supported on a notion of a bag monad based on
a structure 〈M,⊕,⊗〉, where both ⊕ and ⊗ define Abelian monoids over M

and the latter distributes over the former. This captures situations in which,
among the possible future evolutions of the component, some are more likely
(or cheaper, more secure, etc.) than others. See [Barbosa and Oliveira, 2003]
for particular instantiations.

All of the above situations correspond to known strong monads in Set, which can
be composed with each other. The first two and the last one are commutative;
the third is not. Commutativity of ‘monoidal labelling’ depends, of course, on
commutativity of the underlying monoid.

The development, in a point-free style, of the component calculus discussed
in this paper, resorts to a number of laws relating common ‘housekeeping’ mor-
phisms to cope with e.g. product and sum associativity (a and a+), commu-
tativity (s), right and left units (r and l), right and left distributivity (dr, dl)
or exchange (i.e., morphisms xl : A × (B × C) −→ B × (A × C), xr :
A×B×C −→ A×C ×B and m : (A×B)× (C ×D) −→ (A×C)× (B ×D))
with monad unit, multiplication and strength. Such laws are thoroughly dealt
with in [Barbosa, 2001] under the designation of context lemmas.

9 Given f : I −→ BJ and g : J −→ BO, their Kleisli composition g • f : I −→ BO is
defined by g • f = µ · Bg · f .

906 Barbosa L.S.: Towards a Calculus of State-based Software Components

B The Core Calculus

Pipelining

copyI ; p ∼ p ∼ p ; copyO (9)

(p ; q) ; r ∼ p ; (q ; r) (10)

Function lifting

�f · g� ∼ �g� ; �f� (11)

�idI� ∼ copyI (12)

– any Set isomorphism, split mono and split epi lift to Cp keeping their prop-
erties

– ∅ is initial in Bh:

I
p �� O

∅
�?I�

��

�?O�

����������

�?I� ; p ∼ �?O� (13)

Wrapping

p[f, g] ∼ �f� ; p ; �g� (14)

(p[f, g])[f ′, g′] ∼ p[f · f ′, g′ · g] (15)

Choice

(p � p′) ; (q � q′) ∼ (p ; q) � (p′ ; q′) (16)

copyK�K′ ∼ copyK � copyK′ (17)

�f� � �g� ∼ �f + g� (18)

(p � q) � r ∼ (p � (q � r))[a+, a+
◦] (19)

nil � p ∼ p[r+, r+
◦] (20)

p � nil ∼ p[l+, l+
◦] (21)

p � q ∼ (q � p)[s+, s+] (22)

907Barbosa L.S.: Towards a Calculus of State-based Software Components

Either — [p, q] = (p � q) ; ���

I

p
����

��
��

��
�
�ι1� �� I � J

[p,q]

��

J

q
����

��
��

��
�

�ι2���

O

�ι1� ; [p, q] ∼ p

�ι2� ; [p, q] ∼ q

(23)

[�ι1�, �ι2�] ∼ copyI+J (24)

(p � q) ; [p′, q′] ∼ [p ; p′, q ; q′] (25)

p � q ∼ [p ; �ι1�, p ; �ι2�] (26)

�ι1� ; (p � q) ∼ p ; �ι1� (27)

�ι2� ; (p � q) ∼ q ; �ι2� (28)

p ; �ι1� ∼ �ι1� ; (p � p) (29)

– For any B, however, � is a weak coproduct in Bh

Parallel

copyK�K′ ∼ copyK � copyK′ (30)

(p � p′) ; (q � q′) ∼ (p ; q) � (p′ ; q′) (if B commutative) (31)

�f� � �g� ∼ �f × g� (32)

(p � q) � r ∼ (p � (q � r))[a, a◦] (33)

idle � p ∼ p[r, r◦] (34)

nil � p ∼ nil[zl, zl◦] (35)

p � q ∼ (q � p)[s, s] (if B commutative) (36)

Split — 〈p, q〉 = ��� ; (p � q)

〈�π1�, �π2�〉 ∼ copyO×R (37)

〈p, q〉 ; (p′ � q′) ∼ 〈p ; p′, q ; q′〉 (if B commutative) (38)

p � q ∼ 〈�π1� ; p, �π2� ; q〉 (if B commutative) (39)

(�f� � q) ; �π2� ∼ �π2� ; q (40)

(p � �f�) ; �π1� ∼ �π1� ; p (41)

908 Barbosa L.S.: Towards a Calculus of State-based Software Components

– In general, cancellation

〈p, q〉 ; �π1� ∼ p (42)

holds only for a monad B which excludes the possibility of failure (e.g., the
non-empty powerset)

– Diagonal � keeps its naturality when lifted to Cp, for B expressing determin-
istic behaviour (e.g., the identity or the maybe monad), entailing a fusion
law:

r ; 〈p, q〉 ∼ 〈r ; p, r ; q〉 (43)

– � is a product in Bh, for B = Id

Concurrent

copyK�K′ ∼ copyK � copyK′ (44)

(p � p′) ; (q � q′) ∼ (p ; q) � (p′ ; q′) (if B commutative) (45)

(p � q) � r ∼ (p � (q � r))[a∗, a∗◦] (46)

nil � p ∼ p[r∗, r∗◦] (47)

p � nil ∼ p[l∗, l∗◦] (48)

p � q ∼ (q � p)[s∗, s∗] (if B commutative) (49)

�ι1� ; (p � q) ∼ (p � q) ; �ι1� (50)

�ι2� ; (p � q) ∼ (p � q) ; �ι2� (51)

909Barbosa L.S.: Towards a Calculus of State-based Software Components

